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Abstract— The present contribution demonstrates the appli-
cability of polynomial chaos expansion to stochastic (optimal)
AC power flow problems that arise in the operation of power
grids. For rectangular power flow, polynomial chaos expansion
together with Galerkin projection yields a deterministic refor-
mulation of the stochastic power flow problem that is solved
numerically in a single run. From its solution, approximations
of the true posterior probability density functions are obtained.
The presented approach does not require linearization. Further-
more, the IEEE 14 bus serves as an example to demonstrate
that the proposed approach yields accurate approximations to
the probability density functions for low orders of polynomial
bases, and that it is computationally more efficient than Monte
Carlo sampling.

Index Terms— optimal power flow, stochastic uncertainty,
polynomial chaos expansion

I. INTRODUCTION

The solution of the power flow equations is of paramount
importance for the design, operation, and control of electrical
networks [1], [2]. The objective of the so-called power
flow problem is to find operating conditions for a set of
connected power generating units given load specifications.1

Usually, uncertainties and model-plant mismatch are ignored,
leading to deterministic power flow problems. The main
challenges are then the development of distributed com-
putational algorithms [3] and the construction of suitable
convex relaxations [4]. However, it is well-known that power
flow equations are subject to uncertainty. Typical sources of
uncertainty in power flow problems are generation or load
profiles, line parameters, and/or network conditions [5]. With
increasing penetration of renewable energy sources—which
are uncertain due to their volatility—a structured approach to
solve uncertain power flow problems is desirable, especially
for later use in context of power dispatch, cf. [6].

When uncertainties in the power network are treated as
random variables, the problem is referred to as stochastic
power flow or probabilistic power flow. Early results on
decoupled stochastic power flow have been presented in [7].
So-called intrusive convolution techniques are discussed in
[8], [9], while Fast Fourier Transformations are investigated
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1The term load flow is used interchangeably in the literature.

in [10]. Gram-Charlier Expansions are used in [11], whose
main advantage is computational efficiency, i.e. the method
allows to approximate the posterior probability distributions
with a single run. The mentioned analytical methods are
limited in the sense that they can tackle either linearized
AC power flow or (intrinsically linear) DC power flow.

In contrast to the analytical approaches, so-called non-
intrusive sampling-based methods allow consideration of
nonlinearities. Monte Carlo methods require to solve the
nominal problem for a large number of samples drawn from
a set with a specified probability distribution, see [12] for
a general introduction and [13] for results on stochastic
power flow. Point Estimate Methods generate approximations
to true probability distributions by matching the first few
stochastic moments based on a small number of samples
[14], [15], [16]. Typically, the number of simulations is
twice the number of uncertain variables. The application of
Point Estimate Methods to stochastic power flow, and their
outperformance of Monte Carlo methods, are demonstrated
in [17], [18] for networks with up to 129 buses. Finally,
Unscented Transforms, which are well-known from their
application to Kalman Filtering [19], can be applied to
stochastic power flow problems, see [20], [21]. The number
of required samples is only marginally larger compared to
Point Estimate Methods, yet the results using Unscented
Transforms are more accurate. This is demonstrated via
simulations for a 574 bus network in [20].

The present contribution discusses the application of
Polynomial Chaos Expansion (PCE) to solve the stochastic
(optimal) AC power flow problem numerically in a single
run. This intrusive uncertainty propagation technique relies
on spectral expansion of all random variables to reformulate
the stochastic problem as a structurally equivalent deter-
ministic problem of larger dimension [12]. In contrast to
sampling-based techniques for which a large number of
deterministic problems is solved, the enlarged deterministic
problem stemming from PCE has to be solved only once,
i.e. in a single numerical run. Sampling-based techniques
create a large amount of data that has to be handled. PCE
reduces the necessary data to the PCE coefficients, from
which the posterior distributions can be sampled efficiently,
and stochastic moments can be computed easily. Compared
to convolution-based techniques, PCE allows to consider
polynomial nonlinearities. PCE exhibits fast convergence if
the random variables enter the problem smoothly [12]. Orig-
inating in works of Norbert Wiener in the 1930s, PCE has
gained attention in the control community recently, especially
in combination with model predictive control [22], [23],
[24]. In the present contribution, we show that PCE offers
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a structured approach to explicitly account for uncertainties
via probability density functions in AC power flow problems.

Furthermore, PCE is not restricted to Gaussian random
variables. Instead, it can cope with arbitrary random variables
(with finite variance). This is of interest for power flow
problems, because aggregated load profiles do not exhibit
Gaussian distributions, in general. Instead, Beta/Gamma/log-
normal distributions yield more accurate results [25].

The remainder of the work is structured as follows: Section
II recalls the deterministic AC power flow problem. In
Section III we introduce a PCE formulation for stochastic
AC power flow problems, which is extended to stochastic
optimal AC power flow in Section III-B. We draw upon the
IEEE 14 bus example to demonstrate the applicability of
PCE to stochastic AC power flow problems in Section IV.

II. DETERMINISTIC AC POWER FLOW

Consider an electrical AC network composed of N ∈ N
buses (or nodes), where N = {1, . . . , N} is the bus index
set. Let the entries of the bus admittance matrix ~Y ∈ CN×N
be given in rectangular representation ~yij = gij+ibij ∈ C for
all i, j ∈ N , where i is the imaginary unit. The power phasor
~si ∈ C and voltage phasor ~vi ∈ C fully describe the state of
each bus i ∈ N . Based on the voltage phasor representation,
we distinguish between polar and rectangular formulations,

polar: ~vi = vie
iδi , ~si = pi + iqi, (1a)

rectangular: ~vi = vre
i + ivim

i , ~si = pi + iqi, (1b)

where i ∈ N . Then, the deterministic polar (optimal) power
flow problem is defined as

minimize
xp

J(xp) (2a)

subject to ∀i ∈ N

xpi =
[
vi δi pi qi

]> ∈ R4, (2b)

pi =
∑
j∈N

vivj (gij cos(δi−δj) + bij sin(δi−δj)) , (2c)

qi =
∑
j∈N

vivj (gij sin(δi−δj) − bij cos(δi−δj)) , (2d)

bus specifications for all buses i ∈ N , (2e)

where the decision variables are xp = [xp>1 , . . . , xp>N ]> ∈
R4N . Similarly, the deterministic rectangular (optimal)
power flow problem is defined as

minimize
x

J(x) (3a)

subject to ∀i ∈ N

xi =
[
vre
i vim

i pi qi
]> ∈ R4, (3b)

pi =
∑
j∈N

gij(v
re
i v

re
j +vim

i vim
j )+bij(v

im
i vre

j −vre
i v

im
j ), (3c)

qi =
∑
j∈N

gij(v
im
i vre

j −vre
i v

im
j )−bij(vim

i vim
j +vre

i v
re
j ), (3d)

bus specifications for all buses i ∈ N , (3e)

where the decision variables are x = [x>1 , . . . , x
>
N ]> ∈ R4N .

The power flow problems (2) and (3) involve not yet defined
bus specifications. A bus specification defines two quantities
at each bus i ∈ N . Consequently, if a specification is
given for each bus i ∈ N in terms of two variables, then
the problems (2) and (3) involve 4N unknowns and 4N
equations. Thus, they reduce to feasibility problems that are
commonly referred to as power flow problems. In this case,
the objective J : R4N → R can be neglected. If, however,
not all buses are subject to a specification, the problems are
called optimal power flow problems. In this case, the choice
of the cost function J is of particular interest and additional
inequality constraints might be considered, e.g. active power
generation limits, or transmission limits.

The common bus specifications are, cf. [1], [2],

Slack:
[
1 0 0 0
0 1 0 0

]
xpi

!
=

[
vref

δref

]
⇐⇒ Cslxpi=c

sl
i , (4a)

PQ:
[
0 0 1 0
0 0 0 1

]
xpi

!
=

[
pref
i

qref
i

]
⇐⇒ Cpqxpi=c

pq
i , (4b)

PV:
[
0 0 1 0
1 0 0 0

]
xpi

!
=

[
pref
i

vref
i

]
⇐⇒ Cpvxpi=c

pv
i . (4c)

Note that they are given in terms of polar power flow state
variables xpi . Without loss of generality, the reference voltage
angle δref of the slack bus isl ∈ N is zero. Hence, the
specification of the slack bus and the PQ buses is the same for
polar and rectangular power flow. However, for rectangular
power flow, each PV bus defines a quadratic constraint with
respect to the voltage magnitude. In rectangular power flow,
the bus specifications are

Slack:
[
1 0 0 0
0 1 0 0

]
xi

!
=

[
vref

0

]
⇐⇒ Cslxi=c

sl
i , (5a)

PQ:
[
0 0 1 0
0 0 0 1

]
xi

!
=

[
pref
i

qref
i

]
⇐⇒ Cpqxi=c

pq
i , (5b)

PV:
[[

0 0 1 0
]
xi

(vre
i )2+(vim

i )2

]
!
=

[
pref
i

(vref
i )2

]
⇔h(xi)=c

pv
i . (5c)

Compared to polar power flow with (2) its trigonometric
nonlinearities, rectangular power flow (3) is at most quadratic
in the decision variables. This polynomial nonlinearity can
be exploited for stochastic (optimal) power flow.

III. STOCHASTIC AC POWER FLOW VIA PCE

We speak of the stochastic power flow problem if the bus
reference values in (4) are described via probability density
functions (PDFs). The mathematical structure of this problem
is similar to the deterministic power flow problem: compute
PDFs that satisfy a system of nonlinear algebraic equations.2

One computationally expensive solution is to run Monte
Carlo simulations. In what follows, we will use a different
approach based on Polynomial Chaos Expansion (PCE).

2Arguably, this is a restriction to only uncertain generation and/or
uncertain supply. An extension would be to allow for uncertain network
structure and/or uncertain line parameters [5]. This, however, is beyond the
scope of the present contribution.



TABLE I
ASKEY-SCHEME FOR 2nd-ORDER CONTINUOUS RANDOM VARIABLES.

Type Support Polynomial Basis
Beta (−1, 1) Jacobi
Gamma (0,∞) Laguerre
Gaussian (−∞,∞) Hermite
Uniform [−1, 1] Legendre

A. Polynomial Chaos Expansion
Consider the random vector ξ = [ξ1, . . . , ξnξ ]

> with PDF
ρ(ξ) and assume each element is a second-order continuous
standard random variable, i.e. ξ ∈ L2(Ωξ,Fξ,Pξ), and ξi is
Gaussian, uniform, Beta, or Gamma for all i ∈ {1, . . . , nξ}.3
Polynomial chaos allows to rewrite general second-order
continuous variables z(ξ) as

z(ξ) =

∞∑
l=0

zlφl(ξ), (6)

where zl ∈ R are the deterministic PCE coefficients. The
basis functions φl : Ωξ → R are orthogonal polynomials,

E[φl(ξ)φk(ξ)] =

∫
Ωξ

φl(τ)φk(τ)ρ(τ)dτ = γlδlk, (7)

where E[·] is the expected-value operator, γl is a positive
constant, and δlk is the Kronecker-delta.

Remark 1 (Hilbert space L2(·)): The space of second-
order random variables L2(Ωξ,Fξ,Pξ) is a Hilbert space
[12]. The basis is spanned by the respective polynomials
from Table I, and the scalar product is given by

〈f(ξ), g(ξ)〉 = E[f(ξ)g(ξ)] =

∫
Ωξ

f(τ)g(τ)ρ(τ)dτ.

Loosely speaking, PCE is applicable, because the above
weighting functions ρ(·) of the polynomials from Table I
correspond to the probability density functions of certain
standard random variables. �

PCE according to (6) is impractical due to the infinite
sum. Consequently, only the first L+1 = (nξ + d)!/(nξ!d!)
basis polynomials in nξ variables of degree at most d are
considered, spanning a finite subspace of L2(Ωξ,Fξ,Pξ).
This yields (with slight abuse of notation),

z(ξ) =

L∑
l=0

zlφl(ξ) = z>φ(ξ), (8)

where z = [z0, . . . , zL]>, and φ(ξ) = [φ0(ξ), . . . , φL(ξ)]>.
Since the space L2(Ωξ,Fξ,Pξ) is a Hilbert space, the trun-
cated PCE (8)—which is an element of the subspace spanned
by the L+1 basis polynomials—is L2-optimal if the PCE
coefficients satisfy

zl =
〈z(ξ), φl(ξ)〉
〈φl(ξ), φl(ξ)〉

, ∀j ∈ {0, . . . , L}, (9)

3A random variable is called a second-order random variable if it has
finite variance. This is true for most physical processes. Furthermore, Ωξ
is a countable event space, Fξ is the σ-field of Ωξ , and Pξ is a probability
measure. The triplet (Ωξ,Fξ,Pξ) is a probability space [12].

cf. [26, Section 3.3, Theorem 1]. If all PCE coefficients zl
with j ∈ {0, . . . , L} are known, the PDF of z(ξ) is easily
obtained by sampling ξ. This is numerically straightforward,
because by assumption ξ is composed of standard random
variables.

Remark 2 (Galerkin projection): Computing the PCE co-
efficients according to (9) is often called Galerkin projection,
[12]. From an engineering perspective, this is equivalent
to, e.g. finding Fourier coefficients, solving linear partial
differential equations via separation of variables, or solving
ordinary differential equations in modal form. �

Remark 3 (Moments): Orthogonality of the basis poly-
nomials allows to compute moments of random variables
easily. For example, E[z(ξ)] = z0, and E[z(ξ)2] =∑L
l=0 z

2
l 〈φl(ξ), φl(ξ)〉. �

B. Stochastic AC Power Flow Equations Using PCE
Section II introduced two different power flow formula-

tions: polar and rectangular, cf. (2) and (3). The stochastic
AC power flow problem can be solved with PCE and
Galerkin-projection only for polynomial nonlinearities di-
rectly, i.e. rectangular power flow (3).4 Introduce (truncated)
PCE according to (8) for all bus states xi from (3b),

xi(ξ) :=

L∑
l=0

xi,lφl(ξ) = xiφ(ξ). (10)

Each bus is then described by 4(L+1) PCE coefficients xi,

x>i =
[
vre
i vim

i pi qi
]
∈ R4×(L+1). (11)

In general, every quantity may be stochastic, i.e. described
by its PDF. To obtain (nonlinear algebraic) equations for
2N(L+1) PCE coefficients, we introduce the PCE according
to (10) for rectangular power flow (3), and apply Galerkin
projection. The resulting nonlinear algebraic equations for
the PCE coefficients for active and reactive power are given
in Table II. Note that PCE preserves the complexity of the
original problem: the deterministic equations are quadratic,
so is the Galerkin-projected system. It is the dimension of
the problem that changes from 2N to 2N(L+ 1).

Remark 4 (PCE for polar power flow): Of course, PCE
may be introduced for polar power flow (2), but orthogonality
of the basis polynomials can then not be exploited via
Galerkin projection. However, stochastic collocation is a
viable option in this case [12, Ch. 7]. �

Remark 5 (Approximated stochastic polar power flow):
If the trigonometric functions in the polar power flow (2)
were approximated by their Taylor series, the resulting
approximated polar power flow equations would be
polynomial. PCE can then be applied. However, even the
first-order approximation, i.e. linearization, would result in
a cubic power flow, because of the multiplication with vivj .
This would require quadruple scalar products of the basis
polynomials. For rectangular power flow, only triple scalar
products occur, cf. Table II. �

4Directly here refers to the notion that the Galerkin-projected system has
the same structure as the original stochastic formulation. This is true for
PCE in combination with polynomial nonlinearities.



TABLE II
GALERKIN PROJECTION FOR RECTANGULAR POWER FLOW (3).

Deterministic Eq. Weighted PCE coefficient, i ∈ N , k ∈ {0, . . . , L}

(3c) 〈φk,φk〉pi,k =

N∑
j=1

L∑
l1=0

L∑
l2=0

(
gij(v

re
i,l1

vrej,l2 + vimi,l1v
im
j,l2

) + bij(v
im
i,l1

vrej,l2 − v
re
i,l1

vimj,l2 )
)
〈φl1φl2 ,φk〉

(3d) 〈φk,φk〉qi,k =

N∑
j=1

L∑
l1=0

L∑
l2=0

(
gij(v

im
i,l1

vrej,l2 − v
re
i,l1

vimj,l2 )− bij(vrei,l1v
re
j,l2

+ vimi,l1v
im
j,l2

)
)
〈φl1φl2 ,φk〉

C. Stochastic Bus Specifications Using PCE

The main purpose of stochastic power flow problems is to
consider uncertain power load and/or uncertain generation
explicitly. This information enters via PDFs at each bus,
according to its bus specification, cf. (4). For PCE applied to
rectangular power flow, the deterministic bus specifications
(4) are extended easily for slack and PQ buses,

Slack:
[
1 0 0 0
0 1 0 0

]
xi

!
=

[
vref>

0

]
⇔ Cslxi=c

sl
i , (12a)

PQ:
[
0 0 1 0
0 0 0 1

]
xi

!
=

[
pref>
i

qref>
i

]
⇔Cpqxi=c

pq
i ,

(12b)

PV:
[
0 0 1 0

]
xi

!
=
[
pref>
i

]
⇔ Cpvxi=c

p
i , (12c)

where xi contains all PCE coefficients, cf. (10), and the
right-hand sides are the stacked reference PCE coefficients,
specifying the bus uncertainty. Overall, (2N−Ng+1)(L+1)
equality constraints are defined by (12). To cope with the
remaining voltage constraints of the Ng PV buses we assume
the following:

Assumption 1 (Regulated Generators): The slack bus ref-
erence values for voltage magnitude and voltage angle, vref

and δref=0, are not subject to any uncertainty. Furthermore,
the voltage vref

i at each PV bus is regulated and thus not
subject to any uncertainty, cf. (4). The corresponding vectors
of PCE coefficients vref , δref ,vref

i ∈ RL+1 are non-zero only
in their first, i.e. zero-order, entry. �

From Assumption 1 it follows that voltage constraints for
PV buses become nonlinear in (12), namely

vi(ξ)
2=(vre

i
>φ(ξ))2 + (vim

i
>φ(ξ))2 !

= v2
i,0, (12d)

where i ∈ Ng . Of the
(
L+2
L

)
coefficients, the first one

becomes (vre
i,0)2 + (vim

i,0)2 = v2
i,0, and the others equate to

zero. Thus, for L = 2 and Assumption 1, we have 4N(L+1)
equations for 4N(L + 1) unknowns: 2N(L + 1) equations
from Galerkin projection, see Table II, and 2N(L + 1)
equations from the bus specifications. For L > 2 we have(
L+2
L

)
− 2(L + 1) more equations than unknowns for each

PV bus.

D. Stochastic Optimal AC Power Flow

Power demand and generation have to be given in form of
bus specifications to solve deterministic as well as stochastic
power flow problems. In optimal power flow problems,

however, the power generation is not known a priori, rather
computed such that a cost function is minimized, cf. (2)
and (3). Using PCE as given in (10) stochastic (rectangular)
optimal power flow can be formulated as follows:

minimize
x∈R4N×(L+1)

J(x) (13a)

subject to PCE power flow, cf. Table II, (13b)
Cpqxi = cpq

i , ∀i ∈ N \ Ng, (13c)
g(x) ≤ 0, (13d)

where x = [x>1 . . . x>N ]> ∈ R4N×(L+1) comprises the
PCE decision variables, cf. (11). The cost function J :
R4N×(L+1) → R may represent expected values of active
power generation, or expected values of line losses. However,
it is also possible to penalize variances or other higher-
order moments by using PCE coefficients, cf. Remark 3.
Due to equality constraints (13b) and (13c), the number of
degrees of freedom is reduced to 2Ng(L+1). In general, the
inequality constraints (13d) are nonlinear functions of the
PCE coefficients x. Similar to the cost function J , they may
represent expected values of, e.g. active power generation
limits. Of course, it is possible to consider higher-order
moments, cf. Remark 3. Specifically, chance constraints may
be incorporated to account for, e.g., transmission congestion
in a probabilistic manner. Note that using PCE the stochastic
optimal power flow problem is reformulated as a determin-
istic optimal power flow problem (13a) of larger dimension
in the decision variables. In general, the stochastic optimal
power flow problem described by (13a) is non-convex due
to non-convexity of the constraints.

IV. IEEE 14 BUS EXAMPLE

We demonstrate stochastic (optimal) AC power flow using
PCE for the IEEE 14 bus example with 5 generators, Ng =
{1, 2, 3, 6, 8}, see Figure 1. For line parameters and the
deterministic values for PQ and PV buses see the Power
Systems Test Case Archive.5 We subsume power generation
and power demand under a single net power injection, e.g.
active power for bus i: pi = pgi − pli, where pgi > 0 is
the generation and pli > 0 is the load. All units in p.u.
refer to the base value 100 MVA. Uncertainty is specified via
Beta distributions, which have a bounded support—a major
advantage in modeling compared to Gaussians. The infinite

5Curated by University of Washington, Electrical Engineering,
https://www.ee.washington.edu/research/pstca, visited March 11, 2016.



Fig. 1. IEEE 14 bus example with 5 generation buses, cf. Footnote 5.

support of Gaussian distributions may create difficulties
in modeling the volatility of renewable generation units
and/or power demands. As shown in [25], aggregated load
profiles are more accurately modeled via Beta or Gamma
distributions. Both can be handled by the PCE framework,
cf. Table I, further motivating its use. According to Tables I
and I, PCE is introduced using univariate Jacobi polynomials
of order 2 for rectangular power flow, cf. Table II, resulting
in L = 2.

A. Stochastic Power Flow

First, we consider stochastic AC power flow using PCE.
Uncertainty is assumed to enter via PDFs for active power
demands at load buses 4, 9, 11, and is specified as (symmet-
ric) Beta distributions with shape parameters a=b=3. The
corresponding PCE coefficients are

p>4 =[−0.4780, 0.0239, 0], q>4 =[0.0390, 0.0019, 0],

p>9 =[−0.2950, 0.0147, 0], q>9 =[−0.1660, 0.0083, 0],

p>11=[−0.0350, 0.0147, 0], q>11=[−0.0180, 0.0083, 0].

(14)

Since we assume rectangular power flow, the PV bus con-
straints have to be formulated according to (12d). The PCE
order is L = 2. Thus, the total number of PCE coefficients
amounts to 4N(L+1)=168. The system of nonlinear alge-
braic equations, defined by 2N(L+1) equations from Table
II and 2N(L+1) bus specifications (12), is solved using
Matlab. Exemplarily for the slack bus 1, the resulting PCE
coefficients for active and reactive power are

p>1 = [2.4297,−0.0451, 0.0001],

q>1 = [−0.1871, 0.0047, 0.0000].
(15a)

The PCE histograms are obtained as follows: generate
m=1000 samples for the standard Beta-distributed variable
ξ (with shape parameters from above, a=b=3), evaluate
basis polynomials, then evaluate (8) for the respective PCE
coefficients. Figure 2 shows the corresponding histograms,
plotted against the benchmark Monte Carlo solution for the
same number of m=1000 samples. Only the distributions of
active and reactive power are shown in Figure 2, because the

Fig. 2. Resulting PDFs of active and reactive power injection at slack bus 1
for stochastic power flow. Solid blue histograms in front denote histograms
from sampled PCE coefficient solution (15a), red histograms in back denote
Monte Carlo solution, each obtained for m = 1000 samples.

Fig. 3. Resulting PDFs of voltage magnitude and voltage angle of load bus
4 for stochastic power flow. PDFs obtained for given PCE coefficients p4,
q4, cf. (14), and computed PCE coefficients v4, δ4, cf. (15b). See caption
of Figure 2 for color code and sample size.

voltage magnitude and its angle are assumed deterministic,
cf. Assumption 1. Figure 3 shows the distributions of all
four quantities for the load bus 4. The PCE coefficients for
voltage angle and voltage magnitude are computed as

v>4 = [1.0177, 0.0010, 0.0000],

δ>4 = [−0.1840, 0.0038, 0.0000].
(15b)

The active and reactive distributions follow from the initial
PCE coefficients p4, q4, cf. (14). As can be seen, the re-
sulting distributions remain (numerically) symmetrical. The
numerical differences between the Monte Carlo solution
and the PCE solution are negligible. However, already for
m = 1000 samples the differences in computational times
are considerable: 855 s for Monte Carlo compared to 55 s for
PCE. Note that for the polynomial order L=2, the influence
of the PCE coefficients of order 2 is marginal, cf. (15),
suggesting that orders L>2 yield no significant numerical
benefits for this example.

B. Stochastic Optimal Power Flow

We now turn to the stochastic optimal AC power flow
problem using PCE. Uncertainty is assumed to enter via
PDFs for active power demands at load buses 4 and 5, and
is specified as (nonsymmetric) Beta distributions with shape
parameters a = 2, b = 4. The corresponding PCE coefficients



are

p>4 = [−0.4780, 0.0239, 0], q>4 = [0.0390, 0.0019, 0],

p>5 = [−0.076, 0.0038, 0], q>5 = [−0.016, 0.0008, 0].
(16)

Of the |Ng| = 5 generators, the buses 3, 6, and 8 are
synchronous condensers, see Figure 1. Their corresponding
shafts rotate freely, such that they do not supply or demand
any active power, i.e. pi(ξ)≡0 for all i ∈ {1, 2, 3}. Thus,
we distinguish the set of active power generation buses
as N p

g ={1, 2} with |N p
g |=Np

g =2. The cost function J(x)
represents the total active power generation cost associated
with N p

g , each assumed convex quadratic, i.e.

J(E[x(ξ)]) =
∑
i∈Np

g

ai(E [pi(ξ)] + pli)
2 + bi(E [pi(ξ)] + pli)

=
∑
i∈Np

g

ai(pi,0 + pli)
2 + bi(pi,0 + pli),

= (p0 + pl)>A(p0 + pl) + b>(p0 + pl),

where monetary costs are specified by A=diag(a1,
. . . , aNp

g
) ∈ RN

p
g×N

p
g , and b=[b1, . . . , bNp

g
]> ∈ RN

p
g .

Also, p0=[p1,0, p2,0]> ∈ RN
p
g contains the zero-order

PCE coefficients of the synchronous generator buses, and
pl=[0, 0.217]> ∈ RN

p
g contains the active power load

demands of the respective generators. Recall Remark 3
for replacing the expected value with the zero-order PCE
coefficient. The monetary costs are specified via

A = diag(430.3, 2500) $/h/p.u.2 ∈ RN
p
g×N

p
g ,

b = [2000, 2000]> $/h/p.u. ∈ RN
p
g .

There are 2N(L+1) power flow equality constraints accord-
ing to Table II, 2(N−Ng)(L+1) PQ bus equality constraints,
cf. (12b), Np

g (L+1) equality constraints for the active power
PCE coefficients of the synchronous condensers, and addi-
tionally the slack bus constraints (12a) for all PCE coeffi-
cients except v1,0. The inequality constraints are given in
terms of expected values,

0.94 ≤ E[vi(ξ)] = vi,0 ≤ 1.06, ∀i ∈ N ,
pi,min − pli ≤ E[pi(ξ)] = pi,0 ≤ pi,max − pli ∀i ∈ N p

g ,

qi,min − qli ≤ E[qi(ξ)] = qi,0 ≤ qi,max − qli ∀i ∈ Ng,

where N={1, . . . , 14}. Due to the voltage inequality con-
straints the function g(x) is nonlinear. The lower and upper
limits for (re-)active power and the reactive power load
demand of the generators are given by the following vectors

pmin = [0, 0]>, pmax = [3.32, 1.4]>,

qmin = [0,−0.4, 0,−0.06,−0.06]>,

qmax = [0.1, 0.5, 0.4, 0.24, 0.24]>,

ql = [0, 0.127, 0.129, 0.075, 0]>,

where the entries follow the order of the entries in N p
g

and Ng , respectively. The resulting optimization problem is
solved using an interior-point method available via fmincon

Fig. 4. Resulting PDFs of active power injections of generator buses 1 and
2 for stochastic optimal power flow for PCE coefficients (17a) and (17c).
See caption of Figure 2 for color code and sample size.

Fig. 5. Resulting PDFs of voltage magnitude and voltage angle of load
bus 4 for stochastic optimal power flow. PDFs for active power and reactive
power obtained from (16) as nonsymmetric Beta distributions. See caption
of Figure 2 for color code and sample size.

in Matlab. The resulting PCE coefficients for active and
reactive power at the generator buses are

p?1 = [2.2867,−0.0065, 0.0000]>, (17a)

q?1 = [0.0000, 0.0043,−0.0001]>, (17b)

p?2 = [0.2193,−0.0229, 0.0000]>, (17c)

q?2 = [0.1655,−0.0041, 0.0000]>. (17d)

The PDFs of the active power injections for the genera-
tors are shown in Figure 4. They are plotted against the
benchmark solution obtained from m = 1000 Monte Carlo
simulations for polar power flow. They are skewed to the
right, i.e. towards higher supply. This behaviour is meaning-
ful if compared the PDFs of (re-)active power demand of
load bus 4, see Figure 5, which are skewed to the left, i.e.
towards higher demand. These PDFs follow directly from
the specified PCE coefficients (16). The PDFs for voltage
magnitude and angle for load bus 4 follow the PDFs of the
(re-)active power qualitatively. As observed in the stochastic
power flow problem from Section IV-A, the influence of
resulting PCE coefficients of order 2 is negligible, cf. (17).
This suggests that a polynomial order L=2 is sufficient for
this specific example. The optimal cost function resulting
from (17) is 8171.96 $/h. It is in good agreement with the
deterministic optimum of 8171.89 $/h, which is obtained
from setting PCE coefficients of order one and higher of
the generation buses to zero, and solving the corresponding
problem. Whereas the numerical difference between the PCE



and Monte Carlo solution is negligible, the computational
effort is not6: it takes about 223 s to solve the optimization
problem (13a), compared to a total of 2397 s for the entire
Monte Carlo simulation. All problems are initiated with the
same initial condition and m = 1000 samples are considered.

V. CONCLUSIONS AND OUTLOOK

In the present contribution we discuss the use of polyno-
mial chaos expansion for stochastic (optimal) AC power flow
problems. PCE in conjunction with Galerkin projection is ap-
plicable to polynomial nonlinearities and thus to rectangular
power flow. The result is a deterministic power flow problem
of increased dimension but same mathematical structure.
Compared to Monte Carlo approaches that require repeated
sampling, PCE provides posterior distributions after a single
run. Furthermore, PCE is applicable to arbitrary stochastic
uncertainties described by probability density functions with
finite variance. By means of the IEEE 14 bus system, we
show that already a low order of polynomial approximation
allows accurate computation of the posterior probability
density functions.

Future work will consider the extension to other cost
functions and chance constraints. Furthermore, we will in-
vestigate how to apply PCE to distributed solution schemes.

REFERENCES

[1] J. Grainger and W. Stevenson, Power System Analysis. McGraw-Hill
Education, 1994.

[2] P. Kundur, Power System Stability and Control. McGraw-Hill Educa-
tion, 1994.

[3] G. Hug-Glanzmann and G. Andersson, “Decentralized optimal power
flow control for overlapping areas in power systems,” Power Systems,
IEEE Transactions on, vol. 24, no. 1, pp. 327–336, 2009.

[4] B. Kocuk, S. Dey, and X. Sun, “Inexactness of sdp relaxation and
valid inequalities for optimal power flow,” Power Systems, IEEE
Transactions on, vol. 31, no. 1, pp. 642–651, 2016.

[5] Y. Taiyou and R. Lasseter, “Stochastic optimal power flow: Formu-
lation and solution,” in IEEE Power Engineering Society Summer
Meeting, vol. 1, pp. 237–242, 2000.

[6] C. Hans, P. Sopasakis, A. Bemporad, J. Raisch, and C. Reincke-
Collon, “Scenario-based model predictive operation control of islanded
microgrids,” in 54th IEEE Conference on Decision and Control (CDC),
pp. 3272–3277, 2015.

[7] B. Borkowska, “Probabilistic load flow,” IEEE Transactions on Power
Apparatus and Systems, vol. PAS-93, pp. 752–759, May 1974.

[8] R. Allan, C. Grigg, and M. Al-Shakarchi, “Numerical techniques in
probabilistic load flow problems,” International Journal for Numerical
Methods in Engineering, vol. 10, no. 4, pp. 853–860, 1976.

[9] N. Hatziargyriou, T. Karakatsanis, and M. Papadopoulos, “Probabilis-
tic load flow in distribution systems containing dispersed wind power
generation,” IEEE Transactions on Power Systems, vol. 8, pp. 159–
165, Feb 1993.

[10] R. Allan, A. Leite da Silva, and R. Burchett, “Evaluation methods
and accuracy in probabilistic load flow solutions,” IEEE Transactions
on Power Apparatus and Systems, vol. PAS-100, pp. 2539–2546, May
1981.

[11] P. Zhang and S. Lee, “Probabilistic load flow computation using the
method of combined cumulants and Gram-Charlier expansion,” IEEE
Transactions on Power Systems, vol. 19, no. 1, pp. 676–682, 2004.

[12] D. Xiu, Numerical Methods for Stochastic Computations. Princeton
University Press, 2010.

6All solutions were obtained via rapid prototyping using Matlab’s sym-
bolic toolbox, automatic code generation, and fmincon as solver. The abso-
lute computation times can thus be drastically reduced for both scenarios.
However, the relative difference between the computation times will not be
greatly affected.

[13] H. Yu, C. Chung, K. Wong, H. Lee, and J. Zhang, “Probabilistic load
flow evaluation with hybrid latin hypercube sampling and cholesky de-
composition,” IEEE Transactions on Power Systems, vol. 24, pp. 661–
667, May 2009.

[14] E. Rosenblueth, “Point estimates for probability moments,” Proceed-
ings of the National Academy of Sciences, vol. 72, no. 10, pp. 3812–
3814, 1975.

[15] H. Hong, “An efficient point estimate method for probabilistic analy-
sis,” Reliability Engineering & System Safety, vol. 59, no. 3, pp. 261–
267, 1998.

[16] M. Harr, “Probabilistic estimates for multivariate analyses,” Applied
Mathematical Modelling, vol. 13, no. 5, pp. 313–318, 1989.
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