
IEEE TRANSACTIONS ON MEDICAL IMAGING 1

Network Flow Integer Programming to Track
Elliptical Cells in Time-Lapse Sequences
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Abstract—We propose a novel approach to automatically tracking elliptical cell populations in time-lapse image sequences. Given an
initial segmentation, we account for partial occlusions and overlaps by generating an over-complete set of competing detection
hypotheses. To this end, we fit ellipses to portions of the initial regions and build a hierarchy of ellipses, which are then treated as cell
candidates. We then select temporally consistent ones by solving to optimality an integer program with only one type of flow variables.
This eliminates the need for heuristics to handle missed detections due to partial occlusions and complex morphology. We
demonstrate the effectiveness of our approach on a range of challenging sequences consisting of clumped cells and show that it
outperforms state-of-the-art techniques.
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1 INTRODUCTION

Detecting and tracking cells over time is key to understanding cel-
lular processes including division (mitosis), migration, and death
(apoptosis). Modern microscopes produce vast image streams
making manual tracking tedious and impractical. High-throughput
automated systems are therefore increasingly in demand and
several cell tracking competitions have recently been organized
to attract Computer Vision researchers’ interest and speed up
progress [4], [5]. These competitions have shown that state-of-
the-art methods are still error-prone due to occlusions, imaging
noise, and complex cell morphology.

Cell tracking is an instance of the more generic multi-target
tracking problem with the additional difficulties that cells, unlike
for example pedestrians, can either divide or wither away and
disappear in mid-sequence. In its generic form, the problem is
often formulated as a two-step process that involves first detecting
potential objects in individual frames and then linking these detec-
tions into complete trajectories. This approach is attractive because
spurious detections, such as false positives due to imaging noise
and artifacts, can be eliminated by imposing temporal consistency
across many frames, which is more difficult to do in recursive
approaches.

Many of the most successful algorithms to people [6], [7], [8],
[9], [10], [11] , cell tracking [12], [13], [1] and 3D reconstruc-
tion [14], [15] follow this two-step approach by first running an
object detector on each frame independently and building a graph
whose nodes are the detections and edges connect pairs of them.
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They then find a subgraph that represents object trajectories by
considering the whole graph at once. However, to handle missed
detections, these methods often rely on heuristic procedures that
offer no guarantee of optimality. This is of particular concern for
cell tracking because detections are often unreliable due to the
complex morphology of cell populations. For example, in Fig. 1,
groups of cells that appear clumped together in some frames can
only be told apart when considering the sequence as a whole.

The approach proposed in [2] addresses this issue by intro-
ducing a factor graph for joint cell segmentation and tracking.
Inference is then achieved by solving a relatively complex integer
program that involves several types of variables and constraints.
The algorithm starts from a watershed-based oversegmentation
that is sensitive to inaccuracies in pixel probability estimates. It
is therefore subject to errors when the cells are clumped together
and hard to distinguish from each other.

In this paper, we formulate joint detection and tracking in
terms of constrained maximum a posteriori estimation. This lets
us cast the problem as an integer program expressed in terms of a
single type of flow variables. We focus on tracking elliptical cells
in time-lapse image sequences. To explicitly account for the often
ambiguous output of cell detectors, we devised a robust ellipse-
fitting algorithm to generate multiple and potentially conflicting
initial hypotheses from the output of a foreground-background
segmentation algorithm, as depicted by Fig. 2. We then model
critical cell events, such as migration and division, using flow
variables and resolve the conflicts by solving the resulting integer
program, which is conceptually much simpler than those of earlier
approaches [13], [1], [16], [2] and yields fewer variables and
constraints. We will refer to our approach as tracking Elliptical
Cells using network fLow Integer Programming (ECLIP).

Although network flow formulation has been used in this
context before, existing approaches [17], [18] focus on cell track-
ing in consecutive image pairs, while our approach aggregates
image evidences from the whole sequence and conducts global
optimization over all potential cell locations at all time frames.
Furthermore, we handle competing hypotheses within the same
optimization framework instead of having to decide at detection
time, as in [16], [2].
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Fig. 1: Three images from a typical sequence; the original segmentations produced by a pixel-based classifier; the results
of [1](CT), [2](JST), [3](KTH), and our method (ECLIP); the manually annotated tracking ground truth in red dots and the optimal
ellipse-tracks obtained using this ground truth. The track identities are encoded in colors. Our approach correctly tracks the cells in spite
of long-term segmentation failures, and produce results that are very similar to the ground truth. In the CT, JST and KTH columns,
the white-colored numbers indicate the tracker-inferred numbers of cells that are contained by the segments beneath them, and the
yellow-colored numbers show the ground truth. Best viewed in color.

Our contribution is therefore a novel approach to simultane-
ously detecting and tracking cells by first generating an over-
complete set of conflicting cell candidates and then selecting
temporally consistent ones. To this end, we introduce a simple
yet effective network flow integer programming formulation. We
show that ECLIP improves trajectories and yields superior de-
tection performance on various datasets as compared to recent
approaches [1], [19], [20], [2], including the ones that performed
best on the above-mentioned cell-tracking challenges [4], [5].

2 RELATED WORK
Current tracking approaches can be divided into Tracking by
Model Evolution and Tracking by Detection [4]. We briefly discuss
state-of-the-art representatives of these two classes below and refer
the interested reader to much more complete surveys [21], [4], [22]
for further details.

2.1 Tracking by Model Evolution
Most algorithms in this class simultaneously track and detect
objects greedily from frame to frame. This means extrapolating
results obtained in earlier frames to process the current one,
which can be done at a low computational cost and is therefore
fast in practice. Such methods have attracted attention both in
the cell tracking field [23], [24], [25], [26] as well as in the
more general object tracking one [27], [28], [29], [30], [31].
Common techniques in the cell tracking category involve evolving
appearance or geometry models from one frame to the next,
typically done using active contours [23], [24], [25], [26] or
Gaussian Mixture Models [19]. Even though these methods are
attractive and mathematically sound, performance suffers from
the fact that they only consider a restricted temporal context and
therefore cannot guarantee consistency over a whole sequence.
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Fig. 2: Hierarchy of detection hypotheses. (a) An image region
containing three HeLa cells clumped together. (b) Applying a
pixel classifier results in under-segmentation, in which the three
cells appear as a single connected component. (c) Automatically
extracted contourlets for this component. Each one is overlaid in
a different color. They are used to fit ellipses using a hierarchical
agglomerative clustering algorithm. (d) The resulting hierarchy of
10 hypotheses. We show only the first four levels for simplicity.
(e-h) Individual levels with one, two, three and four hypotheses.

Active contour methods such as [32], [33] address this lim-
itation by considering image batches to segment the cells and
recover trajectory fragments. This increases robustness but does
not achieve global optimality over long sequence.
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2.2 Tracking by Detection

Approaches in this class have proved successful at both tracking
people [6], [34], [7], [9], [10], [35], [36], [37], tracking cells [12],
[13], [1], and tracking more generic particles including molecules
and viruses [38].

They involve first detecting the target objects in individual
frames and then linking these detections to produce full trajecto-
ries. This involves simultaneously processing more frames than
is typically done by Tracking by Model Evolution approaches.
Usually, it is also more robust because trajectories are computed
by minimizing an objective function that enforces consistency of
appearance, disappearance, and division over a batch of frames.
This can be seen in the benchmark of [4] in which these methods
tend to dominate.

One way to perform tracking-by-detection is to reason in the
full spatio-temporal grid formed by stacking up all possible spatial
locations over time [39], [40], [41], [42], [43], [44]. This can be
done optimally in polynomial time for non-dividing objects such
as pedestrians and has made this approach competitive despite
the large size of the graphs involved. For dividing objects, the
corresponding optimization problem becomes NP-Hard and, to the
best of our knowledge, this approach has not been pursued in this
context.

Instead, practical tracking-by-detection algorithms for cells
rely on a small number of strong detections that can be later linked
into complete trajectories. Recent efforts have focused on solving
two main challenges specific to cell-tracking, which we discuss
below.

Division and disappearance. Cells can divide or die and
disappear. While rule-based approaches have been used to handle
this, most recent ones formulate tracking as a global IP [13], [1].
This makes it possible to use priors for cell migration, division and
disappearance between adjacent frames. One notable exception
is the method of [3] that relies on the Viterbi algorithm to
sequentially add trajectories to a cell lineage tree. Motion, divi-
sion, and disappearance are encoded through a scoring function
that quantifies how well the lineage tree explains the data. This
algorithm scored highest in one of the benchmarks [4] and we will
use it as one of our baselines in Section 4. The approach of [45], on
the other hand, decouples tracking division events and migration
events by excluding the dividing cells from the whole graph. This
approach is computationally efficient but makes global optimality
elusive by decoupling events that are closely related. The approach
of [46], however, focuses on cell segmentation and tracking in the
confined nanowell environment. Despite its high throughput, it
assumes that the cells do not divide and is therefore not suitable
for general-purpose cell tracking.

Clumped cells. There is no guarantee that individual cells will
be detected as separate entities in any given frame because two
or more cells can clump together, producing under-segmentation
errors. Many heuristics have been proposed to solve this problem.
One is to assume that clumped cells are unlikely to happen for
a specific modality or that they do not pose a problem for the
tracker [12], [13], [3]. While this is appropriate in some cases,
it is clearly invalid for certain modalities such as the one shown
in Fig. 1. Other heuristics involve splitting segmentations using
the Radon and watershed transforms [23], [4]. Unfortunately,
they are still relatively prone to over- and under-segmentation
that complicate the tracking task. The approach of [47] generates
oversegmentation by fitting ellipses on Hessian Images. However,
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Fig. 3: Workflow of our approach.

this approach focuses on developing embryo and relies on strong
assumptions, such as assuming that the number of cells do not
decrease from time t to t+ 1.

An ingenious approach is that of [1], which first finds trajec-
tories by treating segmentations in each frame as clumps of one
or more cells, with the exact number being initially unknown,
and then uses a factor graph to resolve this ambiguity. However,
since the final linking is decoupled from the cell cluster tracking,
the cell count inaccuracies may propagate to the final trajectories.
The approach of [48] relies on an iterative post-processing step
to handle under- and over-segmentation, as in [1]. Therefore,
there is no guarantee that a global optimum will be found. To
overcome this problem, the algorithm of [2] generates multiple
hypotheses by over-segmenting the image into superpixels and
subsequently merging them to create competing explanations.
Similarly, the algorithm of [49] uses component trees and graph
cut to generate the hypotheses. However, neither method proposes
spatially overlapping hypotheses, which may result in irrecov-
erable segmentation errors. By contrast, our approach naturally
handles such cases, as depicted by Fig. 2. Furthermore, as we will
discuss in Section 3.2, our formulation provides a more compact
integer program with much less constraints and variables.

3 METHOD

Fig. 3 depicts our method’s workflow, which includes the follow-
ing steps. Given a source image such as the one of Fig. 2(a), we
first use a classifier trained on a few hand-annotated segmentations
to produce a binary image of the underlying cell populations.
We then look for the best possible description of each connected
component in terms of a variable numbers of ellipses. This yields
a hierarchy of conflicting interpretations for each component, as
depicted by Fig. 2(e–h), which we organize into a directed spatio-
temporal graph, such as the one of Fig. 4. Its nodes are individual
ellipses, its edges connect nearby ones in consecutive frames, and
it features exclusion sets that denote incompatible hypotheses. Full
trajectories are obtained by solving an integer program with a
small number of constraints to exclude incompatible hypotheses
and enforce consistency while allowing for cell-division, migra-
tion and death.

In this section, we first describe our approach to segmenting
cell images and building hypotheses graphs from them. We then
formulate the simultaneous detection and tracking problem on
these graphs as a constrained network flow problem, and discuss
how we compute the various energy terms of its objective function.
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(a) (b)

Fig. 4: Spatio-temporal graph of hypotheses for 3 consecutive time frames. (a) Each black circle denotes a hypervertex corresponding
to a connected component of the segmentation and is connected to neighboring ones at the next time step. The special vertices s

(source, in green), t (sink, in red) and d (division, in blue) allow for cell appearance, disappearance and division, respectively. (b) Each
hypervertex, such as x and z, contains a hierarchical set of hypotheses (vertices) such as those depicted by Fig. 2. These hypotheses
are shown as gray circles and connected to nearby ones in the following frame via directed edges. To avoid clutter, we only show three
of these edges. For each hypervertex, we define an exclusion set for each leaf vertex. For example, we define three exclusion sets on x:
Sn = {l, k, n}, Sm = {l, k,m} and Su = {l, i, u}. We allow the tracker to select at most one vertex within each one. Best viewed
in color.

3.1 Building Hierarchy Graphs
Our algorithm, like those of [12], [13], [1], starts by segmenting
cells using local image features. To this end, we first train the
binary random forest pixel classifier of [50] for each evaluation
dataset on a few partially annotated images. We use four different
kinds of low-level features: pixel intensities, gradient and Hessian
values, and difference of Gaussians, all of which are computed
by first smoothing the input image using Gaussians of standard
deviations {2, 4, 8, 16, 32, 64}.

Applying the resulting classifier to the full image sequences
results in segmentations which often contain groups of clumped
cells, such as the ones shown in Fig. 1. Therefore, each connected
component of the segmentation potentially contains an a priori
unknown number of cells.

We produce a hierarchy of conflicting detection hypotheses for
each such component by fitting a variable number of ellipses to
its contours. More specifically, we first identify all the contour
points that are local maxima of curvature magnitude. This is
done iteratively by selecting the maximum curvature points and
suppressing their local neighborhoods. We then break the contour
into contourlets, that is, short segments between these points, as
shown in Fig. 2(c). We cluster them in a hierarchical agglomerative
manner and fit ellipses to each resulting cluster using a non-
iterative least squares approach of [51]. In all our experiments,
we set the size of the suppression neighborhood to seven pixels
because this is the minimum number of points required to reliably
fit an ellipse using this approach.

Agglomerative clustering requires defining a distance between
the objects to be clustered, in this case subsets of the contourlets
derived from a given connected component. Let C be the set
of contourlets and Ci and Cj two of its subsets. We take their
distance to be

 X

cl2{Ci[Cj}

h(cl, e) +
X

cl2C\{Ci[Cj}

g(cl, e)

�
c(e)

s
1

1 + (ecc(e))2
, (1)

where e is the ellipse obtained by fitting to the contourlets of
Ci[Cj , and c(e) and ecc(e) are its circumference and eccentricity

respectively. h(cl, e) denotes the Hausdorff distance between
contourlet cl and ellipse e, while g(cl, e) is the Hausdorff distance
computed using only points in cl that fall within e. In other words,
let ĉl be the set of points on cl that fall within e. We have
g(cl, e) = h(ĉl, e). The first term in this 3-term product captures
image evidence along the contours while the other two are shape
regularizers designed to prevent implausible ellipse geometries
from appearing in the solution.

Given the resulting ellipse hierarchies in successive images,
we build a graph whose vertices are the ellipses and edges
link pairs of them that belong to two spatially close connected
components in consecutive frames. In our experiments, we set a
distance threshold of 25 pixels, and link pairs of ellipses within
this distance. The resulting graph has a hierarchical structure
that allows for finding the globally optimal cell detections and
trajectories in a single shot, as discussed below.

3.2 Network Flow Formalism
The procedure described above yields a directed graph G

0
=

(V

0
, E

0
), which we then augment with three distinguished ver-

tices, a source s, a sink t, and a division node d, as depicted by
Fig. 4. We connect these three vertices to every other vertex in G

0

to allow for cell appearance, disappearance, and division in mid-
sequence. Note that, we consider both the cell birth and migration
into the image as a cell appearance event. Similarly, we treat cell
death and migration out of the image as a disappearance event.

Let G = (V,E) be the resulting graph obtained after the
augmentation. We define a binary flow variable fij for each edge
eij 2 E to indicate the presence of any one of the following
cellular events:

• Cell migration from vertex i to vertex j,
• Appearance at vertex j, if i = s,
• Division at vertex j, if i = d,
• Disappearance at vertex i, if j = t.
Let f be the set of all fij flow variables and F = {Fij}

be the set of all corresponding hidden variables. Given an image
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sequence I = (I1, . . . , IT ) with T temporal frames and the
corresponding graph G, we look for the optimal trajectories f⇤

in G as the solution of

f⇤ = argmax

f2F
P (F = f | I) (2)

⇡ argmax

f2F

Y

eij2E

P (Fij = fij | It(i), It(j)) (3)

= argmax

f2F

Y

eij2E

P (Fij = 1 | It(i), It(j))fij ⇥

P (Fij = 0 | It(i), It(j))(1�fij) (4)

= argmax

f2F

X

eij2E

log

 
P (Fij = 1 | It(i), It(j))
P (Fij = 0 | It(i), It(j))

!

fij (5)

= argmax

f2F

X

eij2E0

log

✓
⇢ij

1�⇢ij

◆
fij+

X

j2V

log

✓
⇢a

1�⇢a

◆
fsj

+

X

i2V

log

✓
⇢d

1�⇢d

◆
fit +

X

j2V

log

✓
⇢j

1�⇢j

◆
fdj , (6)

where It(i) is the temporal frame containing vertex i, and F
denotes the set of all feasible cell trajectories, which satisfy linear
constraints. In Eq. 3, we assume that the flow variables Fij are
conditionally independent given the evidence from consecutive
frame pairs. Eqs. 4 and 5 are obtained by using the fact that
the flow variables are binary and by taking the logarithm of
the product. Finally, in Eq. 6, we split the sum into four parts
corresponding to the four events mentioned above.

The appearance and disappearance probabilities, ⇢a and ⇢d,
are computed simply by finding the relative frequency of these
events in the ground truth cell lineages of the training sequences.
The appearance probability ⇢a accounts for both cell birth and
cells moving into the image region, while the disappearance one
⇢d accounts for both cell death and cells moving out of the image.
On the other hand, the migration and the division probabilities, ⇢ij
and ⇢j , are obtained using a classification approach as described
in the next section.

We define three sets of linear constraints to model cell behavior
and exclude conflicting detection hypotheses from the solution,
which we describe in the following.

Conservation of Flow: We require the sum of the flows
incoming to a vertex to be equal to the sum of the outgoing flows.
This allows for all the four cellular events while incurring their
respective costs given in Eq. 6.
X

eij2E0

fij + fsj + fdj =
X

ejk2E0

fjk + fjt , 8j 2 V

0
. (7)

Prerequisite for Division: We allow division to take place at
a vertex j 2 V

0 only if there is a cell at that location. We write
this as

X

eij2E0

fij + fsj � fdj , 8j 2 V

0
. (8)

Exclusion of Conflicting Hypotheses: Given a hierarchy
tree of detections, we define an exclusion set Sl for each terminal
vertex l 2 V

0 of this tree. For instance, in the example of Fig. 2(d),
the four exclusion sets are {a, b, d, g}, {a, b, d, h}, {a, b, e, i}
and {a, c, f, j}. Let S be the collection of all such sets for all the
connected components in the sequence. We disallow more than

one vertex from each set to appear in the solution, and express
this as

X

j2Sl,
eij2E0

fij +
X

j2Sl

fsj  1, 8Sl 2 S . (9)

We solve the resulting integer programs within an optimality tol-
erance of 0.001 using the branch-and-cut algorithm implemented
in the Gurobi optimization library [52].

Note that our integer program contains only a single set of
variables and three sets of linear constraints, and therefore it is
more compact than those of the recent approaches of [2] and [1]
that are similar to ECLIP. Formally, let N , M , and K denote
the total number of detections, total number of exclusion sets and
average number of neighbors per detection. The total number of
constraints for ECLIP and [2] are M + 2N and M + 2N +

2NK; the total number of variables are N(3 + K) and N(1 +

K + 2

(K+1)
) respectively. The term 2

(K+1) comes from the fact
that [2] includes indicator variables for higher order factors, which
allows them to include local evidence for the total number of
targets inside a merge-tree of segmentation hypotheses.

3.3 Cell Migration and Division Classifiers

Given two adjacent vertices i, j 2 V

0, and their associated ellipses
ei and ej in consecutive time frames, we train a classifier to
estimate the likelihood that both belong to the same cell. More
specifically, we use a Gradient Boosted Tree (GBT) classifier [53]
to learn a function 'migr(ei, ej) 2 R, based on both appearance
and geometry features including the distance between the ellipses,
their eccentricities and degree of overlap, hierarchical fitting errors
and ray features. Once 'migr(ei, ej) is learned, we apply Platt
scaling to compute the probability ⇢ij that the two ellipses belong
to the same cell, and plug it into Eq. 6.

Similarly, the likelihood of ellipse ej at time t dividing into
two ellipses ek and el at t + 1 is learned with another GBT
classifier, trained on features such as the orientation and size
differences among the ellipses. We present a detailed list of both
the migration and division features in the Supplementary Material.

For prediction, we compute the division score for ellipse ej at
time t as

'div(ej) = max

ejk2E0, ejl2E0:
k 6=l

'div(ej , ek, el) , (10)

where 'div(·, ·, ·) is the scoring function learned by the classifier,
and (ek, el) is a pair of ellipses corresponding to two potential
daughter cells at time t+ 1. We obtain the division probability ⇢j

of Eq. 6 from 'div(ej), again using Platt scaling.

4 EXPERIMENTS

In this section, we first introduce the datasets and state-of-the-
art methods we use as baselines for evaluation purposes. Our
approach yields a statistically significant improvement over all
baselines especially for the division and detection events. We
achieve a p-value < 0.01 on the former, and a p-value < 0.005

on the latter using paired t-tests. Our software and video results
can be downloaded from http://cvlab.epfl.ch/biomed/cell-tracking.

http://cvlab.epfl.ch/biomed/cell-tracking
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4.1 Test Sequences

We used the 10 training sequences with annotations from three
datasets of the cell tracking challenge [5]. These sequences in-
volve multiple cells that migrate, appear, disappear, and divide.
Difficulties arise from low contrast to the background, complex
cell morphology, and significant mutual overlap. We used the
leave-one-out training and testing scheme within each dataset to
train the classifiers of Section 3.3 and to learn the appearance and
disappearance probabilities of Eq. 6.

• HeLa Dataset: It comprises two 92-frame sequences from
the MitoCheck consortium. Cell divisions are frequent,
which produces a dense population with severe occlu-
sions.

• SIM Dataset: It comprises six 50- to 100-frame se-
quences. They simulate migrating and dividing nuclei on
a flat surface.

• GOWT Dataset: It comprises two 92-frame sequences
of mouse stem cells. Their appearance varies widely and
some have low contrast against a noisy background.

4.2 Baselines

We compared our algorithm (ECLIP) against the following four
state-of-the-art methods

• Gaussian Mixture-based Tracker (GMM) [19]: We ran
the Gaussian Mixture Models approach of [19], originally
designed to track cell nuclei, whose code is publicly
available. We manually tuned its parameters to the ones
that yield the highest tracking precision (TRA) [5] on
each sequence.

• KTH Cell Tracker (KTH) [3]: The code is publicly
available and has been reported to perform best in the
Cell Tracking Challenge [5], [4]. We used the parameter
settings optimized for each dataset and provided in the
software package.

• Conservation Tracking (CT) [1]: We ran Ilastik
V1.1.3 [54] that implements the method of [1]. We
used the default parameters provided with the tool to
handle appearance, disappearance, division and transition
weights. The CT algorithm, like ECLIP, requires initial
segmentations such as the ones shown in the second
column of Fig.1. We used the same segmentations for both
algorithms. We trained the division and the segment count
classifiers separately for each dataset on manually labeled
cells.

• Joint Segmentation and Tracking (JST) [2]: We ran
the code of [2] that is publicly available. The model
comprises several parameters for oversegmentation and
tracking, which we tuned to achieve the highest possible
TRA on each sequence.

It is worth noting that, in contrast to all the above trackers that
require user-defined parameters, such as the weights of different
components, our tracker treats all classifiers equally and thus does
not require such parameters. As will be shown in Tab. 1, by doing
so our tracker achieves the state-of-the-art results.

To demonstrate the importance of individual components of
our approach, we also ran simplified versions of ECLIP with
various features turned off:

• Classifier Only (ECLIP-CL): We threshold the output of
our migration and division classifiers at a probability of
0.5 and return the resulting ellipse detections.

• Best Hierarchy Only (ECLIP-BH): For each ellipse
hierarchy tree, we only keep the level that yields the min-
imum fitting error, which we define in the Supplementary
Material. We then run our IP optimization on the resulting
graphs, which are smaller than the ones we normally use.

• Linear Programming Relaxation (ECLIP-LP): We re-
lax the integrality constraint on the variables and solve the
optimization problem of Eq. 6 using linear programming.
We then round the resulting fractional values to the nearest
integer to obtain the final solution.

• No Conflict Set Constraint (ECLIP-NC): We remove
the conflict set constraints of Eq. 9 and solve the resulting
integer program as before.

• Fixed Division Cost (ECLIP-FD): We set the division
probability to a constant pd, which we compute by finding
the relative frequency of the division event in the training
sequences.

4.3 Evaluation Measures
We use precision, recall and the F-Measure, defined as the har-
monic mean of precision and recall, to quantify the algorithms’
ability to detect cell division, detection, and migration events. We
also use two global measures, multiple object tracking accuracy
(MOTA) [55] and tracking precision (TRA) [5], to evaluate the
overall tracking performance. Note that for some datasets the
ground-truth annotations are labeled dots rather than whole cell
segmentation, such as HeLa. We therefore consider a cell to be
detected if it overlaps the nearest annotation.

We follow the same evaluation methodology as in [1], which
uses the connected components of the initial segmentations to
compute the division, detection, and migration accuracies. We
consider a cell migration event to be successfully detected if
both connected components of the cell at t and t + 1 are
correctly identified. Similarly, we consider a division event to
be successfully detected if it occurs at the correct time instant
with the connected components of the parent and both daughter
cells correctly determined. Finally, a detection event is said to
be successfully identified if an algorithm infers the right number
of cells within a connected component. Note that, our detection
scores are computed using only the connected components that
truly contain more than one cells. On the GOWT-2 sequence,
which is different than the dataset C used in [1], the number of
such connected components is small and CT produces a relatively
large number of false positives, which explains the low precision.

Unlike the above measures, MOTA and TRA are defined
on individual cell tracks rather than connected components that
potentially contain multiple clumped cells. They therefore provide
a global picture of tracking performance. TRA is an evaluation
measure introduced for tracking cells by explicitly accounting for
cell lineage and by imposing different penalties for different types
of errors. MOTA, on the other hand, is an evaluation measure
for generic multi-object tracking. To account for cell divisions,
we have computed the MOTA score based on cell associations
in two consecutive frames, where the associations can be either
between two non-dividing cells or between one mother cell and
one daughter cell. For a more thorough analysis of cell evaluation
measures, please refer to [56].
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Division Detection Migration MOTA TRA TimeRec Pre. F-M. Rec. Pre. F-M. Rec. Pre. F-M.

H
eL

a-
1

GMM 0.56 0.43 0.48 N/A N/A N/A 0.92 0.98 0.95 0.82 N/A 44
KTH 0.65 0.72 0.68 N/A N/A N/A 0.95 0.99 0.97 0.91 0.98 70
CT 0.74 0.79 0.77 0.56 0.89 0.69 0.94 0.99 0.97 N/A N/A 74.85
JST 0.79 0.55 0.65 N/A N/A N/A 0.86 0.92 0.89 0.73 0.80 128.16
ECLIP 0.92 0.79 0.85 0.96 0.83 0.89 0.97 0.99 0.98 0.94 0.98 88.25

H
eL

a-
2

GMM 0.40 0.18 0.24 N/A N/A N/A 0.95 0.98 0.97 0.43 N/A 74
KTH 0.65 0.72 0.68 N/A N/A N/A 0.94 0.99 0.97 0.90 0.97 336
CT 0.76 0.81 0.78 0.73 0.63 0.67 0.94 0.99 0.96 N/A N/A 79.33
JST 0.69 0.44 0.54 N/A N/A N/A 0.91 0.98 0.94 0.82 0.85 88.79
ECLIP 0.86 0.83 0.84 0.86 0.78 0.82 0.96 0.99 0.97 0.90 0.97 232.31

G
O

W
T-

1 GMM 0.0 0.0 0.0 N/A N/A N/A 0.48 0.93 0.63 -0.29 N/A 39
KTH 0.0 N/A 0.0 N/A N/A N/A 0.96 1.0 0.98 0.95 0.93 15
CT 0.50 1.0 0.67 0.13 1.0 0.22 0.98 1.0 0.99 N/A N/A 1.98
JST 0.50 0.05 0.08 N/A N/A N/A 0.94 0.98 0.96 0.87 0.92 5.48
ECLIP 0.50 1.0 0.67 0.31 1.0 0.48 0.98 1.0 0.99 0.98 0.98 0.28

G
O

W
T-

2 GMM 0.0 0.0 0.0 N/A N/A N/A 0.16 0.79 0.26 0.02 N/A 37
KTH 0.0 N/A 0.0 N/A N/A N/A 0.94 1.0 0.97 0.94 0.91 16
CT 1.0 0.17 0.29 1.0 0.02 0.03 0.95 1.0 0.97 N/A N/A 0.81
JST 1.0 0.02 0.04 N/A N/A N/A 0.93 0.98 0.95 0.85 0.95 3.87
ECLIP 1.0 1.0 1.0 1.0 1.0 1.0 0.95 1.0 0.98 0.96 0.95 0.22

SI
M

-1

GMM 0.0 0.0 0.0 N/A N/A N/A 0.65 0.91 0.76 0.45 N/A 14
KTH 1.0 1.0 1.0 N/A N/A N/A 1.0 1.0 1.0 1.0 1.0 2
CT 0.50 0.67 0.57 0.0 N/A 0.0 0.99 0.99 0.99 N/A N/A 0.20
JST 0.75 0.75 0.75 N/A N/A N/A 0.98 0.98 0.98 0.95 0.96 0.38
ECLIP 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 1.0 0.99 1.0 1.16

SI
M

-2

GMM 0.0 0.0 0.0 N/A N/A N/A 0.76 0.90 0.83 0.56 N/A 15
KTH 0.0 0.0 0.0 N/A N/A N/A 1.0 0.99 0.99 0.95 1.0 5
CT 1.0 1.0 1.0 1.0 0.25 0.40 0.99 1.0 1.0 N/A N/A 0.41
JST 1.0 0.60 0.75 N/A N/A N/A 0.96 0.98 0.97 0.93 0.97 1.16
ECLIP 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.75

SI
M

-3

GMM 0.0 0.0 0.0 N/A N/A N/A 0.77 0.94 0.85 0.66 N/A 20
KTH 0.50 0.40 0.44 N/A N/A N/A 0.99 0.98 0.99 0.94 0.98 3
CT 0.25 0.17 0.20 0.71 0.89 0.79 0.96 0.99 0.97 N/A N/A 0.39
JST 1.0 0.40 0.57 N/A N/A N/A 0.99 0.98 0.98 0.89 0.97 3.73
ECLIP 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.00

SI
M

-4

GMM 0.25 0.33 0.29 N/A N/A N/A 0.91 0.94 0.92 0.81 N/A 23
KTH 0.75 0.75 0.75 N/A N/A N/A 0.97 0.99 0.98 0.96 0.98 5
CT 0.75 0.60 0.67 0.75 0.68 0.72 0.86 0.97 0.92 N/A N/A 1.69
JST 0.75 0.38 0.50 N/A N/A N/A 0.96 0.96 0.96 0.84 0.96 4.33
ECLIP 1.0 0.80 0.89 1.0 0.79 0.88 0.98 1.0 0.99 0.96 1.0 1.85

SI
M

-5

GMM 0.0 0.0 0.0 N/A N/A N/A 0.77 0.87 0.82 -0.53 N/A 31
KTH 0.0 0.0 0.0 N/A N/A N/A 0.98 0.99 0.98 0.96 0.98 10
CT 0.50 0.33 0.40 0.93 0.82 0.88 0.96 0.99 0.98 N/A N/A 8.94
JST 0.50 0.13 0.21 N/A N/A N/A 0.94 0.97 0.96 0.88 0.97 3.66
ECLIP 0.75 0.75 0.75 1.0 1.0 1.0 0.98 1.0 0.99 0.98 0.96 9.56

SI
M

-6

GMM 0.0 0.0 0.0 N/A N/A N/A 0.83 0.56 0.67 -0.49 N/A 27
KTH 1.0 1.0 1.0 N/A N/A N/A 0.99 0.96 0.97 0.95 0.99 6
CT 0.33 0.25 0.29 0.52 0.81 0.63 0.82 0.99 0.90 N/A N/A 1.28
JST 0.33 0.13 0.18 N/A N/A N/A 0.93 0.94 0.93 0.80 0.98 16.21
ECLIP 1.0 1.0 1.0 1.0 1.0 1.0 0.95 0.99 0.97 0.95 0.99 5.82

TABLE 1: Comparison of our algorithm against state-of-the-art cell trackers in terms of tracking accuracy and running time. There are
some numbers missing and shown as N/A’s in the detection column. This is because the corresponding trackers do not output their
intermediate segmentation results and therefore we are not able to compute the detection scores. The missing numbers in the TRA or
MOTA column, on the other hand, are because those trackers do not produce complete cell tracks and thus we are not able to compute
their TRA or MOTA.

4.4 Comparing against the Baselines

We ran our algorithm and the baselines discussed above on all the
test sequences introduced in Section 4.1. Table 1 summarizes the
results for a representative subset and the remainder can be found
in the supplementary material.

Some numbers are missing because the publicly-available
implementation of CT [1] we use does not provide the identities of
individual cells in under-segmentation cases. We therefore cannot
extract the complete tracks required to compute the MOTA and
TRA scores. For our method and that of CT, we computed
the detection scores by using the same segmentations obtained
from the pixel classification approach of Section 3.1. By contrast,

GMM [19], KTH [3] and JST [2] trackers take only raw images
as input and do not accept external segmentations to be used.
Therefore, we cannot compute their accuracy for the detection
events. Finally, in some cases, GMM generates non-consecutive
cell tracks, which is not accepted by the TRA evaluation software.

Table 1 shows that our tracker yields a significant improvement
on the division and detection events, where we achieve p-values
< 0.01 and < 0.005 respectively using paired t-tests. Even on
the migration events for which the baselines already perform very
well, we do slightly better. However, because the division and
detection events are rare compared to migrations, the significant
improvements on these two events only have a small impact on
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Division Detection Migration
Rec Pre. F-M. Rec. Pre. F-M. Rec. Pre. F-M.

H
eL

a-
1

ECLIP-CL 0.95 0.06 0.11 N/A N/A N/A 0.98 0.47 0.64
ECLIP-NC 0.48 0.14 0.22 0.0 0.0 0.0 0.96 0.93 0.94
ECLIP-FD 0.78 0.81 0.80 0.96 0.85 0.90 0.97 0.99 0.98
ECLIP-BH 0.88 0.73 0.80 0.81 0.87 0.84 0.97 0.99 0.98
ECLIP-LP 0.92 0.80 0.86 0.95 0.81 0.87 0.97 0.99 0.98
ECLIP 0.92 0.79 0.85 0.96 0.83 0.89 0.97 0.99 0.98

H
eL

a-
2

ECLIP-CL 0.91 0.10 0.18 N/A N/A N/A 0.92 0.60 0.72
ECLIP-NC 0.73 0.31 0.43 0.06 0.02 0.02 0.95 0.96 0.95
ECLIP-FD 0.77 0.82 0.80 0.84 0.78 0.81 0.96 0.98 0.97
ECLIP-BH 0.84 0.77 0.81 0.78 0.77 0.77 0.95 0.99 0.97
ECLIP-LP 0.85 0.83 0.84 0.84 0.78 0.81 0.95 0.99 0.97
ECLIP 0.86 0.83 0.84 0.86 0.78 0.82 0.96 0.99 0.97

G
O

W
T-

1

ECLIP-CL 0.0 0.0 0.0 N/A N/A N/A 0.98 0.89 0.94
ECLIP-NC 0.50 0.50 0.50 1.0 0.29 0.44 0.98 1.0 0.99
ECLIP-FD 0.50 1.0 0.67 0.31 1.0 0.48 0.98 1.0 0.99
ECLIP-BH 0.50 1.0 0.67 0.25 1.0 0.40 0.96 1.0 0.98
ECLIP-LP 0.50 1.0 0.67 0.31 1.0 0.48 0.98 1.0 0.99
ECLIP 0.50 1.0 0.67 0.31 1.0 0.48 0.98 1.0 0.99

G
O

W
T-

2

ECLIP-CL 0.0 0.0 0.0 N/A N/A N/A 0.94 0.94 0.94
ECLIP-NC 1.0 0.20 0.33 1.0 0.02 0.03 0.96 1.0 0.98
ECLIP-FD 1.0 0.25 0.40 1.0 1.0 1.0 0.96 1.0 0.98
ECLIP-BH 0.0 N/A 0.0 1.0 1.0 1.0 0.91 1.0 0.95
ECLIP-LP 1.0 0.50 0.67 1.0 0.50 0.67 0.96 1.0 0.98
ECLIP 1.0 1.0 1.0 1.0 1.0 1.0 0.96 1.0 0.98

SI
M

-1

ECLIP-CL 1.0 0.67 0.80 N/A N/A N/A 0.99 0.74 0.84
ECLIP-NC 1.0 0.67 0.80 1.0 0.13 0.24 1.0 0.99 1.0
ECLIP-FD 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 1.0
ECLIP-BH 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 1.0
ECLIP-LP 1.0 1.0 1.0 1.0 1.0 1.0 0.99 0.99 0.99
ECLIP 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 1.0

SI
M

-2

ECLIP-CL 1.0 1.0 1.0 N/A N/A N/A 1.0 0.71 0.83
ECLIP-NC 1.0 0.75 0.86 1.0 0.25 0.40 1.0 1.0 1.0
ECLIP-FD 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ECLIP-BH 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ECLIP-LP 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ECLIP 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

SI
M

-3

ECLIP-CL 1.0 0.67 0.80 N/A N/A N/A 0.99 0.45 0.62
ECLIP-NC 0.75 0.33 0.46 0.08 0.02 0.03 0.99 0.97 0.98
ECLIP-FD 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ECLIP-BH 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 1.0
ECLIP-LP 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
ECLIP 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

SI
M

-4

ECLIP-CL 0.75 0.27 0.40 N/A N/A N/A 0.92 0.56 0.70
ECLIP-NC 0.75 0.21 0.33 0.37 0.19 0.25 0.97 0.98 0.98
ECLIP-FD 0.75 0.75 0.75 0.98 0.78 0.87 0.98 1.0 0.99
ECLIP-BH 1.0 0.80 0.89 1.0 0.78 0.87 0.98 1.0 0.99
ECLIP-LP 1.0 0.80 0.89 1.0 0.79 0.88 0.98 1.0 0.99
ECLIP 1.0 0.80 0.89 1.0 0.79 0.88 0.98 1.0 0.99

SI
M

-5

ECLIP-CL 0.60 0.75 0.67 N/A N/A N/A 0.98 0.61 0.76
ECLIP-NC 0.75 0.27 0.40 0.40 0.07 0.11 0.98 0.98 0.98
ECLIP-FD 0.75 0.75 0.75 1.0 1.0 1.0 0.98 1.0 0.99
ECLIP-BH 0.50 0.67 0.57 1.0 1.0 1.0 0.98 0.99 0.99
ECLIP-LP 0.75 0.75 0.75 1.0 1.0 1.0 0.98 1.0 0.99
ECLIP 0.75 0.75 0.75 1.0 1.0 1.0 0.98 1.0 0.99

SI
M

-6

ECLIP-CL 0.75 0.27 0.40 N/A N/A N/A 0.98 0.53 0.69
ECLIP-NC 1.0 0.50 0.67 0.21 0.09 0.13 0.95 0.96 0.95
ECLIP-FD 1.0 1.0 1.0 1.0 1.0 1.0 0.95 0.99 0.97
ECLIP-BH 1.0 1.0 1.0 1.0 1.0 1.0 0.95 0.99 0.97
ECLIP-LP 1.0 1.0 1.0 1.0 1.0 1.0 0.95 0.99 0.97
ECLIP 1.0 1.0 1.0 1.0 1.0 1.0 0.95 0.99 0.97

TABLE 2: Tracking results with various features turned off. There are some N/A entries in the ECLIP-CL rows because it does not
produce complete cell trajectories.
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MOTA and TRA.
The comparatively poor performance of GMM can be partially

ascribed to the fact that it relies on a simple hand-designed
appearance and geometry model to detect individual cells. KTH
relies on a richer appearance model that improves performance but
requires tuning more parameters for each sequence. CT employs
several cell-event classifiers and solves the tracking problem
using integer programming, resulting in an overall higher division
accuracy. Finally, the performance of JST is negatively impacted
by the fact that it depends on a watershed-based oversegmentation
that is sensitive to inaccuracies in pixel probability estimates.
By contrast, our ellipse-fitting approach to generating competing
hypotheses is robust to the ambiguous image evidence. Given the
same initial segmentation as CT, our method achieves the best
overall performance, thanks to the simultaneous detection and
tracking.

Our tracker runs relatively fast even though we use a large
number of variables. We show in Tab. 1 the running time of all
trackers given the detections. In the SIM-4 case, the number of
flow variables is around 1.1 million but the integer programming
optimization takes only 2 seconds on a single Intel Xeon E5 core.
In the HeLa-2 case, the number of variables is around 8 million
and the optimization takes about 232 seconds. This is because in
most cases, our GBT classifier produces a set of sparse and peaky
probabilities for the cell events, which makes the convergence
of the integer programming fast. Furthermore, our tracker is
implemented in C++ using the state-of-the-art GUROBI library.

4.5 Evaluating Individual Components

To produce the results summarized by Table 1, we used our full
approach as described in Section 3. In Table 2, we show what
happens when we turn off some of its components to gauge their
respective impacts.

ECLIP-CL relies on local classifier scores and does not
impose temporal consistency. As a result, it produces many
spurious cell tracks, which yields low precision for detection and
migration events. ECLIP-NC addresses this by imposing temporal
consistency but it allows multiple conflicting hypotheses to be
active simultaneously. Therefore, it still suffers from spurious
detections, which leads to low precision. ECLIP-FD disallows
conflicting detections but relies on a fixed division probability,
which is why it gives low division performance. ECLIP-BH uses
division classifier costs but collapses the hierarchical dimension
of our graphs and results in mis-detections. Finally, ECLIP-
LP removes the integrality constraints on the flow variables.
This gives a similar performance to ECLIP on most of the
sequences suggesting that the integrality constraints are seldom
helpful. However, in the case of HeLa-2, where division events
are frequent, we observed that around 3% of the non-zero flow
variables are fractional, which explains the 2% drop in recall
compared to ECLIP.

5 CONCLUSION

In this work, we have introduced a novel approach to automatically
detecting and tracking cell populations in time-lapse images. Our
algorithm generates over-complete detection hypotheses based on
fitting ellipses hierarchically, and compared to prior works [16],
[2], it yields a much more comprehensible formulation of an

integer program to choose the right detections from the over-
complete set while jointly finding the optimal linking and di-
vision configuration. This results in more accurate trajectories
and improved detection of mitosis events. Furthermore, our GBT
classifiers are trained in a principled manner, and therefore our
tracker can be readily applied for cell apoptosis caused by drug
treatment.

In future work, we intend to extend our approach to tracking
elliptical cells in 3D image sequences, as well as tracking cells
of arbitrary shapes in both 2D or 3D. In both cases, given the
learned probabilities of different events, our network flow integer
programming framework can be readily applied. However, to learn
the event probabilities, we will have to change the features used
to describe cells. In the case of elliptical cells in 3D sequences,
we will need to fit ellipsoids to cells and train our classifier based
on their features. To track cells of arbitrary shapes, we will have
to develop new geometrcal features to capture their shapes. Given
enough annotated training data, they should be obtainable using
Convolutional Neural Networks. In the meantime, we are also
interested in developing new evaluation measures that account for
both cell tracking accuracy and sampling rate.
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