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S1. ANALYSIS OF FORCE AND CURRENT TRACES

Once the experimental force (Fot) versus stage (z) traces were acquired we analysed them with a custom written
script. The data extracted from experiments included: the DNA force level from which its linear charge density was
calculated using FDNA ≈ V λDNA, the DNA exit point yx, the DNA length, the distance from the protein jump to
the exit point ∆yp, and the work Wi involved in the protein exit from the capillary. To compute the work, each
curve was shifted such that the force on DNA FDNA was 0. It was then numerically integrated to produce the curve
Wi(z) =

∫ z
zA

(Fot−FDNA)dz (See Fig. S1). The beginning of the jump zA was determined to be well before the protein

event when the DNA level was flat so as to include any pre-jump changes in the force, or metastable jumping (see Fig.
1 in the main text). The final work attributed to the protein jumping and used in later analyses was Wi ≡Wi(z = zB)
where the end of the jump was determined based on the criteria that the curve needed to be locally flat, i.e that the
force levels before and after the jump are at the same level.

In addition to force traces we obtained current traces. After their analysis we extracted a current change corre-
sponding to DNA and protein and the location of the protein relative to the free end of the DNA.
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FIG. S1: Density plot of calculated work versus stage W(Z) trajectories during a jump event. The plot was
normalized to a probability of 1 for each z from 110 force versus stage curves for RNAP site at 750 nm. All force curves are

shifted so that the jump location is at z − zj = 0 before averaging.
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FIG. S2: Histogram of protein localisation ∆yp for each binding site. Colored bins correspond to binding events
identified as specific and white bins non-specifically bound proteins. Vertical, dashed, black lines represent the limit between

specific and non-specific binding. See accompanying text for the criteria used to identify specific binding.

Once these values were obtained an elimination of traces based on the length of DNA was performed. Sometimes
we observed DNA fragments shorter than expected. This fact can be a result of shearing due to experimental
manipulation (pipetting, centrifugation, etc.)1. After this preliminary elimination a second round of analysis was
used to discriminate specifically and non specifically bound proteins by implementing a modified Z score2,

Zscore =

∣∣∣∣0.6745 · (xi − x̄)

MAD

∣∣∣∣ . (S1)

If Zscore was above 3.5 for a given trajectory then that protein event was classified as non specific. Here xi is the
location of the protein for trace i, x̄ is the median of the set, and MAD is the median absolute deviation of the set
given by the median of |xi − x̄|. The Z score criteria was implemented to identify specific binding in all our cases (see
Fig. S2)
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S2. LOCALISATION AND WORK HYSTERESIS
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FIG. S3: Localisation and work hysteresis measured for a DNA-protein complex a) Forward (translocation from
in- to outside the capillary) and reverse (from out- to inside) histograms of protein localisation ∆yp performed to verify that
localisation does not depend on the direction of the translocation protocol. Experiments were performed for dCas9 binding

site at 3570 nm with 10 distinct protein-DNA complexes where each complex was probed with a forward and backward
protocol multiple times producing from 20 to 40 individual protein jump events. For these experiments we used a sawtooth
pattern for the nanopositioning stage, without allowing the DNA to exit. b) By performing back and forth experiments as

described previously we compared the work performed in the forward and reverse events. A difference was observed between
forward and reverse works which hints at the hysteresis of the cycle, but it was not significant enough for further analysis.

Note that the definition of forward/backwards work will be different for proteins with a different charge sign.
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S3. ANALYTICAL SOLUTION FOR LOCALISATION SHIFT

In the experiment we do not measure the true position of the DNA-protein complex binding site, but it’s apparent
position. In order to determine the exact position of the binding site on the DNA, we needed to determine the relation
between the stage position and the protein position when the jump is initiated. We connected the measured position
of the protein at yp to the internal coordinate at sp, also taking into account that we measure relative distances in
respect to the DNA exit point at yx. The measured protein position is the distance between the locations of the
protein at yp and the DNA exit at yx locations:

∆yp = yx − yp. (S2)

The shift between the measured and theoretical position (sp) is expressed as:

∆shift = (L− sp)−∆yp, (S3)

where L−sp comes from the fact that the experiments measure from the free end at s = L, while we measure contour
distances from the bead at s = 0.

It remains to determine the relation between the DNA contour length s and the distance between the bead and
capillary opening y. This is, for any s, given by the extension µ:

µ(s) =
y

s
, (S4)

and is always in the regime that µ(s) < 1, i.e. the DNA is never ”completely” extended. We can now calculate ∆yp
by transforming the bead to capillary distances into internal strand coordinates,

∆yp = sxµ(sx)− spµ(sp), (S5)

where sx is the contour length between the bead and capillary at which the DNA exits. Without fluctuations this
exit will happen when all the DNA is used for coiling at the tension and bead-opening distance such that sx = L and
y0x = Lµ(L). In practice, as it is a single molecule experiment, the DNA will exit earlier due to fluctuations such that
y0x = Lµ(L) > yx = sxµ(L).

The length of a DNA strand that jumps out ∆sx is not accessible for binding site localisation as the DNA jumps
out even without the presence of the protein. This inaccessible length at the free end is the difference between the
length at the moment of the ideal exit without fluctuations and the real exit:

∆sx = s0x − sx = L− sx. (S6)

Here, the relationship between the length of strand where the jump took place and the experimental distance is:

yx = sxµ(sx). (S7)

So that the experimental (or numerical) position is related to the inaccessible length ∆sx through:

∆yx = Lµ(L)− sxµ(sx), (S8)

or

∆yx = Lµ(L)− (L−∆sx)µ(sx). (S9)

In practice the unprobeable region ∆sx is not a problem since one can easily attach a piece of DNA to the end of the
probed region thus rendering the DNA of interest wholly probeable. We also note here that the process of threading
the free end of DNA is harder to predict and thus the entrance of DNA cannot be used instead of the exit as a
reference point3,4.

It remains to determine the DNA extension. In the strong stretching regime5 the relation between the force
extending the DNA, FDNA = λDNA∆V f(s), and the extension µ can be derived as:

µ(s) =
y

s
= 1− 1√

Af(s)
, (S10)

with

f(s) =

{
1 nanopore

1− 1
1+L−s

ξ

nanocapillary,
(S11)
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and

A =
4λDNAV Lp

kBT
. (S12)

by taking into account the known force profile inside nanocapillaries6. Here λDNA is the effective DNA linear charge
density, V the driving potential, Lp the persistence length of DNA and kBT the thermal energy at room temperature.
Equations (S3), (S5) and (S10) enable the conversion from the measured positions to the internal positions on the
strand for bare DNA controlled translocation.

The previous equations neglect that the protein changes the force extending the DNA at the moment of the jump.
In the regime when the force on the protein is small comparable to the force that is pulling the DNA into the
nanocapillary, we can assume that, at the moment when the jump happens, the force extending the DNA is changed
by the presence of the protein. We can approximate the force as Fext = FDNA − Fp(s = sp) = FDNA − qV/ξ and
obtain the corrected extension relation at sp

µ(sp) =
y

sp
= 1− 1√

4LpFext/kBT
, (S13)

with which we can predict the measured protein localisation shift for small forces on the protein. This formula is
valid until the force on the protein becomes comparable to the force extending the DNA when we are no longer in
the strong extension regime.



6

S4. STOCHASTIC MODEL

Coupled Langevin equations

We used a stochastic modelling scheme7 previously implemented to explain controled translocation events in both
nanopores8 and nanocapillaries9. The model is based on two coupled Langevin equations for two state variables of
the system, the bead position away from equilibrium at the stage position z, denoted r, and the length of the DNA
contour located between the bead and the capillary opening s. Thus we solved two Langevin equations with an
external force determined by the total free energy G(r, s). For the position of the bead r = y − ρ, with the bead
radius ρ = 1.5 µm, the temporal evolution is given by:

ηbṙ = −∂G(r, s)

∂r
+
√

2kBTηbg(t), (S14)

and for the contour length of DNA s:

ηpṡ = −∂G(r, s)

∂s
+
√

2kBTηpg(t). (S15)

Here g(t) is a random, time-dependent, Gaussian, δ-correlated noise of magnitude unity. The constants ηb = 5 ·
10−5pNs/nm and ηp = 1 · 10−5pNs/nm are values for the Stokes friction for the bead and polymer, respectively, and
kBT ≈ 25.7 meV is the thermal energy at room temperature. As in our previous work9 the total free energy is:

G(r, s, z) = GDNA(s) +Gwlc(r, s) +Got(r, z) +Gp(r, s), (S16)

and consists of contributions from the optical trap Got(r, z) = 1
2κ(zr)2, the entropic free energy of a worm-like

chain of DNA Gwlc(r, s), the free energy of a charged DNA molecule in the nanocapillary GDNA(s), and the free
energy contribution from a protein bound to the DNA Gp(s) at the position sp. We numerically solved the two
coupled equations while slowly varying the stage position z with a speed v ≈ 500 nm/s, from the DNA being almost
completely inside the capillary, until it exits. In order to determine any numerical parameter we made ∼ 100 averages
of pulling out protocols with random starting conditions.

Free energy of the system

The elastic-entropic free energy Gwlc for extending a DNA strand5 is

Gwlc(r, s) =
kBT

Lp

{
s

4

[
1

1− (r − ρ)/s
− 1

]
− r − ρ

4
+

(r − ρ)2

2s

}
, (S17)

with Lp ≈ 50 nm the persistence length of DNA. In our regime, the force on a DNA persistence length segment is
much larger than the thermal energy, resulting in a full extension of the DNA of contour length s from the bead
surface to nanocapillary opening. In the case of much longer capillary tips (ξ � 100 nm) it might be necessary to
include the details of the DNA extension.

Additionally, we have the free energy from the harmonic pulling force of the optical trap:

Got(r) =
1

2
κ(z − r)2, (S18)

where κ is the optical trap spring constant κ ≈ 0.05–0.1 pN/nm. The bead equilibrium position z was taken to be a
function of time z = vt, where v ≈ 500 nm/s was the experimental pulling speed.

The DNA electrostatic free energy is directly calculated from the electrostatic potential distribution Φ(z) inside the
nanopore/capillary by approximating that the DNA is a charged extended rod with the effective linear charge density
λ, with a constant contribution coming from the DNA contour length s being on the energetically unfavourable side
of the opening8,9

GDNA(s) = λDNA

∫ s

−(L−s)
Φ(x)dx. (S19)

Here the position x = 0 is the location of the nanocapillary opening (exit) or the middle of the nanopore channel. The
effective linear charge density of the DNA λDNA includes both effects of counterion condensation and drag force from
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any electroosmotic flow8,10,11. The effects of electroosmotic flow are larger in nanocapillaries than in nanopores9,12,13.
Similarly to the DNA we can obtain the free energy for a point-like charged protein at a position sp along the DNA
contour from the bead:

Gp(s) =

∫
Φ(x)q∗δ(x− (s− sp))dx, (S20)

here q∗ is the effective charge of the protein with both electrostatic and electroosmotic flow contributions8. The only
difference in respect to our previous paper is in regards to the potential distributions used for nanocapillaries.

Electrostatics of nanopores

In the case of nanopores, the electric field acting on the DNA and protein is mostly localised around the pore
opening14. We approximate the electrostatic potential in nanopores by using

Φ(x) = V (tanh(x/leff ) + 1)/2, (S21)

because when the effective electrostatic thickness of the nanopore leff goes to 0 the potential transforms into a step
function. Here V is the driving electrostatic potential. From this the the free energy of a DNA strand is

GnpDNA = −1

2
leffλDNAV

(
log

(
cosh

(
L− s
leff

))
− log

(
cosh

(
s

leff

))
− L

)
, (S22)

and the resulting force FDNA = −∂GDNA/∂s:

FnpDNA = −1

2
λDNAV

(
tanh

(
L− s
leff

)
+ tanh

(
s

leff

))
. (S23)

For a protein represented as a point at location sp of charge q, the free energy is:

Gnpp = qV (tanh((s− sp)/leff ) + 1)/2, (S24)

leading to a force on the protein of:

Fnpp =
qV

2leff
(1− tanh2((s− sp)/leff )). (S25)

Electrostatics of nanocapillaries

The simplest model for the spatial dependence of the electrostatic potential valid inside a nanocapillary approximates
the capillary as a cone6,9:

Φ(x) =
V

1− x/ξ
θ(−x) + V θ(x), (S26)

with θ(x) the Heaviside step function. The first contribution comes into consideration when DNA is being pulled
outside of the nanocapillary, giving a specific decay in the force profile6. The second contribution is the driving
potential on the DNA due to its negative charge. Alternatively, a more accurate description of nanocapillaries can be
made using a two cone geometry in the case of shrinking of nanocapillaries under SEM9,15. In our current case we
found that one cone is sufficient for explaining the experimental results.

From the electrostatic potential of a nanocapillary follows the free energy of a DNA strand

GncpDNA = V λDNA

(
log

(
1 +

L− s
ξ

)
+ s

)
, (S27)

and subsequently the force on the DNA:

FncpDNA = −λDNAV

(
1− 1

1 + L−s
ξ

)
. (S28)
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The free energy of a point protein at location sp with charge q∗ is:

Gncpp = −q∗V 1

1 +
s−sp
ξ

θ(sp − s) + q∗V θ(s− sp), (S29)

and the force on the protein:

Fncpp = −q
∗V

ξ

1(
1 +

s−sp
ξ

)2 . (S30)

Controlled translocation of DNA-protein complexes

Using the above relations for the free energy we can simulate the experimental conditions with a nanocapillary,
and provide comparisons to nanopores. When translocating bare DNA (Fig. S4) the only striking difference between
nanopores and nanocapillaries is the final part of the force profile. In the case of nanocapillaries a characteristic decay
of the force acting on DNA is observed6. This is also seen in the increased coiling (inverse extension) during the exit.
We also note that the simulations show that the fluctuations are largest at the beginning of the pulling, i.e for protein
positions close to the bead.

Addition of a protein on the DNA produces a jump event at the location of the protein and relaxation of the coiled
DNA strand (Fig. S5). The event is characterized by an abrupt change of the force during which the protein jumps
trough the opening of the capillary to minimize its free energy. This is followed by a change of the contour length
s and correspondingly in the coiling (inverse extension). For the same charge, nanocapillaries provide a longer jump
event due to the force on the protein being more spatially spread than in nanopores. Nanocapillaries are also more
susceptible to induce metastable jumping of complexes, at the beginning of the jump, attributed to a energy barrier
comparable to the thermal energy. We can also compare how the protein localisation shift depends on the geometry
(Fig. S6a). For nanocapillaries the shift is larger comparing to nanopores as the DNA exit position exhibits a lower
tension due to the specifics of the electrostatic potential decay. Fig. S6b shows a comparison of how in our case the
analytical fit produces an underestimation of the true protein charge value due to the strong stretching approximation
we used. Fig. S7 shows how the shift depends on a different driving voltage, which influences the DNA tension and
thus extension, and on the shape of the capillary via the electrostatic decay length ξ.
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FIG. S4: Comparison of DNA controlled translocation simulations for nanopore (top row) and nanocapillary
(bottom row) geometries a) A characteristic force versus stage position plot. b) Characteristic DNA coiling y/s (inverse
extension) versus stage position z. The parameters used were λDNA = −0.04 e/bp and V = 200 mV with the electrostatic

decay length ξ = 200 nm for nanocapillaries and thickness leff = 10 nm for nanopores.
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probability) b) Internal state variables r, s versus stage position z. A single experiment is demonstrated with the horizontal
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S5. EQUILIBRIUM INFORMATION FROM PROTEIN JUMP EVENTS

The Jarzynski equality (JE)16 enables us to determine the free energy difference ∆GAB = G(rB , sB , zB) −
G(rA, sA, zA) between two positions before and after the jump with G(r, s, z) the total free energy of the system
(S16). The system is considered to be in an equilibrium state before the jump happens at state variables (rA, sA, zA).
After the non-equilibrium jump it relaxes into a new equilibrium state at (sB , rB , zB). The work Wi measured for the
individual protein jump was averaged over different experimentally realized trajectories 〈Wi〉 = W̄ ≥ ∆GAB , where
the equality sign is valid when the number of samples goes to infinity. We obtained the difference between the two
states with the JE:

e
−∆GAB

kBT = 〈e−
Wi
kBT 〉. (S31)

In order to use the JE to obtain a meaningful physical quantity related to the protein we computed the difference
between the free energy before and after the jump. We assumed that the measured force before and after the jump
event is the same Fot(rA, zA) = Fot(rB , zB), which implies that differences between stage and bead coordinates are
the same ∆z = ∆r and that the free energy of the optical trap does not change ∆Got = 0. What remains is the free
energy of the DNA worm-like chain (S17), DNA electrostatic free energy (S19) and protein free energy (S20).

The difference of free energies for the DNA before and after the jump for thin nanopores (leff � 10nm) is

∆GDNA = V λDNA∆s, (S32)

and for nanocapillaries

∆GDNA = V λDNA∆s− V λDNAξ log
ξ + L− sB
ξ + L− sA

. (S33)

Nanocapillaries have the additional term which is relevant when the DNA’s free end is near the opening so that it is
influenced by the characteristic potential (S26). If the protein location is far away from the DNA free end (sp � L)
this is negligible.

The protein free energy difference is ∆Gp = q∗V for nanopores, and

∆Gp = q∗V − q∗V

1 +
sp−sb
ξ

, (S34)

for nanocapillaries. We can assume that the DNA strand position after the jump is the same as the protein position,
sB ≈ sp. This is confirmed by our stochastic model in Fig. S5 where sB ≈ sp even after the DNA has again extended
and the force level has returned to its value before the jump. We can then further simplify by also writing sA ≈ sp−∆s
leading to

∆Gp = q∗V
∆s

ξ + ∆s
. (S35)

If the protein is far away from the free end the change in DNA extension before and after the jump is negligible so
that µA ≈ µB = µ. This is valid, unless we are dealing with proteins positioned near to the free end of the DNA for
nanocapillaries. Finally the change in the free energy of the DNA worm like chain is

∆Gwlc ≈
kBT

Lp

∆z

4

[
µ

1− µ
− (1− 2µ)

]
, (S36)

which amounts to ∆Gwlc � 1 kBT and is negligible for discrimination of proteins
To summarize, the change of the free energy before and after the jump can be approximated by eq. (S35) which

can be further simplified with ∆s ≈ ∆z, valid for short jumps as the extension which links the two coordinates µ ≈ 1.
With this equation we are able to use the free energy difference obtained from non-equilibrium work analysis (JE)
and connect it to the effective charge of the bound protein.

In order to check that our use of the JE on our experimental data is warranted we observe the convergence of the
resulting free energy ∆GAB . We computed the free energy of a total of N measured works using an average over
n < N possible combinations of works. While the number of included works n grows from 1 to N we should expect a
convergence of the JE with n since the ensemble average should more precisely reflect the infinite average expressed
in equation S31. On Fig. S8 we see the expected convergence. The fact that the curves, both for RNAP and dCas9
become flat with our number of experimentally measured works shows that we can use the JE to estimate the free
energy and thus the effective charge of the proteins.
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∆GAB .
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S6. ADDITIONAL FIGURES
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FIG. S9: Examples of y force traces. a) Typical example traces of x and y force as a function of time for dCas9. X force
shows typical trace as described in FIG. 1 of the main text. Y force trace shows little response throughout the protocol apart
from a small variation on DNA capture. b) As in panel a) but for typical RNAP trace and no response at all in the y direction.
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