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SUMMARY

Distributed plasticity beam elements are commonly used to evaluate limit state demands for performance-
based analysis of reinforced concrete (RC) structures. Strain limits are often preferred to drift limits because
they directly relate to damage and are therefore less dependent on member geometry and boundary condi-
tions. However, predicting accurately strain demands still represents a major simulation challenge. Tension
shift effects, which induce a linear curvature profile in the plastic hinge region of RC columns and walls, are
one of the main causes for the mismatch between experimental and numerical estimates of local level quan-
tities obtained through force-based formulations. Classical displacement-based approaches are instead suit-
able to simulate such linear curvature profile. Unfortunately, they verify equilibrium only on an average
sense due to the wrong assumption on the axial displacement field, leading to poor deformation and force
predictions. This paper presents a displacement-based element in which axial equilibrium is strictly verified
along the element length. The assumed transversal displacement field ensures a linear curvature profile,
connecting accurately global displacement and local strain demands. The proposed finite element is vali-
dated against two sets of quasi-static cyclic tests on RC bridge piers and walls. The results show that curva-
ture and strain profiles for increasing ductility demands are significantly improved when axially equilibrated
rather than classical displacement-based or force-based elements are used to model the structural members.
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1. INTRODUCTION

Performance-based assessment of structures is based on the definition of clear limit states, from
which economical losses can be estimated for various ground motion intensities. Limit states can
be based either on global element drift/chord rotation limits or on local material strain limits,
which are deemed to be a better indicator of structural damage [1]. The difficulty in defining
element-related drift/chord rotation limits for bi-directional loading is not faced if material strain
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demands can be directly computed and verified. In reinforced concrete (RC) structures, damage
concentrates in plastic hinge regions, and therefore efficient models should accurately simulate the
main sources of deformation associated to the plastic hinge development. The classical
interpretation of such mechanism, at least for well-detailed members, considers three main
components, namely the moment gradient, tension shift and anchorage slip (or strain penetration)
effects [2].

Although several modelling approaches are available, the attractive compromise between accuracy
and computational cost renders beam element models one of the most widely employed numerical
tools in engineering practice, especially when complex and multi-member structures such as
buildings or bridges are involved. Beam element models are typically divided into lumped and
distributed plasticity approaches. The former are more performant from the computational
viewpoint as they typically lump the three above mentioned components of the plastic hinge at
pre-defined member locations. This is accomplished by using the concept of equivalent plastic
hinge length, which therefore often features three terms [2]. On the contrary, each of those terms
can be individuated in the so-called distributed plasticity elements. Anchorage slip can be
accounted for by a zero-length element, such as that developed by Zhao and Sritharan [3] or any
other appropriately calibrated relation [4, 5]. The moment gradient is explicitly simulated because
the development of plasticity is not restrained to a specific member location but can spread along
several integration points (IPs) in which the finite element (FE) is typically discretized. Up to the
present moment, tension shift effects due to inclined cracking caused by shear force—see
Figure 1(a)—have not been explicitly addressed in the pre-peak phase of the force–displacement
member response, although their influence will necessarily affect the comparison between
experimental and numerical results at the global (i.e. member displacement) level [6, 7]. In the
post-peak branch, the need to use a regularization length makes it possible to indirectly account
for them [8, 9]. This paper shows that models based on distributed plasticity elements and
classical beam theory can also be adapted to directly incorporate tension shift effects whilst
verifying strictly axial equilibrium, thus significantly strengthening the accuracy of these
approaches at the local scale.

Put simply, distributed plasticity elements can be mainly subdivided in displacement-based (DB)
and force-based (FB) formulations [10] depending on the type of the imposed independent fields. As

Figure 1. RC member subjected to top vertical and horizontal load: (a) qualitative sketch of inclined cracks
due to tension shift effects; (b) structural discretization with FB and DB elements; qualitative experimental
versus numerical curvature and axial strain profiles: FB element models—(c) and (e); DB element models—

(d) and (f).
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their name suggest, displacement and force distributions along the element length are assigned in the
former and latter case. The hypotheses governing the beam kinematics control the number of
sectional deformations that arise. The current work considers only Euler–Bernoulli (EB) beam
hypothesis because: (i) it is simple and allows to model most of the structural members in a RC
structure; (ii) linear and nonlinear EB beam elements are available in roughly all the commonly used
structural analysis software (e.g. [11, 12]). Linear and Hermitian polynomial functions are employed
in classical DB formulations to characterize axial and transversal displacement fields. These
assumptions provide an exact solution only for linear elastic material and nodal loads. On the other
hand, constant and linear shape functions are used to define axial force and bending moment
distributions in FB formulations, which results in an exact solution regardless of the development of
material nonlinear response. Additionally, in FB formulations, equilibrium is strictly verified along
the element length—see Figure 1(d)—whereas in DB approaches, equilibrium is only verified in an
average sense [13]—see Figure 1(f). As a consequence, whilst a single FB element usually suffices
to simulate the nonlinear response of a structural member, member discretization in several FEs is
required if DB elements are used—see Figure 1(b).

The state determination of DB formulations is simpler and less computationally demanding than
their FB counterpart as the element end forces and tangent stiffness matrix are directly obtained by
integration of the sectional responses, hence avoiding the intra-element iterations needed for FB
approaches. However, the superiority of the latter in terms of theoretical accuracy and significant
size reduction of the resulting global structural stiffness matrix has led to a gradual reduction in the
use of DB formulations over the past 15–20 years.

More recently, experimental measurements from accurate instrumentation systems [14] applied to
nonlinearly responding RC members have confirmed important limitations of the FB formulations.
Disregarding the effects of tension shift in the pre-peak phase was proven to be one of the most
relevant. The latter cause a linear distribution of plastic curvatures inside the plastic zone of the
structural member ([15–18], see Figure 1), and, as pointed out by Priestley et al. [2], it represents
the first reason for the mismatch between the force–displacement response as obtained from a FB
element (which verifies equilibrium in an exact form) and experimental results. Furthermore, the
previously mentioned test campaign [14] has shown that the intersection between plastic and elastic
curvature profiles occurs at an increasing height for larger ductility demands.

DB formulations offer a solution for the analytical simulation of the above physical phenomena
and thus provide a bypass to the limitations brought about by FB approaches. In fact, the
observed linear curvature profiles in the plastic hinge region of RC members can be simulated by
imposing appropriate lateral displacement fields to the beam FE, which is the natural framework
of DB and not FB formulations—see Figure 1(c) and (e). This paper represents a first step to
reflect the discussed experimental findings in beam element models with a view to predict more
confidently the performance of RC structures. To accomplish such goal, a fundamental drawback
of the classical DB formulations is addressed beforehand. As already mentioned, the imposed
linear axial displacement field implies that axial equilibrium is only verified in an average sense,
which results in case of material nonlinearity in different values of the axial force for distinct
integration sections. This leads to a misevaluation of the moment capacity of the structural
member and therefore to a poor local and global performance of the FE [13]. In this paper, an
enhanced DB element for the inelastic simulation of RC members is proposed in which the axial
equilibrium is strictly verified (hence emulating the advantages of a FB formulation in this
respect) through the use of an iterative procedure. It will be shown that the use of such an
element, combined with a convenient structural discretization, leads to an important improvement
in the simulation of global and, more importantly, local level quantities when compared with
models employing classical DB or FB approaches.

The new element and its state determination are described in Section 2 along with an application
example describing its main features and relative performance with respect to classical DB
formulations. Section 3 benchmarks the performance of the new beam element against two sets of
experimental tests on RC bridge piers and RC walls. Comparison at the global and local levels,
namely curvature and strain profiles, are provided and limitations of the proposed formulations
discussed. Conclusions are drawn in Section 4.

AXIALLY EQUILIBRATED DISPLACEMENT-BASED ELEMENT FOR RC MEMBERS

Copyright © 2017 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. (2017)
DOI: 10.1002/eqe



2. AXIALLY EQUILIBRATED DISPLACEMENT-BASED ELEMENT: FORMULATION AND
STATE DETERMINATION

The beam formulation herein proposed is a plane frame element, which implies that in the global
reference system (X,Y) six components are required to characterize the vector of nodal forces (P)
and displacements (U). Three components suffice instead to describe the basic forces and

displacements ( pbsc ¼ pbsc1 ; pbsc2 ; pbsc3

� �T
and ubsc ¼ ubsc1 ; ubsc2 ; ubsc3

� �T
) in the member-bound

reference system without rigid-body modes (x,y), which are shown in Figure 2.
The concept of a DB element satisfying axial equilibrium was originally proposed by Izzudin et al.

[19] for nonlinear-elastic problems. No plasticity was considered in their work, and explicit
expressions were derived for both sectional forces and stiffness matrix. Further, shape functions
were not defined for the axial displacement field while a quartic formulation was used for the
transversal displacement field. The element end forces pbsc and tangent stiffness matrix K were then
obtained according to the principle of virtual work and by direct differentiation of each individual
component, respectively.

The formulation presented in this manuscript features the following distinctive aspects with respect
to the one above: (i) material constitutive laws including plastic deformations and cyclic behaviour
were considered in the derivation and validation phases; (ii) Hermitian polynomials for the
transversal displacement field are used, which results in linear curvature profiles as in classical DB
approaches. This assumption, as already discussed, is sought in order to numerically account for
tension shift effects; and (iii) a variational approach is employed to determine the element end forces
and the tangent stiffness matrix. In particular, differences were obtained with respect to [19] in the
components of the tangent stiffness matrix referring to the derivatives of the basic axial force pbsc1
with respect to the vector of basic displacements ubsc.

A similar procedure to the one proposed by Izzudin et al. [19] was used to achieve axial equilibrium
of the element. The latter is discussed in subsection 2.1, while subsection 2.2 focuses on the state
determination algorithm. Finally, in subsection 2.3, the main features of the proposed FE
formulation are explored, and the new beam element is compared against classical DB formulations
with the aid of an application example.

2.1. Axial equilibrium

In a beam subjected to nodal loads, equilibrium considerations impose the axial force N(x) to be
constant along the beam axis x and equal to the nodal axial basic force pbsc1 . As discussed in
Section 1, this is not the case for classical DB elements employing nonlinear material constitutive
laws. In fact, the linear shape function approximating the axial displacement field u(x) ensures axial
equilibrium only in an average sense, which yields different values of the axial force at distinct IPs
(i.e. NIPj≠NIPj + 1).

The main idea behind the axial equilibrium procedure consists in correcting the set of sectional axial

strains εIPj0 such that the value of the axial force is the same in all IPs (NIPj=NIPj + 1). Given the intrinsic
nonlinearity of the problem, an iterative procedure is required to attain this goal, which is discussed in
the following paragraphs and schematically represented in the flowchart of Figure 3.

Consider a Newton–Raphson (NR) cycle n within an arbitrary load step l, for which a vector of
displacement increments in the basic reference system Δubsc is imposed. The steps to be performed

Figure 2. Element forces and displacements in the basic reference system.
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to go from the basic to the global reference system require classical structural analysis operations, i.e.
the rotation of the coordinate system as well as the use of linear or nonlinear compatibility and
equilibrium relations [20], and will thus be omitted in this work. Shape functions employed in
classical DB formulations (linear and Hermitian polynomials for the axial and transversal
displacement fields) are initially used to obtain, after differentiation, the corresponding increments of
sectional deformations ΔeIPj at all IPs along the element. The sectional deformations are calculated
from the basic nodal displacements through pre-multiplication by the matrix BDB/c, where the
subscript DB/c underlines that classical DB shape functions are considered. Once the sectional axial

strain and curvature increments are known (ΔεIPj0 and ΔϕIPj), the EB hypothesis and the sectional
constitutive law enable to compute the generalized sectional forces sIPj. The differences between the

Figure 3. Flowchart for the element state determination of the axially equilibrated displacement-based element.
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axial forces recorded in two successive IPs are then calculated. Axial equilibrium is considered to be
satisfied if the cumulative sum of these differences throughout all pairs of IPs in the element is
below a certain tolerance. It is noted that this convergence criterion is different from the one
proposed by Izzudin et al. [19], where strain differences were checked. If such axial equilibrium is
verified, the state determination proceeds as for the classical DB formulation; otherwise, intra-
element iterations (identified with the index m in Figure 3) on the increment of sectional axial

strains at each IP (ΔεIPj0 ) are performed.
Two conditions need to be fulfilled: (i) the axial force should be equal in all IPs, and (ii) the integral

of the axial strains along the element length must correspond to the basic axial displacement ubsc1 . They
are expressed in equations (1) and (2), respectively:�

NIPj þ kIPj11 �ΔεIPj0 ¼ NIPjþ1 þ kIPjþ1
11 �ΔεIPjþ1

0 for j ¼ 1 to no: IPs� 1 (1)

∑
no: IPs

j¼1

wIPj�L
2

� εIPj0 þ ΔεIPj0

� �
¼ ubsc1 (2)

where kIPj11 is the first row-first column component of the sectional stiffness matrix evaluated at IPj, wIPj

is the integration weight of the jth IP (it is assumed that the sum of the integration weights is equal to 2)
and L is the element length. As it can be noticed, conditions (1) and (2) provide a linear system of
equations; the number of equations corresponds to the number of IPs. The equations can be solved

at each IP to obtain the axial strain increments ΔεIPj0 as function of the current set of axial forces.
These relationships are provided in equations (3) and (4) for the first and the remaining IPs:

ΔεIP1
0 ¼

2�ubsc1
L �∑no: IPs

j¼1 wIPj� εIPj

0 þ NIP1�NIPj

k
IPj
11

� �

∑no: IPs
j¼1 wIPj� k

IP1
11

k
IPj
11

(3)

ΔεIPj

0 ¼ NIP1 � NIPj
	 
þ kIP1

11 �ΔεIP1
0

kIPj

11

(4)

The so computed strain increments ΔεIPj

0 are used to update the total axial strains εIPj

0 from the
previous intra-element iteration, and new sectional forces are computed. As shown in Figure 3, the
procedure is repeated until the resulting axial forces NIPj are equilibrated. In other words, this
internal iterative procedure corrects the constant axial strain profile as obtained from the classical
DB approach to ensure the same value of the axial force along the element. Note that the curvature
profile remains linear as imposed in classical DB formulations.

2.2. Element state determination

The present subsection discusses the state determination for the axially equilibrated DB element, which
consists in the evaluation of the element end forces pbsc and tangent stiffness matrix Kbsc for a given
increment of basic displacements Δubsc. Once the axial force is equilibrated according to the method
previously discussed, the generalized deformations eIPj at a generic IP can be decomposed as:

eIPj ¼ BIPj
DB=c�ubsc þ eIPjAE with eIPjAE ¼

εIPj0;AE

0

8><
>:

9>=
>; (5)

where the first term BIPj
DB=c�ubsc represents the contribution associated to the classical DB shape

functions, while the second eIPjAE corresponds to the sum of the incremental corrections of the

sectional axial strain computed during the internal iterative process, identified as εIPj0;AE in equation (5).
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The element end forces are determined by application of the principle of virtual displacements
(PVD), which can be written as follows:

δubsc
� �T �pbsc ¼ ∫L δe xð Þ½ �T � s xð Þ dx (6)

The numerical integration of the expression above over the total number of IPs yields:

δubsc
� �T �pbsc ¼ ∑

no: IPs
δeIPj
� �T �sIPj �wIPj � L

2
(7)

For the axially equilibrated DB element, the PVD can be specialized by using equations (5) and (7):

δubsc
� �T �pbsc ¼ δubsc

� �T � ∑
no: IPs

B
IPj

DB=c

h iT
�sIPj �wIPj � L

2
þ ∑

no: IPs
δeIPj

AE

h iT
�sIPj �wIPj � L

2
(8)

The previous equations should be valid for any virtual increment δ, which results in the following
system of two equations that have to be satisfied simultaneously:�

pbsc ¼ ∑
no: IPs

B
IPj

DB=c

h iT
�sIPj �wIPj � L

2
(9)

∑
no: IPs

δeIPj

AE

h iT
�sIPj �wIPj � L

2
¼ 0 (10)

The verification of equation (2) directly demonstrates equation (10) for any δeIPj

AE, while equation (9)
shows that the basic end forces pbsc are computed from the internal section forces s(x) as in classical
DB formulations.

The element tangent stiffness matrix Kbsc is then straightforwardly obtained by deriving the element
end forces pbsc with respect to the element basic displacements ubsc. With the aid of the chain rule of
derivation and considering that the matrix BDB/c does not depend on ubsc, the following equation is
derived:

Kbsc ¼ ∂pbsc

∂ubsc
¼ ∑

no: IPs
B
IPj

DB=c

h iT
� ∂s

IPj

∂eIPj
� ∂e

IPj

∂ubsc
�wIPj � L

2
(11)

where the partial derivatives of the sectional forces with respect to generalized strains ∂sIPj=∂eIPj

correspond, by definition, to the sectional stiffness matrix k. The partial derivatives ∂εIPj

0 =∂ubsc at
each IP can be calculated from equations (3) and (4), making additional use of the conditions
expressed in (1) and (2):

∂εIP1
0

∂ubsck

¼
∂

∂ubsck

2�ubsc1
L

� �
�∑no: IPs

j¼1 wIPj�
kIP112 �∂ϕIP1

∂ubsc
k

�k
IPj
12 �∂ϕIPj

∂ubsc
k

k
IPj
11

 !

∑no: IPs
j¼1 wIPj� k

IP1
11

k
IPj
11

(12)

∂εIPj

0

∂ubsck

¼
kIP1
12 � ∂ϕIP1

∂ubsck
� kIPj

12 � ∂ϕ
IPj

∂ubsck

� �
þ kIP1

11 � ∂ε
IP1
0

∂ubsck

kIPj

11

(13)

where the subscript k is used to indicate the component of ubsc with respect to which the derivation
is performed. The derivatives of the curvatures are not presented here because they are similar to
those obtained from classical DB approaches. The state determination procedure summarized in
the flowchart of Figure 3 depicts the application of the expressions presented in the current
subsection.
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2.3. Axially equilibrated versus classical DB element

The axially equilibrated DB (DB/ae) formulation was implemented in the finite element software
SAGRES (Software for Analysis of GRadient Effects in Structures), which also includes in its
library classical DB (DB/c) and FB elements [21]. In this subsection, the main features of the
proposed FE are presented resorting to an application example. Namely, models using DB/ae and
DB/c elements are compared both at the global and local level in order to highlight their relative
advantages and drawbacks.

A 3-m RC cantilever column, subjected to an axial load ratio of about 1.25% and an incremental
lateral displacement Δ, served as reference structure. The RC section was 300mm large and 400mm
deep (bending direction), and 20-mm concrete cover was assumed in both directions. The
longitudinal reinforcement was formed by 16 Ø10-mm steel bar corresponding roughly to a
reinforcement ratio of about 1%. A schematic representation of the reference structure as well as of
the sectional discretization used in all FE models herein considered is shown in Figure 4(a). The
mathematical relation proposed by Popovics [22] was used for both confined and unconfined
concrete (Ec=30GPa, f 0c=37MPa, εc=0.002, f 0cc=42MPa, εcc=0.003), while a bilinear
constitutive law was assigned to the longitudinal reinforcement (Es=200GPa, fy=480MPa, b=0.005).

The influence of mesh refinement on the global-level response is investigated in Figure 4(b), which
displays pushover curves, in the form of a dimensionless lateral resisting force VN= (V×Ls)/(N× h)
versus horizontal drift Δ/Ls. Models employing one, two and three DB elements (both DB/ae and
DB/c), as well as a single FB element, were considered. DB elements featured two Gauss–Legendre
IPs, while five Gauss–Lobatto IPs were used for the FB element model. As discussed in Calabrese
et al. [13], FB elements are sensitive to the element discretization, and a minimum number of four
IPs is generally required for good-accuracy solutions under strain hardening response. DB/c element
models, on the other hand, are only sensitive to the structural discretization, and hence it is not
justifiable to use more than two IPs per element. For comparison purposes, the same number of IPs
is used as well for DB/ae elements, even though, as discussed below with respect to Figure 4(c), a
larger number would be required for a closer-to-objective response.

The model with a single DB/c element shows, as expected, the strongest and stiffest response due to
the constraints imposed in both the axial and transversal displacement fields. By removing the
constraint on the axial displacement field through the iterative procedure introduced in subsection
2.1, the model using one DB/ae element provides a considerably softer response, causing a
reduction in the simulated lateral strength. However, it can be noted that the latter is still
overestimated when compared to the solution provided by the FB formulation, where no
displacement fields are assigned and exact equilibrium is satisfied. By increasing the mesh
refinement, both DB formulations tend to the FB solution, although the DB/ae element model
converges much faster than the one using classical displacement shape functions (e.g. the response
with one DB/ae element is superior to the one provided by two DB/c elements).

Figure 4. Application example: (a) structural representation and sectional discretization. Global-level re-
sponse of DB/ae models: (b) influence of mesh refinement; (c) influence of element discretization.
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The impact of the number of IPs on the force–displacement response of the DB/ae element is shown
in Figure 4(c). Different combinations of IPs and schemes (Gauss–Legendre/Gauss–Lobatto) were
considered using a single FE to discretize the structural member. The figure shows that the pushover
curves tend to a unique, objective solution—represented by the highly refined nine IPs Gauss–
Lobatto model—as the number of IPs increases. Further, a relatively low number of IPs, e.g. three
Gauss–Legendre or four Gauss–Lobatto IPs, suffices to provide a satisfactory response. Even if two
Gauss–Legendre or three Gauss–Lobatto are used, a relatively small numerical error of about 10% at
peak response is observed for this example. Figure 4(c) also shows a further particular feature: while
FB and DB formulations always provide an upper and lower bound for the strain energy,
respectively, the proposed formulation does not offer a bound for this quantity. This relates to the
exact verification of equilibrium, which is only achieved throughout the element for the axial force
but not for the bending moment. Finally, the issue of localisation for softening sectional behaviour
will not be addressed in the present document, although such pathology should occur for this
formulation as it occurs for DB/c and FB approaches [10].

The local-level performance of models with a single DB/ae element (four Gauss–Lobatto IPs) and one
DB/c element (two Gauss–Legendre IPs) is compared in the following. Figure 5(a) starts by showing, for
three different values of lateral drift, that curvature profiles are linear irrespective of the employed DB
formulation. This is unsurprising because Hermitian shape functions are employed in both DB/ae and
DB/c approaches to define the element transversal displacement field. Note, however, that the
curvature profiles of the DB/ae element are not quantitatively equal to those of a DB/c element. In fact,
although both DB/c and DB/ae elements are constrained to curvature linearity, the DB/ae formulation
verifies the principle of virtual work—as expressed by equation (9)—under a constant member axial
force, while the DB/c approach satisfies it by assuming a constant axial strain profile. This is shown in
Figure 5(b), and, as expected, on account of the shifting of the neutral axis towards the compression
side of the section, positive strain values (tension), which increase with drift demands, are observed.
The figure also depicts the strain profiles for the DB/ae element, which evidence different values for
distinct integration sections resulting from the iterative procedure to obtain a constant axial force along
the column. The highest tensile average strain is recorded at the bottom IP, while at the element top, in
correspondence of the inversion in sign of the curvature profile that takes place for large inelastic
demands, small unrealistic tensile axial strains can be perceived. The constraint on the curvature
profile is responsible for this effect. Overall, the DB/ae element better adheres to reality than the DB/c
element as the shifting of the neutral axis is expected to occur at the cantilever base where the bending
moment is largest. Finally, Figure 5(c) shows the evolution of the axial force at distinct IPs with lateral
drift. After an initial elastic phase, different IP axial forces occur in the DB/c element, which are
symmetric around the value of the imposed axial load (NIPj ¼ N � ΔN ). This conservation of average
equilibrium, which was noted elsewhere [10, 13], leads to an incorrect estimation of the flexural
capacity of the structural member. This bias is not introduced by the DB/ae element, wherein the axial
force in the four IPs is constant and equal to the external applied axial load.

Figure 5. Comparison between DB/ae and DB/c element models at the local level: (a) curvature profiles; (b)
vertical strain profiles; (c) axial force history in different IPs.
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The numerical performance of DB/ae and DB/c formulations is analysed in Figure 6(a) by
comparing the number of NR iterations required to attain convergence. Two models providing
similar accuracy at the global level response, as shown in Figure 4, were selected: a single DB/ae
element with four Gauss–Lobatto IPs and two DB/c elements with two Gauss–Legendre IPs per
element. Two to four iterations were typically necessary for both models, with the DB/ae
converging faster on average. This observation is corroborated by the fact that a total of about
2700 and 3400 NR iterations were needed for the DB/ae and DB/c model, respectively, see
Figure 6(c). Although this could be expectable because only one DB/ae element is used, it is an
encouraging indicator of the dependability of the element tangent stiffness matrix derived in
equation (11). The DB/ae total and average number of internal axial equilibrium iterations per NR
cycle at each load step are displayed in Figure 6(b) with black crosses and a grey line, respectively.
An average of 2.5 iterations per NR cycle is required throughout the entire simulation, which
represents an acceptable increase in computational time. However, as the classical DB formulations
do not require this iterative procedure, they remain comparatively more performant time-wise, see
Figure 6(c).

3. VALIDATION EXAMPLES

The accuracy of the DB/ae formulation is herein benchmarked against experimental data from two
series of quasi-static cyclic tests on RC bridge piers (subsection 3.1) and RC walls (subsection 3.2).
Models employing DB/c and FB elements are included in the comparison in order to point out the
strengths and weaknesses of the proposed approach. The numerical results are compared against the
experimental results with regard to global and local quantities.

3.1. Tests on RC bridge piers

The ability of the DB/ae element to predict the nonlinear response of RC members is validated against
a selection of quasi-static cyclic tests on circular RC bridge piers performed by Goodnight et al. [23].
The test units, which are listed in Table I, were selected to be representative of the largest possible
spectrum of shear spans Ls/D∈ [4 , 8.67] and axial load ratios N= f ’c�Ag

	 

∈ 5% ; 20%½ � . The

longitudinal and lateral reinforcement layout was common to all the specimens and consisted of 10
#6 rebars (≈Ø19mm) and a #3 (≈Ø10mm) spiral at 2 inches (≈50mm) pitch, corresponding to
vertical and lateral reinforcement ratios that ranged between ρl∈ [1.6% , 1.7%] and
ρw∈ [1% , 1.3%]. A qualitative sketch of one of the test units, labelled as T9, is given in Figure 7(a).

All columns were subjected to a standard cyclic loading protocol with three cycles at each
displacement amplitude. Target markers attached to the longitudinal rebars in the plastic hinge

Figure 6. Numerical performance of the DB/ae formulation: (a) DB/ae versus DB/c-Global NR iterations;
(b) intra element iterations; (c) summary of results.
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region tracked the displacements during the test and allowed to isolate the main deformation
contributions to the total lateral displacement, namely base rotation and flexural displacements. Due
to the relatively large shear span ratio of the considered test units, the impact of shear deformations
was negligible.

The whole set of test units described in Table I was simulated with models employing DB/ae, DB/c
and FB elements, following the four schemes depicted in Figure 7(b). Two models used a single FB
element with three and five Gauss–Lobatto integration sections. The former represents the minimum
number of IPs to simulate the linear response with a FB beam column element without under-
integration [24]. However, not less than four IPs are recommended to simulate the nonlinear
hardening response of structural members [25]. Despite such consideration, a discretization with
three IPs was selected as it ensured for the studied specimens an influence length of the bottom IP
similar to the measured extent of plasticity as discussed below. The fulfilment of this condition is
recommended to optimize the agreement between the numerical results for FB elements and the
experimental measurements at the local level [10]. For what concerns DB/c and DB/ae, models
featuring one and two FEs per structural member were selected. Four Gauss–Lobatto IPs were used
within each DB element for two reasons: (i) the Gauss–Lobatto quadrature rule allows to have an
integration section at the element ends, which is useful if base curvatures are to be compared; and
(ii) although the DB/c formulation is insensitive to element discretization [13], this is not the case
for DB/ae elements, which requires around four IPs as shown in Figure 4. For the cases where the
structural member is discretized with two FEs, the length of the base element is selected as the

Table I. Test matrix used for the validation of the proposed formulation (taken from [18]).

Test D [mm] Ls/D [–] Longitudinal reinforcement (ρl) Confining reinforcement (ρw) N/(f 0c ×Ag) [–]

T9 610 4 16 Ø19 (1.6%) Ø10 @50mm (1%) 5.5%
T19 457a 5.33 16 Ø19 (1.7%) Ø10 @50mm (1.3%) 10%
T20 457a 5.33 16 Ø19 (1.7%) Ø10 @50mm (1.3%) 5%
T23 457a 8.67 16 Ø19 (1.7%) Ø10 @50mm (1.3%) 5%
T24 457a 8.67 16 Ø19 (1.7%) Ø10 @50mm (1.3%) 10%
T27 610a 4 16 Ø19 (1.6%) Ø10 @50mm (1%) 10%
T28 457a 5.33 16 Ø19 (1.7%) Ø10 @50mm (1.3%) 15%
T29 457a 5.33 16 Ø19 (1.7%) Ø10 @50mm (1.3%) 20%

D, column diameter; Ls, shear span.
aNominal diameter, not accounting for the fact that cover concrete was not present in the instrumented region.

Figure 7. Test series by Goodnight et al. [23]: (a) sketch of test unit T9; (b) element formulation and
discretization; (c) sectional discretization of test unit T9.
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upper bound of the measured extent of plasticity—Lprt in Figure 7(b), which is given by the following
equation [26]:

Lprt ¼ 2kLs þ 0:75D (14)

where k= 0.2× (fu / fy)�1< 0.08 is the factor accounting for the moment gradient as suggested by [2],
Ls is the shear span and D is the column diameter. The same sectional discretization consisting of 80
confined concrete and 10 steel fibres is used to model the columns. They had no cover concrete in
the plastic hinge region, and therefore no unconfined concrete fibres were defined. The exception
was specimen T9, for which 16 unconfined concrete fibres had to be included as well for the
sectional discretization as represented in Figure 7(c). The relationship proposed by Popovics-Mander
[22] and Menegotto-Pinto [27] were used for the mechanical characterization of concrete and steel.
The enhancement in concrete strength and strain at peak strength due to confinement were computed
according to Mander’s model [28]. The main material parameters used to characterize the concrete
and steel stress–strain laws were derived from the actual material tests reported by Goodnight et al.
[23], which differed for each tested specimen.

Table II reports the parameters used to model unit T9. Due to space constraints, the comparison
between the numerical and experimental results shown in the next figures refers to this specimen alone.

The force–displacement F–Δ response for all the models discussed above is depicted in Figure 8 and
compared with the experimental measurements. A different graph is provided for each type of element
formulation. Flexural displacements are reported on the bottom x-axis. These correspond to the total
displacements of the numerical model; the experimental flexural displacements are computed by
subtracting the displacement due to base rotation from the total displacement. The lateral
displacement ductilities corresponding to the imposed demands of the cyclic loading protocol are
shown in the top x-axis. The following observations can be made: (i) the FB models match
satisfactorily the experimental data, with the model FB 3IPs slightly underestimating the actual
response, which is typical for the bottom-up type of convergence of FB formulations [13]; (ii) both
DB models using a single element overestimate the experimental F–Δ curve, although the error

Table II. Main material parameters used in the numerical models of test T9.

Concrete Reinforcing steel

f 0c [MPa] εc [‰] Ec [GPa] f 0cc [MPa] εcc [‰] fy [MPa] fu [MPa] Es [GPa] b [‰]

46.9 2 34.3 62.6 5.3 470 640 199.8 7.3

Figure 8. Experimental versus numerical force–displacement response for test T9: (a) FB, (b) DB/c and (c)
DB/ae models.
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associated to the DB/ae is sensibly lower; and (iii) a good match of the experimental F–Δ curve is
obtained by using two DB elements per member, both for the DB/c and the DB/ae approaches.

The DB/c and DB/ae with two elements per member and the FB element with five IPs (FB 5IP) are
seen to perform better at the global level, which is the reason why they are chosen for the following
comparison at the local level. The experimental and numerical curvature profiles for different levels
of displacement ductility are shown in Figure 9. Taking into account the symmetry of the system,
only the curvature profiles in the positive direction of loading were analysed. Increasing
displacement ductility levels from yielding (μΔ=1) up to μΔ=8 were considered. Within each
element, the obtained curvatures at the successive IPs are connected with a straight line. For DB
elements, where the linearity of curvatures is imposed, this representation of the curvature profiles is
exact; for FB elements, it corresponds instead to a slight overestimation of the real curvature
distribution along the element. The better match of the DB/ae formulation is apparent: (i) the model
FB 5IPs tends to overestimate the base curvature, and markedly so for large drift levels. As an
example, the relative error1 corresponding to the base curvature (ηϕb) for a ductility demand μΔ=8
is approximately 110%; (ii) the opposite trend applies to the DB/c model, which underestimates the
experimental base curvature (ηϕb=50% for μΔ=8). Moreover, when such elements are employed, it
is worthy to notice how the numerical curvature profiles are not continuous along the member
length, which originates from the non-strict verification of equilibrium along each FE; (iii) the match
between observed and calculated curvature profiles is remarkably improved when DB/ae are used,
showing a relative error for the base curvature at μΔ=8 smaller than 5%. The agreement between
analytical and experimental base curvature appears to decrease with the attained ductility level, with
a maximum relative error of 35% for μΔ=2. This can be attributed to the use of a constant bottom
element length, which does not reflect the experimentally observed decrease on the extent of
plasticity with ductility demand [18]. Finally, observe that the strict verification of axial equilibrium
almost completely eliminates the discontinuity in curvature between the bottom and upper element.

The vertical strains are depicted in Figures 10 and 11 for the two outmost rebars in tension (N3) and
compression (S3), which are indicated in Figure 7(c). Once again, for both cases, the DB/ae provides
improved strain predictions with respect to DB/c and FB elements models, which tend to underestimate
and overestimate, respectively, the maximum experimental strains. If base strains are averaged over all
ductility levels, the following relative errors are obtained: ηN3

εb =75% and ηS3εb =65% for FB, ηN3
εb =44%

Figure 9. Experimental versus numerical curvature profiles for test T9 at positive ductility levels: (a) FB 5
IPs, (b) two-element DB/c and (c) two-element DB/ae models.

1Relative error: ηυ ¼ 1� υexp
υnum

��� ���.
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and ηS3εb =37% for DB/c, ηN3
εb =9% and ηS3εb =25% for DB/ae models. The errors for DB/ae reduce to ηN3

εb

=2% and ηS3εb =18% if only large ductility levels are considered (μΔ=6 and μΔ=8). The discrepancy
between numerical and experimental strains obtained for the rebar in compression with respect to
the one in tension is due to the following reasons: (i) compression strain profiles are not as linear as
their counterpart in tension as they are more influenced by phenomena occurring at the micro-level;
(ii) the height at which compression strains deviate from linearity is smaller than the extent of
plasticity (Lprt) used to discretize the structural member. A different (shorter) length of the bottom
DB/ae element would therefore be needed to improve the simulation of compressive strain profiles.
For this reason, in the framework of plastic hinge models, Goodnight et al. [26] proposed a different

Figure 10. Experimental versus numerical vertical strain profiles of rebar N3 for test T9 at positive ductility
levels: (a) FB 5 IPs, (b) two-element DB/c and (c) two-element DB/ae models.

Figure 11. Experimental versus numerical vertical strain profiles of rebar S3 for test T9 at positive ductility
levels: (a) FB 5 IPs, (b) two-element DB/c and (c) two-element DB/ae models.
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plastic hinge length Lprc (to be used in conjunction with a bilinear curvature profile) to reliably
evaluate limit state displacements based on compression strains. Nevertheless, changing the length
of the base DB/ae element would then inevitably lead to a poorer prediction of both the curvatures
and tensile strains. The latter have a more clear influence on the measured curvatures because, for
the same level of top displacement, they are in absolute value considerably larger than compression
strains.

As a further local level investigation, the comparison between the experimental vertical strains of
rebar N3 monitored at the bottom of the RC column and the numerical ones (measured at the
bottom IP) is shown in Figure 12. Again, the DB/ae model offers the best agreement between
simulation and test data, especially regarding the tensile peak strain levels. An underestimation of

Figure 12. Experimental versus numerical vertical strain history of rebar N3 measured at the base section of
test T9 for positive ductility levels: (a) FB 5 IPs, (b) two-element DB/c and (c) two-element DB/ae models.

Table III. Numerical error in the calculation of the base curvature for all the models and selected test units
tested by Goodnight et al. [23] at different ductility levels.

Test

Ductility
level
(μΔ)

Base curvature average relative error: ηavgϕb ¼ 1
2 1� ϕþ

b;anð Þ
ϕþ

b;exp

����
����þ 1� ϕ�

b;anð Þ
ϕ�

b;exp

����
����

� �

FB 3IPs FB 5IPs DB/c 1 ele. DB/c 2 ele. DB/ae 1 ele. DB/ae 2 ele.

T9 μΔ=� 2 43.6% 18.3% 65.1% 55.5% 59.9% 35.6%
μΔ=� 4 28.3% 92.7% 61.2% 47.2% 54.6% 15.6%
μΔ=� 6 19.5% 124.8% 58.1% 41.8% 50.0% 5.8%

T19 μΔ=� 2 45.2% 5.9% 64.6% 53.9% 61.4% 35.1%
μΔ=� 4 37.6% 53.9% 64.1% 49.7% 60.2% 22.5%
μΔ=� 6 32.7% 68.5% 62.3% 46.1% 57.7% 16.1%

T20 μΔ=� 2 49.0% 6.3% 67.4% 58.0% 63.6% 38.5%
μΔ=� 4 33.6% 58.7% 62.6% 48.1% 57.5% 17.6%
μΔ=� 6 33.1% 46.8% 62.9% 48.4% 57.7% 16.8%

T23 μΔ=� 2 52.1% 5.6% 69.4% 56.0% 65.8% 34.9%
μΔ=� 4 39.0% 45.9% 65.5% 45.0% 60.9% 11.2%
μΔ=� 6 35.6% 26.2% 64.7% 42.7% 59.6% 4.2%

T24 μΔ=� 2 51.0% 5.4% 68.2% 54.2% 65.2% 34.8%
μΔ=� 4 40.1% 47.5% 65.5% 44.5% 61.7% 12.9%
μΔ=� 6 38.1% 55.9% 65.4% 42.4% 61.1% 8.4%

T27 μΔ=� 2 32.4% 44.2% 58.1% 47.3% 53.9% 23.4%
μΔ=� 4 17.7% 111.6% 53.8% 38.9% 48.3% 5.9%
μΔ=� 6 16.5% 119.7% 54.2% 38.3% 47.9% 5.0%

T28 μΔ=� 2 35.0% 34.0% 58.5% 45.3% 55.7% 21.9%
μΔ=� 4 30.8% 79.9% 59.8% 44.1% 56.5% 13.7%
μΔ=� 6 30.0% 88.5% 60.3% 43.4% 56.4% 12.3%

T29 μΔ=� 2 37.0% 31.7% 59.2% 45.8% 57.4% 24.8%
μΔ=� 4 31.6% 78.7% 59.3% 43.5% 57.2% 14.7%
μΔ=� 6 30.2% 90.8% 59.3% 42.3% 56.7% 12.5%

Note: minimum values of ηavgϕb for each test unit and ductility level are displayed in bold
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the residual strains at zero displacement level is instead common to all three models, indicating that the
accumulation of plastic reinforcement strains over multiple cycles is not well captured. However, this
issue is not directly related to the element formulation and could arguably be addressed with more
advanced steel and concrete constitutive relationships for cyclic response.

Finally, Table III compares the experimental base curvatures of the entire dataset units with all the
employed models for three distinct values of displacement ductility (μΔ=2, μΔ=4 and μΔ=6). The
comparison is made in terms of average relative error (ηavgϕb ), which is defined as the mean of the

relative base curvatures errors for the positive and negative directions of loading. For each test unit
and ductility level, the minimum value of ηavgϕb is highlighted in bold in Table III. For most cases,

the model composed of two DB/ae elements per structural member provides the best simulation of
base curvatures. The ηavgϕb predicted by such model results generally smaller than 20% and tends to

decrease for increasing inelastic demands. Values of ηavgϕb larger than 30% are obtained only for

μΔ=2 in tests T9, T19, T20, T23 and T24, in which cases the model FB 5 IPs leads to the best
predictions. For larger values of μΔ, the experimental base curvatures are consistently and largely
overestimated by the model FB 5IPs, as confirmed by Figure 9.

3.2. Tests on RC structural walls

Five out of the six RC walls (labelled WSH1 to WSH6) from the experimental campaign carried out by
Dazio et al. [29] are used in this subsection for validation purposes. Wall WSH1 was disregarded due
to the poor ductility properties of the longitudinal reinforcement which led the specimen to fail at a low
level of inelasticity. Moreover, only manual measurements were employed to evaluate local level
quantities of WSH1, which were judged less reliable than those of all the other tests where hard
wired instruments were used.

The main geometrical and loading characteristics of the test specimens are shown in Table IV. A
constant vertical load was applied at the top of the specimens, which were then subjected to a
standard cyclic loading protocol [30]. The test units differed mainly with regard to the layout and
content of both longitudinal and horizontal reinforcement, as well as to the applied axial load ratio.

Local deformations were obtained from linear variable differential transformers (LVDTs) and
Demec measurements, allowing to isolate the different contributions to the total lateral displacement,
namely due to flexure, base rotation and shear. The latter played a non-negligible role (up to a
maximum of around 10% of the total deformation) due to the small shear span ratios and thus could
not be disregarded. In the framework of EB beam theory, shear deformations are not considered,
and therefore, in order to compare consistently numerical and experimental results, their contribution
had to be removed from the total lateral displacement. However, this does not represent a limitation
to the present validation example because (i) the proposed formulation can be extended to a more
general one accounting for shear deformations, e.g. Timoshenko beam theory; and (ii) shear
deformation can be included separately as a ratio of the flexural displacement [2, 31–33].

The same models described in the previous subsection 3.1—i.e. FB 5IPs, FB 3IPs, one and two-
element DB/c, one and two-element DB/ae—are employed to simulate the set of chosen RC walls.

Table IV. Main properties of test units by Dazio et al. [29] used for validation of the DB/ae formulation.

Test unit

Ls h Ls/h t N/(f 0c ×Ag) ρl,bound ρl,web ρh Conf. BE

[mm] [mm] [–] [mm] [%] [%] [%] [%] [–]

WSH2 4560 2000 2.28 150 5.7 1.32 0.30 0.25 ✓
WSH3 4560 2000 2.28 150 5.8 1.54 0.54 0.25 ✓
WSH4 4560 2000 2.28 150 5.7 1.54 0.54 0.25 ✗
WSH5 4560 2000 2.28 150 12.8 0.67 0.24 0.25 ✓
WSH6 4520 2000 2.20 150 10.8 1.54 0.54 0.25 ✓

Ls, shear span; h, wall length; t, wall thickness; N/(f 0c×Ag), axial load ratio; ρl,bound, boundary elements longitu-
dinal reinforcement ratio; ρl,web, web longitudinal reinforcement ratio; ρh, horizontal reinforcement ratio; Conf. BE,
additional confining and stabilizing reinforcement in the boundary elements (hoops and ties).
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Due to space constraints, only test unit WSH6 is used in the following paragraphs to show and discuss
the comparison between numerical and experimental results, both at the global and local levels. The
summary of the response of the entire set of RC walls is included in a table provided at the end of
the present subsection.

The geometry and cross-sectional reinforcement layout of wall WSH6 are depicted in Figure 13(a)
and (b). Well-confined boundary elements were present to increase the flexural capacity of the
structural member. The longitudinal reinforcement consisted of 22 Ø8-mm and 6 Ø12-mm bars for
the web (ρw=0.54%) and boundary elements (ρb=1.54%). The shear reinforcement was composed
of Ø6-mm bars spaced 150mm while Ø6-mm and Ø4.2-mm hoops at 50mm were employed to
properly confine the wall edges. The fibre sectional discretization used in the numerical models is
displayed in Figure 13(c). As in the previous subsection, the material models proposed by Popovics-
Mander [22] and Menegotto-Pinto [27] were adopted to characterize the concrete and steel stress–
strain laws. Different confinement factors were computed according to the model by Mander et al.
[28] for the core concrete in the web and in the boundary elements. The main material parameters
are given in Table V. When two elements were employed to discretize the structural member (DB/c
and DB/ae), the length of the one at the bottom was taken as the height of the plastic zone Lpz,
which is defined by Dazio et al. [29] as the height at which the plastic curvature profile is equal to
the yield curvature.

The experimental and numerical force–displacement responses of wall WSH6 are contrasted in
Figure 14. On the bottom x-axis, flexural displacements Δf were calculated by subtracting the
displacements due to base rotation and shear deformations from the total lateral displacements.
Displacement ductility μΔ and lateral resisting force V are instead represented on the top x-axis and
vertical y-axis. The two DB models using two elements per structural member satisfactorily
reproduce the experimental results. Namely, the force capacity at all displacement reversals is
adequately captured, with relative errors ηV< 5%. FB models are slightly less accurate,
underestimating the resisting force at loading reversals (ηV up to 12%). As expected, the DB models
using a single FE overestimate the strength capacity of the structural member, although this effect is
significantly less pronounced for the DB/ae model.

Figure 13. Test unit WSH6: (a) sketch of geometry and applied loading, (b) reinforcement layout and (c)
sectional discretization.

Table V. Main material parameters used in the numerical models of test WSH6, derived from the properties
reported by Dazio et al. [29].

Concrete Reinforcing steel

f 0c [MPa] εc [‰] Ec [GPa] f 0cc [MPa] εcc [‰] fy [MPa] fu [MPa] Es [GPa] b [‰]

Web 45.6 2 36.9 48.4 2.6 Ø8mm 576 675 200 9.3
Boundary 45.6 2 36.9 53.5 5.1 Ø12mm 583 714 200 8.4
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At the local scale of analysis, the numerical versus the experimental curvature and strain profiles of
corner rebars are displayed in Figures 15 and 16. Only the models yielding the best match at the global
level are included in the comparison, i.e. FB 5IPs, DB/c and DB/ae with two elements per structural
member. Several displacement ductility demands are considered, each one corresponding to a point
of reversal in the hysteretic force–displacement response of Figure 14. Due to the symmetry of both
specimen cross section and loading protocol, only curvature and strain profiles relative to positive
top displacements are shown.

The DB/ae element model best matches the experimental curvatures, with ηϕb<10% for all ductility
levels. For large values of μΔ, the base curvatures are greatly underestimated by the DB/c model
(e.g. ηϕb>40% for μΔ=8) and overestimated by the FB 5IPs model (e.g. ηϕb>120% for μΔ=8). Similar
comments apply regarding the tensile strain profiles of Figure 16. Strain profiles in compression are
instead best captured by the model FB 5IPs. Although the DB/ae model performs slightly better
than the DB/c, both underestimate the recorded maximum compressive strain. As discussed in
subsection 3.1, this is a direct consequence of the assumed FE discretization of the structural

Figure 14. Experimental versus numerical force–displacement response for test WSH6: (a) FB, (b) DB/c and
(c) DB/ae models.

Figure 15. Experimental versus numerical curvature profiles for test WSH6 at positive ductility levels: (a)
FB 5 IPs, (b) two-element DB/c and (c) two-element DB/ae models.
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member. A smaller length for the base element would have improved the comparison at the price of
worsening both the simulated curvatures and tensile strains. The good fit from the model FB 5IPs is
however not a general rule, as confirmed by the results obtained in the previous subsection (Figure 11).

Finally, numerical and experimental base curvatures for the entire set of employed models and
selected RC walls are compared in Table VI in terms of the average relative error (ηavgϕb ), which is

calculated at three distinct ductility levels. Similar to the results of the previous subsection
(Table III), the DB/ae model with two elements per structural member generally leads to the highest
precision. Once again, the worst results are obtained at the lowest ductility level (μΔ=2), reaching a

Figure 16. Experimental versus numerical vertical strain profiles of corner rebars for test WSH6 at positive
ductility levels: (a) FB 5 IPs, (b) two-element DB/c and (c) two-element DB/ae models.

Table VI. Numerical error in the calculation of the base curvature for all the models and selected test units
tested by Dazio et al. [29] at different ductility levels.

Test

Ductility
level
(μΔ)

Base curvature average relative error: ηavgϕb ¼ 1
2 1� ϕþ

b;anð Þ
ϕþ

b;exp

����
����þ 1� ϕ�

b;anð Þ
ϕ�

b;exp

����
����

� �

FB 3IPs FB 5IPs DB/c 1 ele. DB/c 2 ele. DB/ae 1 ele. DB/ae 2 ele.

WSH2 μΔ =� 2 17.1% 16.8% 55.1% 7.7% 40.0% 0.2%
μΔ =� 4 34.1% 58.3% 68.3% 27.4% 58.1% 10.1%
μΔ =� 6 56.4% 15.7% 80.0% 52.2% 73.2% 22.7%

WSH3 μΔ =� 2 29.8% 76.1% 28.0% 25.8% 23.1% 30.9%
μΔ =� 4 24.5% 89.7% 61.0% 44.2% 51.2% 8.8%
μΔ =� 6 35.1% 79.5% 68.1% 53.2% 59.6% 22.2%

WSH4 μΔ =� 2 20.4% 37.2% 52.8% 27.4% 41.7% 3.0%
μΔ =� 4 35.2% 70.2% 67.0% 44.4% 58.5% 15.0%
μΔ =� 6 N/A N/A N/A N/A N/A N/A

WSH5 μΔ =� 2 14.9% 20.7% 27.8% 12.2% 23.0% 30.3%
μΔ =� 4 20.9% 36.9% 59.2% 20.6% 49.8% 13.4%
μΔ =� 6 38.8% 57.5% 70.8% 36.4% 62.7% 6.8%

WSH6 μΔ =� 2 12.1% 63.0% 34.4% 9.2% 21.7% 17.9%
μΔ =� 4 25.0% 86.2% 60.9% 40.9% 53.0% 6.1%
μΔ =� 6 19.4% 124.8% 59.1% 36.6% 50.9% 10.7%

Note: minimum values of ηavgϕb for each test unit and ductility level are displayed in bold
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value of ηavgϕb around 30%. This is sensibly smaller than the relative errors obtained with any of the other

models, where the maximum ηavgϕb ranged from 50% to 120%.

3.3. Limitations

The validation examples presented in the previous sub-sections have shown that the DB/ae formulation
can be effectively used in the simulation of the cyclic-nonlinear response of RC members with an
encouraging match occurring also at the local strain level. Namely, it was shown that the linear
curvature profile that develops in the plastic hinge region of a member in single bending due to
tension shift effects can be captured by employing two DB/ae elements, and assigning a length for
the bottom element equal to the extent of plasticity. This quantity is not usually available for
engineering practice applications, and further research is yet required on the subject. A first
approximation to estimate the extent of plasticity, which appears to be reasonably accurate for the
present case studies, can be obtained by multiplying the ‘equivalent plastic hinge length’ as
proposed by Priestley et al. [2] by a factor of two. This factor intends to account for the fact that the
curvature profile is not constant but rather approximately linear within the inelastic region.

Additionally, as observed by Goodnight et al. [26], the length of plastification increases for
increasing ductility demands, which is not accounted for in the present formulation. This contributes
to a worse agreement between numerical and experimental local quantities for small ductility levels.
Another limitation is that different lengths should be assigned to the bottom DB/ae element in order
to optimally simulate tensile or compressive strain demand profiles. Because tension shift effects do
not play a relevant role for compressive strains, a shorter length than the extent of plasticity would
be required. However, this modelling issue is not specific to the present formulation as discussed by
[26] in the context of plastic hinge analysis. Finally, it is noted that the entire set of test units used
for validation showed a hardening behaviour of the structural member. Further research is required
to investigate the softening response of the proposed DB/ae model.

4. CONCLUSIONS

Recent experimental tests on cantilever RC piers have confirmed that tension shift effects play an
important role in the distribution of local level quantities such as strains and curvature profiles.
Namely, linear curvatures are generated in the plastic hinge region due to inclined shear cracks,
which intersect the elastic curvature profile at a certain height above the member foundation. These
effects cannot be captured by current force-based formulations that satisfy equilibrium exactly,
which consider only the effect of the moment gradient. Displacement-based formulations provide
the natural framework to account additionally for tension shift effects as the linear plastic curvature
distribution observed within the plastic region can be reproduced by imposing appropriate
transversal displacement fields to the beam element.

However, the linear axial displacement profile used in classical displacement-based elements is a
fundamental limitation to the accuracy of this approach when inelastic material behaviour is
considered. The resulting axial forces are equilibrated only in an average sense, resulting in poor
simulations of the experimental force–displacement response, as well as curvature and strain profiles.

In view of the above, this paper presents a displacement-based element that strictly satisfies axial
equilibrium. An intra-element iterative scheme that automatically adjusts the axial strain profile is
implemented to attain constant axial forces in all integration points, and equal to the applied axial
load. The curvature profiles are instead kept linear as in classical displacement-based elements,
although they result quantitatively different on account of the axial equilibrating procedure. The
principle of virtual work is employed to obtain the element basic forces and a consistent stiffness matrix.

The axially equilibrated displacement-based element is validated against two sets of cyclic tests on
RC cantilever piers and walls. Assuming an appropriate member discretization, it provides accurate
results in terms of global and local scale response. Namely, the simulation of experimental
curvatures and strains shows a significant improvement when compared with models using classical
force-based or displacement-based elements. As an example, when base curvatures over different
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ductility levels are considered, the model using the proposed formulation provides the best estimation
in about 80% of the cases. Nevertheless, due to the different length of the plastic region over which
tensile and compressive strains develop, different levels of accuracy are obtained for these
quantities. The improved predictions come at the cost of slightly increased computational time with
respect to the classical displacement-based formulation.
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