Analysis of Spatially Coupled Systems using the Potential
Functional with Applications to Coding Theory

THESE N° 7358 (2016)

PRESENTEE LE 12 DECEMBRE 2016

A LA FACULTE INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE THEORIE DES COMMUNICATIONS
PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Rafah EL-KHATIB
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Rafah EL-KHATIB

acceptée sur proposition du jury:

Prof. B. Rimoldi, président du jury
Dr N. Macris, Prof. R. Urbanke, directeurs de thése
Prof. P. Martinez Olmos, rapporteur
Dr L. Schmalen, rapporteur
Prof. A. Shokrollahi, rapporteur

(Pr

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Suisse
2016






Analysis of Spatially Coupled Systems using
the Potential Functional with Applications to
Coding Theory

Rafah El-Khatib

EPFL - Ecole Polytechnique Fédérale de Lausanne



Thesis No. 7358 (October 2016)

Thesis presented to the faculty of Computer and Communication sciences for ob-
taining the degree of Docteur es Sciences

Accepted by the jury:

Nicolas Macris and Riidiger Urbanke
Thesis directors

Pablo M. Olmos
Expert

Laurent Schmalen
Expert

Amin Shokrollahi
Expert

Bixio Rimoldi

President of the jury

Ecole Polytechnique Fédérale de Lausanne, 2016



Dedicated to my loving parents,
Nada and Bassem,



Sans l'encre, la pensée aurait le sens du vide.
Albert Amon

ii



Acknowledgements

Before joining EPFL, and as I was still wondering which labs I wanted to apply
to, I received the following piece of advice from someone': “The most important
component of your doctoral studies is your advisor.” Four years later, I still think
that this was the most important piece of advice I was given, and I can confirm that
it is true. The PhD experience can be quite painful at times: the insecurities, the
“researcher’s block”, the existential crises?, ... so it’s very important to get support,
reassurance, and the occasional push from one’s advisor. Fortunately for me, I did
not have only one, but two, remarkable advisors. I could not begin to imagine how
my experience at EPFL would have been if it were not for them.

I first met Nicolas Macris and Ruediger Urbanke during the Information Theory
Workshop (ITW) in 2012, when it was being held at EPFL. They were very busy
with the workshop but, as usual, generous with their time, so we met to discuss
different research projects that I can work on under their supervision. Although
we only spoke for around 20 minutes, Ruediger still managed to explain 9 research
projects to me, while Nicolas sat discreetly on a comfortable couch in the corner,
nodding away with curiosity in his eyes.

Working with Nicolas has inspired me in many ways. I am still surprised at how
much personal investment he puts into every student that comes his way, whether
the student is pursuing a PhD under his supervision, doing a semester project with
him, or even taking one of his courses. Nicolas has a natural gift for explaining
things in very simple terms, and making scary-looking equations seem intuitive.
His attitude towards a student is versatile and adapted to the student’s needs: in
Lebanese we have an expression for this, which says that “he tightens and loosens
(the rope)”.3 I will always be grateful for what I learned from Nicolas, his passion
for science and knowledge, his fatherly guidance, and his efforts in teaching me how
to approach research, and more precisely, how to be precise ©.

My interactions with Ruediger were of a very different nature. One might assume
that most of our interactions involved discussions about research, but I preferred
to use my precious time around Ruediger to make fun of him. Ruediger has a very
good sense of humor, and he is obviously very witty. However, he is also European,
which means that he cares about being politically correct. I mostly used this to
my advantage to “win” and thoroughly enjoyed seeing his face consequently turning
red. Thank you, Rudi, for being the positive person that you are, for being a very

'Sorry I forgot who you are, but I really value(d) your advice!
2 Apparently, deciding to become a farmer is a normal symptom.
3Please note that the rope is only metaphorical — in this case.

iii



iv Acknowledgements

supportive advisor, and most importantly, for tolerating me.

I had thought that the private PhD defense is a very scary experience, but I was
proved wrong by my very kind thesis committee. I would like to gratefully thank
Pablo Olmos, Laurent Schmalen, and Amin Shokrollahi for reading my thesis, giving
me feedback, and making my defense a positive experience in which we were able
to openly discuss ideas and research directions. I would also like to thank Bixio
Rimoldi, the president of the committee, whose positive outlook and kind smile
helped soothen my wrecked nerves.

Our lab space, IPG, has been home to me for around one third of the past
four years. I am happy to have met a very diverse but consistently kind group of
people throughout my stay. Nothing would have run so smoothly if it weren’t for
Muriel and Francoise’s superpower organizational skills and Damir’s patience with
my (admittedly, Windows) computer problems. Although Damir killed my beloved
and long-awaited cluster jobs, he very nicely provided consolation with homemade
cakes and a secret stash of movies. I deeply regret having only met Holly in my last
year of studies. I met her one of my worst days at EPFL, a few days before the
draft deadline of my thesis, in sweatpants and awful hair. Not only did her bubbly
personality completely lift my spirits, but she also managed to help me with my
thesis despite having very limited time.

IPG has also been home to many other PhD students who have made the “work-
place” a “play-place”. Thanks Marco, for trying to help me dress better, and for
approving of my outfit once before I defended (yay!); Mani, for helping me with
my endless Linux issues; Jean, for being as weird as me and making funny noises
although you’re a postdoc, this gives me faith in being weird; Young-Jun, for your
optimism and making the effort not to breathe too loudly in the office next-door;
Karol and Camila, for your kindness and friendship; Andrei, for always teaching me
new things and scaring me away from climbing (as per your previous victims); Marc
D., for your joyful willingness to answer my math questions and explain bizarre* the-
orems; Hamed, for first introducing me to Nicolas and Ruediger and for your help
towards the end of the tunnel; Vahid, for our passionate discussions about Lebanese
food and spatially coupled codes (I'm not sure what you were more excited about!);
Mohammad K., for three things, your wordly advice, your philosophical opinions,
and I forgot the third one; Adrian, for not microwaving my blind turtle (toy); and
everyone else, Dewan, Chun Lam, Wei, Saeid, Saeid, Giel, Lyudmila, Mine, Nicholas,
and the past and current members of IPG, for the nice discussions and coffee breaks.

The other third of my life during the past four years was mostly spent with
friends (granted, not while writing my thesis). I deeply thank Marwa and Abbas,
my family in Lausanne. You are the first people I want to be with when I'm in
a happy mood, and the only people I want to be with when I'm not. Ghid has
been my flatmate, one of my best friends, and my rolemodel in many respects,
interchangeably and even simultaneously. Thank you, Ghid and Dan, for the music,
all our chats and brunches, for teaching me how to be diplomatic, and for letting me
babysit Dalia (yes, I will!). Wherever you go, you will find Lebanese people, or they
will find you. Thank you to the Lebanese community in Lausanne, my home away
from home, with which I can be completely myself: Farah, Elie, Hiba, Mohamad,
Ghofran, Serj, Sahar, Rajai, and Elio. Special thanks go to Baker for listening to

10r in your language, exciting!



Acknowledgements v

me complain and for helping me solve problems of every kind almost everyday this
past year at precisely 11 am. [ met Ajay and Artem on my first day at EPFL, when
all three of us arrived late to the welcoming reception. I learned on that day that
sometimes, it’s okay to arrive late (just kidding, Ajay, don’t be late!), because it
just happened that I met the two most awesome fellow PhD students. Ajay, thanks
for being our reminder not to sweat the small (or big) stuff, and to just take it
ee-hee-zay; and Artem, also known as Ken to many at the Karaoke bar, thanks for
being our reminder to always, always, par-tay! Emti, Yuko (, and Zeta!), thanks
for having the weirdest (by other people’s standards, of course) conversations with
me and for bringing the cutest chipmunk into the world. Thank you to those happy
spirits who pushed me to get off my couch (or joined me there when I was too
cold to go out), with whom I shared nights out, celebrations, game nights, concerts,
picnics, and trips: Renata (who can make you laugh no matter the occasion), Manos,
Katerina, Jose, Fay, Jean-Eudes, Silvia, Helen, and Roman. Special thanks goes
to the friends who colored my getaway adventures away from Lausanne: Rasha
Salem, Jad Hachem, Sara Kheireddine, Ribal Abi Raad, Haya Farah, and Farah
Khouri. Last but certainly not least, thank you Antonio, the person I met with “low
probability and high consequence”, for teaching me so many things about art, math,
philosophy, history, and more controversially, the human nature; no conversation is
ever boring with you. Finally, this thesis would not have been possible without the
inspiring music of Amy Winehouse, Mashrou’ Leila, and Ibrahim Maalouf; I thank
you deeply for your art.

It is not easy to find lifetime friends, those with whom nothing changes even after
months or years apart, those who don’t mind your tantrums and enjoy naming your
multiple personalities. I was very fortunate to meet my best friends in my “younger
days” back in Lebanon, but very unfortunate in that we have been living on different
parts of the globe since. Thank you Philippo (who also responds to “Ibrahim” for
some reason), Zahi, Edmond, John, Mira, Dana, Nicolas, Ramzi, Oussama, Lotfi,
and Mariam for being who you are. I will carry you in my heart (and cellphone)
wherever 1 go.

No words or actions will be enough to thank my family for the unwavering love
and support they have offered with open arms during every phase of my PhD and
life. Family is the only constant. Thank you Teta Hana, Teta Nadia, Jeddo Sami,
and Jeddo Nizam for being the basin of strength for our family. And thank you
Mom and Dad, my sanctuary, and Nayla, my (significantly better) alter ego, for
teaching me the meaning of unconditional love.






Abstract

For the past 70 years or so, coding theorists have been aiming at designing trans-
mission schemes with efficient encoding and decoding algorithms that achieve the
capacity of various noisy channels. It was not until the '90s that graph-based codes,
such as low-density parity-check (LDPC) codes, and their associated low-complexity
iterative decoding algorithms were discovered and studied in depth. Although these
schemes are efficient, they are not, in general, capacity-achieving.® More specifically,
these codes perform well up to some algorithmic threshold on the channel parameter,
which is lower than the optimal (mazimum a-posteriori) threshold.

The gap between the algorithmic and optimal thresholds was finally closed by
spatial coupling, a generic graph-based technique that constructs large graphs from
underlying probabilistic graphical models by replicating these models on a spatial
axis and by interconnecting local replicas. In the context of coding, the belief propa-
gation algorithm on spatially coupled codes yields capacity-achieving low-complexity
transmission schemes: The gap between the algorithmic and optimal thresholds of
such coupled codes disappears as the number of replicas goes to infinity. The rea-
son behind the optimal performance of spatially coupled codes is “seeding” perfect
information on the replicas at the boundaries of the coupling chain. This extra
information makes decoding easier near the boundaries, and this effect is then prop-
agated into the coupling chain upon iterations of the decoding algorithm, due to the
local connections between adjacent replicas of the underlying graph.

Spatial coupling was also applied to various other problems that are governed by
low-complexity message-passing algorithms, such as random constraint satisfaction
problems, compressive sensing, and statistical physics. Each system has an associ-
ated algorithmic threshold (that depends on its message-passing algorithm) and an
optimal threshold (that depends on its “optimal solver”). As with coding, once the
underlying graphs are spatially coupled, the algorithms for these systems exhibit
optimal performance.

In this thesis, we analyze the performance of iterative low-complexity message-
passing algorithms on general spatially coupled systems, and we specialize our results
in coding theory applications. To do this, we express the evolution of the state of the
system (along iterations of the algorithm) in a variational form, in terms of the so-
called potential functional, in the continuum limit approximation (obtained by first
taking the coupling-chain length, and then the coupling-window size, to infinity).

®The exception is the capacity-achieving code ensemble designed by Luby, Mitzenmacher,
Shokrollahi, and Spielman in [1] for transmission over the BEC.
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viii Abstract

This thesis consists of two parts. In the first part, we consider the dynamic
phase of the message-passing algorithm, in which the system parameter is between
the algorithmic and optimal thresholds, and iterations of the algorithm modify the
state of the spatially coupled system. Assuming that the boundaries of the coupled
chain are appropriately “seeded”, we find a closed-form analytical formula for the
velocity with which the extra information propagates into the chain. We apply this
result to coupled irregular LDPC code-ensembles with transmission over general
BMS channels and to coupled general scalar systems, such as compressive sensing
and the Gaussian approximation. We perform numerical simulations for several ap-
plications and show that our formula gives values that match the empirical, observed
velocity. This confirms that the continuum limit is an approximation well-suited to
the derivation of the formula.

In the second part of this thesis, we consider the static phase of the message-
passing algorithm; this occurs when the system parameter is set to the optimal
threshold and the algorithm can no longer modify the state of the system. We in-
troduce a novel proof technique that employs displacement convexity, a mathemat-
ical tool from optimal transport, to prove that the potential functional is strictly
displacement convex under an alternative structure in the space of probability mea-
sures. We hence establish the uniqueness of the state to which the spatially coupled
system converges, and we characterize it. We apply this result to the (¢,r)-regular
Gallager ensemble with transmission over the BEC and to coupled general scalar
systems.

Keywords: spatial coupling, sparse graphical models, density evolution, poten-
tial functional, continuum limit, displacement convexity, speed of decoding, wave
propagation, compressive sensing.



Résumé

Durant les 70 dernieres années, le but de la théorie des codes était de concevoir des
systemes de communication et de transmission des données a l'aide d’algorithmes
d’encodage et de décodage efficaces permettant d’atteindre la capacité des canaux
bruités. Dans les années 90, les chercheurs ont découvert des codes basés sur des
graphes, comme les codes a contrdle de parité a faible densité (LDPC), et leurs
algorithmes de décodage associés, qui sont itératifs et de basse complexité. Bien
que ces régimes soient efficaces, ils n’atteignent pas, en général, la capacité®. Plus
précisément, ces codes fonctionnent tres bien jusqu’a un certain seuwil algorithmique
sur le parametre du canal, qui est inférieur au seuil optimal (MAP).

Les théoriciens des codes ont finalement réussi a combler ’écart entre le seuil
algorithmique et le seuil optimal en utilisant le couplage spatial, une technique
générique a base de graphes qui construit un grand graphe a partir d’'un modele
graphique probabiliste de base (non-couplé) en étalant des copies de ce modele sur
un axe spatial et en connectant les copies localement. Dans le contexte des codes
correcteurs d’erreurs, ’algorithme de propagation des croyances (BP) sur les codes
spatialement couplés produit des systemes de transmission de basse complexité et
qui atteignent la capacité: 1’écart entre le seuil algorithmique et le seuil optimal
de ces codes couplés disparalt quand le nombre de copies tend vers l'infini. Cette
performance optimale est attribuée a “I’ensemencement” des informations parfaites
sur les copies au niveau des frontiéres de la chaine de couplage. Cette information
supplémentaire rend le décodage plus facile a proximité des frontieres, et cet effet
est ensuite propagé dans la chaine de couplage lors des itérations de ’algorithme de
décodage en raison des connections locales entre les copies voisines.

Le couplage spatial a été appliqué non seulement aux systemes de codage mais
aussi a divers autres probléemes qui sont régis par des algorithmes de basse complexité
connus sous le nom d’algorithmes de passage de messages, comme les problemes
de satisfaction de contraintes aléatoires, ’acquisition comprimée ou la physique
statistique. Pour chacun de ces systemes il existe un seuil algorithmique associé a
I’algorithme de passage de messages et un seuil optimal associé au “solveur optimal”.
Pour toutes ces applications, les algorithmes de passage de messages présentent des
performances optimales lorsque les graphes de base sont spatialement couplés.

Dans cette these, nous analysons les performances des algorithmes de passage de
messages itératifs et de basse complexité sur des systemes généraux couplés, et nous
spécialisons nos résultats aux applications de codage. Pour ce faire, nous exprimons
I’évolution de 'état du systeme (lors des itérations de l’algorithme) sous une forme

Savec ’exception des codes congus par Luby, Mitzenmacher, Shokrollahi et Spielman [1].
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X Résumé

variationnelle avec une fonctionnelle que nous appelons le potentiel, dans la limite
asymptotique de la taille du graphe couplé (qui est obtenue en faisant tendre d’abord
la longueur de la chaine de couplage, et ensuite la taille de la fenétre de couplage,
vers l'infini).

Cette these est divisée en deux parties. Dans la premiere partie, nous considérons
la phase dynamique de I'algorithme de passage de messages, lorsque le parametre
du systeme est entre le seuil algorithmique et le seuil optimal, et des itérations de
I’algorithme modifient I'état du systeme couplé. En supposant que les frontieres de la
chaine couplée sont convenablement “ensemencées”, nous trouvons une formule an-
alytique pour la vitesse avec laquelle les informations supplémentaires se propagent
dans la chaine de couplage. Nous appliquons ce résultat sur les codes irréguliers a
controle de parité a faible densité (LDPC) lors de transmissions sur un canal général
a entrées binaires sans mémoire et symétriques (BMS). De méme, nous considérons
aussi des systemes couplés scalaires généraux comme ceux de I’acquisition comprimée
et Iapproximation Gaussienne. Nous effectuons des simulations numériques pour
plusieurs applications et montrons que la formule donne des valeurs qui correspon-
dent & la vitesse empirique (observée). Cela confirme que la limite asymptotique de
la taille du graphe est une approximation bien adaptée a la dérivation de la formule.

Dans la deuxieme partie de cette these, nous considérons la phase statique de
I’algorithme de passage de messages, lorsque le parametre du systeme est égal au
seuil optimal et que l'algorithme ne réussit plus a modifier I’état du systeme couplé.
Nous introduisons la convezité de déplacement, outil mathématique emprunté a la
théorie du transport, pour prouver que le potentiel est strictement convexe par rap-
port & une structure alternative dans I’espace de fonctions de densité de probabilité.
Cela établit 'existence et I'unicité de I’état vers lequel le systeme couplé converge.
Nous caractérisons cet état et nous appliquons ce résultat a l’ensemble de codes
Gallager réguliers lors de transmissions sur le canal d’effacements (BEC) ainsi que
sur des systemes couplés scalaires généraux.

Mots clés: couplage spatial, modeles graphiques probabilistes dilués, équations
d’évolution de densité, potentiel, la limite de grande taille (continue), convexité de
déplacement, vitesse de décodage, propagation d’onde, ’acquisition comprimée.
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Introduction

The fundamental problem addressed by coding theory is the design of efficient and
reliable schemes for the transmission of information over different noisy channels.
In this chapter, we introduce the transmission model that we consider and the
notions that enable us to describe our contributions. We briefly discuss the historical
development of coding theory and formulate the coding problem in Section 1.1. We
also mention source and channel encoding and decoding and formulate the problem
of communication over noisy binary-input memoryless channels.

We describe low-density parity-check (LDPC) codes and how they are con-
structed in Section 1.2. LDPC codes are typically decoded by using a low-complexity
message-passing algorithm called belief propagation. In Section 1.3 we describe such
decoding algorithms, and in Section 1.4 we show the tools that we will use to analyze
them, specifically the density evolution equations and the potential functions.

LDPC codes can further be spatially coupled, yielding a family of codes that has
been proved to exhibit excellent performance in the sense of error-correction. We will
describe how spatially coupled LDPC codes are constructed and summarize their
main properties in Section 1.5. We also describe the “threshold saturation” phe-
nomenon that explains the capacity-achieving performance of coupled codes, along
with the corresponding coupled density evolution equations and potential functions.
We then consider the coupled system in the large-system size and continuum limits
described in Section 1.6. It is in those limits that the derivations become more
tractable and we carry out our analyses.

Finally, in Section 1.8, we give a summary of our main contributions. These
contributions are not restricted to coding (see Chapters 3 and 5). However, we limit
the scope of the introduction to that of the field of coding theory, as our work was
initially inspired by applications in this context and for clarity.

1.1 The Coding Problem

In 1948, Claude Shannon published the groundbreaking article “A Mathematical
Theory of Communication” [2], in which he revolutionized communication theory
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source source channel channel source receiver
— | encoder encoder channel decoder decoder

Figure 1.1: The abstracted overview of communication systems that we consider,
updated with channel encoding and decoding blocks.

information . . _ .| estimated
bits U= (ur,..,ux) U= (i) bits
channel h | channel
cnanne
encoder X = (21, an) Y = (1 yn) decoder

Figure 1.2: The channel coding problem on a communication system.

and created the field of information theory. In this work, Shannon established the
notion of information entropy as a measure of the uncertainty in a message, and he
addressed the problem of designing codes that ensure efficient and reliable transmis-
sion of information. The field of information theory studies the theoretical limits
involved in a communication system at which reliable transmission is achievable,
whereas the field of coding theory studies system and code constructions that are
able to achieve the said limits.

An abstracted overview of the scheme for the transmission of information over a
communication system is depicted in Figure 1.1, where we consider a noisy binary-
input memoryless channel. The source produces a message from a finite set of
possible messages and, ultimately, wants to send the message through the channel
to the receiver. In order to do this, the source has to first transform the message from
its original alphabet to the binary alphabet so that it is compatible with the channel.
This transformation is termed source encoding. Typically, in order to make the
transmission efficient, the encoding scheme attempts to minimize the average length
of the encoded messages according to the probability distribution over the source
messages. This is also called data compression; two examples of such schemes are
Huffman coding [3] and Lempel-Ziv compression [4,5]. The inverse transformation,
source decoding, is done at the receiver side to recover the original message (in the
original alphabet).

The noisy channel might erase, delete, or modify the incoming binary sequence,
or even insert new bits into it. To increase the reliability of transmission, we append
redundancy bits to the source-encoded binary sequence. The additional bits con-
tain information about the original binary sequence and can thus help the receiver
recover it in case it was distorted. This is called channel encoding; at the channel
output, we perform channel decoding to remove the redundancy bits. This thesis is
concerned with a low-complexity iterative channel-decoding scheme, that is called
belief propagation when channel encoding is done using low-density parity-check
(LDPC) codes. We consider binary-input memoryless channels defined below.

Definition 1.1. A binary-input channel is said to be memoryless (and without feed-
back) if the probability of receiving a bit y; at the channel output depends only on the
corresponding transmitted bit x; and the channel is completely described by its input
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and output alphabets and the conditional probability distribution py|X(yi|:UZ-), where
X and Y denote the random variables of the bit input and bit output, respectively.
In other words, if we assume that the length-n codeword x is transmitted one bit at a
time, then the noise realization at one time instant is independent of its realization
at the previous time instant. A memoryless channel (without feedback) that takes z
as an input codeword and outputs y satisfies

pyix (ulz) = ﬁpm(yﬁm. (L1)

In this thesis, we consider the “channel encoder - channel - channel decoder”
block shown in Figure 1.2. The source is modeled as a random variable u =
(u1,...,u;) that takes values in the set of binary length-k vectors {0,1}* uni-
formly at random. The message u is encoded into a length-n binary codeword
z = (1,...,2,) in the set {0,1}" using a channel-encoding scheme in order to
improve the reliability of recovery at the receiver side. The set of codewords ob-
tained from encoding the set of source messages is called the codebook. The code is
characterized by the rate, defined as the ratio of the number of information bits to
the number of message bits R = k/n. The binary codeword is sent through a noisy
memoryless channel, that in turn outputs a corrupted version y = (y1,...,%,) of it.!
We note here that the elements of y are not necessarily binary. For instance, when
we transmit a bit in {0,1} on the binary erasure channel of parameter ¢ € [0,1]
(BEC(e)), it is erased with probability e and left unchanged with probability 1 —e.
Therefore, the output alphabet is {0,1,7} where “?” symbolizes an erasure. Once
the vector y is received at the channel output, we perform channel decoding on it
to obtain the message @ = (41, ... ,4y) that estimates u.

According to Shannon’s noisy-channel theorem [2], for every rate R that is
strictly less than the capacity C, there exists a code and a decoder such that the
probability of the block-code error vanishes for large blocklengths. The goal of cod-
ing theory is to find such code constructions with computationally practical encod-
ing and decoding complexities. The maximum a-posteriori (MAP) decoder, though
optimal in the sense of error correction, is computationally impractical and thus
intractable. Ever since the publication of Shannon’s revolutionary article, coding
theorists have been working on the design of error-correcting codes that can achieve
the capacity of various noisy channels and that are also efficient, reliable, and of low
complexity.

The first family of codes developed for this purpose consists of algebraic coding
schemes and algorithms that make use of algebraic and combinatorial tools. We
mention some linear block codes such as Hamming codes [6], Reed-Muller codes [7,8],
Reed-Solomon codes [9], and Bose-Chaudhuri-Hocquenghem (BCH) codes [10, 11].
Some efficient decoding algorithms were devised for these codes, such as Berlekamp’s
algorithm [12], also used by Massey [13], Sudan’s list-decoding algorithm for RS
codes [14] and its improvements by Guruswami and Sudan [15] and by Koetter and
Vardy [16].

In 1955, Elias introduced convolutional codes as an alternative to block codes
[17]; they offered the advantage of efficient maximum-likelihood soft-decision decod-

'In this manuscript, we assume that the channel does not perform any deletions or insertions,
thus z and y have the same lengths.
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ing. Some of the most popular decoding algorithms were developed by Wozencraft
[18] and Viterbi [19]. Later on in the twentieth century, lattice codes were devel-
oped as structured codes for Gaussian channels and networks; they were shown to
be capacity-achieving [20-23].

The field of error-correcting codes was revolutionized in the '90s, however, with
the emergence of graph-based codes, such as turbo codes that were proposed by
Berrou and Glavieux in 1996 [24] and low-density parity-check (LDPC) codes.
The main advantage of graph-based codes is that we can decode them using low-
complexity iterative decoding algorithms. LDPC codes and iterative decoding were
first developed in Gallager’s thesis in 1963 [25] but were not implemented due to the
limited computational resources that existed at the time. They were rediscovered
three decades later by Neil and MacKay [26-28], and independently by Spielman
[29,30].

LDPC codes are constructed from sparse graphical models and have been shown
to exhibit very good performance under the low-complexity sum-product decoding
algorithm [31,32]. However, this performance can only be attained up to a maximum
noise level on the channel, or a threshold, lower than the threshold up to which the
MAP decoder performs very well. In other words, for some levels of noise on the
channel, the average performance of an LDPC code ensemble, when decoding is done
using the sum-product iterative algorithm, is not as good as that when decoding is
done using the MAP decoder. Asthe MAP decoder is too computationally expensive
and intractable, coding theorists sought to close the gap between the MAP threshold
and the iterative decoding threshold by designing better iterative decoding schemes.

A first step in the direction of designing codes that exhibit excellent performance
under low-complexity decoding algorithms, such as the sum-product algorithm, up
to the capacity for transmission over the BEC, was taken by Luby, Mitzenmacher,
Shokrollahi, and Spielman in 1998 [1,33]; they introduced irregular LDPC codes.
The idea is to optimize the degree distributions of the nodes of the underlying
graphical model so that the performance is improved [34-36]. Using this technique,
Chung, Richardson and Urbanke were able to achieve performance within 0.0045dB
of the Shannon capacity when transmission takes place over the binary-input addi-
tive white Gaussian noise channel [37].

This brings to light the two most recent code constructions, polar codes,? pro-
posed by Arikan in 2009 [38], and spatially coupled codes. The first “version” of
spatially coupled codes was termed terminated convolutional LDPC codes and was
introduced by Lentmaier, Fettweis, Zigangirov, and Costello in 2009 [40]. More re-
cently, however, the term spatially coupled codes was coined by Kudekar, Richardson,
and Urbanke [41] to describe such codes whose construction is less constrained, and
this includes all the previously derived variants. Polar codes and spatially coupled
codes are both provably capacity-achieving on binary-input memoryless symmetric-
output (BMS) channels and have low decoding complexities. However, spatially
coupled codes have two advantages over polar codes: The original construction of
polar codes is not universal® and its performance converges more slowly to the

2Polar codes are capacity-achieving under successive cancellation decoding [38,39], not iterative
decoding.

3The universality of a code means that one and the same code ensemble is good for a whole
class of channels, assuming that the receiver has knowledge of the channel. In fact, Hassani and
Urbanke propose polar-like codes that are universal [42].
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asymptotic desirable one [43].

A spatially coupled LDPC code is constructed by locally connecting replicas of
the underlying (uncoupled) LDPC code, such that the original degree distribution on
the nodes is preserved. The intuition behind the relationship between the two codes
(uncoupled and coupled) is the following: As the connections are locally the same
from the nodes’ persepective, the two codes share fundamental quantities, such as the
MAP threshold. In fact, one of the attractive properties of spatially coupled codes
is the so-called threshold saturation property that means that the noise threshold,
up to which coupled codes perform very well under the BP algorithm, is pushed or
saturated up to the MAP threshold. Despite the fact that spatially coupled codes are
universally capacity-achieving under the low-complexity BP algorithm, they are still
not prevalent in practice because this excellent performance is only demonstrated
when the blocklength is significantly large.

The construction technique of spatial coupling is not restricted to coding [44,45].
Since its introduction, it has been shown to approach the capacity regions of many
coding systems [46-51], but also to exhibit excellent performance in several other
applications such as compressive sensing [52-54], random constraint satisfaction
problems [55-58], and a coupled Curie-Weiss (toy) model [59,60]. Our results in
Chapter 3 and 5 include such scalar systems.

1.2 Channel Encoding via Low-Density Parity-Check Codes

In this thesis, we consider channel encoding using the (n, k)-LDPC code with n > k.
This adds n — k redundancy bits to each source message u = (ug,...,u), which
yields the encoded message x = (21,...,2y).

LDPC codes form a class of linear block codes that can be represented in matrix
or graphical form. An LDPC code can be graphically represented by a bipartite
graph, called a Tanner graph; it consists of two types of nodes: n wvariable nodes
that contain the channel-encoded bits, and m check nodes that impose constraints on
their adjacent variable nodes. We consider binary inputs and perform the operations
in IFo. We show a Tanner graph in Figure 1.3 and write the constraints imposed by
the check nodes near them. For LDPC codes, a check node forces the sum of the
bits on its adjacent variable nodes to be zero in IFs.

The matrix representation H of an LDPC code is an m x n adjacency matrix
where the entry H;; at row ¢ and column j is 1 if there is an edge between the
it" check node and the j™ variable node, and 0 otherwise. The adjacency matrix
corresponding to the Tanner graph in Figure 1.3 is shown below.

1001001
H=(1 1 001 0 0
00101T1PO0

The first part of the name of this code is “low-density” because the matrix H is
sparse (the numbers of 1’s per row and column are small) or, equivalently, because
the Tanner graph is sparse (the degrees of variable and check nodes are small). By
looking at the graph in Figure 1.3 and its adjacency matrix, we can already see that
these conditions can be valid when the size of the graph is large.
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T
T2
C1 r1+ x4 +T7 = 0
L3
T4 Co 1+ z2+25=0
Z5
C3 3+ x5+ 26 =0
Te
Ty
Figure 1.3: An example of a Tanner graph, with variable nodes x1,...,z7 denoted by
circles and check nodes cy, ..., c3 denoted by squares. The conditions imposed by check

nodes are written on their right.

Due to the nature of the constraints imposed by the check nodes on their adjacent
variable nodes, the second part of the name of these codes is “parity-check”. More
specifically, the constraint imposed by a check node on its neighboring variable nodes
is that the sum of their bit values in IFy should equal 0. This is why we can also call
the adjacency matrix the parity-check matriz.

There are various algorithms with which suitable LDPC codes can be con-
structed, such as that suggested by Gallager in 1963 and those proposed by MacKay
in 1996. Such algorithms are concisely summarized in [27].

Encoding the message bits into channel-encoded bits is roughly done by copying
the & message bits onto some subset of the n final bits (typically the first &k bits)
and by filling out the remaining ones so that the parity checks are satisfied. We
formalize this process as follows. Given the parity-check matrix H, elementary row
operations can be performed to rewrite it in the form [~ P7|I,,_;.], where I,,_;, denotes
the (n—k) x (n—k) identity matrix and —P” is the leftmost remainder of the matrix
(and T' denotes the matrix transpose operator). We can then define the generator
matriz of the codebook as G = [Ix|P] where I}, denotes the k x k identity matrix.
Finally, to obtain the codewords in the codebook associated with this parity check
matrix, we multiply all length-k strings with G.

We show how the generator matrix of the example in Figure 1.3 is found. We
first perform elementary row operations on the parity-check matrix H to write it in
the form [-PT|I3]

O = O
— o O
S O =
= O
— o O
—_ = O
— o O
S O =
O = O
_ o O
O =
o~ o
_ o O
o O
o= o

where the first equality is obtained by adding the second and third rows, and storing
the result in the third row; and the second equality is obtained by rearranging the
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rows. The generator matrix is thus

o O O =
S O = O
o o O
— o O O
S O = =
O = =
= o O =

The drawback in using this approach is that it requires operations involving
the entire parity-check matrix and can thus be of high computational complexity.
However, more efficient methods have been developed in practice that make use of
the sparsity of the matrix or the structure of the graph (if it is known).

1.3 Channel Decoding via Message-Passing

Despite the desirable results that MAP decoding can provide for decoding LDPC
codes, this technique remains computationally impractical. Fortunately, the low-
complexity message-passing algorithm, called the belief propagation algorithm in
the context of coding, can be employed to approximate the MAP decoding rule.
We formalize the MAP decoding rule for bit-wise error correction in Section 1.3.1,
and introduce factorization and marginalization in Section 1.3.2. We derive the
approximative message-passing rules corresponding to the MAP decoding rule in
Section 1.3.3. These rules are then simplified and scheduled in Section 1.3.4.

1.3.1 Bit-wise MAP Decoding

Consider transmission over a binary-input memoryless channel described by the
conditional probability distribution

n
px\g(ﬁ@) = pri\xi (yilzi),
i=1

where we denote by x = (z1,...,2,) the channel input (or codeword), with z; €
{0,1}, and y = (y1,- - -,¥n) the channel output (or observation).

We assume that the source bits are encoded using a linear block code described
by its parity-check matrix, and that the codewords are chosen uniformly at random
from the codebook C. To obtain the MAP estimate :%%\/IAP of the bit z;, i =1,...,n,
given the channel output y, we refer to the bit-wise MAP decoding rule

~MA
24 (y) = argmax,, (0, 1ypx, |y (%ily)

= argmaxy (o1} > pxiy (zly),

~T;

where the notation )., is used to indicate a summation over all components
of x except x;. In the last step, we use the law of total probability pa,(a;) =
Ya; PA(a1, ... a4, ... a,), with A = (Ay,...,A,). This computation is very expen-
sive because it involves a sum over all value combinations of n —1 bits and thus an
exponential (in n) number of terms. We can use Bayes’ rule to rewrite the MAP
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estimate as

2P (y) = argmax, o 1y 2. Py |x (l2)px ()

~T;

n
= argmax, (o1} ., ( qpyﬂxj (yj|xj))]l{§€C}a (1.2)

~T; o g=
where in the last step we have used the property (1.1) of memoryless channels and
the assumption that the codewords in the codebook C have a uniform prior.

The MAP decoder is optimal, with respect to the bit-error rate, because it min-
imizes the bit-error probability under random errors incurred by the channel. How-
ever, the calculation of the MAP estimate involves a sum over O(2") terms, where
n is the blocklength. Therefore, this decoder is too computationally expensive and
impractical. This led to the design and use of message-passing as an efficient alter-
native. Such iterative algorithms are of low complexity, but they are suboptimal in
the sense that they cannot decode up to the MAP threshold of the code ensemble
and that the bit-error probability is not minimized.

The rules for message-passing algorithms are derived using the Tanner graph of
the LDPC code, and their solution is exact when the graph is a tree. In addition, it
has been shown that these algorithms still work well on graphs that are not trees.
The intuition behind this is that if the parity-check matrix is sparse and at the same
time very large, the graph, from the perspective of any randomly selected node, is
locally tree-like. However, the algorithms do not work as well on general graphs as
they do on trees. This is the “price to pay” for applying algorithms designed for
trees on graphs that are not trees.

In order to show how message-passing can be employed to solve the optimization
problem above, we will show how the expression in (1.2) is related to the Tanner
graph of the LDPC code and describe the messages that are to be exchanged between
the graph’s nodes so that decoding takes place. We derive the messages assuming
that the Tanner graph is a tree.

1.3.2 Factor Graphs and Marginalization

The marginalization problem describing the MAP decoder estimate ﬁ:%v[AP involves

a sum over O(2") terms and is thus computationally expensive. In this section, we
show how we can split this problem into smaller subproblems and how this can be
used to design a message-passing algorithm on a tree structure.

Consider the graph in Figure 1.3. We write the parity-check constraints near the
check nodes; these are the conditions that the bits x1,...,z7 must satisfy so that
z = (x1,...,27) is a codeword. We recall that operations are performed in Iy and
write the code membership function for this graph as follows,

f(o1, o m7) = Loy = Loy vayrar=0) Lz +aosas=0) L{ws+as+26-0}
= fi(w1, 24, 27) f2(21, 22, 25) f3(23, 75, 26),
where we have defined the following factors
fi(@r,za,27) =1 om0
fa(@1,22,25) =iy vanrms-0}s
f3(23,25,26) = Liasia54a6=0)-
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Figure 1.4: We draw the factor graph corresponding to the Tanner graph in Figure 1.3
when marginalization is over x1. We denote by f; the factor node or check node that
we previously denoted by ¢;, i =1,2,3.

To solve the marginalization problem shown in (1.2) over x;, by using this definition
of the code membership function, we could make a brute force summation over the
values of all the variable nodes in the graph except z;. Such a computation can be
quite costly, especially when the number of variables is large. This is the basis for
the idea of factorization, which splits the summation into smaller ones.

Consider the example shown in Figure 1.3. To visualize the marginalization over
x; = x1 for example, we can pull out the variable node x1, which yields the tree shown
in Figure 1.4. We call this tree the factor graph [32] specifically because it demon-
strates the factorization structure of the marginal of its root, and we call the squares
(representing the parity-check nodes) the factor nodes for reasons that will shortly
become clear. We slightly abuse notation by defining f(z1) = Y., f(x1,...,27) to
describe the marginalization over x; and write this as

f(x1) =) filer, 2z, 27) fo(xy, xo, 25) f3 (23, 25, 26) (1.3)
= > filz,za,27) ). f3(x37$57586)Zf2(5'3175527955) (1.4)

We describe the general factorization rules that permit us to compute the marginal
of a generic function g with respect to some variable z. This marginal is defined as

g(z) = Zg(z,...). (1.5)

We can automatically factor g(z,...) as follows

K
H gk(z

where gi, k = 1,..., K are the factors of the function g such that the variable z
appears in each of the factors, whereas each other variable appears in only one
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factor. For the example shown in Figure 1.4, we can specialize this rule to the
following (with z = x1)

f(xr, . 27) = [fi(@r, 24, 27) ] [ f3(23, 75, T6) f2(71, T2, 75) ],

with K =2, g1(2,...) = fi(z1,74,27), and g2(2,...) = f3(3,75,76) fa(T1, 72, 75).
To see this graphically, one can think of this factorization as follows. The integer
K is the number of subtrees with x; as a parent node and gx, k=1,..., K are the
marginals of these subtrees.

At this point, we can find the marginal g(z) from (1.5). We first make an obser-
vation from (1.4). We have transformed a summation of the product of marginals
in (1.3) to the product of summations of marginals in (1.4). In fact, this is always
possible by using the distributive law when the graph is not fully connected because
every marginal will contain a subset of the components of x. Therefore, for the
generic function g we can write ((2.7) in [61])

K K
9(=) = L Tlon(z - =TT [ Z oz )], (1.6)
~z k=1 k=1 -~z
So far, we have applied this rule to the root of the factor tree. However, it can be
applied recursively on the subtrees, yielding marginals that are easier to compute.
The rule can be thought of as follows: The marginal of a variable node is the product
of the marginals of its children in the factor graph.*
We can also derive a general rule for the computation of the marginal of a check
(or factor) node in the factor graph, by looking at the factorization equations. We
first define the kernel h of the marginal g at a check node as the node’s own factor
or membership function. By carrying out the recursive factorization steps, we can
deduce that the rule for the marginal gx(z,...) at a check node is the following

J
gk(z,.. . ) = hk(z,zl,.. . ,ZJ) Ij[l[hj(zj',.. )], (17)

where hy(z,21,...,27) is the kernel of the factor node and h;(z;,...), j=1,...,J,
are the factors. Here again we can determine the factors by following certain rules.
The variable z appears only in the kernel, and every other component z; can appear
in at most two places: possibly the kernel and in at most one of the factors h;(z;,...).
This rule can be understood as follows: The marginal at a check node is obtained
by multiplying its kernel with the marginals obtained from its children. Finally, and
due to the definition of the marginal in (1.5), we obtain the marginal at this check
node by summing over all the components except its parent z. This gives ((2.9)
from [61])

J
ng(z,...) = th(Z,Zl,...,Z]) H[Z hi(zj,...)], (1.8)

J=1 ~z;

1.3.3 Belief Propagation Equations

The two rules found in Section 1.3.2 can be applied recursively to the rest of the
factor tree, breaking down the computation of the marginal of the root f(z1) into

4As we consider bipartite graphs, the children of variable nodes are necessarily check nodes.
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smaller computations of less complex marginals. The complexity of the computation
is therefore significantly reduced. We can compute the marginals of the parts shown
in (1.4) and combine them using the rules we have just described. This gives rise to
a message-passing algorithm that can be applied on the factor graph in Figure 1.4.
The algorithm starts at the leaves of the tree, that are initialized to some values
(as we will see). Messages (the smaller marginals) are then transmitted up the tree,
and whenever a node has received messages from all of its children, it processes and
combines them, then passes the result up to its parent.

Each component z;, j =1...,n, of  can be estimated by finding the correspond-
ing marginal f(x;). We can either redraw a factor tree for each marginal, or simply
consider the Tanner graph with messages that simultaneously flow on edges in both
directions during the message-passing algorithm. We choose the latter and formal-
ize the message-passing rules as follows. We denote by ;. a message transmitted
from a variable node to a check node and by ji.-; a message transmitted from a
check node to a variable node.® We denote by 0 the neighbors, in the sense that
xy, denotes the neighbors in z of a, and b € di\a denotes all neighbors b of i (or z;)
except a. Then, the message-passing equations are

pima(xi) = [T fipi(i), (1.9)

bedi\a
ﬂa—»i(xi) = Z fa(xaa) H Hjﬁa(xj)v (1'10)
~I; jeda\i

where f, denotes the kernel of a. Whenever a node receives messages from all its
neighbors, it performs the appropriate marginalization step. This produces a new
estimate for the components z; that are used in the next iteration of the message-
passing algorithm.

What remains is the initialization at the leaves. Assume that the leaf is a variable
node x; that sends the initial message pj.(x;) to its parent check node a. The
marginal at a is (for example) f(zr) = ¥.;, f(2j, Zr)itj-a(2;) Where we have applied
the check node processing rule in (1.10). However, we also know that f(xj) =
Ynx, f(5,71), hence we can deduce that the initial message from a leaf, when it is
a variable node, is the constant function 1. Similarly, we can find that the initial
message from a leaf node, when it is a check node, is its own kernel.

The message-passing algorithm we described is called the belief propagation (BP)
algorithm in the context of coding. As the nature of the computations involved in
the BP messages is not complex, and due to the fact that factorization breaks the
main problem into smaller subproblems, implementing the BP algorithm is of low
complexity. However, the update equations (1.9) and (1.10) were derived for factor
graphs that are trees. Surprisingly, they have been known to provide good estimates
& for the input vector z, even when the factor graph is not a tree.> The price to
pay in this case, however, is that the BP algorithm decodes perfectly (in the limit
of infinite blocklength n) on such graphs up to a certain level of channel noise that
we call the BP threshold; and this is lower than the level up to which the MAP
decoder decodes perfectly (again, when n — +o00), that we call the MAP threshold.

®We use the letters a, b, ¢, ... to denote check nodes (to be associated with fa, fo, fc, ...) and
the letters i, j, k, ... to denote variable nodes (to be associated with z;, x;, i, ...).

5Due to the sparsity and large size of the factor graph, the computational tree from the per-
spective of any variable node is locally tree-like.
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Figure 1.5: We draw the Tanner graph shown in Figure 1.3 with appended “channel
check nodes” to represent the channel information.

Spoiler alert! Fortunately, this impediment can be overcome by spatial coupling
that combines both advantages: Spatially coupled LDPC codes can be decoded up
to the MAP threshold using the low-complexity BP decoding algorithm. We cover
this in detail in Section 1.5.

1.3.4 Simplification of Belief Propagation Equations

In this section and for the purpose of simplifying calculations, we assume that the
source emits bits X; that take values in {-1,+1} instead of the traditional binary
domain {0,1}. The map we consider is

0—+1,
1--1.

By looking at the BP equations in (1.9) and (1.10), it might be thought that
we have not taken the channel information into account. In fact, the equations
are correct, but the Tanner and factor graphs we have shown so far are incom-
plete. To account for the channel information, we append to every variable node
X; a factor leaf node that provides the " channel realization, the length-2 vector
(Pv;1x, (Wil + 1), py;x, (%i| = 1)). This is shown in Figure 1.5, where we write this
vector as py;|x, (yilz;) as shorthand. The channel can equivalently be represented

by the so-called log-likelihood ratio (LLR) that serves as a sufficient statistic and
that we define below.

Definition 1.2 (Channel Log-Likelihood Ratio (LLR)). For any binary-input chan-
nel, the log-likelihood ratio (LLR) is defined as

pyix(yl +1)
pyix(wl-1) )

I(y) =ln(

The LLR is a random variable as it depends on the random channel output
y. In Section 1.4.1, we will see that once we consider symmetric channels, we can
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assume that the all-+1 codeword was transmitted (or the all-zero codeword in the
traditional binary domain). Therefore, we consider the distribution cy (1) of the
LLR under the assumption that +1 is transmitted, where h denotes the entropy of
the channel (think of it here as a noise level parameter, we formally define it in
Section 1.4.4) and [ = I(y) denotes the LLR variable.” Elsewhere, this is called the
L-density [61]. We give the precise expressions of this distribution for the binary
erasure channel (BEC), the binary symmetric channel (BSC), and the binary-input
additive white Gaussian noise (BIAWGN) channel below.

Example 1.3 (Binary Erasure Channel). The BEC(e) erases a bit with probability
€ € [0,1] and leaves it unchanged with probability 1—€. The input alphabet is {-1,+1}
and the output alphabet is {-1,+1,7}, where “?” denotes the erasure symbol. For
an input bit x and an output bit y, the channel transition probabilities are thus

pyix(+1]=1) =pyx(-1]+1) =0,
pyix(+1[+1) =pyx(-1]-1)=1-¢,
pyix(?[+1)  =pyix(?-1) =€

The LLR distribution of the BEC(e) can be written as
ce(l) =€do(l) + (1 - €)oo (1). (1.11)

Example 1.4 (Binary Symmetric Channel). The BSC(p) flips a bit (+1 - -1 or
-1 - +1) with probability p and leaves it unchanged with probability 1 —p. The
input and output alphabets are {-1,+1}. For an input bit  and an output bit y, the
channel transition probabilities are thus

pyix(+1/+1) =pyx(-1|-1)=1-p,
pyix(+1]=1)  =pyx(-1]+1) =p.

The LLR distribution of the BSC(p) can be written as
o) =iy 2 (1) + (1= D)3 10 (D). (1.12)

Example 1.5 (Binary-Input Additive White Gaussian Noise Channel). The BIAWGN (o)
channel adds Gaussian noise to the input bit. The input alphabet is {-1,+1} and the
output alphabet is R. For an input bit x and an output bit y, the channel transition
probability is given by

1 _-a)?
(& 202

pY|X(y|x) = W )

where 0% € [0, +00) is the noise variance.
The LLR distribution for the BIAWGN (o) can be written as

1 _ (l—2(r_2)2

co(l) = e sz . (1.13)

"We note that, throughout the thesis, the characters [ and h are typically used to represent an
LLR variable, whereas the character h is to be interpreted as an entropy.

8mo—2
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In Section 1.3.3, we have seen how to compute a marginal p(z;) at some variable
node x;, where the bit z; takes values in {-1,+1}. By applying the BP rule in (1.9),
we can write the messages ;- from the it? variable node to check node a and the

messages [lqa—; from check node a to the i*" variable node as

fisa(+1) = T fioi(+1), flami(+1) = 2 F(+1,0) TT mjoalzy),

bedi\a ~Tg jeda\i
pa-D) = TT i1 iD= 2 F (1) TT syealay).
bedi\a ~I; jeda\i

We can convert this two-dimensional information message into a one-dimensional
real-valued message using the corresponding LLRs. This yields

hica=li+ Y. hys,
bedi\a

where [; denotes the LLR that the variable node z; receives from the channel and

i = In M _
fip—i (1)

This message is equivalent to the BP message at a variable node shown in (1.9).

Remark 1.6. Throughout the thesis, we will use the characters | and h to denote
LLRs. Typically, we use l; to denote the channel LLR (which remains unchanged
before and during the BP algorithm), h;, to denote the LLR message sent from
variable node x; to check node a during the BP algorithm, and ﬁa_ﬁ to denote the
LLR message sent from check node a to variable node x; during the BP algorithm.
That is, at iteration zero of the BP algorithm, h;_q =1;.

It is more difficult to find the message equivalent to that in (1.10) that corre-
sponds to the BP message at a check node. We start by rewriting the kernel of a
check node a as

f(l’,) :]l{njsaa\ixj:x}' (114)

The indicator function of the kernel contains a product over the z;’s, whereas in
the previous subsection, it contained a summation. This is because we previously
considered bits in 9, whereas here the domain is {-1,+1}. Then, using the BP rule
in (1.10), we write the ratio of BP messages on the check node side as

a1 B L) Tcony ti-aly)

Ha—»i(_l) - ZNM f(_la cee ) Hjeaa\i :uj—’!l(xj) '

We use the definition of the kernel in (1.14) and divide the numerator and denomi-
nator by f1j-q(-1) to obtain

) ) Kji—sal(T;)
Z'\'Z'i:njeaa\i zj=+1 Hjeaa\z ,U,jﬁg‘(—l)

Fosi = .
a=t H . . ﬂj—»a($j)
~zi:[ljeqa\i j=—1 Hjeda\i 1,7 (1)
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We rewrite the inner fraction as

#]—)a(.rj) _ {1, lf '1:_7 = —].,

fj»a(-1) )
- {r(1+xj)/2, it x; =-1,

Tjoa, if x; =+1.

(v

joa i@y =41

We can therefore rewrite the ratio 7,_; as

(1+z4)/2
Z~xi:1'[jeaa\i zj=+1 Hjeaa\i Tisa !

(1+a:j )/2 :
~2 T e 73=—1 L jeda\i Tjoa

Ta—si =

We further write the ratio in one more alternative form,

P ngaa\i(rjﬂa +1) + Hjeaa\i(rj%a -1)
T Myjeoayi(Tjsa + 1) = Tjeayi(Tjsa — 1)

(1.15)

To see why this is true, remark that

[T (rja+1)

jeda\i
=1+ Z Tjsat+ Z Tjsalk—a + Z TjsaTk—allsa + -«
jeda\i J,keda\izj#k G,k leda\ij £kl
[1 (rjma-1)
jeda\i
=-1+ Z Tjsa— Z TjsaTk—a Z TisaTk—aTlsa = -+ -»
jeda\i J,keda\i:j#k G,k leda\izj £kl

where we have used the slightly bad notation j # k # [ to indicate that j + k, j # [, and
k # 1 (due to space limitations). In words, the coefficients involved in the expansion
of T epa\i(7j—a + 1) are all positive and equal to +1, and for [ cq\i(7j—a — 1), the
products in the expansion that consist of d terms such that J —d is odd have the
negative coefficients —1, and the remaining products have the positive coefficients
+1. Thus, carrying out the addition and subtraction of these products, for the
numerator and denominator, respectively, gives

[T (joar )+ I1 (jma-D =2 > TT AL

jeda\i jeda\i @ [1jeaa\i ©j=+1 jeda\i
_ (1+z5)/2
H (’I“j_,a + 1) - H (’I“j_,a - 1) =2 Z H Tj—>a J .
jeda\i jeda\i [ jepa\i Tj=—1 jeda\i

This yields the expression we show in (1.15).

We are now ready to derive the simplified BP message processing rule at a check
node. We divide the numerator and denominator in (1.15) by T cgq\i(7j—a +1) and
obtain

Tjsq—1

L+ Tjeoavi 7mat

Fomi =
a=1 ’f‘j_,a—l

L =Tl eoa\i 7mpt



16 Introduction

We can rewrite this equation as

Pavizl Tima—1 (1.16)
7za—>i +1 jeda\i Tjsa + 1

By the definition of the LLR, hawi = In#eq, OT equivalently, 7q_; = exp(l}a_,i). Thus,
(fami—1)/(Fami+1) = tanh(hg-;/2). We can thus rewrite (1.16) in terms of the LLRs
as

tanh(fg-i/2) = [] tanh(hj_a/2).
jeda\i

This yields the simplified BP equation at a check node a

ﬁmzztanhfl( I1 tanh(hj_,a/Q)). (1.17)
jeda\i

So far, we have mentioned that the message-passing algorithm is iterative, but
we have not formalized this. In fact, different schedules for passing messages might
yield different performances. In our analysis, we consider the flooding or parallel
schedule, where the variable and check nodes use the messages obtained in the
previous iteration in order to compute the new messages. So, at every iteration, all
variable nodes send messages to their neighboring checks, then all check nodes send
messages to their neighboring variables. We choose this schedule mainly because it is
convenient for analysis. As for the initial condition, the only information the graph
possesses at first is the information from the channel. Hence, the factor nodes of the
channel send their LLR messages. We represent this in the form of “channel check
nodes” that we append to variable nodes. These check nodes send their associated
LLR messages at the first iteration of the algorithm. As for the remaining nodes
of the graph, they are initially set to send “neutral” messages. In the language of
LLRs, this translates to the message 0.

We summarize the above discussion by writing the system of scheduled simplified

BP equations. We denote by hga the LLR sent from a variable node to a check
node at iteration ¢ € IN and by fzgt_))l that sent from a check node to a variable node
at iteration ¢t € IN. Then, with the channel LLRs [; for variable x; and once the
iterative process is initialized with hz@a = ilt(li)z =0, the LLRs are updated according
to the following BP equations

Y A T
bedi\a
AP =2tanh™ (T tanh(h{?,/2)).

a—i . , J
jeda\i

(1.18)

1.4 Tools for Performance Analysis

Before analyzing the performance of the BP decoder on LDPC codes, we men-
tion two simplifications that facilitate the analysis in Section 1.4.1. We then define
the configuration model of LDPC codes that we consider in Section 1.4.2. We de-
rive the density evolution (DE) equations associated with such code ensembles in
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the framework where the blocklength is very large. To instill the intuition behind
this formulation, we start by writing the DE equations when transmission takes
place over the BEC in Section 1.4.3, then generalize the equations to the case when
transmission takes place over binary memoryless symmetric (BMS) channels in Sec-
tion 1.4.4. Finally, we present the variational equivalent of the DE equations, called
the potential function, in Section 1.4.5.

1.4.1 Two Basic Simplifications

The first simplification that we make is the “restriction to the all-(+1) codeword”
(or the all-zero codeword in the traditional binary domain). In other words, it is
sufficient for our analysis to assume that the input to the channel is the all-(41)
codeword (and this codeword is as good as any other one). The advantage of this
assumption is the simplicity with which one can count the number of errors in the
channel output and the decoder output: it is simply the number of bits that are not
+1. For this restriction to be valid, we need two kinds of symmetry to hold, namely
channel symmetry and decoder symmetry, defined below.

Definition 1.7 (Channel Symmetry [61]). We say that a channel is symmetric
(more precisely, output-symmetric) if

pyix(yl+ 1) = pyx (-y[ - 1), (1.19)

where y € R is the output bit and X,Y are the random variables describing the input
and output bits.

Definition 1.8 (Decoder Symmetry [62]). A decoder is said to be symmetric if

e At any check node, the magnitude of the outgoing message is only a function of
the magnitudes of the incoming messages, and its sign is equal to the product
of the signs of these messages.

e At any variable node, the sign of the outgoing message is reversed if the sign
of each incoming message is reversed.

In this thesis, we restrict our work to binary-input memoryless symmetric-output
channels, thus the first condition is satisfied by assumption. By looking at the BP
equations, we can see that the BP decoder is symmetric, thus the second condition
is also satisfied.

The second simplification we make is “concentration”, or the restriction to the
analysis of the ensemble average performance, and it is valid when the blocklength
is large. More specifically, instead of analyzing the performance of individual codes,
we assess that of the ensemble average. This motivates coding theorists to design
and construct code ensembles that have a good average performance.

The idea behind the concentration simplification is that the performance of an
individual code is, with high probability, arbitrarily close to that of the ensemble
average. More precisely, the two performances are arbitrarily close for all except
an exponentially - in the blocklength - small fraction of codes. To express this
formally, let Ppp;(C,t) denote the average bit-error probability for a code C chosen
uniformly at random from a Gallager ensemble, when the BP decoder has been run
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for ¢ iterations. We consider transmission over BMS channels. Then, for any given
0 > 0, there exists an o > 0 (that depends on ¢ and the degree distribution of the
code ensemble) such that

P{|Pspy(C,t) - E[Pppp(C,t)]| >0} <e™",

where the expectation IE is over the code ensemble.

1.4.2 The LDPC(),p) Configuration Model

In this thesis, we often use the ensemble of bipartite graphs LDPC(n, A, p) (or spe-
cial cases of it), where n denotes the blocklength and A and p describe the degree
distributions of the variable and check nodes, respectively. This ensemble is also
called the configuration model.

The degree distributions are defined as follows. Let \; denote the fraction of
edges in a Tanner graph that connect to variable nodes of degree i, and p; denote
the fraction of edges that connect to check nodes of degree i. Alternatively, we
can think of \; or p; as the probability that an edge chosen uniformly at random is
connected to a variable node or a check node, respectively, of degree ¢. Then A\ and p
are the variable and check degree distributions from an edge perspective, respectively,
and can be expressed as

AMz) = Z)\,-:ci_l, p(x) = Zpizzi_l.

Equivalently, we can look at the variable and check degree distributions from a node
perspective that are denoted by L and R, respectively. We define L; as the fraction
of variable nodes of degree i and R; the fraction of check nodes of degree i. Then,

L(z) = ZLZ-:Ei, R(z) = ZRZ:L‘Z

The two notions of degree distributions are related by

_ L'(x) o) - Jo dzA(2)
Me) = L1’ L) = fol dz)\(z)7
_R() L Jdze()
Io(x)_ R,(l)’ R( )_ foldzp(z).

The average variable degree £,z and the average check degree r,y are then defined
as

1 1
s E—— Tavg = R'(1) = >
fol dz A(2) ¢ ) fol dz p(z2)

and the design rate of the code is

lavg = L'(1)

L
r(\p)=1- "8,
Tavg
We note that the design rate is in general not equal to the “true rate” of a code,
but approaches it when the blocklength becomes large. In fact, it is a lower bound
on the true rate.
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As we will see, we consider the code ensembles in the limit when the blocklength
goes to infinity (so that the underlying graph structure is tree-like); we henceforth
omit the argument n when we describe the configuration model.

Example 1.9 (The (¢,r)-regular Gallager ensemble). The (¢,r)-reqular Gallager
ensemble is defined as the LDPC(\, p) ensemble when the degree distributions take
the form Az) = ', p(z) = 2", with ¢ < r. Equivalently, the variable nodes in
this ensemble have degree ¢ (have { outgoing edges) and its check nodes have degree
T.

1.4.3 Density Evolution on the BEC

In order to analyze the performance of the BP decoder on the LDPC(\, p) Gallager
ensemble, we can track the evolution of the bit-error probability as iterations of
the algorithm are executed. In this section, we demonstrate this analysis on the
(¢,r)-regular Gallager ensemble and then on more general LDPC(), p) ensembles
when transmission takes place over the BEC in order to instill the correct intuition.
In Section 1.4.4, we generalize this analysis to general LDPC(A, p) ensembles with
transmission over BMS channels. This generalization is not conceptually difficult
but heavier in terms of notation.

We first briefly describe the concept of a computation graph, which is the basis
for the tree-type analysis we perform. At every iteration of the BP algorithm, every
node in the Tanner graph of a code receives “incoming” messages (beliefs) from
its neighbors and sends back an “outgoing” message to each of them. Consider a
randomly selected node in the graph; let us say it is a variable node. The outgoing
belief it sends to a neighbor depends on all its other incoming beliefs, as well as its
own initial belief (based on the channel observation). Similarly, the beliefs sent to
this variable node from its neighboring check nodes were computed by these check
nodes by using the beliefs they had received from their neighboring variable nodes.
By unraveling this “dependency graph”, we obtain the so-called computation graph.
This graph increases in size as more iterations of the BP algorithm are performed.

It is not difficult to see that, for a small graph, we are bound to create a cycle as
we apply more iterations of BP; thus the computation graph is not a tree. However,
it has been shown that for a fixed number of iterations, and as the blocklength
goes to infinity, the graph is a tree with probability one. This is explained in more
detail in [61]. In our framework, we first take the blocklength, then the number of
iterations, to infinity. In this setting, the underlying graph is with high probability
tree-like and we can apply the formalism below.

As we have seen, the BP equations describe the messages exchanged between
variable and check nodes in the Tanner graph. In the framework of large block-
lengths, the computation graph, as seen from the perspective of some node, is
tree-like. Therefore, the incoming messages for this node can be assumed to be
independent.

Consider transmission over the BEC with erasure parameter € (we can write
this as BEC(e)). Notice the following: The BP decoder cannot decode incorrectly
because all the “wrong” bits are erasures and not flips. As the decoder is not “fooled”
by any bit values, it will either be able to decode correctly, or it will not be able to
decode at all.
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We denote by z(*) (resp. y()) the probability that the message sent from a
variable node to a check node (resp. a check node to a variable node) at iteration ¢
is an erasure. Then y® can be computed as a function of () as

y® =1 - (1 -2y, (1.20)

This is obtained by applying the parity-check rule at the check node side in the
framework of large blocklengths. Recall that the message sent from a check node
to a variable node is a function of the former’s incoming messages on all the other
edges. Then, applying the parity-check rule, we can observe that the message emit-
ted by the check node is an erasure if any of its incoming messages (on the other
edges) are erasures, in which case it cannot compute its parity. Otherwise, it would
have been able to decode this variable node by computing its parity (based on the
other incoming messages) and deducing this variable node’s correct value. Now,
the probability that any of the check node’s incoming messages are erasures is the
complement of the probability that none of them sends an erasure. We assume that
those probabilities are independent and identically distributed when the blocklength
n goes to infinity. This yields the formula shown in (1.20).

Similarly, the value of 2(**1) from a variable node to a check node at the next
iteration is computed in terms of the messages incoming from the other check nodes
as

2D = (D)t (1.21)
This is because a variable sends a neighboring check node an erasure message if
it was erased by the channel (and this occurs with probability €) and all its other
neighboring check nodes also sent it erasure messages (and each of these messages
is sent with probability y®). We finally obtain the formula in (1.21) because we
assume that the incoming messages are independent.

We call these equations the density evolution (DE) equations. In the case of
transmission over the BEC, the densities are simply real-valued probabilities. How-
ever, when transmission takes place over a BMS channel, the density can be infinite-
dimensional, as we explain in Section 1.4.4.

We rewrite the DE equations for the (¢, r)-regular Gallager ensemble when trans-
mission takes place over the BEC(¢) for future reference

y = g(aWse), (1.22)
2D = £y s, '

with initial condition 2(?) = 1, g(a;€) =1 - (1 —2)"", and f(y;¢) = ey’™!, yielding

y(t) = 1 —_ (]_ — :L'(t) )T_]-’ (1 23)
:E(t+1) _ 6(y(t))€_1, :

with initial condition z(®) = 1.

Remark 1.10. The redundancy in writing the DE equations in this chapter is done
on purpose. In fact, some of the results we present in this thesis are not restricted
to coding and treat more general systems. We therefore write the more general
formulation of the DE equations in (1.22) to encompass such cases.
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We can rewrite the above system of equations as a recursion in the probability
x as

2D = f(g(zM;e)se), (1.24)

with initial condition z(?) = 1 and again g(z;¢) =1 - (1-2)", and f(y;¢€) = ey’ L.
Alternatively, we can write the recursion in the probability y as

y " = g(f(y D5 e)se), (1.25)

with initial condition y(©) = 1.

In this thesis, we will use both DE formulations — depending on what we need.
To differentiate between them, we call the system of equations in (1.22) and (1.23)
the DE equations and those in (1.24) and (1.25) the DE recursions.

It is interesting to find the fixed points of the DE equations, to which these
equations converge and at which more iterations of the BP algorithm no longer
results in change. Let us first check that there exist fixed points to the above
DE equations. We recall that (z(),y®)) ¢ [0,1]? and observe that the update
functions f(y;€) = ey’ and g(x;¢) =1 - (1 -)"! are non-decreasing in y and z,
respectively. Furthermore, by applying the first iteration, we find that (1) < 20
and y(M <y thus the DE iterations decrease the values of (:E(t),y(t)). Therefore,
using the monotone convergence theorem, we can see that the DE equations decrease
the values of (a:(t),y(t)) until they converge to some limit values (z(*),y(®)). As
the functions f and g are continuous, then these limit points are solutions to the DE
equations. (This should not be too surprising as a decoding algorithm is expected
to decrease the erasure probabilities!)

If the DE equations converge to the trivial fixed point (2(>),4(*)) = (0,0), then
the BP algorithm has successfully decoded all erasures caused by the BEC channel.
Otherwise, it has become blocked with some strictly positive fraction of bits that it
has not been able to decode. In fact, this depends on the initial probability of erasure
of the channel € or, in other words, the amount of noise in the channel. There exists
a threshold for e below which perfect decoding is possible (and (2(*), (=)} = (0,0))
and above which there remains a strictly positive fraction of undecoded bits.® We
call this value of the channel parameter the BP threshold and define it formally
below.”

Definition 1.11 (BP threshold). The BP threshold egp of the (£,1)-reqular LDPC
code ensemble is defined by

epp 2 sup{e € [0,1] | z(°) = 0}, (1.26)
where () is the limit value of the recursion in (1.24).

In comparison, the threshold of noise € up to which the (optimal) MAP decoder
can decode perfectly is defined below.

8We say perfect decoding here in the sense that all errors are corrected. This is only true in the
limit of infinite blocklength. When the latter is finite, we still get an error floor for values of € that
are lower than the BP threshold.

9This definition will be generalized in Section 1.4.4 for general BMS channels.
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Definition 1.12 (MAP threshold). The MAP threshold €yap of the (¢,r)-reqular
LDPC code ensemble is defined by

1
emap =inf{e € [0,1] | liminf —E[X]|Y (¢)] > 0}, (1.27)
n—+oo M

where n is the blocklength, X is the vector of random wvariables pertaining to the
channel input (codeword), Y is the vector of random wvariables pertaining to the
channel output (observation), and the expectation I[-] is over the mentioned LDPC
ensemble.

In general for an LDPC(), p) Gallager ensemble, the BP threshold is lower than
the MAP threshold of the ensemble. However, as we will see in Section 1.5, the
spatially coupled construction of LDPC codes results in the so-called threshold sat-
uration phenomenon that makes the BP threshold equal to the MAP threshold in
the limit n - +o0, for any degree distribution.

For the LDPC(A, p) Gallager ensemble, when transmission takes place over the
BEC(e), the update equations take the form f(y;e) = eA(y) and g(z;¢) =1 - p(1 -
x). We write the corresponding DE equations and DE recursion below for future
reference and to facilitate the transition into the next chapter. The DE equations
read

y  =1-p(1-2®),
{;ﬂ“l) ey (1.28)
We can rewrite this in the form of a recursion in x as
D = eX(1 - p(1—2D)). (1.29)
The recursion in terms of y is
y " = 1-p(1-e(y™)). (1.30)

1.4.4 Density Evolution on BMS Channels

In Section 1.4.3, we derived the DE equations for the case when transmission takes
place over the BEC. These equations describe the evolution of the probabilities
2 and y(t) that variable and check nodes, respectively, emit erasure messages at
iteration t of the BP algorithm. We can observe from (1.23) and (1.28) that the
required such updates are polynomial equations in these probabilities.

For the more general case of transmission over BMS channels, instead of tracking
the probabilities of erasure messages 2 and y(t), we look at the evolution of the
probability distributions of the LLRs h;_, and fLa_,Z- described in Section 1.3.4. In
addition, the “channel parameter” is no longer the scalar parameter € but a channel
distribution or, equivalently, the distribution of the channel LLR [; (corresponding
to the channel realization for variable x;). The corresponding DE equations will
therefore be of integral form and will make use of different operations on distribu-
tions.

We consider distributions that are measures on the extended real numbers R.
Moreover, we consider “symmetric” such measures x on R satisfying

x(h) = e"x(-h), (1.31)
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for all h € R where h is interpreted as an LLR. These distributions will be interpreted
as the probability distributions of the random variables that describe the LLRs that
play the role of the messages exchanged in the BP algorithm or the observations
from the channel in the LLR domain. As we consider symmetric-output channels,
the messages exchanged during the BP algorithm are also symmetric. We thus
implicitly assume that all distributions we consider henceforth are symmetric.

Definition 1.13 (Entropy Functional). The linear entropy functional H describes
the average Shannon entropy of the BP marginal probability distribution and is de-
fined as

H(x) = f dx(h) logy(1 + 72, (1.32)

This entropy functional can be interpreted as a measure of the uncertainty in a
bit, once we have run the BP decoder. To understand the expression given in (1.32),
recall that the BP marginal probability distribution for a bit x; € {-1,+1} is equal
to

hiz;

H, zhz ==, 1.
pXZ\HZ(x| ) ehi.:,.e—hi ( 33)

where h; is the LLR associated with x; computed by BP. At this point, we can write
the average Shannon entropy of the bit given the LLR h;, where the average is over
the distribution of the LLR, as

~ [ dnx(B)px, (110 Logs pixc i, (11R)

- fR dhx(h)quHi (=1]h) logy Px;|H; (=1]h).

To see that this sum is equal to the expression in (1.32), we make the change of
variables h = —h in the second integral to obtain

- [ anx(hypca, (1) Yogy i, (1)

~ [ ahx(=h)pscj, (<11 = 1) Yogs pxc s, (<1 - )

Using the symmetry properties in (1.19) and (1.31), this becomes

- [ Anx()px a1, (1) logs px, i, (110)

- [ ahx(h)e ™ p s, (1) logs px, s, (1]R)

Finally, we plug in the explicit expression of the conditional probability distribution
for a bit in (1.33) to obtain

h h ~h
=— jI;{dhX(h) log, (eh i e—h)[eh i eh eh6+ e‘h]

- fRdhx(h) log, (1+e72h).
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We recall the simplified BP equation that describes the evolution of the LLR

hga from a variable node to a check node at iteration t,

WO _hes T RO

i—a b—i’
bedi\a

where h; denotes the LLR from the channel to variable x; and ﬁét_zl denotes the
LLR from check node b to variable z; at iteration ¢. This equation makes use of the
summation of LLRs. We therefore define below the probability distribution of an
LLR that is obtained by summing other LLRs.

Definition 1.14. Let hi and ho be two independent random variables with distribu-
tions x1(h1) and x2(hs2). Then, the distribution of their sum h = hy + ho is defined
by

(X1 ® Xg)(h) = .[R? dhidhs Xl(hl)XQ(hQ) (5(}1 - (hl + hg)) (1.34)
We can also write this as
(x1 ® x2)(E) = fdth(h)xl(E—h), (1.35)

for any measurable set F € R.

The second simplified BP equation we derive in Section 1.3.4 describes the evo-
lution of the LLR h,_; from a check node to a variable node. At iteration ¢ + 1, we
can write it as

h((;;;l) = 2tanh_1( I tanh(hg.t_))a/Z)).
jeda\i

Due to the calculation required in the equation above, we define the following con-
volution operator.

Definition 1.15. Let hy and ho be two independent random variables with distribu-
tions x1(h1) and x2(hy). Then, the distribution of h = tanh™!(tanh(hy) tanh(hy))
1s defined by

(x1 B x2)(h) = f]R dhidhy xy(h)xa(ha) 6(h — tanh™ (tanh(hy) tanh(hs))). (1.36)
We can also write this as

(x1xQ)(E):fdth(h)xl(ztanh-l(%)), (1.37)

for any measurable set E € R.
Each operation taken separately is associative, commutative, and linear, so that

X1 ® X9 = X2 ® X1, x1 B x9 = X9 H X1, (1.38)
(X1®X2)®X3:X1®(X2®X3), (X1X2)X3=X1(X2X3). (1.39)

However when they are taken together there is no distributive or associative law in
the sense that x1 ® (X2 Xg) * (X1 ® Xz) x3 and x1 (Xg @Xg) * (X1 X2) ® x3.
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We will also use the so-called duality rules [63]

H(x®y)+H(x®y)=H(x)+H(y),
H(zx®a)+H(x®a)=H(a), (1.40)
H(a®b)+ H(a®Eb) =0,

where x,y are measures on R and a, b are differences of probability measures a =
X1 — X2, b = x3 — x4, where x;, i = 1,2, 3,4, are measures on R.

We denote by Ag the Dirac mass at 0 and by A, that at +co and observe the
following

Ag®x=x, Ao ®X = Ago, (1.41)
A B x = Ay, Ag B X =X. (1.42)

In words, the Dirac mass Ag at 0 is the identity of the operator ® and the annihilator
of the operator B, whereas the Dirac mass A at +oo is the identity of the operator
and the annihilator of the operator ®.

We consider a family of BMS channels whose distribution cy(h) is parametrized
by the channel entropy H(cp) = h. Then, we can write the DE equations for
LDPC(A, p) Gallager ensembles over these channels as

{y(t) = PP (=),

KD <G @A2(y0), )

where by pP(x) = ¥, p,xB01) and A®(x) = ¥, \x® D | with xBC-D = x@m...mx
(multiplication r — 1 times) and x®1) = x ® .- @ x (multiplication ¢ - 1 times).

Remark 1.16. In this section we consider BP messages that are distributions, as
opposed to the scalar BP messages that we consider in Section 1.4.3. The analysis
pertaining to distributions is not generalized to systems beyond coding in this thesis.
Therefore, to avoid superfluous notation, we will not provide more general notation,
as we did for the scalar case in (1.22).

We can alternatively write the DE recursion in terms of the variable node output
distribution x as

2D = ¢y @ A% (6P (x1)), (L.44)

with initial condition x(®) = Ay. Equivalently, we can take the (perhaps) more
natural initial condition x(©) = Ch.

Just as in the case of transmission over the BEC(e), it can be seen that applying
the DE recursion on a distribution yields a less degraded one,'® and that the recur-
sion converges to a limiting distribution x(®). The proofs are quite technical and
would require the introduction of many technical notions that we do not use in the
thesis, hence we omit them and instead refer the interested reader to [63].

We now redefine the BP and MAP thresholds in the more general setting of
transmission over BMS channels.

Degradation is an important concept used to compare distributions and can be expressed in
different ways, one of which is the following. We say that a distribution x; is degraded with respect
to the distribution x2 if [ dhxi(h)f(|tanh(h/2)|) > [ dhx2(h)f(]tanh(h/2)|) for all concave non-
increasing functions f : [0,1] - R. We say that x; is strictly degraded with respect to x» if the
inequality is strict.
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Definition 1.17 (BP threshold (BMS)). The BP threshold hpp of an LDPC(X,p)
code ensemble when transmission takes place over a BMS channel of distribution cy
1s defined by

hpp = supihe [0,1] | x() = Ay}, (1.45)

where x(%) is the limit value of the recursion in (1.44).

Definition 1.18 (MAP threshold (BMS)). The MAP thresholdhyap of an LDPC(A,p)
code ensemble when transmission takes place over a BMS channel of distribution cy,
is defined by

Baap & inf{(n € [0,1]] liminf ~E[H (xly(ca))] > 0). (1.46)
n—+oo 1 =

where n is the blocklength, x is the channel input, y is the channel output, H(g|z(ch))
is the conditional Shannon entropy of the input given by the channel observations,
and the expectation E[-] is over the LDPC code ensemble.

1.4.5 The Potential Function

In Sections 1.4.3 and 1.4.4, we derived DE equations that enable us to assess the
performance of an LDPC code ensemble when the blocklength is large. In general,
the fixed points of these equations can be viewed as the stationary point equations
of a function that is typically called the “potential function”. We can view the
potential function as an “average form” of the Bethe free energy [64] of the code’s
graphical model. In the context of statistical mechanics, it is essentially the “replica
free energy functional” [65] or, equivalently, the negative of the trial entropy, also
called the replica-symmetric free entropy [66—68]. A pedagogical explanation of the
precise connection between the Bethe free energy and the potential function in the
context of coding can be found in the appendix of [63].

It is already recognized that this variational formulation is a powerful tool to
analyze DE updates under suitable initial conditions [55,63,69-74]. There are several
ways to define a potential function; all definitions share the property that their
stationary point equations are the fixed points of the DE equations of the system. In
this section, we list a few such definitions that we will use throughout the thesis. As
will be seen, we find that different expressions are convenient for different analyses.

The potential function plays a key role in the derivation of our results. In fact,
the real “stars of the show” are the potential functionals of the associated spatially
coupled systems as considered in the large system size limit (that we formalize in
Sections 1.5 and 1.6). In Chapters 2 and 3, we rewrite the (continuous) coupled
system potential in terms of the associated DE equations, then we use functional
derivatives to compute the number of bits decoded per iteration of the BP algorithm
for a spatially coupled code. In Chapters 4 and 5, we use a tool from optimal
transport called “displacement convexity” (that we define in Section 1.7) to analyze
the (continuous) potential functionals of spatially coupled systems and to prove that,
under some conditions, they are “displacement convex” in the space of probability
measures.

We refer to the potential functions in this section as “single potentials” as com-
pared to the “coupled potentials” that we later define for spatially coupled LDPC
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Figure 1.6: We plot the potential function (Definition 1.21) of the (3,6) regular LDPC
for the BEC(€) for several values of the erasure probability €. Note that = = 0 is always
a trivial stationary point. For € < 0.43 = egp the potential function is strictly increasing
and x =0 is the only minimum. At egp = 0.43 a horizontal inflexion point develops. For
all € € [egp, émap), we have a second non-trivial minimum and so the energy gap AFE is
defined and strictly positive. At eyap = 0.488 the trivial and non-trivial minima are at
the same height and AFE vanishes.

ensembles. We start by writing the single potentials we use when transmission takes
place over the BEC; that is, when the messages exchanged between variable and
check nodes are scalar. To recover the fixed points of the DE equations or one of
the DE recursions from these potentials, it is enough to set their derivatives - with
respect to one of the probabilities x or y - to zero.

The definition below will be used in Chapter 3, concerned with the speed of
decoding when the DE equations involve scalar quantities.

Definition 1.19 (Single Potential in One Scalar Variable [71]). The single-system
potential function associated with the DE recursion in (1.29) for the LDPC(\,p)
Gallager ensemble with transmission on the BEC(e) is defined as

Us(w;€) = zg(x;€) = G(w;€) = Fg(xse);e), (1.47)
where
f(@ie) =eX(z),  g(ase) =1-p(l-2),
F(x;e) = A du f(use), G(z;e) = /0 du g(u;e).

The definitions below will be used in Chapters 4 and 5 in the context of displace-
ment convexity, where the DE equations involve scalar quantities.

Definition 1.20 (Area Potential in One Scalar Variable [70]). The area potential for
the LDPC(\,p) Gallager ensemble with transmission on the BEC(e) can be defined
as

Al )= [ dug™ (o) - f(use)). (1.48)
where f(u;e) =eX(u), and g(u;e) =1-p(1 —u).
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We note that the area potential A(y;e) is equal to the single potential Us(x;¢€)
in Definition 1.19 if we set y = g(z;¢€).

Definition 1.21 (Alternative Area Potential in One Scalar Variable [75]). Alter-
natively, the area potential for the LDPC(X, p) Gallager ensemble with transmission
on the BEC(e) can be defined as

Awio) = [ du (/7 (o) - g(ui o)), (1.49)
where again f(u;€) =eX(u), and g(u;e) =1-p(1-u).

We note that the alternative area potential 121(33; €) is equal to the single potential
Us(x;€) in Definition 1.19 at the fized points of DE.

The last two definitions of the potential can be obtained by replacing x = f(y;€)
and y = g(x;¢€), respectively, in the following potential function that is expressed in
terms of both DE quantities = and y.

Definition 1.22 (Single Potential in Two Scalar Variables [70]). In terms of both
DE wvariables x and y, the potential for the LDPC(\,p) Gallager ensemble with
transmission on the BEC(e) can be defined as

o) = [Tduft o+ [Mdug (we) -y, (1.50)
where f(u;e) =e\(u), and g(u;e) =1-p(1—-u).

Finally, we give the single potential we use when the DE equations involve prob-
ability distributions (instead of scalar probabilities). In our work, we only use the
single potential in terms of one variable, the variable node output distribution x,
that we define below.

Definition 1.23 (Single Potential in One Variable [76]). The potential for the
LDPC(X\,p) Gallager ensemble with transmission over a BMS channel of distri-
bution c can be defined as

1

Ws(x;c) = 6

H(R®(x)) + H(p®(x)) - H(x 8 p®(x))

—mH(Ch@BL@(P(X)))» (1.51)

where H denotes the entropy functional defined in (1.32).

We note that the potential Ws(x;c) above gives back the potential Us(z;€) in
Definition 1.19 if we specialize it to a system with scalar messages (x —» x) and a
scalar channel parameter (¢ — €).

The fixed point form of the DE recursion (1.44) is obtained by setting to zero
the functional derivative of the potential functional Wy(x;cy) defined above with
respect to x. In other words x = ¢y, ® A®(p¥(x)) is equivalent to

1
lir%—(Ws(x+7n; cn) — Wi(x;cn)) =0, (1.52)
=0y
where 7 is a difference of two probability measures [63].
We will repeat and redefine these potentials appropriately whenever needed in
the thesis chapters.
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Remark 1.24. In the remainder of the thesis, we omit the subscript h from cy
and the argument h from x(h) and cy(h) most of the time. This is because we will
need a subscript (resp. an argument) z that represents the position along the spatial
coupling chain in the discrete (resp. continuous) case. This will be made clear in
Section 1.5.

The BP and MAP thresholds, hgp and hyap, can be obtained from the analysis
of the stationary points of the potential function. We demonstrate this with the
example shown in Figure 1.6, where we plot the “single potential in one scalar
variable” (Definition 1.21) for the (3, 6)-regular Gallager ensemble with transmission
over the BEC(e), for several values of e.

We can track the evolution of the probability = in the recursion (1.24) by using
the plot of the potential as follows. We consider the initial condition to always be
29 = 1. As the DE recursion decreases the value of x along iterations of BP, we can
see from the plot that the value of x will keep decreasing until it reaches the first
stationary point. Let us first consider the case when the channel parameter is lower
than the BP threshold € < egp. In this case, x will converge to the stationary point
2(°®) = 0. When € = epp, a non-trivial stationary point appears and thus x converges
to a strictly positive limiting value 2(®) > 0. That is, we define the BP threshold as
the smallest value of the channel parameter € at which perfect decoding (in the limit
n — +00) is no longer possible and 2(°) > 0. Clearly, if we increase the noise level
of the channel even more, for € > egp, the recursion will still converge to a positive
limit value 2(%) > 0. We observe graphically that for higher values of €, the value of
2() also increases, but its potential value Us(x(‘”);e) decreases. At a certain value
of €, we obtain a stationary point 2() at which Uy(2(°);€) = U,(0;€). We call this
parameter the potential threshold €., which we formalize below. As explained in
Section 1.5.4, the potential threshold is equal to the MAP threshold for a large class
of ensembles.

For values of € in [epp,€,01], We define the energy gap AE as the difference
in the (single) potential at the non-trivial (undesirable) fixed point and the trivial
(desirable) one. In the chapters where we use this quantity, namely Chapters 2
and 3, we assume that we have exactly two stable DE fixed points (equivalently, two
minima for the single potential). Thus, the energy gap is simply the difference in the
single potential at these values. In fact, in these chapters, we consider the dynamic
behavior of spatially coupled ensembles, when the DE equations non-trivially update
distributions. This behavior occurs precisely when AFE(cy) > 0.

Definition 1.25 (Potential Threshold (BMS)). Consider an LDPC(X,p) ensemble
and a family of BMS channels cy parametrized by their entropies H(cy) =h. Then,
the potential threshold is defined as

h,, =sup{he[0,1]| AE(cyn) > 0}, (1.53)
where AE(cy) is the energy gap obtained when the channel distribution is cy.

For the specific case of transmission over the BEC, the potential threshold is
defined as €, = sup{e € [0,1]|AE(e) > 0}, where AE(¢) is the difference in the
single potential of the system (between the non-trivial and the trivial stable fixed
points) when the channel parameter is equal to e.
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1.5 Spatial Coupling

Spatial coupling was first introduced by Felstrom and Zingangirov in the context of
LDPC codes [77]. Spatially coupled codes have been shown to be capacity-achieving
on BMS channels under BP decoding. The capacity-achieving property is due to
the “threshold saturation” of the BP threshold of the coupled system towards the
MAP threshold of the uncoupled code ensemble [43,63].

Spatial coupling has also been applied to several other problems besides coding
[44,45], such as compressive sensing [52-54], random constraint satisfaction problems
[55-57], and a coupled Curie-Weiss (toy) model [59, 60].

In this section, we briefly describe the protograph construction of LDPC codes,
as well as their random construction. Although we only use the latter in this thesis,
we briefly describe the former as it is used in practice and provides some advantages
over random ensembles. We also explain the threshold saturation phenomenon and
provide the density evolution equations and potential functionals that correspond to
spatially coupled codes. Finally, we describe and compare the thresholds involved
in spatially coupled codes, as well as their underlying uncoupled systems, namely
the BP, MAP, potential, and area thresholds.

1.5.1 Spatially Coupled Configurations and Threshold Saturation

In the 1980’s, Tanner had the idea of “unwrapping” (or “flattening out”) cyclic block
codes and terminating (or fixing) the boundaries [78,79]. The resulting convolutional
structure not only exhibited very good performance, but also paved the way to many
variants of convolutional LDPC code constructions that finally led to the design of
universally capacity-achieving spatially coupled codes.

The analysis of convolutional LDPC ensembles via density evolution was intro-
duced by Sridharan, Lentmaier, Costello and Zigangirov [45,80], in the case when
transmission takes place over the BEC, and then generalized by the same authors
[44,45] for transmission over general channels.

The thresholds determined by these results and analyses seemed to exhibit the
(now proven) “threshold saturation” property of convolutional LDPC codes; it
equates the BP threshold of those coupled codes with the MAP threshold of the
underlying (uncoupled) ensemble [81]. This property was first observed numerically
by G. Liva and then formulated as a conjecture by Lentmaier and Fettweis. At ap-
proximately the same time, this attractive property was proved rigorously for trans-
mission over the BEC by Kudekar, Richardson, and Urbanke [41,69,70]. Shortly
afterwards, another proof technique was introduced by Yedla, Jian, Nguyen, and
Pfister [71] to establish the same result. Threshold saturation was also afterwards
proved for transmission over BMS channels by Kudekar, Richardson, and Urbanke
[43] as well as (using a different, more concise technique), Kumar, Young, Macris,
and Pfister [63]. In fact, it has further been shown by Giurgiu, Macris, and Urbanke
[82] that the MAP threshold of the underlying (uncoupled) code ensemble is equal
to that of the associated spatially coupled code ensemble for a large class of codes.
We elaborate further on this in Section 1.5.4.

In this section, we describe two constructions of spatially coupled codes: the
“random construction” that we use throughout the thesis and the “protograph con-
struction”. The idea behind the excellent performance of both constructions is the
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same and is caused by “seeding”. They are also both obtained by taking say, 2L.+1
copies of the uncoupled code, erasing all the original edges and reconnecting the
copies locally. The precise way in which these systems are coupled depends on the
construction we use.

Spatially coupled codes are capacity-achieving under the low-complexity BP al-
gorithm: They exhibit excellent performance up to thresholds higher than the BP
threshold of the underlying system. However, they have smaller rates than their asso-
ciated underlying codes. This rate-loss effect becomes negligible when the number of
copies becomes large. Protograph-based spatially coupled codes show a better trade-
off regarding rate, thresholds, and blocklength than random-based coupled codes.
However, the latter is easier to analyze. For instance, both code constructions ex-
hibit excellent performance experimentally, but threshold saturation has only been
proved rigorously for the random construction.

We end this section by defining the notion of a “profile” that describes the error
distributions along a spatially coupled system and that is a key object in our work.
We present the one-sided and two-sided profiles, the former of which we use in our
derivations.

Remark 1.26. A small remark on terminology: We use “single”, “uncoupled”, or
“underlying” code to describe the “original” LDPC code, such as the one described
in Section 1.2 and “spatially coupled” or simply “coupled” code to refer to the codes
we describe below.

The Random Construction of Spatially Coupled Codes

We describe the construction of the spatially coupled LDPC code ensemble that we
use in this thesis; it is referred to as the (¢,r, L., w) ensemble (when the underlying
code is regular) or the random construction ensemble (more generally). We then ex-
plain how this code is terminated at the boundaries so that the threshold saturation
phenomenon occurs.

We start with an informal description of the spatially coupled ensemble and then
formalize it.

Consider a single LDPC code ensemble described by its variable and check node
degree distributions (from a node perspective) L and R, respectively. For instance,
consider the following distributions

L(z) = 0.32% + 0.62° + 0.1z,
R(z) =z

This code ensemble satisfies the following property: A fraction 0.3 of its variable
nodes has degree 2, a fraction 0.6 has degree 3, and the rest (a fraction 0.1) has degree
5, and all its check nodes have degree 4. We note that the number of variable sockets
(the total number of edges emanating from the variable node side) should be equal
to the number of check sockets (the total number of edges emanating from the check
node side). That is, if N and M denote the numbers of variable and check nodes,
respectively, then for the example above we require that N x(0.3x2+0.6x3+0.1x5) =
M x (1 x4). This condition applies in general and not only to this example.

The corresponding spatially coupled random code ensemble is constructed by
making several, say 2L. + 1, copies or replicas of the single system on the spatial
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positions z = =L, ..., L., and by reconnecting them locally. The number of replicas
is called the coupling chain length and the maximum size of the local connections
(the largest distance between two replicas that share edges) is called the window
size that can also be thought of as a smoothing parameter. We say that an edge
connects a “variable node socket” to a “check node socket” (or vice-versa). We
erase the edges from all replicas but keep their “empty” (unconnected) sockets in
place and reconnect them as follows. Consider a variable node socket (or outgoing
edge) at position z of the coupling chain —L,, ..., L.. Connect this socket to a check
node socket chosen uniformly and independently at random in the range of positions
Z,...,z+w-1. This guarantees a very important property: The degree distributions
of variables and checks at each position of the coupling chain are the same as those
of the uncoupled code ensemble, with the additional property that local replicas are
connected (we discuss this in more detail below). We note that the labeling of the
coupling axis (start and end points) is arbitrary and can be modified for convenience.

The formalism we describe below is adapted from [41] so that it applies to irreg-
ular LDPC(A, p) ensembles.

Consider an instance of the irregular LDPC(A\, p) code ensemble with N variable
nodes and M check nodes, and a realization of the degree distribution imposed by
the ensemble. We erase all edges in the code instance but keep the sockets associated
with variables and checks in place. We will eventually reconnect them.

Place 2L. + 1 copies of the code instance on positions z = —L,..., L.. Later,
we will define the numbers N and M of variable and check nodes at each position.
For each variable node v, with d, sockets, we define the two following quantities.
The type t, of v is the w-tuple t, = ((ty)o,- .-, (tv)w-1) Where (t,); is equal to the
total number of edges emanating from v to check nodes at position z =i+ j. A
constellation k, of v is the d,-tuple ky, = ((ky)o, .-, (kv)a,-1) where (k;); is equal
to the position difference j = z — i between v and the check connected to it via
its I*" socket. A small example to demonstrate these two definitions is shown in
Figure 1.7. We can write the relation between the type 7,(k,) and the constellation
k, of a variable node as (Ty(kv))j = Zlcl:()—l T k)=

Then, as we want to choose the position of each edge independently, we impose
a uniform distribution on the set of all constellations. We call p,, the distribution
for the variable node v and define it as

[{kv : 70 (k) :tv}|'

U)d”

pv(tv) =

Then the distribution p for a set of types t = {to,...,t5_,} on the N variable nodes
is defined as

p(t) = L(pv(tv))v

where L is the variable degree distribution from a node perspective. Now we choose
the number of variable nodes per position N so that N/N ¢ IN and Np,(t,) € N
for all types t,. For each position z on the coupling chain, we choose Np,(t,)
variables with edges assigned according to type t,. Finally, for each variable v,
we use a random permutation on the sockets chosen uniformly from the set of all
permutations on d, letters in order to map a type to a constellation. The number
of resulting check nodes per position M satisfies M/M = N/N.
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Figure 1.7: We show an example of the type and constellation of a variable node when
the window size is w = 4. The node is located at position ¢ and is connected to four
check nodes at positions i + 1, @ + 2, and ¢ + 3. Then the type corresponding to how
many check nodes it is connected to at each position 7,...,i+ 3 is t = (0,1,2,1) and
the constellation that shows for each socket, the difference in the distance between the
variable and its connected check node is k = (2,1,2,3).

You might have noticed a “flaw” in the construction above: At the boundaries,
the original degree distributions of the underlying code ensemble cannot be pre-
served. To see this, think of the (¢,r)-regular code ensemble where all variable
nodes have degree ¢ and check nodes degree r. We construct the edges from the
variable node perspective.!’ Therefore, from every variable node at position z, we
connect its £ sockets to check node sockets chosen uniformly and independently at
random on positions z,...,z+w—1. Then, at the left boundary, the check nodes in
the first w—1 positions — L., ...,—L.+w—-1 will not be reached by “enough” variable
node sockets to have a degree of r. At the right boundary, the variable nodes on the
last w—1 positions L.—w+1,..., L. will seek to connect to check nodes at positions
Le,...,L.+w-1, but the coupling chain only extends to position L.

Therefore, we modify the boundaries of the coupled code in a way that is
convenient for us. On the left side, we add auziliary variables on positions z =
—-L.-w+1,...,-L.—1 (and their corresponding check nodes) so that the check
nodes on positions z = —L,...,—L. +w — 1 have degree r, and on the right side, we
add auziliary check nodes on positions z = L.+ 1,..., L.+ w — 1 (and their corre-
sponding variable nodes) so that the variable nodes on positions z = L.—w+1,..., L,
have degree £. Although the auxiliary nodes do not have regular degrees, we are
more interested in “regularizing” the degrees of the nodes on the original positions
z==L¢,...,Lc. In Figure 1.9 we show a spatially coupled (3,6)-regular code with
spatial length L and window size w = 2. We have two auxiliary systems, one at each
boundary, denoted by dashed lines and lighter colors.

Spatially coupled codes exhibit threshold saturation because of seeding. This
is done by fixing, to some predetermined value, the w — 1 auxiliary variable nodes
on the left boundary and the w — 1 auxiliary variable nodes on the right boundary.

" This is not obligatory, but we choose to fix this technique here for clarity.
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—L-w+1 —L —-L+1 L-1 L L+w-1

Figure 1.8: In order to construct a “random” spatially coupled code with window size
w = 2, we first place 2L, +2w -1 copies of the randomly constructed LDPC (uncoupled)
Tanner graph on the spatial positions z = L.—w+1, ..., L.+w-1. The leftmost w—1=1
and the rightmost w — 1 = 1 copies are the auxiliary codes, whose variable nodes are
fixed to some predetermined values; we draw these codes with dashed borders. We note
that this is not a good example since the uncoupled graphs are fully connected (whereas
LDPC codes are sparse), but we use it for demonstration purposes.

>
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Figure 1.9: To coupled the copies of the uncoupled code, we first erase all the edges,
then reconnect them randomly within a window size, which is w = 2 in our example, such
that the degree distributions of the original (not auxiliary) copies are preserved. The
variable nodes at the boundaries are colored in gray and are fixed to some predetermined
values known to both the sender and the receiver; they constitute the “seed” that makes
decoding easier at the boundaries.

For instance, the values of these bits can all be zeros. This “extra information”
and the graph structure are known to both the sender and the receiver. With this
modification, the constraints on the check nodes connected to the fixed variable
nodes become easier to solve (as they have fewer unknowns to solve for). Therefore,
decoding becomes easier on the boundaries of the coupled chain and more variables
on the boundaries are decoded. Once this occurs, then other check nodes connected
to these recently decoded variables become easier to solve. This makes larger the
boundary effect with extra information, and the effect of the originally fixed aux-
iliary bits moves inwards into the chain. The propagation of information from the
boundaries into the middle of the chain eventually leads to a completely decoded
graph when the channel parameter is lower than the MAP threshold. With the un-
coupled code, complete decoding was possible only when the parameter is lower than
the BP threshold. This is precisely why we say that spatially coupled codes exhibit
the threshold saturation phenomenon.

We note that the addition of auxiliary check nodes decreases the design rate of
the code. We recall that the rate is defined as r(X,p) = 1 — £ayg/Tavg. Due to the
auxiliary check nodes with few connections, the average check node degree r,y, will

“z
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Figure 1.10: The protograph of a standard (3,6)-regular ensemble.

. % .

L+1 Ltw—1 %

>

Figure 1.11: We place 2L, + 2w — 1 copies of the protograph on the spatial positions
z=-L.—w+1,...,L.+w-1. The leftmost w — 1 and the rightmost w — 1 copies are
the auxiliary codes, whose variables nodes are fixed to some predetermined values; we
draw them with dashed borders.

>

—L-w+1 —L-1 ) L L+1 Ltw—1 %

Figure 1.12: The edges of the protographs are spread to their adjacent codes. Since
the window size is w = £ = 3, then for each variable node at position z, /-1 edge bundles
are connected to check nodes at positions z+1,...,z+w—1 (one bundle per position).
The auxiliary variables (in gray) are fixed to predetermined values; thus, they serve as
the seed and initiate decoding at the boundaries.

decrease, which in turn decreases the rate.'?> However, spatially coupled systems
are typically analyzed and implemented with large blocklengths, in which case the
effect of the rate loss becomes negligible.

The Protograph Construction of Spatially Coupled Codes

Protograph-based spatially coupled ensembles exhibit excellent performance and
experimentally demonstrate threshold saturation. Such codes are implemented in
practice on chips. There are several variants of protograph-based coupled codes,
as well as several ways to describe each of them [41,83-89]. Here, we describe the
simple example of the (¢,r)-regular protograph-based spatially coupled code with
=3, r=06, and window size w = { = 3.

A protograph is a Tanner graph with a relatively small number of nodes [85,
90]. We first consider a protograph of a standard (3,6)-regular ensemble, that is

12The auxiliary variable nodes do not affect the design rate because they are fixed.
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represented by two variable nodes, with 3 outgoing edges each, and 1 check node
with 6 outgoing edges, as shown in Figure 1.10. We “lift” the protograph by a factor
of M, so that there are M identical such protographs stacked on top of each other;
this means that we now have a total of 2M variable nodes and M check nodes. We
call every overlapping stack of M edges an edge “bundle”. Within each bundle, we
make a random permutation on the edges. This yields a larger (3,6)-regular code
with the same rate as the original protograph.

In order to construct the corresponding protograph-based spatially coupled code,
we first place 2L. + 1 copies of the lifted protograph on the spatial positions z =
—Lec,...,L.. Then, to couple the copies, we spread out the edges. More specifically,
out of the £ = 3 bundles outgoing from a variable node at position z on the coupling
axis, £ —1 =2 edge bundles are connected to the check nodes at positions z+ 1, z + 2
(1 bundle to each destination position).

As with the random construction of coupled codes, this creates degree irreg-
ularities at the boundaries: the check nodes at the left boundary have less than
6 outgoing bundles, and the variable nodes at the right boundary have less than
3 outgoing bundles. We there add auxiliary protographs at the boundaries, on
z=-L.—w+1,...,-L.-1and z=L.+1,..., L.+w-1. This regularizes the “origi-
nal” protographs on the coupling axis. The variable nodes of the auxiliary codes are
fixed to some predetermined values; this is the “seed” that causes easier decoding
at the boundaries.

The coupling procedure can alternatively be seen as follows. We first place the
codes (including the auxiliary ones) on the spatial axis z = —L.—w+1,..., Lc+w—-1,
as shown in Figure 1.11. Then, we connect every w = 3 adjacent copies, as shown in
Figure 1.12.

The ensemble of protograph-based coupled codes is then the set of codes obtained
from permutations on the edges within each bundle. To obtain a particular instance
of the ensemble, we pick a permutation from the set of all permutations uniformly
at random and connect the variable nodes to the check nodes according to this
permutation.

One-Sided and Two-Sided Profiles

We have so far seen two constructions of spatially coupled codes, the protograph-
based and the random ensembles. In both cases, we spread out 2L. + 1 replicas of
the underlying uncoupled code on the positions z = —L,, ..., L., and locally connect
them within a window size w. In the remainder of this thesis, we consider the
random constructions of spatially coupled codes. In order to track the behavior of
belief propagation on such codes, we define the so-called “profile” below.

At every iteration of the BP algorithm, the variable and check nodes of the
spatially coupled graph exchange messages that are described by a set of coupled DE
iterative equations. We call the solution to the DE equations the “decoding profile”
x (resp. y) in the scalar case and x (resp. y) in the case of higher dimensions.
A profile is a vector of distributions of the BP log-likelihood estimates of the bits
along the spatial axis of coupling; they can be thought of as “error distributions”.
More precisely, let the integer z € {—Le, ..., L.} denote the position along the spatial
direction of the graph construction (on which the replicas are spread). Then the 2th
component of x, call it x,, denotes the distribution the BP log-likelihood estimate
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Figure 1.13: We plot the profiles x, on the vertical axis as a function of the spatial
coordinate z. On the top, we draw the two-sided profile and on the bottom, its associated
one-sided profile.

at the 2z position. In the special case of the BEC, for instance, this component is
reduced to the usual scalar erasure probability 0 < x, < 1 at position z along the
spatial axis of coupling.

Spatially coupled codes perform well and are capacity achieving due to the
“threshold saturation” phenomenon. In terms of the decoding profile of a spatially
coupled code, as long as the channel noise is below the MAP threshold, the profile
converges to the all-A, vector after enough iterations of the BP algorithm, where
Ao is the Dirac mass at infinite log-likelihood (i.e., perfect knowledge of the bits).
In the special case of the BEC, the all-A,, vector corresponds to a vector of scalar
erasure probabilities driven to zero by DE iterations. Whereas, the probability dis-
tributions of the log-likelihoods of bits of the corresponding uncoupled code only
converge to A when the channel noise is below the BP threshold (which is lower
than the MAP threshold).

The threshold saturation phenomenon is made possible due to “seeding” at the
boundaries of the spatially coupled code. Seeding means that we fix the bits at
the boundaries so that the probability distributions of their log-likelihoods are Ay .
This facilitates BP decoding near the boundaries, and this effect is propagated along
the rest of the coupled chain. The minimum size of the seed that guarantees the
propagation of the decoding effect is of the same order as the size w of the coupling
window (however an exact determination of the minimum possible such size is an
still an interesting open question). We denote by % the decoding profile. Then, the
initial condition on the profile is %, = A (perfect information) at the boundaries

z=-Ley...,—Le+w—-1and z=L.—w+1,..., L, and %, = Ay (only information
from the channel) elsewhere. In the special case of transmission over the BEC(e),
we have £, =0 when z = -L.,...,-L.+w—-1orz=L.—-w+1,...,L., and Z, = ¢

elsewhere. We call this the “two-sided profile” because we have seeding on both
boundaries.

The two-sided profile described above is perfectly symmetric. That is why we
define the associated one-sided profile x below.

X, =%,  z=-Le....0, (1.54)
X, = Xq, z=1,..., L, (1.55)
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where xg denotes the distribution x, = X, at z = 0. We show an example of a
two-sided profile and its associated one-sided profile in Figure 1.13, when L. = 14.

We note that it is equivalent to work with either profile, in the sense that the
behavior is the same (up to symmetry). In our work, we use the one-sided profile
because it is more convenient in the context of displacement convexity (see Sec-
tion 1.7). In Chapters 2 and 3, however, when we calculate the number of bits
decoded per iteration of BP, we note that the number we find is half of that we
would have obtained had the analysis involved the two-sided profile (which is the
“real” profile in practice).

In the remainder of the thesis, we redefine the range of positions z on which we
spread the replicas of the underlying code (which was previously z = =L, ..., L.).
We set it to z =—w +1,..., L. and seed at the boundary z=-w+1,...,0.

1.5.2 Coupled Density Evolution Equations
Transmission over the BEC

In this section, we write the system of DE equations as well as the DE recursion
associated with the spatially coupled LDPC(A\, p) code ensemble when transmission
takes place over the BEC(¢). The main difference between the equations we write
here and those in Section 1.4.3 is that here the updated erasure probabilities are
obtained by average other probabilities (from the previous BP iteration) over a
window.

Spatially coupled codes are constructed in such a way that replicas within a
certain window size w are dependent. In the random construction of coupled systems
that we consider, every edge outgoing from a variable node at position z on the
coupling chain is connected to a randomly selected check node at positions z,z +
1,...,z+w—1. Similarly, every edge outgoing from a check node at position z
is connected to a randomly chosen variable node at positions z —w + 1,..., 2.1
Therefore, to decode a variable node at position z, we must use the information
in all the system replicas on which it depends. More specifically, the recursive DE
equation in the error probability of a variable node at position z depends on the error
probabilities of check nodes on positions j = z,...,2z +w — 1, which in turn depend
on the error probabilities of variable nodes on positions k = j—w+1,...,7. We
formalize this when we write the spatially coupled version of DE equations below.

We denote by igt) and gjgt) the variable node output and check node output
probabilities, respectively, at position z = —w +1,..., L. on the spatial axis and at
time ¢t € IN. We also define a general coupling window function that we will use
below.

Definition 1.27 (General Coupling Window Function). We define a general cou-
pling window function w(-) that satisfies w(z) > 0 for z € [-W,+W ], where W < +o0
and w(z) = 0 elsewhere. We also impose the condition that [ dzw(z) = 1. Then,
we define the normalized function

w(z)

ﬁz}szw(%)'

wy (z) =

13We assume the probability that one such edge is connected to one such “destination node” is
uniform (unless explicitly stated otherwise).
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Remark that 2W ZW Ww(%) =1 and that that as W — +oo, we have wy(z) —

w(z)/] [gdzw(z) = w(z)

Then, the system of DE equations takes the form

gt =g( +§> ag,zxg);ez),
e (1.56)
- f( X az,zyﬁt);ez),

where g(z;€) = 1 - p(1-x), f(y;€) = eA(y), and the coupling window coefficients
a.z satisfy a, z = 211/V wW( 7 ) The initial conditions are written below.

If we consider the uniform window function, this yields the equations y()
g(l Z]-O 7 . ) :'ig”l) = f(llu Zwol yiBZ, éz) For the LDPC(\, p) code ensemble,

z-j €
this becomes

i =1-p(1 —iz i),

w-1
559*1’ =6z>\(i E) g(t)-).

zZ+1

For this system of equations €, =¢, for z=1,..., Lo +w—-1and ¢, =0 for z = —w +
1,...,0. Furthermore we fix the left boundary to x( ) - ygt) Oforz=-w+1,...,0,
for all t € IN. These conditions express perfect information at the left boundary,
which is what enables seeding and decoding along the chain of coupled codes. The
initial conditions for the remainder of the coupling chain are .CE(O) = ~§0) =1 for
z=1,...,Le+w-1.

Alternatlvely, we can write the DE recursion in ZL'( ) a

1w1

w-1
FD - (1 Z g( Z xii)l ],ez);ez). (1.57)

For the LDPC(A, p) code ensemble, this becomes

(t+1) 1 w-1 1 w-1 )

~ + ~

F—eal1-= % p(l Z #20)) (1.58)
w -0

with the same initial conditions on Z = (Z_y41,...,ZL.+w-1) as above.

~(t)

It will be convenient to work with a smoothed version of the profile

w-1
xgt) = E Y jgt_)l, where 1:2) denotes the check node input probability at position

, namely

i=
z=-w+1,..., L. on the spatial axis and at time t € IN. Then, using this change of
variables, the DE recursion can be written as

e LR (EE 0, o) (159

For the LDPC(A\, p) code ensemble with transmission over the BEC(¢), the recursion
n (1.58) can be rewritten as

2D = iwfe .A(1—1w§ (1-21) )) (1.60)
z - w 5 zZ=1 p z—i+] . :

w ]=0
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We repeat the initial and boundary conditions for completeness. We have €, = ¢, for
z=1,...,Lc+w-1and €, =0 for z = —w+1,...,0. We fix the left boundary to
mff) =0 for z=-w+1,...,0, for all £ € IN. The initial condition for the iterations is
xgo)zl(ore)forZ— yLe+w—1.

In Chapter 4, we ﬁnd 1t more convenient to work with the coupled DE recursion

®)

(and potential) as expressed in terms of the variable node input probability y

position z = —w+1,..., L. and time t € IN. We express the DE recursion as
w-1 w-1
1 t
(t+1) = 1 p(]. - Z Ez 7 ( Z yi—)’H—j))’ (161)
i=0 w ;o
with e, =€, for z=1,...,Lc+w-1and e, =0 for z = -w+1,...,0, and the boundary

(t) fixed to O for z = —-w+1,...,0, for all £ € N. On the remainder of the coupling
chaln, the initial condition is yg ) =1lforz=1,...,L.+w-1.

Transmission over BMS Channels

When transmission takes place over general BMS channels, the messages exchanged
by the nodes are probability distributions of LLRs. The DE equations and recursions
described in Section 1.4.4 are thus modified accordingly.

We denote by x( ) and y( ) the variable node output and check node output
distributions, respectively, at position z = —w + 1,..., L. on the spatial axis and at
time t € IN. For simplicity we take a uniform coupling window. The system of DE
equations thus takes the form

ygt) - B ( L EO ~S)J)

igm) —c, @/\@9(% Zé) y@).

z+1

For this system of equations c, = ¢, for z = 1,..., L. +w -1 and c, = Ay for
z=-w+1,...,0. Furthermore we fix the left boundary to x(t) = ygt) = Ay for
z=-—w+1,... ,O, for all t € IN. These conditions express perfect information at

the left boundary, which is what enables seeding and decoding along the chain of

coupled codes. The initial conditions for the remainder of the coupling chain are

#(0) _ ~(0)

X =/Ag for z = S Le+w-—1.
Alternatlvely, we can erte the DE recursion in x;

TONN

(t+1) E wi ( 1% ) (1.62)
X =c — — >z ) :
z z w & P w & Z4iej
Here again ¢, = ¢, for z = 1,...,Lo+w -1 and c, = Ay for z = —w+1,...,0.
Furthermore, we fix the left boundary to x( ) = Ay for z = —w+1,...,0, for all

t € IN. These conditions express perfect information at the left boundary, which is
what enables seeding and decoding along the chain of coupled codes. The initial

condition (1.62) is 20 = A for z = yLe+w-1.
It is convenlent to work with a smoothed version of the profile x( ), namely
xgt) = Z Nit)l, where x( ) denotes the check node input probability distribution.
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Then, using this change of variables, (1.62) can be rewritten as

w-1 w-1
1) _ 1 oL 0
x{) = E(j) Cosi ® A (w ]2(3) p (xz_w)). (1.63)

This is the DE formulation we use throughout our work when we consider LDPC(A, p)
code ensembles with transmission over general BMS channels. We repeat the initial

and boundary conditions for completeness. We have ¢, =c, for z=1,...,Lc+w -1
and ¢, = As for z = —w+1,...,0. We fix the left boundary to th) = Ay for
z=-w+1,...,0, for all ¢ € IN. The initial condition for the iterations is x( ) - = Ay
(orc)forz- Le+w—1.

1.5.3 Coupled System Potential Functionals

The DE equations and recursions in Section 1.5.2 can be expressed as the stationarity
conditions of some coupled potential functionals. We list some of the potentials that
we use in our work below.

Definition 1.28 (Coupled Potential in One Scalar Variable [71]). The potential
functional associated with the DE recursion in (1.59) is

L. 1 w-1

Ue(z) = Z {ng(xz; €) - G(x;€) - F(E Z g(a:z”;ez);ez) , (1.64)
z=—w+1 1=0

where = (T_wi1y- -+ TLorw-1) 08 the so-called decoding profile or simply the profile.

For the LDPC(), p) code ensemble, with transmission over the BEC(e), the po-
tential above becomes

L.
Ugkc(z) = __Z 1{3'11) (1-R(A-z,))-z.p(1-z)

€, 1 w-1
- L'(l)L(l W Z(:) p(1 - $z+i))}a (1.65)

where z = (_y+1,.--,2ZL,+w-1). The fixed point form of (1.60) is equivalent to
d _
3zUsEC(2) = 0.

Alternatively, we can express the potential functional in (1.65) in terms of the

variable node input probability y( )

Le

Usec(y) = 2. {yz + ﬁ(l ~(1-y)p (1-p2)

z=—w+1

1w1

-(1-(-y:)p 1(1 Yz)) - L’(l) ( ZZ/zﬂ)} (1.66)

where y = (Y-w+1,---,YL.+w-1) is also called the decoding profile or profile. This is
associated with the DE recursion in (1.61).

"We abuse notation by keeping the same label Upgc but consistently use different arguments
as a sufficient indicator to differentiate between the two potentials.
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In Chapter 5 we make use of a potential functional that is expressed in terms
of the two profiles z and y when we consider general scalar systems with a general
coupling window. Using the general window function in Definition 1.27, we can
express the coupled potential in x and y for general scalar systems as follows.

Definition 1.29 (Coupled Potential in Two Scalar Variables). The two-profile po-
tential functional for scalar systems is defined as

L. 2 T + 00
Wa(z,y) = Z:ZLC { /Oy dug ' (u) + j(; dv f1(v) - 2;()0 az,zxzyz}, (1.67)

where x and y are the probability profiles and the coupling window coefficients a,z
satisfy a sz = ﬁww(%)
The solutions of spatially coupled DE equations (1.56) are given by the stationary

points of the potential functional W5 of x and y. This can be checked by setting the
functional derivatives of the potential, with respect to each of x and y, to zero.

Definition 1.30 (Coupled Potential in One Variable [63]). The potential functional
associated with the DE recursion in (1.63) for the case of transmission over general
BMS channels is defined as

L
W(x)= ) { ! H(R®(x.)) + H(p™(x2)) — H(x, B p (x2))

z=—w+1 R/(l)
1 ® 1 w-1
_mH(cZ@BL (E;)p (x=1))) - (1.68)
where x = (X_wsly -y XL 4w—1)-

The fixed point form of (1.63) is equivalent to lim,_o(W (x+7n) -W(x))/v=0
for n = (N=w+1s- -+ s NL.+w-1) Where n; are differences of probability measures.

1.5.4 Thresholds

In Shannon’s 1948 revolutionary article, he defined the theoretical limit on the chan-
nel noise up to which reliable transmission of information is possible. We call this
limit the Shannon threshold. So far, we have defined the BP threshold hgp, the MAP
threshold hyap, and the potential threshold h,. in Definitions 1.17, 1.18, and 1.25,
respectively, for (uncoupled) LDPC()\, p) code ensembles when transmission takes
place over BMS channels. In this section, we further define the area threshold and
the BP and MAP thresholds that correspond to spatially coupled such systems. We
then describe the relationship between all these values, for coupled code ensembles,
as well as their underlying ensembles. As usual, we consider the framework in which
the blocklength n is very large.

The MAP threshold is the limit on the channel noise up to which the (opti-
mal) MAP decoder can decode perfectly. This threshold is lower than the Shannon
threshold, but approaches it as the degrees of the LDPC code are increased. The
MAP decoder, however, assumes that we have infinite resources and computational
power. It is therefore impractical due to physical and computational limitations.
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The BP decoder, however, is of low complexity and is quite suitable for sparse
graphical models such as LDPC codes. Unsurprisingly, the BP threshold is lower
than the MAP threshold when the code is not spatially coupled. Moreover, for these
(uncoupled) codes, the BP threshold decreases as the node degrees are increased,
moving farther away from the Shannon threshold.

As we have already mentioned, spatial coupling combines the benefit of low-
complexity decoding and high thresholds. Spatially coupled codes can decode per-
fectly up to the MAP threshold using the low-complexity BP decoder. More for-
mally, we define the BP and MAP thresholds of spatially coupled LDPC(A, p) code

ensembles when transmission takes place over BMS channels below.

Definition 1.31 (Coupled BP threshold (BMS)). The BP threshold h%p of a spa-
tially coupled LDPC' code with transmission on BMS channels is defined by

nS, 2sup{he[0,1]|x(°) = A, Vze{-w+1,...,L}}, (1.69)
where x§°°) 1s the limit value of the distribution at position z of the coupling chain,
governed by the recursion in (1.63).

Definition 1.32 (Coupled MAP threshold (BMS)). The MAP threshold h$,,p of a
spatially coupled LDPC' code with transmission on BMS channels is defined by

b4 = inf{n € [0,1]] lim inf B[ (K¥(c(w)))] > 0} (L.70)

where n is the blocklength of the entire spatially coupled code; that is, n = N L. where
L. is the number of copies of the underlying code (or the length of the coupling
chain) and N is the number of variable nodes per copy, and the limit n — +oo is
taken by first taking N — +oo and then taking L. — +oo. The vector of random
variables X (resp. Y) represents the channel input (resp. output), H(X[Y(c(h))) is
the conditional Shannon entropy of the input given by the channel observations, and
the expectation E[-] is over the coupled LDPC code ensemble.

Threshold saturation for irregular LDPC(\, p) code ensembles and transmission
over BMS channels was proven in [63] using potential functionals. More concretely, it
was shown that the coupled system BP threshold is equal to the potential threshold
of the underlying system; that is,

c _
hBP - hPOt'

It was also shown in [63] that if the graph does not contain degree-2 variable nodes,
the MAP threshold of the underlying system is lower than its potential threshold
and thus satisfies

hyvap € hpot-

Furthermore, it was shown in [82] that for LDPC codes with regular check nodes of
even degree, the MAP thresholds of the spatially coupled code and its underlying
system are equal. That is,

C
hyap = hyap-
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Combining this with the optimality of the MAP decoder (hf;p < h§;,p), Wwe obtain

hyvap <hpor = hip <hfap = huap, (1.71)

for these codes.

In [43], the proof technique for threshold saturation did not use potential func-
tions as was done in [63]. Instead, the authors used GEXIT functions and yet
another threshold called the area threshold ha to prove that for (¢, r)-regular LDPC
ensembles, the BP threshold of a coupled code saturates to the MAP threshold of
the underlying system universally on the class of BMS channels. In particular, it is
shown in [43] that

hp = thC?
where the area threshold for such systems is defined as

Definition 1.33 (Area Threshold [63]). The area threshold h% of an (¢,r)-regular
LDPC code with transmission on BMS channels is defined by

h; =sup{he[0,1]] A(x(*),¢,r) <0}, (1.72)
and A is the area under the corresponding GEXIT curve defined by
Alx,r) = H(x) + (0= 1- SYHEE) = (0-1)H (xE0D),
r

We note that this area is not equal to those defined in Definitions 1.20 and 1.21.
It can be seen that at the fixed point x(°), the area defined above is exactly the
negative of the single potential in Definition 1.23. This immediately implies that

B < ha.
Combining this with the results in (1.71), we conclude that
hy = hp0t7
and therefore
hyvap =hpor = ha,

for (¢,7)-regular LDPC codes with even check node degree and without degree-2
variable nodes.'®

1.6 The Continuum Limit

The continuum limit is the setting obtained by first taking the length of the coupling
chain L. to be very large (L. - +o0) and then taking the window size w to be
very large (w — +00). As the name suggests, this makes the quantities we work

51n fact, it has been proven rigorously that hyjap =hy for (¢,7)-regular LDPC codes with even
check node degree. For more general codes and transmission over BMS channels, this is still a
conjecture called the Maxwell conjecture [91].
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with continuous rather than discrete (their natural setting) when the appropriate
normalizations are made. We will use this setting throughout the thesis because it
is well-adapted to the techniques we need, such as taking functional derivatives in
Chapters 2 and 3, and using the tool of displacement convexity in Chapters 4 and 5.
The continuum limit has already been considered for the special case of the BEC in
[69,70,72,73].

To avoid overloading the notation, and because we use only the continuum limit
in our derivations (and not the discrete formulations), we keep the same symbols for
the profiles, the spatial position, and the channel distribution when we move from
the discrete to the continuous space. We thus denote by z(-,-) (resp. x(-,-)) and

y(-,-) (vesp. y(-,-)) the continuous profiles of distributions defined by x(Z,t) = x;(zt)

(resp. x(=,t) = th)) and y(,t) = ygt) (resp. y(2,t) = y,(zt)), and then replace = — z

so that the new variable z is the continuous variable on the spatial axis, z € R.
For general scalar systems with control parameter €, the DE recursion (1.59)
becomes

x(z,t+1) :folduf([Uldsg(x(z—u+s,t);e);e). (1.73)

The natural boundary conditions are z(z,t) - 0, z > —oco0 and z(z,t) — xpp, 2 —
+00. The left limit results from “seeding” at the left boundary of the original,
discrete system; and the right limit results from the empirically observed “height”
obtained by the DE recursion of the original system after a few “transient” iterations
of the recursion. A general analysis of this recursion, with applications that are not
limited to coding, is considered in Chapter 3.

The fixed points of the continuous recursion above are the stationary points of a
potential functional. The potential is an integral over the spatial direction z € R and
in general we must subtract a “reference energy” in order to get a convergent result.
Essentially any static reference profile, here called zy(z) that satisfies the boundary
conditions z¢(z) = Zgood, 2 > —00 and xo(2) = Tpad, 2 > +oo will do the job. For
concreteness, we can take a Heaviside-like profile xo(z) = Zg00d, 2 < 0, 20(2) = Tpad,
z > 0 (note that xo(z) does not depend on time). The potential functional is then
defined as

AL{C(x):fRdz{Pc(z,az)—Pc(z,xo)}, (1.74)

where P.(z,z) is a z-dependent functional of x equal to

Pu(z,7) = 2(2,)g(x(2,t):€) — G(z(2,t); €) - F( [01 dug(z(z +u,t);e); e). (1.75)

In the case of transmission over the BEC, the DE recursion (1.60) becomes

a:(z,t+1)=e[01du)\(1—[Oldsp(l—:c(z—u+s,t))). (1.76)

The initial condition at ¢ = 0 is given by a profile z(z,0) that interpolates between
the two limiting values of the boundary condition, namely z(z,0) - 0 when z - —o0
and z(z,0) — zpp when z - +00, where zpp is the non-trivial fixed point value of the
underlying system. (The reasons for this initialization are made clear in Chapter 2.)
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The fixed points of the continuous recursion above are the stationary points
of a potential functional. As before, we must subtract a “reference energy” from
the potential so that it is well-defined. We consider for instance the static reference
profile xo(z) defined by z¢(z) =0, z <0, zo(z) = xgp, z > 0. The potential functional
is then defined as

AWpno(@) = [ dz{Pu(z,2) = Po(z.0) . (1.77)

where P,(z,z) is a z-dependent functional of x equal to

Py(z,x) = (1-R(1-2(z,1))) —2(z,t)p(1 - z(z,t))

(1)

RI(1)

1
L(l—/(; dup(l—x(eru,t))). (1.78)
Similarly, the DE recursion (1.61) in the continuum limit becomes

y(z,t+1):1—p(1—6[01du)\(foldsy(z—u+s,t))). (1.79)

Similarly, the initial condition at ¢ = 0 satisfies y(z,0) - 0 when z - —oo and
y(2,0) - ygp when z — +oo, where ypp is the non-trivial fixed point value of the
underlying system. We consider a profile yg defined by yo(2) =0, 2 <0, yo(2) = ysp,
z > 0. Then, the associated potential functional can be written as

AWerc(v) = [ d2{Py(z9) - P,(zm0)}, (1.80)

where P,(z,y) is a z-dependent functional of y equal to

Py(2,y) =y(z,t) + (1= (1=y(=,))p7 (1 - y(2,1))

1
R'(1)
_(1_(1—y(z,t))p—1(1_y(z,t)))—ﬁL(folduy(zm,t)). (1.81)

We next consider the case of general scalar systems and the general coupling
window w(-) in Definition 1.27. Then the windowed average becomes a convolution
of the profiles z and y with the window function w. We express such convolutions
r@w(z) = [gdra(T)w(z—7) as 2(z) as shorthand. Similarly, we write y ® w as
y". The continuous version of the DE equations (1.56) then becomes

{y(z,w = g(2"(2,1)),

(1.82)
x(z,t+1) = f(y“(z,1)).

The initial conditions at ¢ = 0 are given by profiles that interpolate between the
two fixed point values. More precisely, if =, (resp. y;) and x_ (resp. y-) are the
desirable and undesirable fixed points of the profiles x (resp. y) of the underlying
system, then the initial conditions are set to z(z,0) - =, (resp. y(z,0) — y,) for
z —» —oo and z(z,0) — z_ (resp. y(z,0) - y_) for z > +oo.

The potential functional corresponding to the system of DE equations above is
the continuum version of that in (1.67). We consider two profiles 2y and yo that
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are Heaviside-like and satisfy zo(z) = z_, 2 <0, 2o(2) = x4+, 220, yo(2) = y-, 2 <0,
yo(2) = y4, 2> 0. Then, the potential is expressed as

AW2($7y):[l;dz{P2(zax7y)_P2(27$07y0)}3 (183)
where Py(z,z,y) is a z-dependent functional of z and y defined as

y(2) 4 z(z) 1 w
Pazay) = [0 dug™ )+ [T s (@)~ (D).

The solutions of the spatially coupled DE equations (1.82) are given by the stationary
points of the potential functional W, of x and y. This can be checked by setting the
functional derivatives of the potential with respect to each of x and y to zero.

For the case of transmission over the BMS channel, we consider a continuous
channel distribution and we denote by c(z) the channel distribution at the contin-
uous spatial position z € R. The DE equation (1.63) then takes the form

X(z,t+1)zfolduc(z—u)@?)\@(-[oldsp(X(z—u+s,t))). (1.84)

The initial condition at ¢ = 0 is given by a profile x(z, 0) that interpolates between the
two limiting values of the boundary condition, namely x(z,0) - A when z - —o0
and x(z,0) - xgp when z - +oo.

We call AW(x) the potential functional of the coupled system in the continuum
limit obtained from (2.8). As before, we subtract a “reference energy” so that the
potential is well-defined. We denote by x¢(z) the static reference profile defined by
x0(2) = A, 2<0, x0(2) = xp, 2z > 0. The potential functional is thus defined as

AW(x) = f]Rdz{P(z,x) - P(2.%0)}, (1.85)
where P(z,x) is a z-dependent functional of x equal to
P(z,%) = R,l(l)H(R(X(Zyt))) + H(p®(x(2,1))) - H(x(z,1) 8@ p% (x(,1)))
1 1
- L,(l)H(c(z)@)L@(fo ds p®(x(= +5.1)))).  (1.86)

In our work, we find it convenient to split the continuous potential functional
into two components: the “single system potential functional” and the “interac-
tion functional”. The latter, that we also call the interaction potential for brevity,
expresses the contribution of the “cross-connections” of replicas due to spatial cou-
pling. In other words, this term disappears if evaluated at a constant x(z) = x. The
remaining term is called the single potential for brevity and expresses the contribu-
tion of the entire system as if spatial coupling were not made and every replica had
edges only between its nodes. In fact, we can write the single potential functional
as an integral over the spatial component z of some integrand. This integrand is
simply the potential of the underlying uncoupled code ensemble. This is easily seen
by recognizing that the usual DE equation for the variable input erasure probability
is recovered by setting the derivative of this single potential to zero. We show the
explicit expressions of the single and interaction potentials when we use them in
Chapters 2-5, because we write them in different ways (for convenience) in different
chapters.
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1.7 Displacement Convexity

Displacement convexity can be very useful in functional analysis. It goes back to
McCann [92] and plays an important role in the theory of optimal transport [93]. It
was used in [94] and [95] to study a functional governing a spatially coupled Curie-
Weiss model, that bears close similarities with the coding theory model studied here
(see [59]). In this section, we give a quick introduction to the tool of displacement
convexity.

Recall first that the usual notion of convexity of a generic functional F(y) on a
generic space X means that for all zg, 21 € X and A € [0, 1],

F((1=XN)zo+Ax1) < (1= AN)F(z0) + AF(21).

The correct setting for defining displacement convexity is the space of proba-
bility measures. For measures over the real line, we can conveniently define the
displacement interpolation in terms of the cumulative distribution functions (cdf’s)
associated with the measures. This is the simplest setting and the one that we adopt
here.

In the following, we assume that the functions xg and z1 belong to the space of
right-continuous cdf’s of some underlying measures dxy and dxq, respectively, over
the real line. That is, they are non-decreasing with left and right limits of 0 and 1,
respectively. The definitions we give below can be adjusted for scaled cdf’s or for
the equivalent analysis with probability measures.

The inverse #71(z) of a cdf z is defined almost everywhere and has unique and
well-defined left and right limits, z7!(2_) and 27 (2, ), respectively. In our work we
use the definition of the right-continuous inverse that is defined for all z, € (0,1),
namely

2(zy) 2inf{z|x(2) > z.}.
Similarly, a cdf  can be obtained from its inverse z, using the relation
x(z,) =inf{z|z(z) > 2. }.

For any two right-continuous cdf’s xg, z1, we consider zg, z1 their respective inverses
under the maps defined above. Then for any A € [0, 1], the interpolated profile x) is
defined as follows,

Zea = (1= XN)zo(x) + Az (), (1.87)
zx(z) =inf{ x|z, 5 > 2}. (1.88)

In words, the difference in interpolation under the alternative structure is that the
linear interpolation is applied on the inverse of the functions of interest, and the
effect of such an interpolation is then mapped back into the space of functions.

The displacement convexity of a functional F(z) on the space of right-continuous
cdf’s simply means that the following inequality holds

F(z2) < (1= N)F(20) + AF(21), (1.89)

for any two right-continuous cdf’s xg, 1 and all A € [0,1]. Strict displacement
convexity means that this inequality is strict as long as xg and x; are distinct and
Ae(0,1).
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Figure 1.14: Monotonic profiles zg and x1, the map T;(2), 2z x = (1 = A)z + AT, (%),
and the interpolant . Here A = 1/4.

In our analysis of displacement convexity in Chapters 4 and 5, we also make use
of the notion of the pushforward map, described below.
Consider two cdf’s z¢p and x1, and assume z( is continuous. We can define the
map T, : R - R as
To(2) = 27  (20(2)). (1.90)

The map T, can be seen as a pushforward map for measures from dzg to dzy. This
is expressed as dxq = T, #dzo that means that

[dxl(z)h(z)=/d$0(2)h(Taz(z))7

for any function h such that the integral is well-defined. Then, denoting by id the
identity map, the interpolant x) is the cdf of the measure dz) defined by

dzy = ((1 - \)id + AT, #-dw,.

We have
[ den@)h(z) = [ dzo(z) h((1= Nz + M),

whenever the integral is defined. In particular, if h is convex (in the usual sense)
then this shows convexity in A of the integral due to the following,

[ dao() A=) + ATu(2)
S(l—A)fdxo(z)h(z)+)\/d:n0(z)h(Tx(z))
:(l—A)fda;g(z)h(z)+A[dx1(z)h(z).

The graphical construction of the interpolant x) is illustrated in Figure 1.14.
Graphically, T, finds the position Z = T;(z) on the z-axis so that z1(2) = zo(z)
for some given z. Consider the linear interpolation between points on R, z, ) =
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(1-X)z+ AT,(z). The displacement interpolant z is defined so that the following
equality holds for all A €[0,1]

2A(Zx,0) = 20(2). (1.91)

This is equivalent to the relation in (1.88) when zg is continuous.

In the case where x( is discontinuous, we have to be more careful in the definition.
At points of discontinuity of zy the map T, (z) should not be single-valued. As we
work in one dimension, this issue is easily circumvented by using the definition
in (1.88). For such cases, instead of referring to the definition of the interpolant
xx(2z,2) in (1.91), we use the following system of equations

3 (u) = (1= Nagt(u) + Az (u), (1.92)
zx(2) = inf{u | 23" (u) > 2}, (1.93)

which gives a right-continuous interpolant. Correspondingly, if x is an interpolating
non-decreasing profile then, under appropriate regularity of h, we can write

/I;{dx(z)h(z)=/01dUh(xl(u))7

and we have

/dx,\(z)h(z):folduh((l—)\)xol(u)+)\x11(u)).

With this in mind we will continue to use the notation 7,(z) when the above inter-
pretation should be understood.

1.8 Main Contributions

In this thesis, we analyze the solutions of message-passing algorithms on spatially
coupled systems by using variational techniques, in the context of coding theory
(Chapters 2 and 4) and general scalar systems (Chapters 3 and 5). We consider
the systems in the framework of large blocklengths, which enables us to express the
performance of the message-passing algorithms in terms of density evolution (DE),
or DE-like, equations. We further consider the system in the continuum limit by
taking the coupling chain length L. to infinity (first) and the coupling window size
w to infinity (second); this enables us to write the DE equations in the continuum
limit, which makes the derivations more tractable. Throughout the thesis, we use the
variational equivalent of the DE equations, the (continuous) “potential functional”,
for which the stationary points are the fixed points of the DE equations. In order to
analyze the performance of message-passing algorithms on coupled systems, we can
track the evolution of the DE equations or, equivalently, apply gradient descent on
their associated potential functional. In our work, we consider only coupled systems
for which the uncoupled DE equations have a unique “non-trivial” stable fixed point
(or, equivalently, for which the uncoupled potential function has a unique non-trivial
minimum).

In Chapter 2, we consider spatially coupled irregular LDPC(), p) code ensembles,
where transmission takes place over general BMS channels. We consider the system
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in the dynamic phase, defined as the decoding phase in which applying iterations
of the BP algorithm results in decoding more bits (or, more generally, non-trivially
updating the messages exchanged in the system). Due to the “threshold saturation”
property of spatially coupled codes, we know that the dynamic phase occurs for all
parameters of the channel below the MAP threshold because the BP algorithm can
successfully decode the system for all such channel parameters.

We express the originally discrete DE recursion in terms of the variable node
output distributions; we denote by xgt) the distribution at position z along the spa-
tial axis of coupling and at iteration ¢ € IN. By plotting the wvector of distributions
x (where the 2™ component contains the distribution at the 2™ position on the
coupling axis) at different iterations of the BP algorithm, we observe that the vector
(or “decoding profile”) exhibits a solitonic behavior. More specifically, it appears
to have a fixed shape and to move (away from the boundaries) at a constant speed.
This phenomenon is observed when the channel parameter is between the BP and
MAP thresholds (which constitutes part of the dynamic phase); it is called the wave
propagation phenomenon. In the context of coding on the BEC, for example, this
means that the vector of erasure probabilities along the spatial axis of coupling ap-
pears to exhibit this solitonic behavior. Our main contribution in this chapter is to
find a formula for the velocity of the wave for such coupled codes, assuming that the
profile does indeed exhibit the solitonic behavior. To do this, we first consider the
continuum limit that enables us to express the DE recursion and the potential func-
tional in the continuous space. The variable node output-distribution at position z
and iteration ¢ is then denoted by x(z,t). The assumption about the solitonic behav-
ior can thus be expressed as x(z,t) = X(z - vt).'® We make algebraic manipulations
to write the potential functional in terms of the decoding profile, and we extract a
formula for the velocity from this relation. As (possibly infinite-dimensional) dis-
tributions are involved in the calculations, we reduce the complexity of the formula
by applying the Gaussian approximation that approximates distributions with sym-
metric Gaussian distributions. Furthermore, we use our results for the velocity to
estimate parameters involved in the scaling law for finite-length spatially coupled
codes with transmission over the BEC [96]. We perform numerical experiments to
verify our results.

In Chapter 3, we consider spatially coupled general scalar systems that are gov-
erned by a DE-like scalar recursion, during the dynamic phase. In this more general
context, the dynamic phase is defined as that in which the governing recursion non-
trivially updates the system; this occurs when the system parameter is lower than
some threshold that we call the potential threshold.'” As in Chapter 2, we conjecture
that the profile along the coupling chain exhibits a solitonic behavior upon iterations
of the recursion, when the system parameter is between the algorithmic threshold'®
and the potential threshold. We find an analytical formula for the velocity of this
soliton. The derivation of the formula resembles that of Chapter 2 and involves
expressing the (continuous) potential functional in terms of the (continuous) profile.

16We slightly abuse notation by keeping the same labels in the discrete and continuous settings.

"The reason behind the naming “potential threshold” is related to properties of the potential
function, described in Section 1.4.5.

8The algorithmic threshold is analogous to the BP threshold in the context of coding; here, it
depends on the application-specific message-passing algorithm.
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To verify our results, we provide numerical simulation results for applications such
as LDPC codes over the BEC, compressive sensing, and generalized LDPC codes
over the BEC and the binary symmetric channel (BSC).

In Chapters 2 and 3, we do not prove that the shape of the propagating profile
is fixed, nor do we characterize it. However, we observe using numerical simulations
that the shape is an increasing “kink”, and its limits are the trivial fixed point at
z - —oo and the non-trivial fixed point at z - +oo.

In Chapter 4, we consider the spatially coupled (¢,r)-regular LDPC Gallager
ensemble with transmission over the BEC at/during the static phase. In the con-
text of spatially coupled codes, the static phase occurs at the MAP threshold, the
channel parameter at which the BP algorithm gets blocked and is no longer able
to completely decode the system; thus, the decoding profile does not change upon
iterations of the BP algorithm. In other words, the velocity of the wave vanishes. In
this chapter, we characterize this fixed point profile and prove that it is unique (up
to translation on the spatial axis of couplinglg). To do this, we introduce a new tool
for the analysis of spatially coupled systems, namely the concept of displacement
convexity, borrowed from optimal transport. This tool considers convexity with re-
spect to an alternative structure in the space of probability measures. In short, a
functional F is “traditionally convex” if F(zx(:)) < (1= X)F(zo(:)) + AF(z1(+)), for
all X € [0,1], when the interpolant x,(+) is a linear combination of the two functions
xo(+) and z1(-), so that z)(z) = (1 = N)zo(2) + Ax1(2) for all z € R. Whereas, F is
displacement convex if the same inequality holds, but z,(-) is defined (roughly) as
the distribution obtained by first taking the linear interpolation of the inverses of the
two distributions x(-) and 21 (-) and then by taking the inverse of this interpolation
back into the space of probability distributions. This is shown in Figure 1.14 and
described in more detail in Section 1.7.

Although the coupled potential functional is not convex in the traditional sense,
we prove, by using displacement convexity, that it is displacement convex in the
space of probability distributions. To do this, we observe that it is possible to view
the decoding profile as a cumulative distribution function. Hence,we use truncation
and rearrangement inequalities to restrict the space of minimizers of the potential
functional to profiles that are increasing from a finite limit at —oo to a finite limit at
+00. We then show that the potential functional is strictly displacement convex (in
the space of probability measures) and characterize its minimum. In the language of
coding, we prove that, at the MAP threshold, the decoding profile is static and the
DE equations converge to a fixed point solution that is unique, up to translation.

In Chapter 5, we generalize the analysis done in the preceding chapter so that
it encompasses general spatially coupled scalar systems (not restricted to coding)
that are governed by a system of scalar equations. We again consider these systems
at/during the static phase. For such general systems, the static phase is defined as
the system parameter at which the governing (DE-like) equations no longer non-
trivially update the system or, equivalently, the potential threshold. The analysis

19As opposed to the dynamic setting where translation would refer to a change made on the
profile due to the message-passing algorithm, here for the static case it simply means that the
origin of the profile is arbitrary. Once the origin is fixed, however, the shape is strictly unique.
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in this chapter is more general than that in Chapter 4 in the sense that it is more
far-reaching and that it establishes the strict displacement convexity of the coupled
potential functionals under milder assumptions on the underlying system. In fact,
we find that the convexity result in this chapter applies to such systems that satisfy
the strictly positive gap condition [69,70] and some mild conditions on the coupling-
window function. Therefore, for general spatially coupled scalar systems, we also
characterize the unique fixed-point solution of the DE equations at the static phase.

In Chapters 4 and 5, we consider spatially coupled systems during the static
phase of the message-passing algorithm, in the case when the underlying system has
a unique non-trivial stable fixed point. During this phase, the velocity studied in
the previous chapters is zero by definition. In this case, we prove that the shape
of the solution to the DE equations is unique. That is, the assumptions made in
the first two chapters for the dynamic phase (fixed shape and constant velocity) are
established for the static phase.

Finally, in Chapter 6, we offer a summary of our main contributions, some con-
cluding remarks, and further directions that can be pursued based on our work.






Decoding Velocity for Irregular
Codes on the BMS

2.1 Introduction

We consider spatially coupled LDPC(\, p) code ensembles, where transmission takes
place over general binary-input memoryless symmetric-output (BMS) channels.! To
obtain such a code from its underlying (uncoupled) ensemble, we spread copies of
the latter on the spatial axis of coupling and connect them locally within a certain
window size. Spatially coupled codes have been proved to be universally capacity-
achieving due to the threshold saturation phenomenon [43,63]. That is, it has been
proved that the belief propagation (BP) threshold of the coupled code-ensemble
saturates towards the maximum a-posteriori (MAP) threshold of the underlying
uncoupled ensemble. This phenomenon can be attributed to the “seeding” that is
done at the boundary of a coupled code: once we “seed” perfect information at
the copies at the boundaries of the coupling chain and run the BP algorithm, the
extra information at the boundaries will propagate into the chain, due to the local
connections between adjacent copies of the underlying codes. In this chapter, we find
an analytical formula for the “speed” at which this extra information is propagated
into the coupling chain, assuming this speed is a constant. We express this more
formally below.

We construct a spatially coupled LDPC(A, p) code by taking L. +w copies of the
underlying code and coupling every w adjacent underlying systems by means of a
uniform window function.? In order to track the performance of the BP algorithm
on the coupled code, we express the evolution of the variable node output distri-

'The content of this chapter is based on the following previous work [76,97].
[76] R. El-Khatib, N. Macris, “The velocity of the decoding wave for spatially coupled codes on BMS
channels,” International Symposium of Information Theory (ISIT) 2016, Barcelona, Spain, IEEE
pp- 2119-2123.
[97] R. El-Khatib, N. Macris, “The velocity of the propagating wave for spatially coupled systems
with applications to LDPC codes,” in preparation (2016) to be submitted to the IEEE Transactions
on Information Theory.

It is straightforward to generalize the analysis to include more general coupling-windows; we
use the uniform window function to alleviate notation.
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butions along iterations of the algorithm using a density evolution (DE) recursion.
The solution to the DE recursion, called the decoding profile x, is a vector of distri-
butions of the BP log-likelihood estimates of the corresponding variable nodes along
the spatial axis of coupling; we can think of them as “error distributions”. More
precisely, let the integer z = —w + 1,..., L. denote the position along the spatial
direction of the graph construction (on which the copies are spread). Then the z*!
component of x, call it x,, denotes the distribution the BP log-likelihood estimate
at the z'" position. In the special case of the binary erasure channel (BEC), this
component is reduced to the usual scalar erasure-probability 0 < x, <1 at position
z along the spatial axis of coupling.

As we mentioned, the threshold saturation phenomenon is made possible due to
seeding at the boundaries of the spatially coupled code, which is done by fixing the
bits in (some number of) copies at the boundaries so that the probability distribu-
tions of their log-likelihoods are A.,. This facilitates BP decoding near these copies
(due to the connections between adjacent copies), and this effect is propagated along
the rest of the coupled chain. The minimum size of the seed that guarantees the
propagation of the decoding effect is of the same order of the size w of the coupling
window; however, an exact determination of the minimum possible such size is still
an interesting open question. Threshold saturation can alternatively be viewed in
terms of the decoding profile of the coupled code: As long as the channel noise is
below the MAP threshold, the profile converges to the all-A., vector after enough
iterations of the BP algorithm, where A is the Dirac mass at infinite log-likelihood
(i.e., perfect knowledge of the bits). In the special case of the BEC, the all-A,
vector corresponds to a vector of scalar erasure probabilities driven to zero by DE
iterations. In comparison, the probability distribution of the log-likelihoods of bits
of the corresponding uncoupled code only converge to A. when the channel noise
is below the BP threshold that is lower than the MAP threshold.

We consider the case where the channel noise is between the BP and the MAP
thresholds, and the underlying uncoupled ensemble has a unique non-trivial stable
BP fized point that blocks decoding.? In this case, it has empirically been observed
that the decoding profile behaves like a solitonic decoding wave after a certain num-
ber of transient iterations of the BP algorithm that we call the transient phase. We
show the transient phase in Figure 2.1 and the wave propagation phenomenon in
Figure 2.2. The soliton is characterized by a fixed shape that seems independent of
the initial condition and that has a constant traveling velocity that we denote by v.
The phenomenology of the soliton is discussed in more detail in Section 2.2.3. The
main purpose of this chapter is to derive a formula for the velocity of the soliton for
irregular LDPC codes, where transmission takes place over general BMS channels.

The decoding wave has recently been studied for coding when transmission takes
place over the BEC. In [69,70], the authors prove that the solitonic wave solution
exists and derive bounds on its velocity. However, the independence of the unique
shape of the wave from the initial conditions remains an open question. In [98], more
complex coupled systems are studied, where it is possible to have more than one
non-trivial stable BP fixed point; in their work, other bounds on the velocity of the
soliton are provided. The solitonic behavior has also been studied for the coupled

3The trivial fixed point is the all-A, vector (or profile) whereas a non-trivial BP fixed point is
a profile to which the BP algorithm converges and that is not trivial.
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Curie-Weiss toy model in [53], where a formula for the velocity of the soliton, as
well as an approximation for it, are derived and tested numerically.

In order to derive a formula for the velocity of the decoding wave, we consider
the spatially coupled system in the continuum limit L. > w > 1; this makes the
derivations quite tractable. In fact, the assumption that the soliton indeed appears
can be strictly true only in an asymptotic limit of a very large chain length and
a large iteration number (or time); we conjecture that the formula is exact in this
limit. However, even when we consider finite systems, we can see from numerical
simulations that the continuum approximation of the (originally discrete) system
does not compromise the exactness of our formula “too much”: The results of the
formula are very close to the empirical results for the velocity. It is worth noting
that in Chapter 3, we also find a formula for the velocity of the propagating wave
in the context of general scalar systems (not restricted to coding), for which we use
the same tools and assumptions.

The formula for the velocity of the wave greatly simplifies, when we consider
transmission over the BEC, because the decoding profile reduces to a scalar vec-
tor of erasure probabilities. For transmission over general BMS channels, we also
simplify the analysis by applying the Gaussian approximation [37]. This consists
of approximating the DE densities and the channel distribution by suitable “sym-
metric” Gaussian densities. The analysis then reduces to that of a one-dimensional
scalar system, for which the technical difficulty is similar to that of the BEC case.
We thus obtain a more tractable formula for the velocity and compare its numerical
predictions with the empirical value of the velocity for finite coupling length L. and
window size w. A good agreement is found on practically the whole range of values
between the BP threshold and the MAP threshold, even for small values of w.

It is of theoretical, as well as practical, interest to have a hold on the analytical
expression of the velocity of the wave. The velocity is also related to other funda-
mental quantities that describe a coding system, such as the finite-size scaling law
that predicts the error probability of finite-length spatially coupled codes. In [96],
the scaling law for a finite-length spatially coupled (4,7, L.) code, where transmission
takes place over the BEC, was derived. Involved in this scaling law are parameters
that can be estimated using the value of the velocity of the decoding wave. Using
the results of our derived formula, we provide reasonably good estimates of these
parameters.

The formula for the velocity also makes use of the potential functional introduced
and used in a series of works [55,59,63,71,99]. The potential is a “variational
formulation” of the message-passing algorithm on coding systems: its stationary
points are the fixed points of the DE equations described by this algorithm. The
potential has been used to prove threshold saturation for several applications in
[63,100,101]. The formalism in [63] is heavily used in the present chapter.

This chapter is organized as follows. In Section 2.2, we introduce a few prelimi-
nary notions that we will need and review the phenomenology of the solitonic wave.
In Section 2.3, we formulate the continuum limit and state our main formula for
the velocity of the soliton on general BMS channels. In Section 2.4, we present the
derivation of the formula. In Section 2.5, we present comparisons with numerical
experiments. These concern transmission over BEC channels, as well as general
BMS channels in the so-called Gaussian approximation. Finally, in Section 2.6, we
discuss a possible application of our formula to scaling laws for finite-size ensembles.
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2.2 Preliminaries

We consider (almost) the same setting as in [63] and adopt most of the notation
introduced in that work. We summarize the preliminaries we need for this chapter,
that are explained in more detail in Chapter 1.

We denote by M(RR) the space of probability measures x on the extended real
numbers h € R = Ru {co}. Here, h € R should be interpreted as a “log-likelihood
variable”. We call the measure x symmetric if x(h) = e?"x(-h).

We recall that the entropy functional H : M — R, that maps a finite probability
measure from M (R) to a real number, is defined as

H(x) = f dx(h) logy(1 + €21 (2.1)

Note that this is a linear functional. Linearity is used in an important way to com-
pute the entropy of convex combinations of measures (which also yields a probability
measure). But we also compute the “entropy” associated to differences of measures
by setting H(x1 —x2) = H(x1) — H(x2). In other words, the entropy functional is
extended in an obvious way to the space of signed measures.

In the remainder of the chapter, we use the Dirac masses Ag(h) and A (h) at
zero and infinite likelihood, with entropies H(Ag) =1 and H (A4 ) = 0, respectively.

We also use the standard variable-node and check-node convolution operators &
and & for log-likelihood ratio message distributions involved in the DE equations
[61]. We explain these operators and their properties in detail in Section 1.4.4. In
short, for x;, xo € M(R), the usual convolution x1 ® x5 is the density of h = hy + ha,
and x; @ x3 is the density of h = 2tanh™! (tanh }‘2—1 tanh %2)

We make use of the so-called duality rules that we repeat here for convenience

H(x@y)+H(xBy)=H(x)+H(y),
H(z®a)+H(x®a)=H(a), (2.2)
H(a®b)+ H(a®b) =0,

where x,y € M (R)iand a, b are differences of probability measures a = x1 — xo,
b=X3—X47 X; EM(R), 1= 1,2,3,4.

2.2.1 Single System

Consider an (uncoupled) LDPC(A, p) code ensemble with transmission over the BMS
channel. Here A(y) = ¥, Ay~ and p(y) = ¥, pyy" " are the usual edge-perspective
variable-node and check-node degree distributions. The node-perspective degree
distributions L and R are defined by L'(y) = L'(1)\(y) and R'(y) = R'(1)p(y),
respectively. Moreover, consider communication over a family of BMS channels
whose distribution c, (k) in the log-likelihood domain is parametrized by the channel
entropy* H(cy) = h.

Let x(!) denote the variable node output distribution of the BP algorithm at
iteration ¢t € IN. We can track the average behavior of the BP decoder by means of

“In the literature, this quantity is often denoted by c(h).
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the DE iterative equations that we write as a recursion in terms of the variable node
output distribution as follows,

KD = 6,8 1% (o (<)), (2.3

with initial condition x(°) = Ay (equivalently, we can take the more natural initial
condition x(9) = ¢y).

There are two thresholds of interest for us. The first one is the algorithmic
threshold. For a family of BMS channels whose channel distributions cy(h) : R —
M(R) are ordered by degradation and parametrized by their entropy H(cy) = h,
the algorithmic or BP threshold is defined to be

hpp = {he[0,1]: x=ch @ \®(PB(X)) = x=Au}.

The second threshold corresponds to optimal (MAP) decoding
1
hyvap = {h€[0,1]:liminf —E[H(X"|Y"(h))] >0},
n—oco n

where H(X"|Y"(h)) is the conditional Shannon entropy of the input given by the
channel observations and It is the expectation over the code ensemble.
The potential functional Ws(x) of the “single” or uncoupled system is

B
- R(1)

Wi (x) H(R®(x)) + H(p"(x)) - H(x @ p=(x)) - H(c® L®(p®(x))).

(2.4)

1
L'(1)

The fixed point form of the DE equation (2.3) is obtained by setting to zero the func-
tional derivative of W(x;c) with respect to x. In other words, x = cy ® A\®(p¥(x))
is equivalent to

lim © (W, (x) +7m) ~ Wi (2)) =0, (2.5)
7=Uy

where 7 is a difference of two probability measures (see [63] for the proof of this
statement). The BP threshold hgp and the MAP threshold hyap can be obtained
from the analysis of the stationary points of the potential function. See [63,82] for
more details and a rigorous discussion of this issue.

Remark about notations. In the remainder of the chapter, we omit the subscript h
from cy and the argument h from x(h) most of the time. This is because we will
need a subscript (resp. an argument) z that represents the position along the chain
in the discrete (resp. continuous) case.

2.2.2 Spatially Coupled System

The definitions of the BP and MAP thresholds above extend to the spatially coupled
setting. For standard (uncoupled) LDPC codes, the BP threshold hgp is, in general,
lower than the MAP threshold hyap. Spatial coupling exhibits two attractive prop-
erties. First, the MAP threshold is conserved under coupling in the limit of L. — +o0
and for all w. The proof of this statement is found in [82]. Second, the BP threshold
of the coupled system saturates to the MAP threshold, as proved in [43,63]. This
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phenomenon is called threshold saturation, the main consequence of which is that
one can decode perfectly up to the hyap.

We now describe the density evolution and potential functional formalism for
the spatially coupled code ensemble. Consider L.+ w “copies” of the single system
described in Section 2.2.1, placed on the spatial coordinates z = —w+1,..., Lo+w-1.
The system at position z is coupled to its w neighboring systems by means of a
uniform coupling window. For simplicity, we take a uniform coupling window. We
denote by X( ) the variable node output distribution at position z = —w+1,..., L,
on the spatial axis and at time ¢ € IN. The DE equation of the coupled system takes
the form

ALE) 29

In this equation, c, = ¢, for z=1,...,Lc+w—-1and ¢, = As for z=-w+1,...,0.
Furthermore, we fix the left boundary to X( ) = = A for z=-w+1,...,0, for all £ € IN.
These conditions express perfect information at the left boundary which is what
allows seeding and decoding wave propagation along the chain of coupled codes.
The initial condition for the recursion in (2.6) is xg ) - =Agforz=1,...,Lo.+w-1.

It is more convenient for our analysis to work with the check node input dis-
tribution than with the variable node output distribution. The check node input
distribution at position z on the coupling axis and time ¢ € IN is denoted by x(t)
and is equal to the normalized sum of the averaged variable node output distribu-
tions at positions z —w + 1,...,2z. This is due to the forward averaging technique
in which coupling is made (in our work). More formally, we write the check node
input distribution as

Then, using this change of variables, we rewrite (2.6) as

(D = Z s @/\®( Z P ( ,E;t)uj))' (2.7)

Just as in the single system case, this DE equation can be expressed as the station-
arity condition of a potential functional (see [63])

Le 1

W= 3 | R,(l)Hu%(xz>>+H<p<xz>>—H<xzp(xz»
z=—w+1
1 1wl
_ L/(l)H(cZ@gL@(a Z P(x-10)))}, (2.8)
where x = (X—w+1,-.-,XL.4w-1). The fixed point form of (2.7) is equivalent to

lim, o 7_1(W(§+7ﬁ)—W(§) =0for n = (N-w+1,- -, NL.+w-1) Where n; are differences
of probability measures.
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2.2.3 Phenomenological Observations

Our derivation is far from rigorous and is based on an assumption derived from
a phenomenological picture observed from simulations. We summarize the main
observations in this paragraph for the case of transmission over the BEC channel.
This channel also gives us the opportunity to illustrate the formalism outlined in
Sections 2.2.1 and 2.2.2 in a concrete case.

The channel distribution of the BEC can be expressed as c.(h) = eAp+(1-€) A,
where € is the erasure probability, and H(c¢) = € (hence h = €). The density of the BP
estimates of log-likelihood variables can be parametrized as x(Y)(h) = 2 Ag(h)+(1-
M)A (h), where 2 € [0,1] is interpreted as an erasure probability at iteration
t € N. The DE equation becomes a one dimensional iterative map, expressed as

2D = ex(1- p(1-2M)), (2.9)

over scalars in [0,1]. These iterations are always initialized with 2(%) = 1, or equiv-
alently with 2 = ¢ The corresponding fixed point equation is the stationarity
condition for a (single) potential function

Weeco(2) = o= (1 - R(1 - 2)) —2p(1 - z) - L(1=p(1-1x)). (2.10)

R’(l) L’(l)

Note that the potential function is defined up to a constant that is set, in our
work, such that Wggc(0) = 0. Figure 1.6 illustrates the (single) potential function
for a (3,6) regular Gallager ensemble, for several values of €. For e < 0.43, (2.10) is
strictly increasing; equivalently, the DE iterations are driven to the unique minimum
at © = 0. At € = egp = 0.43, a horizontal inflexion point appears, at which we obtain
a non-trivial local minimum xgp; this corresponds to the non-trivial fixed point
reached by DE iterations. It is known that the MAP threshold is equal to the
erasure probability at which the non-trivial minimum is at the same height as the
trivial one, and that decoding becomes impossible once the non-trivial minimum
becomes the global minimum. In the example, this occurs when € = eyap = 0.4881.
In Figure 1.6, we also show the energy gap defined for egp < € < eyap, that is defined
by AE = Wggc(asp) — Waec(0). At the MAP threshold, we have AE = 0.

We now describe the phenomenology of the solitonic wave for spatially coupled
codes. Our discussion is limited to the case where the underlying code ensemble
has a single non-trivial DE fixed point (equivalently, the single potential function
has a single non-trivial local minimum). One can show that this is always the case
for regular code ensembles. For irregular degree distributions, the situation may be
more complicated as several non-trivial fixed points might appear. For the case of
transmission over the BEC, Equ. (2.7) reads

2D = lwf €xmid (l 2 (1-p(1-2%))). (2.11)
z w 5 w o, Z—i+]

Here, e, =¢,for z=1,..., Lc+w—-1and €, = A, for z=-w+1,...,0. Furthermore,

we fix the left boundary to ;U( )20 for 2 = —w+ 1,...,0, for all ¢ € IN. This is the
“seed” that initiates decoding at the boundary of the coupled chain. The initial

condition for the iterations is m( ) =1 (or €) for z = yLe+w—1.
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Figure 2.1: We consider the spatially coupled LDPC(A(x),p(x)) ensemble, with
Mz) = 0.32% + 0.42° + 0.32% and p(x) = 2°, with transmission over the BEC(0.7).
The parameters of coupling are L. +w = 16 and w = 3. We plot the decoding profile
during the first 10 iterations, where the profile is initialized to 0 for z < 3 and to 1
elsewhere. We observe that the segment initialized to 1 decreases quickly and converges
to the BP threshold zgp = 0.6907. We observe that the transient phase is only about 5
iterations long for this example, before the decoding profile converges to a fixed shape.

The evolution of the decoding wave can be decomposed into two phases: a
transient and a stationary one. In the transient phase, we observe a profile of
erasure probabilities z = (Z_y+1,...,21,.) changing shape. The segment initialized
to :cgo) = 1 quickly drops to x, » xgp where it remains stuck on the far right for large
values of z. The seeding region, however, starts progressing towards the right-hand
side and, after a few iterations, a fixed profile shape develops. This transient phase
is illustrated in Figure 2.1 for an irregular code. Overall, it only lasts for a few
iterations (around 5 iterations for this example). After this transient phase is over,
one observes a stationary phase with a solitonic behavior, as depicted in Figure 2.2.
The profile of erasure probabilities has a stationary shape with a front centered at
some position zg.,; that moves towards the right at a constant speed. The position
Zront 18 Telatively well-localized within approximately 2w positions around the front
of the profile. The front quickly approaches z, — 0 for z < zpon and x, — xpp for
Z > Zmont- Lhe stationary phase and its soliton are depicted in Figure 2.2 for a finite
spatially coupled (3,6)-regular ensemble with chain length L. = 50 and w = 3 for
€ = 0.46. In this figure, we plot the decoding profile every 30 iterations starting from
the 30*" iteration (the leftmost curve) and up till the 150*" iteration (the rightmost
curve). The front (or kink) increases sharply from z, = 0 to x, = zp = 0.3789 over
a width of the order of 2w = 6.
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Figure 2.2: We consider the (3,6)-regular LDPC spatially coupled code with L. = 50,
w = 3 on the BEC(0.46). We plot the error probability along the spatial dimension z
and observe the “decoding wave’. This “soliton” is plotted every 30 iterations up till
iteration 150 and is seen to make a quick transition from zero error probability to the
BP-value xgp = 0.3798 of the error probability. The optimal (MAP) noise threshold is
EMAP = 0.4881.

2.3 Continuum Limit and Main Result

2.3.1 Continuum Limit

We now consider the coupled system in the continuum limit, in which the length
of the coupling chain L. is first taken very large L. — 400, and then the window
size is taken very large w — +oo. The continuum limit has already been considered
for the special case of the BEC in [69,70,72,73]. To avoid superfluous notation, we
shall keep the same symbols for the profile, the spatial position, and the channel
distribution in the continuum limit. We thus denote by x the continuous profile of
distributions and set x(Z,t) = xgt). We then replace = — z so that the new z is the
continuous variable on the spatial axis, z € R.

In view of the discussion of the phenomenology in Section 2.2.3, we consider the
class of profiles satisfying the “natural boundary conditions” x(z,t) - A when
z - —oo for all t € R, x(z,t) - xgp when z — +oo for all ¢ € IN, where xpp is
the unique non-trivial stable fixed point of the DE recursion for the single system
Equ. (2.3).

The BMS channel distribution is now also continuous, and we denote by c(z) the
channel distribution at the continuous spatial position z € R. The DE recursion (2.7)
then takes the form

x(z,t+1)=f01duc(z—u)®)\®(/:dsp(x(z—u+5,t))). (2.12)

The initial condition at ¢ = 0 is given by a Heaviside-like profile x(z,0) that interpo-
lates between the two limiting values of the boundary condition, namely x(z,0) = Ao
when z <0 and x(z,0) = xgp when z > 0.
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2.3.2 Statement of Main Result

We consider the case when the channel entropy h is in the range [hgp,hyap]. The
phenomenology tells us that: (i) after a transient phase, the profile develops a fixed
shape X; (ii) the shape is independent of the initial condition; (iii) the shape travels
at constant speed v; (iv) the shape satisfies the boundary conditions X(z) - A for
z > —oo and X(z) = xpp for z - +oo. We formalize these observations by making
the ansatz:

Ansatz. For each h € [hpp,hyap], there exists a velocity v > 0 and a family of
probability measures X(z) (indexed by z € R) satisfying the boundary conditions
X(2) » A for z - —oo and X(z) — xpp for z - +oo, such that for t - +oo and
|z = vt| = O(1), the solution of DE (2.12) is independent of the initial condition and
satisfies x(z,t) - X(z — vt).

Implicit in this ansatz is the fact that we restrict ourselves to underlying code
ensembles that have only one non-trivial stable BP fixed point. This is always true
for regular codes, for example, but is not limited to this case. Ensembles with
several non-trivial fixed points could lead to more complicated phenomenologies, as
emphasized in [98]; this would require a different ansatz.

Velocity of the soliton for general BMS channels. Under the assumptions
above, the velocity of the soliton is given by

AFE

v = , (2.13)
Jg dz H(p’ (X(2)) X’(z)2)
where AFE is the energy gap defined as
AFE =Wy(xpp) - Ws(A), (2.14)

where we recall that Wy is the potential of the uncoupled system shown in (2.4), xpp
is the non-trivial BP fixed point to which the uncoupled system converges, and As,
is the trivial fixed point (the Dirac mass at infinity).

We make a few remarks. In this formula, the prime denotes the derivative
X'(2) =lims_od 1 (X(z + &) — X(2)) that is to be interpreted as a difference between
two measures. The energy gap is only defined for hgp < h < hyap; that is, when the
single potential W has a non-trivial non-negative local minimum (see, for example,
Figure 1.6). The energy gap is equal to zero only when h = hyap, which confirms
the fact that the velocity of decoding is zero (no decoding occurs) in this case. We
note also that, with our normalizations, Ws(As) = 0.

Formula (2.13) involves the shape X. Using the DE equation, the ansatz x(z,t) —
X(z—wt), and the approximation x(z,t+1) - x(2,t) » —vX'(2z —vt), which is valid for
small values of the velocity v, we find (after a change of variables) that X(z) is the
solution of

X(z) —vX'(2) :/Olduc(z—u)@))@(]o-ldsp(X(z—u+s))). (2.15)

To obtain the shape X(z) and the velocity v, one must iteratively solve the closed
system of equations formed by (2.13) and (2.15). Note that the assumption of
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v being small is strictly valid for values of h close to hyjap. However, numerical
simulations confirm that in practice, the resulting formula for the velocity is precise
over the whole range [hgp,hyap].

2.4 Derivation of Main Result

Let us briefly outline the main steps of derivation. We first write down a poten-
tial functional that gives, in the continuous setting, the DE fixed point equation
corresponding to (2.12). This enables us to formulate the DE iterations as a sort
of gradient descent equation (Section 2.4.1). From there on, we use the ansatz in
Section 2.3.2 to derive the formula for the velocity (2.13).

2.4.1 Density Evolution as Gradient Descent

We denote by AW(x) the potential functional of the coupled system in the con-
tinuum limit obtained from (2.8) (see Section 1.6). This limit involves an integral
over the spatial direction z € R, and in order to obtain a convergent result, we
must subtract a “reference energy”. Essentially, any static reference profile, here
called x¢(z), that satisfies the boundary conditions x¢(z) - A, 2 > —oo and
x0(z) = xpp, z > +oo, will suffice. For concreteness, one can take a Heaviside-like
profile x9(2) = As, z < 0, x0(2) = 2gp, 2 > 0. The potential functional is then
defined as

AW(X):fRdz{P(z,x)—P(z,xo)}, (2.16)

where P(z,x) is a z-dependent functional of x equal to

P(z,x) = R,tl)H(R(x(z,t))) + H(p™(x(2,1))) = H(x(z,t) @ p™(x(2,1)))
—ﬁﬂ(c(z)m@(foldsp(x(z+5,t)))). (2.17)

In Section 2.7, we calculate the functional derivative of AW(x) in a direction
n(z,t); this derivative is defined as
IAW d
()] = AW )| (2.18)
0x d~y 7=0

and find

OAW
0x

:[]RdzH((/Olduc(z—u)@)/\@)(/oldsp(X(z—u+s,t))) (2.20)

[n(z,1)] (2.19)

~x(2,1)) B PP (x(2,1)) n(z,t)). (2.21)
From (2.12) and (2.21), we deduce that

[z B (et 1) = x(,) B2 () B (211 = AW ] (2.22)

X
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Using the duality rule (2.2) with a =x(z,t+1) - x(2,t) and b = p'®(x(z,t)) B n(z,t)
(where n must be a difference of two measures so that b is also such a difference)
and the associativity of B, we note that the equation above can also be formulated
as

OAW

_/RdzH((x(z,t+1)—x(z,t))®(p'(X(z,t))n(z,t))):—é—x[n(z,t)]. (2.23)

In this form, we recognize a sort of infinite-dimensional gradient descent equation
in a space of measures. This reformulation of DE forms the basis of the derivation
of the formula for the velocity.

2.4.2 Final Steps of the Derivation

The potential functional can be decomposed into two parts: a “single system” part
Ws(x) and an “interaction” part W;(x) that results from coupling. We have

AW(x) = Ws(x) + Wi(x), (2.24)

where the single part is defined as

Ws(x):]]-Rdz{Ps(z,x)—Ps(z,xo)}, (2.25)
where
Pu(2:) = s HORS(x(2.0)) + o (x(201)) = H(x(2.0) 8 7 (x(2.1))
~ oy (@) @ L2 (PP (x(=.))). (2.26)

and the interaction part is defined as

1

M

f]Rdz (Pi(2,%) - Pi(2,%0) (2.27)
where

Py(z,x) :H(c(z)®L®(p(x(z,t))))—H(c(z)®L®(f01dup(x(z+u,t)))).
(2.28)

For future use, we note that Py(z,x) = Ws(x(z,t)) is the single system potential (2.4)
“at position z”. With these definitions, the gradient descent equation (2.23) can be
written as

AdzH((X(z,t +1) = x(z,1)) B p'®(x(z,1)) n(z,t))

= 2 [z, )] + 2 ()] (2.29)

We use the ansatz to compute the three terms in this equation in the regime
t > +o0o, z » +oo such that |z — vt| = O(1). We find it convenient to choose the
direction n(z,t) = X'(z - vt).
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We start with the left-hand side of (2.29). We use the ansatz x(z,t) - X(z —vt),
the approximation x(z,t+1)-x(z,t) » —vX'(z—wvt), and the special choice of n(z,t) =
X'(z - vt) to rewrite the left-hand side of (2.29) as

v fRdz H(X'(z-vt) 8 p®(X(z - vt)) BX (2 - vt,1)). (2.30)
Using the commutativity of the operator B, we can see that this is equal to
v'[]RdzH(p'(X(z—vt)) B X (2 - vt)®?). (2.31)

Note that we can shift the argument in the integrals z — vt - 2z to make this term
independent of time.

We now consider the first functional derivative on the right-hand side of (2.29),
again when 7n(z,t) = X'(2 —vt). It should be clear that we can immediately make the
change of variables in the integrals z — vt — 2, which simplifies the formulas. Using
the calculations in Section 2.7, we find

%[X’(z)] = /;Rdz {H(X(z) ® [p'(X(z)) X,(Z)])

- H(c® X2 (x(2))) ® [ (X(2)) x’<z>])}. (2.32)

In order to simplify the above, we remark the following.

R CCONERCOETRLION
- HGP X)) - () @ L (1))

- H(pP(X(2)) X' () - H(X'(2) 8 p2(X(2)))
- H(X(2) 8 p2(X(2)) B X' (2)) + H(/®(X(2)) 8 X ())
— H(c(2) @ A2 (5P (X(2))) @ [/ (X(2)) @ X (2)]).

The first two terms on the right-hand side cancel out. Also, using the duality
rule (2.2) for the third term, we obtain the integrand in (2.32). In other words, we
can rewrite (2.32) as

= Ws(xpp) - Ws(Ac)
_AE. (2.33)

We now show that the functional derivative of the interaction part in (2.29)
does not contribute to the sum of derivatives when 7(z,t) is chosen to be equal to
X'(z - vt). By directly applying the definition of the functional derivative, we find

5;/}\(}i [X/(Z)] = »/Rdz {H(C ® [)\@)(p(x(z))) ® (p'(X(z)) X,(Z))])
1
—H(C®[A®(f0 du pP(X(z +u)))

®(f01dsp’(x(z+s))X’(z+s))])}. (2.34)
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We notice that the integrand is a total derivative. More specifically, it is equal to

1
L'(1)dz

1
{Hc® L2 (=) - H(c® I2( [ dup(x(z+w)))}.

Due to the boundary conditions, we have lim,_,_ X(2) = lim,,_o X(2+u) = As and
lim, 00 X(2) = lim,_oo X(z + u) = xpp. We thus conclude that the total derivative
integrates to zero and

Wi o,
—[X =0. 2.35
()] (2.35)
Finally, replacing (2.31), (2.33), (2.35) in (2.29) we obtain the simple relationship
v fRdzH(p’(x(z)) X' (2)%2) = AR, (2.36)

which yields the formula for the velocity (2.13).

2.5 Applications and Numerical Experiments

2.5.1 Binary Erasure Channel (BEC)

When transmission takes place over the BEC, the formula for the velocity can be
obtained by directly simplifying the general formula in (2.13).° We will suppose
that the underlying LDPC(\, p) code is such that the DE equation has a single
non-trivial fixed point that we denote by axgp # 0. Furthermore, we fix € in the
range [epp, enap] (recall that the channel entropy reduces to H(c) = h = € when
transmission takes place over the BEC).

The channel distribution can be written as ¢ = eAg + (1 — €) A, and the profile
is of the form x(z,t) = x(z,t) Ao+ (1 —x(2,t)) A, where x(z,t) € [0, 1] is the scalar
erasure probability at position z and time ¢. This tends to a fixed shape defined by

X(2) = X (2)Ag + (1 - X(2)) A, (2.37)

where X (z) € [0,1] satisfies lim, o, X(2) = 0, lim, 0 X(2) = zgp. We also
characterize the derivative of the shape with

X'(2) = X' (2)Ag - X' (2) Ao (2.38)

We note the following identities, that are valid for scalar maps f,g: R — [0, 1] (such
as A\, p, L, R and their derivatives)

{f®<x<z>> = f(X(2))A0 + (1~ f(X(2))Aco, (2.39)

9% (X(2)) = (1= g(1- X(2)) A0 +g(1 - X(2))Ace.

SWe can also use the formula for general scalar systems in Chapter 3, that covers cases beyond
coding theory, because the BEC yields a scalar system.
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To compute the denominator of (2.13), we first use (1.41), (2.38), and (2.39) to
write

PPX(2)) B ()

={(1-p'(1-X(2))) 20 +p'(1 - X(2)) Ao} 8 {X'(2) A0 ~ X' (2) Ao}

={(1-p'(1-X(2))) 20+ (1~ X(2)) A} B {X'(2)*Ace ~ X'(2)* Ao}

= (1-p/(1-X(2))X"(2)* A0 = (1= p/(1 - X(2))) X' (2)*Ag

+0' (1= X (2))X'(2)*Aco = p'(1 - X(2)) X' (2)" Ao}
= p'(1- X(2))X'(2)*Aco — /(1 - X(2))X"(2)* Ao.

By using H(Ag) =1, H(A«) =0 and properties of the entropy functional, we write
the denominator of (2.13) as

H(p®(x(2)) B X (2)™2) = =/ (1 - X(2))X'(2)>

For the numerator of (2.13), we have AE = Wggc(zpp) — Werc(0), where the single
system potential on the BEC is obtained from (2.4) by using, again, the properties
in (1.41) and (2.39). The exercise yields

1 €

Wgec(z) = a6 (1-R(1-2z))-zp(l-z)- o)

L(1-p(1-2)).

Putting together these results, the formula in (2.13) becomes

B WBEC(IUBP) - WBEC(O)
Jrdzp'(1-X(2))X'(2)*

(Note that with our normalizations Wggc(0) = 0 for all €.) The erasure profile X (z)
has to be computed from the one-dimensional integral equation

(2.40)

UBEC =

X(z)—vBECX'(z)=6f01du)\(1—/Oldsp(l—X(z—u+s))). (2.41)

The velocity vanishes when € — eyap because Wygce(xgp) = Warc(0) = 0 in that
case.

An important quantity is the slope of the velocity at eyap, that can serve as a
linear approximation for the velocity close to this value of the channel parameter.
To compute it, we remark that Wggc has an explicit dependence on ¢, as well as an
implicit one through zgp(e). Thus,

dWggc _ OWgEc + OWpggc drpp

de Oe Orgp de
_ OWerc
Oe
1
= _L’(l)L(l - p(1 — l’Bp)),

so that for € — eyap, the first-order Taylor expansion of the single potential yields
1

L’(l)L(l — p(]. — xMAP))-

WBEC(CCBP) N —(6 - 6MAP)
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(Note that we used xpp(€) - zpp(emap) = Tmap When € — eyap, where xyap is
defined as the non-zero point at which the potential is stationary and vanishes.)
This yields the linear approximation for the velocity

o = (€~ emar) L(1-p(1-2mapr))
L(1)  Jrdzp' (1= Xmar(2))(Xiap(2))?
where Xyap is the erasure probability profile obtained when € = eyap.

It is interesting to compare (2.40) with the upper bound of Theorem 1 in [98]
for a discrete system

(2.42)

WBEC(-TBP) - WBEC(O)
> (1) (s —wen)?

VB = S

a<2. (2.43)

In [98], the derivation of the bound yields a < 2 (for L. and w large enough), but it is
conjectured, based on numerical simulations, that « = 1 would be a tight bound. It
is clear that (2.43) and (2.40) are consistent. We note, for the purpose of reference,
that another upper bound is derived in [98], namely

n = a(WBEC(l“BP; 6) - WBEC(O;f))
b2 2WBP($u;€) - WBP(@’BPQ 6)

where x,, and zgp are, respectively, the non-trivial unstable and stable fixed points
of the potential of the uncoupled system Wggc. We do not discuss this bound in
detail because it turns out to be a very loose bound in practice.

We now compare the results of the analytical formula for the velocity (2.40) with
the empirical velocity (called v, below) that is obtained by simulations (running the
discrete DE recursion). We show that the formula provides a very good approxima-
tion for the (real) empirical value of the velocity, even for relatively small values of
the window size w.

For the simulations, we consider the spatially coupled (3,6)- and (4, 6)-regular
code ensembles, as well as two irregular LDPC codes (that we describe later). We run
the simulations for several values of the chain length L. = 256,1024 and the window
size w = 3,5,8,16. The empirical velocity is the velocity calculated from erasure
probability profiles of the discrete DE recursion (2.11). Consider two (discrete)
profiles g(tl) and g(w) at any two iterations ¢; and tg, respectively, with t; < to.
After the transient phase is over the profiles are identical up to translation. We call
a “kink” the part of the profile where there is a fast increase from 0 to xzpp in the
erasure probability. The kink “position” is the coordinate such that the height is
equal to xgp/2, and Az is the difference of two such positions (at times ¢; and t9).
Then, the empirical velocity v, is defined as

Az
Vg = ———.
w(tQ —tl)

In practice, we obtain reliable results by taking pairs of profiles separated by 20
iterations and averaging the ratio above over every consecutive pair of profiles. Note
that we normalize the velocity by w to be able to compare systems with different
window widths.

In Table 2.1, we give the empirical values v, of the normalized velocities for the
spatially coupled (4, 6)-regular code ensemble with transmission over the BEC(0.6),

(2.44)
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when the spatial length is L. = 1024 and the channel parameter is fixed to € = 0.6
(between the BP and MAP thresholds), for different values of the window size w.
We observe that the result of our formula vggrc serves as a good estimate of the
empirical velocity v for all the demonstrated values of the window size. We also
observe that the linear approximation serves as a good estimate when the channel
parameter is not too far from the MAP threshold eyiap. The upper bound vg [98],
however, serves as a better estimate as the window size grows larger.

Table 2.1: Normalized velocities for LDPC(2%, %) on the BEC with a spatial length
L. =1024, for several w sizes, and ¢ = 0.6. The values in the table can be compared to
vgec = 0.0333 and v; = 0.0293.

w =3 w=>5 w=8 | w=16
Ve 0.0325 | 0.0335 | 0.0337 | 0.0339
vpfa || 0.0473 | 0.0410 | 0.0380 | 0.0356

In Table 2.2, we give the empirical values v, of the normalized velocities for the
spatially coupled (3,6)-regular code ensemble with transmission over the BEC(e),
when the spatial length is L. = 1024 and the window size is w = 8, for different values
of the channel parameter e. One can compare these values with those in [98] (up to
a factor equal to w due to the normalization). We find that the result of the formula
for vpgc gives the closest estimate to the empirical velocity v, for all values of e.

Table 2.2: Normalized velocities for the LDPC(z?,2°) on the BEC, spatial length
L.=1024, w =8, and several € values.

€=045]€¢=0.46 | €e=0.47 | €¢=0.48
Ve 0.0667 | 0.0458 | 0.0267 | 0.0117
UBEC 0.0660 | 0.0449 | 0.0272 | 0.0115
v 0.0506 | 0.0373 | 0.0240 | 0.0108
vpla 0.0781 | 0.0541 | 0.0332 | 0.0142
vp,/a || 0.6970 | 0.5008 | 0.3068 | 0.1291

Figures 2.3 and 2.4 show the empirical velocity v., the analytical velocity vggc,
and the upper bound vp for the spatially coupled (3,6)-regular code ensemble,
with chain length L. = 256 and window size w = 3. We remark that our formula
approximates the empirical velocity very well, for all values of the channel parameter
€ € [epp, emap] = [0.43,0.488]. As or the (4,6) code, we find good agreement between
the two values for more than half of the interval [egp, emap] ~ [0.515,0.719].

We also illustrate the results for two irregular code ensembles in Figures 2.5
and 2.6. The first one has node degree distributions L(z) = 0.3z% + 0.62° + 0.12°
and R(x) = 2*, spatial length L. = 1024, and window size w = 4. The agreement
between vggc and v, is excellent for the whole range € € [egp, eyap ] = [0.657,0.719].
The second one has L(x) = 0.4z + 0.3z% + 0.32° and R(x) = 0.52% + 0.52'2, spatial
length L. = 256, and window size w = 3. The agreement between the velocities is
also very good for most of the range € € [egp, emap] = [0.311,0.385].
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Figure 2.3: Normalized velocities ve, vgec, and vg/a (in the order of the legend)
for the (3,6)-regular ensemble with spatial length L. = 256, window size w = 3, and
€EBp = 0.43<e< EMAP = 0.4881.
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Figure 2.4: Normalized velocities v, vgec, and vg/a (in the order of the legend) of
the decoding profile for the (4,6)-regular ensemble of spatial length L. = 256, window
size w = 3, and €gp = 0.515<e< EMAP = 0.666.
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Figure 2.5: Normalized velocities vggc, ve, and vp/a for an ensemble with L(z) =
0.32% + 0.62% + 0.12°, R(x) = 2* of spatial length L. = 1024 and window size w = 4.
Here, € € [egp, emap] = [0.657,0.719].
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Figure 2.6: Normalized velocities vgec, ve, vp/a for an ensemble with L(z) = 0.4z +
0.3z% +0.32°, R(x) = 0.528 + 0.52'2 of spatial length L. = 256 and window size w = 3.
Here, €€ [EBP, EMAP] = [0311,0385]
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2.5.2 Gaussian Approximation (GA)

The DE equations relate probability densities to each other, and as such, we need
to track an infinite set of parameters (except for the BEC case where the space of
densities can be parametrized by a single real number). In many situations, such as
large degrees for example, the densities are well approximated by Gaussians. This
allows us to project the DE equations down to a low-dimensional space. There are
several variants of the Gaussian approximation (see for example [37,102,103]), and
here we use it in a form called the “reciprocal channel approximation” proposed in
[102,103].

The idea is to assume that the densities of the LLR messages appearing in the
DE equations are symmetric Gaussian densities. Such densities take the form

dh (h—m)?
exp (-5 ),

V2ro? 20

where the mean m and variance o2 satisfy o? = 2m. Furthermore, the channel

density c is replaced by that corresponding to a BIAWGNC(c2) with the same
entropy H(c). Density evolution can then conveniently be expressed in terms of the

dx(h) = (2.45)

entropies pgt) =H (xit)). This is done as follows. Let 1)(m) denote the entropy of a
symmetric Gaussian density of mean m given by

1 (z=m)?
m) = dze Tim log,(1+ e 7). 2.46

Thus, ¥ ~(p) denotes the mean of a symmetric Gaussian density x of entropy p =
H(x). Consider two symmetric Gaussian densities x; and xo with means m and
my and entropies p; = ¥(m1) and ps = ¥(mg), respectively. Then, we have

H(x1 @ x2) = (v~ (1) + 97 (p2)), (2.47)

which just expresses the fact that a usual convolution of two Gaussian densities of
means m1 and my is a Gaussian density of mean my + mo.

On the contrary, x; ® xo is not exactly Gaussian so there is no exact formula to
describe its entropy, but the idea here is to preserve the duality rule H(x; B x2) +
H(x1 ®x2) = H(x1) + H(x2). Writing this relation as

1-H(xi1®x2)=H((Ap—x1)® (Ao —x2)),
and noting that H(Ag—x1) = 1-p1, H(Ap—x2) = 1-p2, we obtain the approximation
H(xi B %2) = 1- (07 (1= p1) + 07 (1= p2)). (2.48)
We limit ourselves to regular codes for simplicity. Using the entropy relations

in (2.47) and (2.48), we obtain

{H(X(t)) = H(C®y(t)®(e_1))’ (249)

H(y(t+1)) _ H(X(t)(r_l)).

®For indications on the numerical implementation of this function, see [61], pp.194 and 237.
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Figure 2.7: The profile of entropies p(z,t) plotted every 10 iterations starting from
iteration 20. We take the (3,6)-regular LDPC code with spatial length L. = 30 and
window size w = 3, and we consider the BIAWGN channel with mean ¢! (H(c)) = 2.4.

Setting p*) = H(x(®) and ¢ = H(y®, we find

{p(w = (YU (H () + (0~ 1) (D)), (2.50)

g =1-u((r= Dyt (1 -pM)).
These equations can be combined into
P = (- 1y (-0 - (1-pW)) + 97 (H(e))). (251
The corresponding potential function is then easily obtained from (2.4)
Woap) = ~(1- 4 (o™ (1))

P> (1-p) = o((r -1 (1-p))
-G HE) T (1= e(r- e -))) 252)
For the coupled system, we denote by p. the average of the entropy of symmetric

Gaussian densities emanating from the variable nodes over the positions z, ..., z+w.
The coupled DE recursion then takes the form

(z‘»rl):lw1 -l Ky N vl ()
A= (-0 (5 X (- - Al D)) @63)
7= 7=

g~

+ 7 (H(e))).

This coupled recursion can be solved with appropriate boundary conditions. As
shown in Figure 2.7, it demonstrates the wave propagation phenomenon.

We are now ready to discuss the application of the approximation to the formula
for the velocity. The continuum limit is obtained exactly as in Section 2.3.1. The
assumption that the density x(z,t) tends to a fixed shape X(z — vgat) after the
transient phase implies that its entropy p(z,t) tends to P(z-vgat) = H(X(z—vaat))
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where P(z) is a scalar function (independent of initial conditions) satisfying the
integral equation

P(2) —vaaP'(2) .
) } ~ 1 _
=f0 dw(w YH(c))+ (-1 1(1_[0 dsy((r-1)y 1(1—P(z—u+8)2)5)5)

and the boundary conditions lim,,_o P(z) = 0, lim,_ . = pgp, where pgp is the
non-trivial fixed point of (2.51). We will now show that the formula for the velocity
reduces to

Wea(pep) = Waa(0)

VgA = — 1((r=2)-1(1-P(z :
(r~1) fp dz P'()2 /U202 (o)

(2.56)

To derive (2.56) we consider the denominator in (2.13) and write it as
(r— 1 H(x(2)®" @ x'(2)®?)
. 1 = (r— B3
=(r-1) }SI—I}(% 5—2{H(x(z)( Dmx(z+ 5)2)

- 2H(x(2)"") @x(z +6) @x(2)) + H(x(2)"" 2 mx(2)®)}  (2.57)

By computing each entropy in the Gaussian approximation, we find for the bracket
on the right-hand side

{0 =297 - p() + 267 (1= p(2 + )]
2L D (- p(2)) + 47 (1 - (= + )]
+[1=p(ry (- p(2)))]} (2.58)

In Appendix 2.7.3, we compute the limit of this term when 6 — 0 by appropriate
Taylor expansions and find

2 _
_(dP(z)) W((r-2)y (1 - P(2))) (2.59)

) (wwra-pe)))

This concludes the derivation of the formula in (2.56).

Table 2.3 gives a comparison of the analytical and empirical velocities vga and
Ve,cA, Tespectively, that are obtained for the (3,6)- and the (4, 8)-regular ensembles,
for a spatial length of L. = 100 and w = 3 for different values of ¢"*(H(c)) = 02/2
(twice the signal to noise ratio). We also plot both velocities for the (3,6)-regular
ensemble for the same parameters in Figure 2.8. We conjecture that the errors
incurred are due to numerical errors involved in computing the functions v and its
inverse.
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0.06H —®— Empirical velocity

*- Analytical velocity

Figure 2.8: Normalized velocities vga and ve ga for the spatially coupled (3, 6)-regular
ensemble within the Gaussian approximation framework, for a spatial length of L. =100
and window size w = 3, as a function of ¥ }(H(c)) = 2/02.

Table 2.3: Normalized velocities of the profiles within the Gaussian approximation on
the (3,6)- and (4,8)-regular code ensembles with L. = 100, w = 3.

2/02 2.33 | 2.35 | 2.38 | 2.40
vaa (3,6) || 0.0176 | 0.0205 | 0.0265 | 0.0310
ve (3,6) || 0.0150 | 0.0208 | 0.0300 | 0.0358
vea (4,8) || 0.0237 | 0.0258 | 0.0312 | 0.0381
ve (4,8) || 0.0217 | 0.0250 | 0.0308 | 0.0342

2.6 Application to Scaling Laws for Finite-Length Coupled
Codes

The authors in [96] propose a scaling law to predict the error probability of a finite-
length spatially coupled (¢, r, L.) code when transmission takes place over the BEC.
The derived scaling law depends on scaling parameters, one of which we will relate to
the velocity of the decoding wave. The (¢,r, L.) ensemble considered in [96] differs
slightly from the purely random ensemble we consider in this thesis. However, as
we will see, our formula for the velocity yields results that are reasonably good for
this application. We briefly describe this ensemble and the scaling law.

The (4,7, L.) ensemble combines the benefits of purely random codes (that we
consider in this thesis) and protograph-based codes [85]. The randomness involved
in the construction makes the ensemble relatively easy to analyze, and the structure
added to the construction due to its similarity to protograph-based code improves
the performance of the code. The ensemble is constructed as follows: Make L.+ w

copies of an uncoupled code at positions z = —w + 1,..., L.. All edges are erased
then reconnected such that a variable node at position zg has exactly one edge with
each set of check nodes at positions zy + 4, where 7 = 0,...,£ — 1. The check nodes

are chosen such that the regularity of their degree is maintained. Therefore, every
variable node has ¢ emanating edges and every check node has r such edges.

We consider transmission over the BEC. In this case, the BP decoder can be seen
as a peeling decoder [104]. Whenever a variable node is decoded, it is removed from
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the graph along with its edges. One way to track this peeling process is to analyze the
evolution of the degree distribution of the residual graph across iterations; this serves
as a sufficient statistic. This statistic can be described by a system of differential
equations, whose solution determines the mean and variance of the fraction of degree-
one check nodes and the variance around this mean at any time during the decoding
process. We denote by 7; the mean.

It has been shown in [96] that there exists a steady state phase where the mean
and the variance are constant. It is exactly during this phase that one can observe
the solitonic behavior.”

Let €(r.) denote the BP threshold of the finite-size (¢, 7, L.) ensemble (for
large values of L., this is close to eyap due to threshold saturation). We can write
the first-order Taylor expansion of fl‘e around € < €y, 1) as

1

=

J* YA€+ O(AE?),

€,r,Le
where Ae =€y, r,.) — €. Thus, for a given € <€y, 1) and by using 721‘5(8 . 0 (by
yylde sIyle vTaLC
definition), we obtain v » fl‘e/Ae. The parameter v enters in the scaling law and
is therefore of importance. In previous work, v was determined experimentally. It
would clearly be desirable to have a theoretical handle on . It is argued in [96] that
v~ 7, where 4 = zgp/c and ¢ is a real positive constant that behaves like Ae/vpgc,
ie.,

IBpP UBEC (2 60)

L Ae

It is expected that this formula becomes exact in an asymptotic limit €4, 1,.) > émap,
where threshold saturation takes place. Using the linearization (2.42), we obtain

5 TvAP L(l—P(l—xMAP))
L'(1) frdzp'(1 - Xuar(2))(Xjpap(2))?

The parameter 7 is simply equal to the erasure probability multiplied by the slope
of the velocity at eyap.

We compare the values of v and % for different values of £ and r, at a channel
parameter € = €.y, 1) — 0.04, in Table 2.4. The experimental values of v are taken
from [96], and to obtain the values of 7, we use the analytical velocity (2.40). We
observe that the numbers roughly agree. There are two reasons that can explain
the discrepancies. First, we use the velocity for the purely random spatially coupled
graph ensemble whereas the ensemble considered in [96] is more structured. Note
also that as £, r increase, the window size of the structured ensemble increases so
the finite size effects at fixed spatial length L. =100 may be more marked. Second,
the expression (2.60) is valid when € — €, 1), whereas in Table 2.4, Ae = 0.04
which is relatively large (this choice in [96] is due to stability issues in numerical
integration techniques when € — €(y,.1..y). We conjecture that the second issue is the
dominant reason for the difference between the values of v and 7, and that in fact
the velocity for the structured ensemble is not very different from the one predicted
by the analytical formula (2.40).

(2.61)

"In this thesis, we consider one-sided termination instead of two-sided termination (as considered
in [96]), so the fraction 71 here is equal to half the fraction 71 (*) in [96].
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Table 2.4: Values of v and 7 for €y, 1,y —€=0.04, L. = 100, and several values of £
and r

r EMAP Y i
0.4881 | 2.155 | 1.960

8 | 0.4977 | 2.120 | 1.779
10 | 0.4994 | 2.095 | 1.733
12 | 0.4999 | 2.075 | 1.722
12 | 0.3302 | 2.140 | 1.778
15 | 0.3325 | 2.115 | 1.746
6 | 0.6656 | 2.100 | 1.735

(@)

= O s O O | W

2.7 Appendix

In this section, we show how the equations (2.21), (2.32), and (2.34) are derived
using functional derivatives.

2.7.1 Derivation of Equation (2.21)

We calculate the functional derivative of AW(x) in a direction 7n(z,t) as follows,

OAW

0x

0 0
(= 0] = 5- AW am)| = o [ dzPGxeom)|

where the function P is defined in (2.17). Then, taking the derivative with respect
to v yields

[z {HGR (e 0) B0, 0) + HGPx(z,0) @ (1)
—H(p®(x(2,1) B0 (z,t) - H(x(z,t) @ p"(x(2, 1)) @0 (z,1))
1
—H(c(z)®A®(/0 dsp(x(z+s,t)))
@[jéldup'(x(z+u,t))77(Z+u,t)])}.

We notice that the first and third terms in the integral cancel out due to the com-
mutativity of the operator ®. By rearranging the averaging functions in the last
term, we obtain

[ a={H Pz 0) B0z, 1) - Hx(,1) 8, 0) @z, 1)
—H(/Olduc(z—u)(%)\@(foldsp(X(z—u+s,t)))
®[r(x(z1) Bn(=,1)])}.

By noticing that y = [)' duc(z —u) ® A®( [, ds pP(x(z — u + s,t))) is a probability
measure and a = p'®(x(z,t)) ®n(z,t) is a difference of probability measures, we can
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use the second duality rule in (2.2) (that is H(y® a) + H(y ® a) = H(a)) in order
to rewrite the above as (freely using the commutativity of &)

fRdz{ - H(x(z,t) 8 p®(x(2,t)) @n(z,t))
+H([[Olduc(z—u)®/\®(fold8p(X(z-wsat)))]
PE(x(z 1)) En(z1))}
=[Rdzp’(X(z,t))n(z,t)

(/Olduc(z—u)(%)\@(/(;ldsp(X(z—u+5,t)))—x(z,t)).

2.7.2 Derivation of Equation (2.32)

We calculate the functional derivative of W,(X) in a direction X'(z) as follows,

OWg
0X

= 8% fRdz Py(2,X+~X) o

- [ as{HGPEE) BX () + HEP () 2X(2)
—H(p®(X(2)) BX'(2)) - H(X(2) 8 p"?(X(2)) @ X'(2))
- H(c(2) ® A (p(X(2))) ® [0 (X(2)) X’(Z)])}-

X'(2)] = %m(x +X')

7=0

We notice here that on the right-hand side of last equality, the first and third terms
under the integral cancel out. Using the second duality rule in (2.2), and noticing
that X(z) is a probability measure and p'®(X(z))®X'(2) is a difference of probability
measures, we can rewrite the functional derivative as

f]Rdz {HX(=) @ [P (X(2) B X (2)])

- H(c(2) @ A® (0P (X(2))) ® [P (X(2)) X (2)])}.

2.7.3 Derivation of Expression (2.59)

Our goal in this section is to show that (2.58) reduces to (2.59) when § - 0. We
first reorganize (2.58) as follows (up to multiplication by 1/62)

$((r=2)07 (1= p(2) + 207 (1= p(z+9)))
= 20((r-2)¢7 (1= p(2)) + ¥ (1= p(= + 5))
+ (1= p(2)) + (=200 (1= p(2)) + 2671 (1= p(2))).
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When we Taylor expand each entropy v(---) around (r-2)¢ 1 (1-p(2)) to the second
order, we observe that the first order terms cancel and what remains is

5 (=20 (1= p)) {407 (1= (e + )2
4 (1-p(2))? = 2(07 (1= pl2 +8)) 07 (1= p(2))) "}
This is equal to
(=20 (1= p()) (47 (L= p(z +8)) ¥ (1= p(2)) )
Next, we write ™1 (1 - p(z +6)) as
7 (1=p(2) - (p(z + ) - p(2))),
and Taylor expand ¥~(-) around 1 - p(z) to obtain
(= +6) - p()P() (L= p())*0" (- 267 (1 - p(2)).

Multiplying by 1/52, taking the limit § — 0, and using the relation (w_l)/() =
1/(¢'(¢~1(-+))) we finally obtain

( dp<z>)2w"(<r—2)w—1(1 -p(2))
2
) (vt -p)))







Propagating Wave Velocity for
General Scalar Systems

3.1 Introduction

Although spatial coupling was first introduced and used in the context of coding
[44,45,77], it was later applied to several other problems, such as compressive sensing
[52-54], random constraint satisfaction problems [55,56], and a coupled Curie-Weiss
(toy) model [59,60]. For all these problems, the spatially coupled systems exhibit the
“threshold saturation” phenomenon: The dynamic threshold of the coupled system
saturates to the static threshold of the underlying uncoupled system [71]. In the
context of coding, the dynamic (or algorithmic) and static thresholds are the belief
propagation (BP) and maximum a-posteriori (MAP) thresholds, respectively. That
is, the dynamic threshold is the noise level up to which the BP decoder can fully
decode, and the static threshold is that up to which the optimal (MAP) decoder can
decode. In the present chapter, we consider spatially coupled general scalar systems
governed by a set of iterative message-passing equations.! The precise definitions of
the dynamic and static thresholds, then, depend on the application and are related,
respectively, to the performance of the message-passing algorithm and the “optimal
solver”. We formalize the setting further in Section 3.2.

As usual, the spatially coupled version of such general scalar systems is obtained
by taking some, say L.+w, copies of the underlying (uncoupled) system on the spatial
axis z = —w+1,..., L., and coupling every w adjacent such systems by means of a
coupling-window function. The performance of the message-passing algorithm on
the coupled system can be expressed by means of a DE-like recursion that updates
a vector = (T_y+1,-..,2r,); we call this vector the “profile”. In the context of
coding over the binary erasure channel (BEC), for instance, the 2" component of
the profile is the average erasure probability of the bits of the copy on the z*

!The content of this chapter is based on previous work [74,97].
[74] R. El-Khatib, N. Macris, “The wvelocity of the propagating wave for general coupled scalar
systems,” Information Theory Workshop (ITW) 2016, Cambridge, UK, IEEE pp. 246-250.
[97] R. El-Khatib, N. Macris, “The velocity of the propagating wave for spatially coupled systems
with applications to LDPC codes,” in preparation (2016) to be submitted to the IEEE Transactions
on Information Theory.
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position of the coupling chain. For general scalar systems, the interpretation of the
2™ component of the vector depends on the application. We call the desirable or
trivial fixed point the vector profile obtained by running the DE-like recursion when
the initial condition on the profile is “perfect” information. A non-trivial fixed point
can be obtained by running the recursion with different initial conditions or “bad”
information; we say that it is undesirable. In the present chapter, we assume that
we have a unique non-trivial stable fixed point.

Threshold saturation can be viewed in terms of the trivial (desirable) and non-
trivial (undesirable) fixed points: The profile associated with an uncoupled system
converges to the trivial fixed point for system parameters that are up to the dy-
namic/algorithmic threshold, and to the non-trivial fixed point otherwise; whereas
the profile associated with a coupled system converges to the trivial fixed point for
system parameters up to the static threshold that is higher than the dynamic thresh-
old. For the general scalar systems that we consider, we can think of the system
parameter as a level of noise or distortion; the real interpretation depends on the
application. For coding on the BEC(¢), for example, this is the channel parameter
€. In the case of compressive sensing, the parameter is the inverse measurement
ratio (the length of the signal divided by the number of measurements made to
reconstruct it).

As with coding, we seed a few copies at the boundary of the coupled chain with
perfect information, and the latter is propagated into the chain upon iterations of the
message-passing algorithm. When the system parameter is between the algorithmic
and static thresholds, and after a few “transient” iterations of the recursion, the
profile exhibits a solitonic behavior; that is, it develops a fized shape and propagates
with a constant velocity. In Figure 3.1, we plot the profile for the compressive
sensing problem every 20 iterations (up till iteration 160) and observe the “wave
propagation” phenomenon.? In this chapter, we find an analytical formula for the
velocity of the propagating wave, assuming that the solitonic behavior is indeed
exhibited by the coupled system profile.

The solitonic behavior exhibited by the propagating wave has already been stud-
ied in the context of coding when transmission takes place over the BEC. In [69,70],
the authors prove the existence of a solitonic wave solution for coding on the BEC
and derive bounds on the velocity. In [98], the authors provide bounds on the ve-
locity for coding schemes that might have more than two stable fixed points (in
contrast with the systems we consider). In addition, a formula for the velocity in
the context of the coupled Curie-Weiss toy model was derived in [53], along with
some approximations for it.

To derive the formula for the velocity of the wave, we follow the steps taken in
Chapter 2. We consider the coupled system in the continuum limit L. > w > 1 in
order to make the derivations more tractable. We also make use of the (continu-
ous) coupled potential functional that is simply the variational formulation of the
message-passing recursion; that is, its stationary points are the fixed points of the
recursion.

This chapter is organized as follows. In Section 3.2, we introduce the notation
and preliminaries that we need and briefly describe the wave phenomenon exhibited

%We can see, in this example, that the solitonic behavior is already exhibited starting at the
20" iteration of the recursion.
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0 5 10 15 20 25 30 35 40
z

Figure 3.1: We consider the compressive sensing problem with snr = 10%, € = 0.1, and
0 = 0.17. The coupling parameters are the chain length L. = 40 and the window size
w = 3. We plot here the profile z(z,t) as a function of the spatial position z at iterations
t, every 20 iterations, starting from ¢ = 20 till ¢ = 160. We notice that the profile is flat
almost everywhere and rises abruptly from Zz504 = 0 to Zpaq =~ 0.05.

by the soliton. In Section 3.3, we further describe the system in the continuum limit
and state the main result. In Section 3.4, we show the derivation of the main result.
Finally, in Section 3.5, we provide numerical simulations for GLDPC codes on the
BEC and BSC, as well as for compressive sensing.

3.2 Preliminaries

We adopt the framework and notation in [71]. We denote by € € [0, €105 ], Where
€max € (0,00), the interval of values for the control parameter e. Consider bounded,
smooth functions that are increasing in both their arguments ¢ : [0, Zyax(€)] %
[0, €max] = [0, Ymax(€)] and f = [0, ymax(€)] * [0, €max] = [0, Zmax(€)], where @nax(e),
Ymax(€) € (0,00) and Ymax(€) = g(max(€);€). The scalar recursions that interest us
are of the form

2D = f(g(zM;e)se), (3.1)

where ¢ € N is the iteration number. The recursion is initialized with z(®) = Trnax-
As f(g([0, Zmax(€)])) € [0, Zmax(€)], the initialization of (3.1) implies that z(1) <
20 =z . and more generally ) < 20 Thus, 20 will converge to a limiting
value z(*) and this limit is a fixed point because f and g are continuous. The fixed
points of the recursion (3.1) can be described as stationary points of a single system
potential function U, defined as

Us(z) = xg(z;€) — G(x;¢) — F(g(w3€);€), (3.2)

where F(z;€) = [, ds f(s;€) and G(z;¢) = [, dsg(s;€). Without loss of generality,
this function is normalized so that Us(x) = 0.
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We define z4004(€) as the fixed point of (3.1) that is reached when z is initialized
so that z(9) = 0 (“perfect” information). Furthermore, the algorithmic threshold® is
defined as

€q = sup{e | 2(%) = Tgood - (3.3)

The monotonicity of f and g implies that, for € < ¢4, the basin of attraction of x4,0q
is the whole interval [0, Zmax(€)]. Moreover, x40q is the unique stationary point of
the potential function, and it is a minimum because it is an attractive fixed point.
For € > ¢,, we have (=) 2 Zg00a and we denote this fixed point by 2() = 2,.4. Note
that this is an attractive fixed point and is thus a (local) minimum of Us(x). The
two attractive fixed points are separated by at least one unstable fixed point @,
that is a local maximum of Ug(x). We henceforth assume that there does not appear
any other fixed points besides Zgo0d, Tunst, Thaa- With this assumption in mind, we
define an energy gap as

AFE = Us(xbad) - Us(-xgood)a (34)

and the potential threshold as the unique value €, such that AE = 0 (it can be
shown that AE in non-increasing in €).

The corresponding spatially coupled recursions are obtained by placing L. + w
replicas of the single system on the spatial positions z = —w+1,..., L. and coupling
them with a uniform coupling window of size w. The coupled recursion takes the
form

1w1

xg“—l) Z f( Z g(xz j+k’ ) <35)

Motivated by the phenomenology observed in many examples (e.g. for the BEC

or for compressive sensing), we fix the boundary conditions as x() = Tgood, fOT

z={-w+1,...,0} and all ¢ € IN in order to study the stationary phase, during
(0)

which a soliton appears. The initialization of the recursion is xy’ = Tp.q for z =
{0,...,L.+w—1}. The corresponding potential functional is given by
L Le 1 w=
V@)= 3 (9030 -Ca0)- 3 F(ET ganare)  G0)
z=—w+1 z=—w+1 w ;2o

where z = (z_w+1,...,21.). The fixed point equation (3.5) can be obtained by
setting to zero the derivative of the potential U.(z) with respect to x.

The spatially coupled recursions (3.5) display the threshold saturation property.
Namely, for all € < €, the fixed point x( ) , z=—w+1,..., L., of the recursion (3.5)
is equal to a constant profile z,,, = (ngood, ooy Tgood)-

In the remainder of the chapter, we consider the range € € €4, €p0t]. 1t is for these
values of the parameter € that a soliton propagating at finite speed is observed, after
a transient phase that last for only a few iterations.

3The algorithmic threshold depends on the governing message-passing algorithm.



3.3. Continuum Limit and Main Result 87

3.2.1 Phenomenological Observations

We consider the case when the control parameter satisfies € € [€g, €,01). We consider
coupled systems whose single potentials have exactly two minima and one maximum
for this range of values of e. Equivalently, we consider systems whose underlying
system recursions have exactly two stable fixed points and one unstable fixed point.

We recall that the coupled DE equation governing the spatially coupled system is
given by (3.5). The left boundary is fixed to perfect information; that is, acgt) = Zgo0d
for z=—-w+1,...,0 and all ¢ € IN. This is the “seed” that causes the propagation
of perfect information into the coupled chain. The rest of the coupled chain is
initialized with xgo) =Xpaq for z=1,..., Le+w—1.

Just as in coding (Chapter 2), we observe a solitonic behavior once we apply the
scalar recursion (3.5). That is, with iterations of the recursion, we notice a wave-
like phenomenon: the profile z appears to have a fixed shape that is moving with
a constant velocity. We call this profile a wave or a soliton. The soliton is a kink
with a front at position zp.n, making a quick transition of width O(2w), between
the two values :Ugt) R Tgood fOT 2 << Zgrony and xg) N Tpad 10T 2 >> Zgont-

The simplest example to keep in mind for all of the above setting, as well as the
next paragraph, is the case of LDPC(\, p) codes with transmission over the BEC(¢)
where f(z;€) = eA(x) and g(x;€) = 1-p(1-2) and Us(x) is equal to (2.10). For this
example, €, = €gp, €pot = EMAP, Tgood = 0 and Tpaq = Tpp is the non-trivial stable BP
fixed point.

3.3 Continuum Limit and Main Result

3.3.1 Continuum Limit

We consider the system in the limit L. > w > 1 and formulate a continuum approx-
imation. The coupled recursion (3.5) becomes

x(z,t+1) = _/Olduf(_/Oldsg(:v(z—u+s,t);e);e). (3.7)

We take the boundary condition x(z,t) - Zgooa When z - —oo and z(z,t) - Zpaa
when z — +o0o. This boundary condition captures the profiles obtained after the
transient phase has passed, and is well adapted to the study of the soliton propaga-
tion.

3.3.2 Statement of Main Result

As before, we assume that there exists a constant velocity v > 0 such that, for ¢ - +oo
and |z —vt| = O(1), the profile z(z,t) — X (z—-vt), where X (z) is independent of the
initial condition z(z,0) and satisfies lim,.,_c X (2) = Zgood, liMzoi00 X(2) = Tpad-
Under this assumption, the velocity of the soliton is

e AE
 [rdzg'(X(2):) X' ()%
where the shape X (z) satisfies

X(z)—vX’(z):/:duf(Aldsg(X(z—u+s);€);€). (3.9)

(3.8)
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3.4 Derivation of Main Result

The derivation of the formula in (3.8) closely follows the one in Section 2.4.2, so
we will be quite brief. The first step is to introduce a continuum version of U.(z),
that we call AU (x).* We define x((z) as a static (time-independent) profile that
satisfies the boundary conditions z(2) - Zgoa When z - —oo and zo(z) = Tpad
when z - +oo (for example, one may take a Heaviside-like step function). This
is a reference profile that we need so that we obtain well-defined integrals in the
following expression

AU () = fRdz {Pez,2) - P(2,m0)},

where P.(z,z) is a z-dependent functional of x equal to

Pe(2,2) = 2(2,)g(2(2,1);€) - G(a(z,1);€) - F( fol dug(a(z +u,t);e)ie).

As long as x(z,t) and xo(z) converge to their limiting values fast enough, the
integrals over the spatial axis are well-defined. Evaluating the functional derivative
of AU, (z;€) in an arbitrary direction 7, defined as lim,_o v~ (AU (z+yn) - AlU(x)),
we find that (3.7) is equivalent to a gradient descent equation

]]-Rdz g'(x(2,t); e)(x(z,t +1)- x(z,t))n(z,t) = —5?)?6 [n(z,1)]. (3.10)

We first consider the left-hand side of (3.10). We use the ansatz z(z,t) - X (z —vt)
and consider the special direction 7(z,t) = X'(z - vt) to analyze (3.10). Using the

approximation X (z —vt) » X(z) —vX'(2) for small v, we obtain (after a change of
variables z — z + vt)

v[}Rde'(z)Qg'(X(z);e):%[X’(z)]. (3.11)

We proceed to compute the right-hand side of (3.10). The potential functional can
be divided into two parts: the “single system potential” Us(x) that remains if we
ignore the coupling effect, and the interaction potential U;(x) that captures the
effect of coupling. That is, AU, = Us + U;, with

Us(x) = fRdz{[mt)g(x(z,t);e) - G(a(zt);€) = F(g(a(z,t); )]

- [#0(2)9(z0(2): €) = Glao(2); €) = F(g(wo(2); €); e)]},

U(x) = [Rdz{[F@(x(z,t);e);e)—F( [ dugletz - w050

- [Flg(@o(2);):) - F( fol dug(zo(z - u)se); 6)]}.

4We have already defined this potential functional in (1.74) but will repeat it here for conve-
nience.
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The computation of each functional derivative at z(z,t) - X (z—wt) in the direction
X'(z - vt) yields

LX) = [ a= X' (X()g (X (2):0) - o (X (2): F(o(X (2):0:6))
= [ X (X ()50 - GXE) ) - Flo(X(2); )5
-[vsxen]
= Us(@paa; €) = Us(ZTgooa; €), (3.12)
and
Yhx)= [ az X' @{Fa(X (009 (X(2))
56X R Y

([ dug(x - wiee) [ dug (X))

- [ FoxGera - F( [ dug(x(-u);e):e))
=0. (3.13)

Replacing (3.12) and (3.13) in (3.10) we obtain the formula for the velocity (3.8).

3.5 Applications and Numerical Experiments

The general formula for the velocity of the soliton for scalar systems (3.8) can be
applied on several examples. In particular, we recover the results of Chapter 2 for
standard LDPC codes over the BEC, as well as on general BMS channels within
the scalar Gaussian approximation. In this section, we provide two more scalar
applications, namely GLDPC codes and compressive sensing.

The predictions of our formula are compared with the observed, empirical veloc-
ity v. that is obtained by running the scalar recursions. To obtain v., we plot the
discrete profile z at different iterations of the scalar recursions and find the average
of Az/(wATI), where Az is the spatial difference between the kinks of the profiles,
AT is the difference in the number of iterations, and w is the size of the coupling
window. We note that we normalize all velocities by the window size w so that we
can compare the velocities of systems that have different such sizes.

3.5.1 Generalized LDPC (GLDPC) Codes

A GLDPC code is a code represented by a bipartite graph, where the rules of the
check nodes do not depend on parity (as do usual LDPC codes) but on a primitive
BCH code. An attractive property of BCH codes is that they can be designed to
correct a chosen number of errors. For instance, one can design a BCH code so that
it corrects all patterns of at most e erasures on the BEC, and all error patterns of
weight at most e on the binary symmetric channel (BSC). We consider a GLDPC
code with degree-2 variable nodes and degree-n check nodes, where the rules of the
latter are given by a primitive BCH code of blocklength n.

We give a short description of a BCH code of blocklength n and minimum dis-
tance d = 2e + 1 (for more details, see [105]). A BCH code is a cyclic code over
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a finite field GF(b®), where b is a prime power and § is an integer. Let a be a
primitive element of GF(b%). Then, each element of GF(b”) can be written in the
form a’, i e IN. For each element a’, we can define a minimal polynomial m; that is
the monic polynomial over GF(b) with smallest degree. The generator polynomial
over GF(b) of the BCH code is defined as the least common multiple of myq, ..., mg.

Consider transmission on the BEC or BSC and denote by ¢ the channel param-
eter. The density evolution recursions have been derived in [106] for both channels,
based on a bounded distance decoder for the BCH code. For n and e fixed, we can
write the update equations of the message-passing algorithm as (3.1) with

{f(w;e) = ez,
g(z) =2t (")t (1 -z)m L

Here, we have €. = Tmax = Ymax = 1. Moreover, we can easily check, by differentia-
tion with respect to z, that the potential function Ugpppc(z) of the system is given
by

g'(z;€) €

- nx(l-x) 292(%6)'

e
UGLDPC(x) = EQ(% 6)

For numerical implementation purposes, it is useful to note that

xefl(l _ :B)nfefl

g'(r) = B(e,n—e)

where B(a,b) = % denotes the Beta function, and that g(x) is equal to the

regularized incomplete Euler Beta function so that

1 r e— n—e—
g(fE) :W,[O dss 1(1—8) 1.

This potential has = = 0 as a trivial stationary point® and develops a non-trivial
minimum at zgp # 0 when € > egp. Note that, as usual, the channel parameter egp is
the value for which the first horizontal inflexion point appears. The MAP threshold
is given by the channel paramter eyap for which Ugrppc(2sp) = UgLppc(0) = 0.

The formula for the velocity of the soliton in the case of coupled GLDPC
codes is obtained from (3.8). The energy gap for egp < € < eyap is now defined
as AFE = Uarppc(2sp) — Uarppc(0). Figure 3.2 shows the velocities (normalized
by w) for the spatially coupled GLPDC code with n = 15 and e = 3, when the
coupling parameters satisfy L.+ w = 500 and w = 3. We plot the velocities for
€ € [epp,emap] = [0.348,0.394]. We observe that the formula for the velocity pro-
vides a very good estimation of the empirical velocity ve.

3.5.2 Compressive Sensing

Let s be a length-n signal vector where the components are i.i.d. copies of a random
variable S. We take m linear measurements of the signal and assume that the

SEquivalently, = = 0 is a trivial fixed point of DE as can be seen from the expressions of f and
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Figure 3.2: We consider a GLDPC code with n = 15 and e = 3, with spatial length
L. +w = 500 and uniform coupling window with w = 3. We plot the normalized
velocities vg ppc and v, as a function of the channel parameter € when ¢ is between the
BP threshold ¢; = egp = 0.348 and the potential threshold ¢, = eyap ~ 0.394.

Figure 3.3: Potential function for compressive sensing with a Gaussian-Bernoulli prior.
The sparsity parameter is p = 0.1 and the signal to noise ratio snr = 10°. We show
the potential for several values of the measurement fraction §. For § > damp we have
a single minimum Zgo04. At damp = 0.205 there is a horizontal inflexion point and for
smaller measurement fractions a second minimum .4 appears. At dope = 0.157 the gap
AFE vanishes.

measurement matrix has i.i.d Gaussian elements distributed like N'(0,1/\/n). We
define 0 = m/n as the measurement ratio and fix it to a constant value as n — oo.
The relation between ¢ and the parameter € defined in Section 3.2 is € = §°1. We
assume that the power of the variable S is normalized to 1; that is, E[S?] = 1.
We also assume that each component of the signal s is corrupted by independent
Gaussian noise of variance o2 = 1/snr. To recover s, one implements the so-called
approximate message-passing (AMP) algorithm.

It is well known that the analysis of the AMP algorithm is given by state evolu-
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tion [54]. Let Y = \/snr S+ Z, where Z ~ N(0,1), and let S(Y) = Eg)y[S|Y] be the

minimum mean square estimator. We set
mnse(snr) = BEgy[(S - S(Y,snr))?],

for the mmse function. The state evolution equations (that track the mean squared
error of the AMP estimate) then correspond to the recursion (3.1) with

g(x,0) = snr — ﬁ

sor ' &

{f(m,é) = mmse(snr — z),

Here, z is interpreted as the mean square error predicted by the AMP estimate
of the signal. State evolution is initialized with = = 1, which corresponds to no
knowledge about the signal. We will take § as the control parameter. Note that we
have dpax = 1, Tiax = mmse(0), Ymax = §(Tmax). The potential function is equal to
Ucs(z) = — i —+oln(1+

snr 4

1’3111')

—2I(S;MS+Z)+2I(S; 1+IS+Z).
r T s

where I(A; B) denotes the mutual information between two random variables A and
B. To check that this potential gives back the correct state evolution equation as
a stationarity condition, we simply differentiate it with respect to = using to the
well-known relation dsdan(S; /snrS + Z) = immse(snr) [107).

To illustrate the potential function in a concrete case, we take the Bernoulli-
Gaussian distribution as the prior distribution over the signal components

Q2
65/2

Vor

Figure 3.3 shows the potential function for p = 0.1, snr = 10°, and several values
of 6 (the measurement fraction). We observe that for § > damp = 0.205, there is a
unique minimum zz,,q that is a fixed point of state evolution once the recursion is
initialized with = 1. During this phase, there are enough measurements so that the
reconstruction of the signal is good and the mean square error is small. At dayp =
0.205, a horizontal inflexion point develops in the potential function. For d < danmp, a
second minimum appears at a higher mean square error x4 and the reconstruction
of the AMP algorithm is bad. The optimal threshold J,,; corresponding to the
minimum mean square error estimator is found when § is such that the two minima
of the potential are at the same height. More specifically, d,p is given by the solution
of the equation Ucg(2had) = Ucs(Zgo0a). For our example, one finds 0y, = 0.157. This
threshold is reached by the AMP algorithm on the spatially coupled system.

We fix the value of § in the range [Jopt, damp] = [0.157,0.205]. In this regime,
the solution of the spatially coupled state evolution equations develops a solitonic
behavior; this represents the profile of mean square errors along the spatial direction.
The formula for the velocity ves of this soliton is obtained from (3.8), where the
energy gap is now defined as AE = Ucs(2vaa) — Ucs(Zgooa). Figure 3.4 shows the

qo(s) = (1=p)d(s) +p
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Figure 3.4: We consider the compressive sensing problem with snr = 10° and Gaussian-
Bernoulli prior for the signal components with sparsity parameter p = 0.1. We have

L. +w = 250 and uniform coupling window with w =

4. We plot the normalized

velocities vcs and v, as a function of the measurement fraction 6 when ¢ is between the

potential threshold d,,; = 0.157 and daup = 0.205.

velocities (normalized by w) for the spatially coupled compressive sensing system
with snr = 10°, p = 0.1 when the coupling parameters satisfy L. +w = 250 and w = 4.
In Figure 3.4, we plot the velocities for ¢ € [dopt, damp] = [0.157,0.205]. It is clear
that the formula for the velocity provides a good estimation of the empirical velocity

Ve.






Displacement Convexity for
(¢, r)-regular Codes on the BEC

4.1 Introduction

Spatially coupled codes have been proved to be universally capacity-achieving under
the low-complexity belief propagation (BP) decoding algorithm. This property is
attributed to the “threshold saturation” phenomenon that describes the fact that
the spatially coupled ensembles generally have a BP threshold that is as high as
the maximum-a-posteriori (MAP) threshold of the ensemble, as well as that of its
underlying ensemble; i.e., their threshold is saturated to the highest possible value.
In the context of coding, this result was proved for transmission over the binary
erasure channel (BEC) [41, 69,70, 100] and for transmission over general binary-
input memoryless symmetric-output (BMS) channels [43, 63].

In this chapter, we introduce one further tool for the analysis of such systems:
the concept of displacement convexity [92,93].1 Displacement convexity plays a cru-
cial role in the theory of optimal transport and, as we show in the present chapter
and in Chapter 5, it also serves as a useful tool for the analysis of spatially cou-
pled graphical models. We use the simple case of regular LDPC Gallager ensembles
and transmission over the BEC to explain how the concept of displacement convex-
ity can help us simplify existing proofs and derive new results. In Chapter 5, we
provide a more general analysis by using displacement convexity for general spa-
tially coupled systems (not restriced to coding) that are governed by a set of scalar
density-evolution (DE) equations.

We analyze the performance of the BP algorithm on the spatially coupled codes
by using a DE recursion that tracks the bit erasure probabilities along the coupling
chain. This recursion can be expressed in variational form by using the potential
functional, where the fixed points of the DE recursion are the stationary points of

!The content of this chapter is based on previous work [72,108].
[72] R. El-Khatib, N. Macris, R. Urbanke, “Displacement convezity, a useful framework for the
study of spatially coupled codes,” Information Theory Workshop (ITW) 2013, Sevilla, Spain, IEEE
pp. 1-5.
[108] R. El-Khatib, N. Macris, R. Urbanke, “Displacement convezity, a useful framework for the
study of spatially coupled codes,” 2013, http://arxiv.org/abs/1304.6026.
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the potential. Therefore, finding the stable fixed points of the DE recursion, which
we call the “profiles”, becomes equivalent to finding the minima of the potential.
Furthermore, we consider the coupled system in the continuum limit, in which we
first take the coupling length L., and then the window size w, to infinity. This en-
ables us to express the DE recursion and the potential functional in the continuous
space, the natural setting for the study of displacement convexity. For the (¢,r)-
regular Gallager ensembles that we consider in this chapter, the potential functional
is not convex in the traditional sense. However, we show that it is displacement
converx; that is, it is convex with respect to an alternative structure in the space of
probability measures. Roughly speaking, these are the probability measures asso-
ciated with erasure probability profiles viewed as cumulative distribution functions
(cdf’s).

We consider the static case: when the decoder phase-transition threshold is equal
to the MAP threshold and the BP decoder gets “blocked”.? The displacement con-
vexity property plays a fundamental role in characterizing the set of minimizing
profiles in a suitable space of increasing profiles. For our case, we obtain strict dis-
placement convexity once a global translational degree of freedom of the profiles is
removed. These results enable us to conclude that, in a suitable space of increas-
ing profiles, the minimizer of the potential functional is unique up to translation,
therefore, so is the solution of the DE equation.

Our goal is to find the stable fixed point(s) of the DE equation or, equivalently,
the minimizer(s) of the potential. In this chapter, we use displacement convexity to
do the latter. We start by looking at the minimization problem in a more general
space of profiles § that contains general continuous profiles (that are not necessarily
non-decreasing) with an additional constraint: their limits at —co and +oco on the
continuous spatial axis are equal to the trivial and non-trivial BP fixed point values,
respectively.® We further define the subset S’ of S that contains non-decreasing such
profiles. We prove that we can restrict our search for the minimizer(s) to the space
S’. The first step in doing so is to prove that truncating the profile at the value of
the non-trivial BP fixed point would yield a smaller potential value. We then use
rearrangement inequalities to show that rearranging the mass of a profile, so that
the resultant profile is non-decreasing, would also decrease the potential value. This
result is crucial for our derivations, as it enables us to view the profiles at hand as
cumulative distribution functions (cdf’s) — up to scaling — and this is the natural
setting for the analysis of displacement convexity.* We then define the subset S”
of 8’ that contains strictly increasing profiles. We furthermore restrict the search
of minimizers to the space S” by showing that if the minimizer is non-decreasing,
then it is necessarily strictly increasing.

An important question to ask is whether a minimizer for the potential functional
exists or, in other words, whether the potential attains its minimum. By using the

*We know that for regular LDPC codes with transmission over the BEC, the DE recursion
of the underlying uncoupled code has exactly two stable fixed points: we called them the trivial
(desirable) and the non-trivial (undesirable) fixed points. At these values, the potential function of
the uncoupled code is zero because we consider the static phase.

3We assume in this chapter that the profiles reach the limits “fast enough”, so that the integrals
in which we use them are well-defined. In Chapter 5, however, we work around this assumption.

It is not clear if and when the rearrangement inequalities are strict. As a result, the analysis
falls short of establishing that there cannot exist profiles in S\S’ that are minimizers and solutions
of the DE equation.
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direct method in the calculus of variations [109,110], we prove that the potential
functional does indeed achieve its minimum. Furthermore, we show that over the
space S, the potential attains its minimum in the subspace S”.

Once we restrict our search of minimizing profiles to the space 8" (in which we
prove that the potential functional indeed attains its minimum), we prove that the
potential is strictly displacement convex. To do this, we consider any two profiles yg
and y; (that can be viewed as cdf’s) and define their displacement interpolant y, that
is obtained from the two original profiles by taking the linear interpolation of their
inverses and then taking the inverse back into the space of profiles. The displacement
interpolant is formally defined in (4.24). We then make use of a result by Villani
[93] to prove that the potential functional is indeed displacement convex. As the
potential is invariant upon translations on the profile it takes as an argument, we
prove that the potential is strictly convex, once we remove the profile’s translational
degree of freedom (by centering it at the origin).

The three main results of this chapter are: (i) Theorem 4.15 that states that the
potential functional attains its minimum in the space of strictly increasing profiles,
and that it does not have a minimum in the space of profiles that are non-decreasing
(but not strictly increasing); (ii) Theorem 4.2 that establishes the displacement
convexity of the potential in the space of non-decreasing profiles, and its strict
displacement convexity in the space of centered strictly increasing ones; and finally
(iii) Corollary 4.3 that concludes that any minimizer of the potential in the space
of non-decreasing profiles are translates of the unique minimizer that exists in the
space of centered strictly increasing profiles. This corollary establishes that when
the BEC parameter is equal to the MAP threshold, the DE equation governing
the spatially coupled (4,7)-regular Gallager ensemble has a unique solution in the
space of centered strictly increasing profiles, and all its other minimizers in the space
of non-decreasing profiles are translates of it. To establish these results, we prove
intermediate ones such as the restriction of the space of minimizers to “truncated”
profiles in Lemma 4.5 and furthermore to non-decreasing profiles in Lemma 4.6 and
strictly increasing ones in Lemma 4.10.

The chapter is organized as follows. In Section 4.2, we introduce the framework
for our analysis and our main results. In Section 4.5.1, we give a quick introduction
of the notion of displacement convexity. Finally, in Section 4.4, we present a proof
of existence of the profile that minimizes the potential, and in Section 4.5, we prove
that the functional is displacement convex.

4.2 Preliminaries

In this section, we introduce the model and the associated variational problem to
which we apply the displacement convexity proof technique, and we state our main
result.

4.2.1 Single System

We consider the (¢, r)-regular Gallager code ensemble, where every variable node has
¢ outgoing edges, and every check node has r such edges. For the channel, we take
a BEC with parameter e. We analyze the asymptotic performance of the system,
under BP iterations, by tracking the evolution of the output erasure probability y of
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Figure 4.1: The plot of the single system potential Ws(y) as a function of the check-
erasure probability y, for a (3,6)-regular uncoupled ensemble and € = eyap = 0.4881.
There are two minima at y =0 and y = ymaP-

check nodes. We can thus write the DE recursion in terms of y (explained in more
detail in Section 1.4.3) as

y 21— (1 -y (4.1)

with initial condition y(® =1.

To this DE recursion, we associate a potential function, whose stationarity con-
dition yields the fixed points of the recursion. The “single” (uncoupled) potential
function is expressed as

Unsc,s(y) =y +(1- %)(1 Sy 1) - Ty (42)

and can be recovered from the expression in (1.48).

4.2.2 Spatially Coupled System

Consider the spatially coupled (¢,r, L., w)-regular ensemble, described in detail in
[43], where the parameters represent the left degree, right degree, system length,
and coupling window size (or smoothing parameter), respectively. More specifically,
the ensemble is constructed as follows: consider L. + w replicas of an (uncoupled)
(¢,r)-regular ensemble. We couple these components by connecting every variable
node to £ check nodes, and every check node to r variable nodes. The connections
are chosen randomly: for a variable node at position z, each of its £ connections is

chosen uniformly and independently at random in the range z,...,z +w — 1, and
for a check node at position z, each of its r connections is chosen uniformly and
independently in the range z —w+1,..., 2.

Let g, for z=-w+1,..., L., denote the output erasure probability of the check

node at position z. We find it most convenient to formulate the problem with the

average over a window in terms of y, = % ;-‘ial U.+%; this describes the input erasure
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probability to a variable node at position z. Then the fixed-point (FP) condition
implied by DE is

I e ST )

This can be seen as a special case of the more general DE recursion expressed in
terms of the variable node input erasure probability in (1.61) for the case of the
(¢,r)-regular Gallager ensemble. The corresponding potential function (adapted
from (1.66)) is

1 L 1 1
Usec(y) = — Y { U ((CE AL VR % yesi) } (4.3)
W o "w+1
where y = (y-w+1,---,yr.). The normalization 1/w is a convenience for which the

reason will immediately appear.

4.3 Continuum Limit and Main Results

4.3.1 Continuum Limit

The natural setting for displacement convexity is the continuum case. Therefore,
we consider the continuum limit of the potential in (4.3). To obtain the expressions
of the DE recursion and the potential in the continuum limit, we define the rescaled
variables 2 = =, u = % and the rescaled function 7(Z) = y., as we have done in
Chapter 1. Tt is easy to see that with this rescaling, (4.3) becomes a Riemann sum.
When we take the limits L. — +oco first and then w — +oo0, we find the following

expression for the potential functional in the continuum limit

wBEc<y>=[Rdz{(l—i)(l—yu))*—<1—y<z>>

+ % - %(folduy(z+u))e}.

We note that the potential above is related to that in (1.80) by

(4.4)

WBEC(y) = Adz Py(z7y)7

and we slightly abuse notation by keeping the same label. In this chapter, we do not
have to subtract a reference energy from the continuous version of (4.3) because we
consider the system at the decoder phase transition threshold € = eyap (also called
the static phase). During the static phase, the profile y converges to limits at z — oo
at which the potential vanishes. Therefore, the potential above is well-defined. At
the end of this paragraph, we give the conditions on the erasure probability profile
that are required in order to have a well-defined problem. From now on, the reader
should think of the noise level as fixed to the value € = ey ap; we will make it explicit
by always writing the parameter as eyap in the formulas that follow.
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The continuum limit of the DE recursion expressed in terms of y(z) reads

y(2) =1—(1—6MAP /Oldu(foldsy(z—u+s))z_1)r_1 (4.5)

One can check that (4.5) gives the stationary points of (4.4).
Equation (4.4) can be expressed as a sum of two contributions Weingle(y) and
Wint(y) that are defined as

Wiingto(y) = [Rdz{(l—%)u—y@))&—(1—y<z))+§—m%y<z)f}

JRAAVON (46)

Wint (v) EMKAP ]Rdz {y(z)e— ( folduy(z+u))£}. (4.7)

We call (4.6) the “single-system potential functional” and (4.7) the “interaction
functional”. The following remarks explain the interpretation suggested by these
names. The term (4.7) vanishes when evaluated for a constant y(z) = y. Moreover,
the integrand of (4.6), namely W,(y(z)) = Ws(y) is just the potential of the under-
lying uncoupled code ensemble. This is easily seen by recognizing that the usual
DE equation for the variable input erasure probability is recovered by setting the
derivative of Ws(y) to zero. We call Wi(y) the “single system potential”. A plot
of Ws(y) for the (3,6)-ensemble is shown in Figure 4.1 when € = eyjap. The figure
shows that the single potential vanishes at y = 0 and y = ymap, Some positive value.
This is a generic feature of all (¢,7)-regular code ensembles as long as ¢ > 3 (for
cycle codes ¢ =2, we have yyap = 0). In particular, this shows that in order for the
integrals in (4.4) to be well-defined, we have to consider profiles y(z) that tend to
their limits, as z — +oo, quickly enough so that the potential vanishes. Also, for
simplicity, we will restrict our analysis to continuous profiles.
The above remarks motivate us to define the following spaces of profiles. Let

S ={y:R - R" continuous and s.t.
im 2y(2) =0, lim 2(y(2) - ymar) =0} (4.8)

Note that the left limit is 0 and the right limit is yyap. We also define a space of
non-decreasing profiles (that can be flat over some intervals)

S'={yeS: yis non - decreasing},
and a space of strictly increasing® profiles,
S" ={yeS: yis strictly increasing}.

As will become apparent, it is useful to think of profiles in &’ and 8" as cdf’s of
measures over R. Here, these measures are normalized so that the measure of R is

°To make a clear distinction between non-decreasing and increasing functions, we furthermore
describe the latter as strictly increasing.
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yumap.® Note that, for y € S, the support of the associated measure is not necessarily
the whole real line, while it is the whole real line for y € S”. Finally, we introduce the
space S of strictly increasing profiles that are pinned at the origin; more precisely,
y e SY if and only if y € S” and y(0) = yaap/2.

4.3.2 Main Results

It is easy to see that Wggpc(y) is bounded from below; more precisely,

;E‘g WBEc(y) 2 _€MAPy1€/IAP/(2€)‘

Indeed, Wi (y) > 0, as seen in Figure 4.1 and, using Jensen’s inequality, we show that
Wint (¥) > —emap¥iap/(20) in Lemma 4.4. The first non-trivial question one may
ask is whether the minimum is attained in §. Using a rearrangement inequality of
Brascamp-Lieb-Luttinger [111], we reduce this question to the same one in 8’ ¢ S in
Lemma 4.6. We then use the “direct method”, a standard technique in the calculus
of variations [109,110] in Section 4.4.2 to show the existence of a minimizer in S'.
Once we know that a minimizer exists in 8" we prove that it cannot be in &'~ S§”.
This existence theorem is formally stated and proven in Section 4.4.2; we write it
below for clarity.

Theorem 4.1. Let € = epyap. The functional Wegec(y) achieves its minimum over
S in the subspace S”. There does not exist a minimum in S~ S”.

The existence of a minimum in S’ \ 8" is excluded; i.e., a minimizer that is
non-decreasing has to be strictly increasing. However, we are not able to exclude
the existence of a minimizer in S \ 8’ that would have “oscillations”. In order to
exclude such minimizers, we would have to study the conditions under which the
Brascamp-Lieb-Luttinger inequality is strict in our context. We do not address this
issue in the present work. In general, this can be a difficult problem (see [112,113]).

When functionals are convex, one obtains important information on the set of
minimizers. For example, strict convexity implies that the minimizer is unique.
Thus, the next natural question is whether or not the functional Wggc(y) is (strictly)
convex. This is in fact not true, but we will show that it is displacement conver in
S’ (hence also in §”). Here, displacement convexity refers to convexity under an
interpolation path that is different from the usual linear combination and is explained
in detail in Section 1.7. The functional is invariant under a global translation; i.e.,
we have Wgrc(y(-+ 7)) = Wiec(y(+)). Thus, the system certainly has at least one
translational degree of freedom and so the displacement convexity in &’ (and S”)
cannot be strict. However, once we remove this degree of freedom by pinning the
profiles, say at the origin, we prove strict displacement convexity of the functional in
the space S of pinned and strictly increasing profiles. This is done in Section 4.6.

Theorem 4.2. Let € = epyap. The functional Werc(y) is displacement convex on
S', and strictly displacement conver on S .

5In Chapter 5 we normalize such profiles such that the measure of R is 1. In this respect the
two chapters are “inconsistent” in order to demonstrate the effect of the “real” limit of the profiles
(ymap in this chapter) on the expressions we use throughout the analysis.
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Proof of Theorem 4.2. The displacement convexity of Wggc(y) in S’ follows from
that of the single potential in Proposition 4.16 and that of the interaction potential
in Proposition 4.17. In Section 4.6, we show that Wiy (y) is strictly displacement
convex in §. Combining this with Proposition 4.16 immediately yields the strict
displacement convexity of Wggc(y) in SY. O

This implies that there is a unique minimizer in §J. But, as the existence of a
minimizer is excluded in 8’ ' §” (by Theorem 4.15), we can conclude that the only
minimizers in S’ are translates of the unique one in S). These consequences also
translate into properties of solutions of the DE equation (4.5).

Corollary 4.3. Let € = epyap. In the space Sf, the functional Wpgc(y) has a
unique minimizer. In S', all minimizers are translates of it. Similarly, in S, the
DE equation (4.5) has a unique solution, and in S', all solutions are translates of
it.

Proof of Corollary 4.3. The uniqueness of the minimizer of Wgpc(y) in Sy follows
from strict displacement convexity. Indeed, suppose there are two distinct min-
imizers y; and yo with Wagc(y1) = Warc(y2), and let yy be their displacement
interpolant. Then, Wggc(yx) < (1 = AM)Wsrc(y1) + AWsgc(y2) for A # 0,1, which
implies that Wagrc(yx) < Wiec(y1). We must also have Wegpc(y1) < Warec(y)),
hence Wggc(y1) < Warc(yy), which is a contradiction.

Let us now show that all minimizers 1, € S” are translates of the unique minimizer
yo € S). Due to Lemma 4.10, we know that y; € S”; i.e., it has to be strictly
increasing. Thus, there is a unique position, say z1, such that y1(21) = ymap/2.
Consider the set of profiles S’ obtained by translating the set Sj by the vector zi.
Clearly, y is the unique minimizer in S7. But it is also clear that Wggc(yo(--21)) =
Weec(y1(+)). Thus, as yo(-—21) € S, we must have yo(--21) = »1(-) as announced.

Finally, let us discuss the consequences for the solutions of the DE equation (4.5).
We show that in the space §’, a solution of the DE equation is necessarily a minimum
of Wggc(y). This implies the statement of the theorem. Let yy € S’ denote a
solution of the DE equation. Consider any other profile y; € S’, and consider their
resulting displacement interpolant y,. A computation of the derivative shows that
%WBEc(yA)h:O = 0 because 1p is a solution of the DE equation. As the map
A = Wharc(yy) is displacement convex, A = 0 must be a minimum of this map.
Thus Waeec(yx) = Wasec(y0), and in particular with A = 1, we obtain Wggc(y1) >
Weec(yo). Thus yg is a minimum of the functional in S’ O

We would like to point out that, while displacement convexity itself is quite gen-
eral and can presumably be generalized to the general potential functionals of [100],
the issue of strict displacement convexity is more subtle. In fact, T. Richardson
[114] pointed out examples of systems where “internal” translation degrees of free-
dom may exist (besides the global one) which would spoil the unicity up to global
translations.

4.4 Existence of Minimizing Profile

In this section, we prove that the functional Wgxgc attains its minimum using the
“direct method” in the calculus of variations. Before stating and proving the the-
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orem on the existence of the minimizer in Section 4.4.2, we establish some useful
preliminaries in Section 4.4.1.
4.4.1 Preliminaries

The results in this section will allow us to restrict the search of minimizing profiles
to those in S that are monotone non-decreasing.
The first lemma states that the interaction potential is bounded from below.

Lemma 4.4. For any y in S,

l
fR dz {y(Z)E - ( fol duy(z+ U)) } > —%yﬁmp-

Proof. As h(u) = u’, u>0, is a convex function, we use Jensen’s inequality to write

folduy(z+u)ez (leuy(z+u))£. (4.9)

Further,

Md ld ( )6(2) ld M+ud~ (~)Z
[M ZA UYylz +u _\/0‘ U[M+u ZY\Z

[l [ e [z s [T asye)),

where (a) is obtained by first changing the order of integration (which is admissible
because the integral converges) and then making the change of variable Z = z + w.
And so, by combining this identity with (4.9), we obtain

[Zdz{y(z)e_ (/Olduy(z+u))g}

1 -M , 1 M+u ,
+f du[ dzy(3) +f du/ dzy(2)' > 0.
0 -M+u 0 M

Now, we take the limit M — +oo for each term of this inequality. By an application
of Lebesgue’s dominated convergence theorem, the last two terms tend to zero and
%yﬁ Aps respectively. Therefore, the limit of the first term is bounded from below by
—%yf/l Ap» Which concludes the proof. 0

We remark that any constant lower bound is sufficient for our purposes: finding
profiles that minimize a potential is equivalent to finding those that minimize a
potential added to a constant.

The following lemma states that a truncation of the profile at the value yyap de-
creases the potential functional, so we may restrict our search of minimizing profiles
to those with range y(z) € [0, ymap]-

Lemma 4.5. Define §(z) = min{y(z),ymap}. For all y €S we have
Weec(y) 2 Weec(¥),

and the inequality is strict if y .
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Proof. 1t is easy to prove that a truncation of y(z) at yyap yields a smaller value
for the single system potential Wiingle(y) (see e.g. the Figure 4.1 for intuition).
Therefore we have Wiingle(¥) > Whingle (9)-

We now treat the functional corresponding to the interaction term. We define
the function d, as d,(2) = y(2) — y(2) and notice that

{y(z) <ymap = 0y(2) =0 and y(2) = y(2), (4.10)

y(2) > ymap = 9y(2) > 0 and y(2) = ymap-

We need to show that Win(9) < Wint(y) or, equivalently, that

fRdz {gj(z)e - ( fol dug(z+ u))g}
< [ ae{@=)+8,:)" foldu(g(z+u) w6,z +u))
We use the binomial expansion to write this as
£- i —i
Z;(f) .[Rdz {y(z)iéy(z)f‘i - ( /01 duy(z +u)) (foldu5y(z +u))£ } > 0.

In the following steps, we show that the integral inside the summation above is
positive for any fixed value of 4; the inequality follows directly. We see that

(fldug(z+u))i(/ldu6 (z+u))£7i£yf\/{AP(/ldu5 (z+u))eii
0 0 Y 0 Y
. 1 .
S?J%\/IAP/O dudy(z+u)™,

where the first inequality is due to the property 7(z) < ymap and the second is
obtained using the convexity of the function h(u) = u’; u > 0. We integrate over z,
then make the change of variables Z = z + u on the right-hand side to obtain

[Rdz(/Oldugj(eru))i([Oldu5y(z+u))ei

) (4.11)
< [ dzyi /d6 H:/d”’ 5, (3)
fIR ZYmapr 0 u 6y (2 +u) R ZYnapdy(2)

Using the properties of d, in (4.10), we remark that

dzvi 5 Z—z':fdf ig (2)f-i
[ @z g, ()7 = [ dzg() 6,(2)"

and so the difference of quantities in the inequality (4.11) is integrable. We thus
obtain the following inequality

fRdz(foldug(mu))i(folduéy(mu))gingdzg(z)iay(z)f-i,

for any i. This yields the desired result. O

We next restrict our search of minimizing profiles to non-decreasing ones. In
order to achieve this, we will use rearrangement inequalities. We will use a notion of
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increasing rearrangement” introduced by [94]. In words, an increasing rearrangement
associates to any function y € S with range [0,ymap] @ non-decreasing function
y* € 8’ so that the total mass is preserved. More formally, any non-negative function
y in S can be represented in layer cake form

v) = [ dtise),

where 1p,(2) is the indicator function of the level set E; = {z|y(z) > t}. For each
t, the level set E} can be written as the union of a bounded set A; and a half line
(at,+o0). We define the associated rearranged set as E; = (a; — |A¢],+00). The
increasing rearrangement of y is the new function y* whose level sets are E;. More
explicitly,

+00
()= [t ().
Lemma 4.6. Take any y € S and let y* € S’ be its increasing rearrangement. Then,

Waec(y) 2 Waec(y™).

Before proceeding with the proof of Lemma 4.6, we state a definition and a
general rearrangement inequality of Brascamp, Lieb and Luttinger [111].

Definition 4.7 (Definition 1.1 [111]). Let f be a non-negative measurable function
on R, let Kg = {z|f(z) > y} and let Myf = ,u(Kg), where p denotes the Lebesgue
measure. Assume that Mg < oo for some o < 00, Iff s another function on R with
the same properties as f and, additionally, f(z) = f(-z) for all z € R, and for any
0 < x1 < z9, we have f(xg) < f(ajl), and finally, MJ = Myf for all y > 0, then f is
called a symmetric decreasing rearrangement of f.

Theorem 4.8 (Theorem 1.2 [111]). Let f;, 1 < j < k be non-negative measurable
functions on R, and let ajpy,, 1 <j <k, 1 <m <n, be real numbers. Then, if f; is
the symmetric decreasing rearrangement of f;, we have

k n ko n
fn d"foj( Z ajmxm) < jI;{" d”acnfj( Z ajmxm) (4.12)
J=1 m=1 j=1 m=1

Remark 4.9. Theorem 4.8 is non-trivial only if k > n. Otherwise, both integrals
diverge and the inequality trivially holds. We will see in this section that k > n in
our case.

Proof of Lemma 4.6. 1t is sufficient to prove that the increasing rearrangement of a
profile decreases Win(y) because Wiingle () is invariant under rearrangement.
Theorem 4.8 applies to symmetric decreasing rearrangements. Therefore, it is
convenient to first “symmetrize” the profiles we consider and the potential func-
tional. Consider a profile y € S such that y(z) € [0, ymap], z € R, (due to Lemma 4.5)
and denote by ys the function such that ys(z) = y(2), z < R and ys(z) = ys(2R -

"Previously, the term “increasing” was used to denote functions that are currently referred to
as “non-decreasing”. So an increasingly rearranged function is allowed to have flat spots. In our
notation, we always use “non-decreasing” to refer to such functions. However, we keep the name
“increasing rearrangement” to be consistent with the literature.
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z), z> R. The value of R is chosen (large enough) so that y(R) is arbitrarily close
to ymap. Note that y, is integrable over R.
We recall the expression of Wint(y) in (4.7) and rewrite it as

Wini(y) = EMZP Rl—i}}—loo{ [i dzy(z)e - [i dz([ol duy(z +u))£}. (4.13)

We now express both integrals between brackets in terms of the symmetrized profile.
For the first one, this is immediate

/_z dzy(z)" = % [Rdzys(z)é. (4.14)

For the second one, some care has to be taken with the averaging over u when z is
near R. One has

[ dz f duy(z+u) 2fdz / duys(z+u)) +O(RZ) (4.15)

Replacing these two equations in (4.13), we obtain

1 l
Wint () = GMAP/ dz ys(z)g 6MAP Rdz(fo duys(z+u)). (4.16)

Now, we consider ys, the symmetric decreasing rearrangement of ys. The first
term in (4.16) is invariant under rearrangement. It remains to prove that the second
term in (4.16) increases upon rearrangement. We express it as follows (dropping

EMAP/2£)
1 ¢ 4

Adz([o duys(z+u)) =/dz[{Hduiys(z+ui)]l[071](ui)
® duzys Z+R+’LL1+1 ]l

2

() 1
dz da; gs(Z+ R+ u; + = )]l

f f H 2

(d) .

= fRdz/]Regduiys(z+ui)]l[07l](ui)

:'[Rdz(foldugjs(eru))z,

where the equality in (b) is due to the changes of variables Z = z — R and u; =
u; — 1; i=1...¢, the inequality in (c) is due Theorem 4.8, and the equality in (d)
is obtained by first remarking that the indicator function ]1[ 11 (uz) is unchanged

upon rearrangement and then by making the reverse changes of varlables z=Z+R
and u; = U; + ; 1=1...¢. So far we have obtained

1 ¢
Wint ( GMAPfdzys(z)g EMAP Rdz(/o dug}s(z+u)).

To prove that Wint(y) > Wint(y™*), it remains to remark that y* is the left-hand
“unsymmetrized” version of § and to reverse the steps (4.13)-(4.16). O
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We can thus restrict the search of minimizing profiles to the space of non-
decreasing profiles (however, as already explained, we cannot exclude the possibility
that there exists a profile y € S such that Wggc(y) = Werc(y*)). In fact, the follow-
ing lemma allows us to further restrict the search of minimizing profiles to strictly
increasing ones.

Lemma 4.10. Let y € 8" be a minimizer of the potential functional Wgpc(y). Then
it must be strictly increasing; i.e., y € S".

We establish Lemma 4.10 as a corollary of the two following lemmas.
Lemma 4.11. If y minimizes Wgrc(y), then it satisfies the DE equation.

Proof. See Section 4.7.1. O

Lemma 4.12. Ify is non-decreasing and satisfies the DE equation, then it cannot
be strictly flat on an interval (a,b) c R with positive measure.

Proof. See Section 4.7.2. O

Proof of Lemma 4.10. The proposition follows directly from Lemmas 4.11 and 4.12.
O

Below, we mention a lemma that is interesting in itself but not necessary for our
results.

Lemma 4.13. If y minimizes Wggrc(y) then it cannot have a flat spot (i.e., y(z) =
Yfas With 0 < Ygas < Yarap) in a bounded interval z € [a,b] such that b—a > 1.

Proof. See Section 4.7.3. O

The final step of these preliminaries concerns a necessary condition that any
minimizing sequence in Sy must satisfy. It is useful to think of such profiles as cdf’s.
A minimizing sequence in §j is, by definition, any sequence y,, € S} such that

lim Wagc(yn) = inf Werc(y)- (4.17)
n—oo yESO

Such a sequence exists as long as the functional is bounded from below. This is true
because Ws(y) > 0 and due to Lemma 4.4. Consider the sequence of probability
measures associated to the sequence of cdf’s y,,. The following lemma states that
this sequence of measures is tight.

Lemma 4.14. Let y, € S} be a minimizing sequence of cdf’s. For any 6 > 0, we
can find Mg >0 (independent of n) such that

Yn(Ms) = yn(=M5) > (1 = 6)ymarp,

for all n.
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Proof. Consider a minimizing sequence of cdf’s y,; i.e., satisfying (4.17). Fix any
6 > 0 and suppose that

Yn (M) = yn(=M) < (1 = 8)ynmap- (4.18)

We will show that (4.18) implies that necessarily M < ¢/§2 for a fixed constant ¢ > 0.
Taking the contrapositive we find that: choosing M; = ¢’/§? with ¢/ > ¢ implies that
any minimizing sequence satisfies y,, (Ms) — yn(=Ms) > (1 = §)ynmap-

From Lemma 4.4 we have

EMAny/[AP M 6I\AAP?Jf/IAP

Worc(n) > Wiingle(om) - 2228 > [0 10, (g (2)) - DAZMAE (4 19)
Now, assuming (4.18) there must be a mass at least dymap outside of the interval
[-M, M]. Thus, we have y,(-M) > dyyapr/2 or ymap — Yn(M) > dymap/2. Recall
that v, € S 80 yn(0) = ymap/2. Therefore, in [-M, 0] or in [0, M] the profile y,(2)
must be dynvap/2 away from the minima 0 and yyap of Ws. Moreover, one can check
that Ws(y) has a parabolic shape near the minima at 0 and yyap so that away from
these minima W(y) > C6%y2,p/4 for a constant C' > 0 depending only on £. These
remarks imply that

M 1 2 2
f Az W(pa(2)) 2 S MO (4.20)

As y,, is a minimizing sequence, for n large enough its cost must be smaller than
the cost of a fixed reference profile, say p(z) =0,z <0, p(2) = ymap, 2 > 0. More
formally,

EMAP ¢
n = - . 4.21
Weec (yn) < Weec(p) Q0+ 1y Mar (4.21)
Finally, combining (4.19), (4.20) and (4.21), we find that
enar (£~ 1) yrip
M <2 . 4.22
T4+ 1) € (4.22)
O

4.4.2 The Direct Method

The direct method in the calculus of variations [109,110] is a standard scheme that
is used to prove that minimizers exist. We use this method to obtain the following
theorem.

Theorem 4.15. Let € = eprap. The functional Wggrc(y) achieves its minimum over
S in the subspace S”. There does not exist a minimum in S’ \ S".

Proof. Let us take any minimizing sequence y,, of c¢df’s; i.e., a sequence that satisfies
(4.17). By Lemma 4.14, the corresponding sequence of measures is tight. Thus, by a
simple version of Prokhorov’s theorem for measures on the real line, we can extract
a (pointwise) convergent subsequence of cdf’s y,, — y; as k - +oo with y; € Sf'. We
can thus directly apply Fatou’s lemma to deduce that the potential functional is
lower-semi-continuous, which means that

Weec(y1) < lllglglof Weec(Yn,, )- (4.23)
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Putting (4.17) and (4.23) together, we obtain

Waec(yi) < lli€m+inf Waec(Yn,,) = lilgl Wagc(Yn) = lsn,,f Werc(y)-
—+00 n—+oo 0

On the other hand, 1Sn”f Weec(y) < Waec(y;). Thus, we conclude that 1$n"f Weec(y) =
0 0

WBEC(yl)~

We have shown that the minimum is achieved in S, the space of strictly in-
creasing profiles pinned at the origin. Hence, it is achieved in §" and 8" (note that,
by translation invariance, translations of y; are minimizers in these spaces). Finally,
Lemma 4.10 ensures that there is no minimum in &'\ §”. O

4.5 Displacement Convexity

This section contains the main results of the chapter, namely that the potential
functional Wggc(y) is displacement convex in 8" and strictly displacement convex
in S).

4.5.1 Discussion on Displacement Convexity

We provide a brief introduction to displacement convexity in Section 1.7. In this
section, we remind the reader of some basic definitions and relate them to the content
of the present chapter.

Lemma 4.6 in Section 4.4 shows that we can restrict the minimization problem
to the space of non-decreasing profiles. Thus, the discussion below assumes that we
consider such profiles. This is the correct setting for defining displacement convexity.

A non-decreasing profile with left limit 0 and right limit yyap can be thought
of as a cdf (up to scaling because the right limit might not be equal to 1). Further,
such non-decreasing functions have non-decreasing inverse functions (that can also
be thought of as cdf’s, up to scaling). More precisely, consider the following bijective
maps that associate (with an abuse of notation) to a cdf y its inverse z.

2(y) =inf{z: y(2) >y},
y(z) = inf{y: 2(y) > 2}.

For any two non-decreasing profiles yo,y1 € S’, we consider zg,2; their respective
inverses under the maps defined above. Then, for any A € [0,1], the interpolated
profile y, is defined as follows.

22 (y) = (1= Mzo(y) + Az1(y),

ya(z) =inf{y: 2x(y) > z}. (4.24)

The graphical construction of the interpolant py of two profiles py and p; is shown
in Figure 1.14. It is not difficult to see that if yp and y; are in §’, §”, or S, then
so is the respective interpolating profile y, for all A € [0,1].

Displacement convexity of the potential functional Wggc(y) on the space S’
means that the following inequality holds

Wiec(ya) < (1= X)Wsee(yo) + \WVsec(y1), (4.25)
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for any yo, y1 € S’ and all X\ € [0,1]. Strict displacement convexity means that
this inequality is strict as long as yo and y; are distinct and A € (0,1). We will
that Wggec(y) is displacement convex by separately proving this property, in Sec-
tions 4.5.2 and 4.5.3, for the single potential (4.6) and the interaction potential (4.7),
respectively. Moreover, we will see that (4.7) is strictly displacement convex in S{.

4.5.2 Displacement Convexity of the Single-Potential

We first prove that the single-potential functional Weingie(v) is displacement convex.
Note that the single system potential function Wy(y) is not convez in the usual sense
(see Figure 4.1, for example).

Proposition 4.16. Let yo and y; be in S’ and let yy be their interpolating profile
as defined in Section 4.24. Then

Wsingle (yA) = ( 1- /\)Wsingle (yO) + )‘Wsingle(yl ) :

Proof. Recall that Weingle(y) = [g dz Ws(y(2)). Recall also that yx(z) as defined in
Section 4.24 is the inverse of z)(y) = (1 — A)z0(y) + Az1(y). Thus

L) = [ aa@ W)
=10 [ aawwaw x [T dn @) waw)

:(1-A)/}Rdes(yo(z))+A[}Rdzws(y1(z)).

Thus, the function A = Wiingle(y) is linear, hence convex.

4.5.3 Displacement Convexity of the Interaction-Potential

The proof of displacement convexity of the interaction potential term is more in-
volved.

Proposition 4.17. Let yo and y1 be in S’ and let yy be their interpolating profile
as defined in Section 4.24. Then

Wint(y)\) < (1 - )\)Wint(yO) + )\Wint(yl)- (426)

Proof. As y can be seen as a cdf (up to scaling), we associate with it a probabil-
ity measure p such that y(z) = ymap [, du(u). We then rewrite the interaction
functional in the form

Wint(yA):]ﬂ;duA(zl)...duA(z@)V(zl,...,zg), (4.27)

where V(z1,...,2¢) is a totally symmetric “kernel function” that we will compute.
There is an argument by Villani [93] that allows to conclude (4.26) whenever V
is jointly convex (in the usual sense). Let us briefly explain this argument here.
Consider the measures pg, p1 associated to the cdf’s yo, y1. Then there exists a
unique non-decreasing map 7' : R — R such that p; = T#pug. Here T#pugp is the
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push-forward® of g under T. Then, from z)(y) = (1 - X)20(y) + Az1(y), we have
that py = Th#po where Th(z) = (1 — N\)z + A\T(z). Equation (4.27) can thus be
written as

Wmt(y)\):/Rd,uo(zl)...duo(zg)V(TA(zl),...,T)\(zg)) (4.28)
:e!fs dpo(z1) . dpo(z)V(Tr(z1), - .., Th(20))- (4.29)

In (4.29), we restrict the integrals over the sector S, = {z = (21,-+,2¢) : z; > zj if i <
j}. This restriction is allowed because V is totally symmetric, as we will see. It
is important to notice that we have T\(z1) > --- > Th(z¢) for any A € [0, 1] because
T is a non-decreasing map. Moreover, the A dependence in the kernel function is
linear. Thus, the proof of displacement convexity ultimately rests on checking that
the kernel function is jointly convex (in the usual sense) in one sector, say S,.% If
we can establish the usual convexity of V on S, then the linearity in A will pop out
of the integrals over the measures, as we had for the single potential functional. In
fact, the kernel function is translation-invariant and can be expressed as a function
of the distances dy; = 21— z;, i = 1,..., ¢, with d;; = 0. We will prove that V is jointly
convex as a function of these distances.

It remains to compute V' and to investigate its joint convexity. With appropriate
usage of Fubini’s theorem and after some manipulations, we find

€MAPy1€/IAP a
Wins(y) = SB[ TT dug(2:)
i=1

{f[o’l]e gdui flﬁdz( g o) }:{ 0(z - (21 - Ui)))};
(4.30)

where 6(z) denotes the Heaviside step function. So the kernel V'(zy,...,z/) in (4.27)
is the integrand (between the brackets) of the first ¢ integrals in (4.30) (as well as
the constant eyapyiap/l before the integrals that we drop to alleviate notation).
Our goal, henceforth, is to prove that V' is convex in the usual sense. We will reduce
the problem further by proving that, in fact, V4 is convex for all fixed u, where
u=(ug,...,up) and

J4 J4
Via(z) = fRdz (q 0(z - 2) - Hl 0(z— (2 - ui))).

We recall here that we restrict our analysis to the sector of the space of ordered
variables S,. Also, we remark that Hle 0(a;) = 0(max;-1. ¢a;). We observe that V3
can be written in terms of the distances dy; =21 —z;, 1 =1,...,f as

Vu(z):[Rdz{G(z—Z1)—G(iszll%(z_(zi_ui)))}

— 1 —z+ U ) = — 1 d U
Join (21— 2 + ;) = = min (d; + ;)

8Given a measurable map T : R — R, the push-forward of p under T is the measure T# w0
such that, for any bounded continuous function ¢, [ ¢(T'(2))du(z) = [ ¢(2)d(T#pu)(z). This is
explained in more detail in Section 1.7.

9By symmetry, convexity in one sector implies convexity in other sectors. However this does not
mean that convexity holds if arguments are taken in different sectors. And, indeed, in the present
problem, one can check that convexity only holds within each sector.
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Lemma 4.18 below states that V4, is jointly convex in .S, for all fixed u. This implies
that V(z) is jointly convex in S,. This completes the proof. O

Lemma 4.18. The function fu(d) = min(dy; + u;) is concave in d, where d =
(2
(dlg, ce ,dll) and dh‘ =0.

Proof. Let d and d be two instances of the argument of f,. Then, for \ [0,1],

fu((1=X)d + Ad) = min((1 - A)dy; + Ady; + u;)

miin((l ~ A)(dri +u) + Mdi +us))

v

(1 - )\) mjn(dli + ul) + )\mm(cfh + ’U,Z)

= (1= X) fu(d) + Afu(d).

This shows concavity.

4.6 Strict Displacement Convexity

We now prove that, for two distinct functions yo and y; in S, the inequality (4.26)
is strict whenever \ # 0, 1.

As we already know that the kernel function V'(z) is convex in the sector S, it is
sufficient to show it is strictly convex as a function of the distances d = (dia, ..., dys)
on some subset of positive measure of the d-space. This is sufficient because in (4.29)
the kernel function is integrated against the measure pg with full support R. Recall
that po has full support because the profile yg belongs to S”.

Below, we give explicit formulas for V' in terms of the distances di;. These
formulas allow to prove that V' is strictly convex in a subset of non-zero measure.
Concretely, this subset is a small enough neighborhood of the origin di; = 0, ¢ =
2,...,0.

We remark that it is not easy to see that V is convex in the whole d-space
directly from these formulas.'® In fact, the formulas show that it is certainly not
strictly convex when some of the distances become greater than 1.

4.6.1 Explicit Expressions of Kernel Function

In this section, we compute the kernel function V' of Section 4.5.3 and illustrate
some of its properties. In particular, we show that it is strictly convex in a set of
positive measure.

Recall that the function is totally symmetric under permutations. It is therefore
enough to compute it in a fixed sector S, = {z = (21,--,2¢) * z; > zj if i < j}. We
express V' in terms of the distances di;, that are ordered such that dq; < dy;ifi < j.

We first discuss the explicit examples ¢ = 2 and ¢ = 3 and then find a general
formula for the kernel. For ¢ =2 an explicit computation yields,

3 if dip>1,
1

Vie=2)(d12) = -
) {‘2+%(1—d12)3 it diz<1.

However we already know that V is convex by the method of proof of the previous section.
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By taking the second derivative, it is easy to see that V(,_) is convex everywhere,
and strictly convex for dis < 1.
For ¢ =3, we have di3 < d13 and the computation yields,

V(g=2) (dlz) if dig>1,
Viesy(diz, diz) = { =% + £ (1 - d12)?

+%(1—d13)4 ifd13<1.
+%d12(1 - d13)3

For di3 < 1 the Hessian is
1 2
1—d12 —§(d13—1)
1
—5(6113 —1)* —(di3-1)(1 +dyz - di3)
and the corresponding eigenvalues are
1
)\172 = 5{2 - 2d13 - d12d13 + d%3 + \/Z},

where

A=1+ 4d%2 - 4d13 - 8d12d13 - 4d%2d13 + 10d%3

+ 8dyod3y + diydis — 8d3s — 2dyodss + 2d1 5.

A plot of the eigenvalues shows that they are non-negative in the region 0 < dys <
di3 < 1. In fact, one eigenvalue is strictly positive everywhere in this region, and the
other is strictly positive everywhere in this region except at the boundary di3 = 1,
where it becomes equal to zero. This is consistent with the fact that V(,_s)(d12,d13) =
V(gzg)(dlg) when dj3 > 1. For di3 > 1, the Hessian always has a vanishing eigenvalue,
and a strictly positive one when dio < 1. For di > 1, the kernel V(g=3)(d12,d13) is
constant and both eigenvalues vanish. To summarize the kernel is always convex,
and strictly convex for 0 < dy3 < 1.

These results can be generalized for all /. We find the general expression of the
kernel

o(di2, -, 1@)-]§2m:k(m_k+3)(m—k+2)

(% )

Sc{2,....,m-1} neS

The corresponding Hessian (H;;) is a symmetric matrix of dimension (£-1)x (£-1)
with matrix elements that are polynomials in dy;, ¢ = 1,...,¢. In particular, at dy; =0
for all « we have H;; =1 and H;j = —j% + an;j-i—]_ m = —%; j > . Defining
v as the (£ - 1)-dimensional vector of 1’s and denoting by 1 the (¢ - 1)-dimensional
identity matrix, we remark that H at the origin can be expressed as

1

- 1 T
H—(1+£_1)]l 1
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The eigenvalues of this matrix are 1+ e—% and 1 (with 1+ E_Ll having degeneracy {—2).
As these eigenvalues are strictly positive, the Hessian is strictly positive definite at
the origin, and thus (by continuity) also in a small neighborhood of the origin. Thus
V is a strictly convex function of dy;, i = 2,...,¢ in a small neighborhood of the
origin.

4.7 Appendix

4.7.1 Proof of Lemma 4.11

Proof of Lemma 4.11. Consider a profile y and a function n such that lim 7(z) = 0.
zZ—>+£00

We compute the directional derivative (also called the functional derivative) of the
potential Wggc(y) in the direction of 7,

OWgEc [] = lim Weec(y +v1) = Waec(y)
oy ~v-0 v .

A calculation gives

(W:ZEC[U]=/I;Ldz77(z){1—(l—y(z))r11—eMApfolds(folduy(z+u—s))e_1}.

Now consider the function

o 1 1 -1
ny(2) = —{1 - (1-y(2))™1 — emap [) ds ( [0 duy(z +u- s)) }
The directional derivative of Wggc(y) in the direction of 7, satisfies

OWsEkc
oy

[n,] <0 (4.31)

because the integrand is a square. Now assume that y is a minimizing profile. In
the case where equality is met in (4.31), y satisfies the DE equation. Consider the
case where the inequality is strict. Then,

OWeic [Uy] = lim Weso(y + ,my) ~Werc(y) <0
(Sy v—0 ¥

and we can find g small enough such that

Werc(y + ’7077y) < Wsec(y).

So y cannot be a minimizing profile, and this concludes the proof by contradiction.
O

4.7.2 Proof of Lemma 4.12
Proof of Lemma 4.12. 1f y satisfies the DE equation, then

1—(1—y(z))ﬁ = €MAP /Olds([olduy(z+u—s))€_l
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By taking the derivative with respect to z on each side, we find that (with ¢’ denoting
the derivative of y)

(1-y(=)) 71—/ (2) (4.32)

:eMApvfolds(l—l)([Olduy(z+u—s))e_zj:dwy'(z+w—s).

Notice that fol dvy/ (z+v-3s) = fol dvdy(z+v-s)=y(z+1-s)-y(z-s).
Now assume that there exists a flat spot of y for z € (a,b) where it takes some

value ygat. We consider “maximal” intervals (a,b) such that y takes values different
than ygat for all z ¢ (a,b). On this flat spot, (4.32) becomes

O=/Olds(jt;lduy(z+u—s))g_2(y(z+1—8)—y(z—s)). (4.33)

We will now show that this equality cannot be satisfied.

Let us first consider the case when a and b are finite. As (a,b) is maximal and
y is non-decreasing, we know that 0 < yas < ymap, Y(2) < ygat for all z < a and
y(2) > ygat for all z >b. Now let us fix z € [b— 1+ dg,b], where 0 < §p < 1 is chosen
so that the equality (4.33) holds (the derivative is zero). But for such z and for
all 0 < s <1, fol duy(z+u—-s) > [, . duy(z+u—-5) > (1-8)yaa > 0. Thus we
should have y(z+1-s) = y(z - s) almost everywhere for s € [0, 1] for (4.33) to hold.
This is not possible. Indeed, take s € [0,d1] with 0 < d; < Jp is small enough so
that z—s<b<z+1-sand thus y(z+1-3s)-y(z-3s) >y(b+dy—91)—y(b) >0.
These arguments prove that a non-decreasing solution of DE cannot be flat for
z € [b—1+d0,b]. We repeat the argument on [b—k + dp,b - (k- 1) + dp] for all
1 < k < K such that b— K + Jp < a and find that a non-decreasing solution of DE
cannot be flat on each of those intervals, and thus on [b— (K — 1) + do,b]. Finally,
we repeat the argument on the last interval [a,b— (K — 1) + dp] and deduce that a
non-decreasing solution of DE cannot be flat on [a,b].

Next, we consider the case when a = —co. In this case, we have that y(z) =0 for
all z < band y(z) >0 for all z > b. The analysis is similar to the preceding one. First
fix z in the interval € [b—1+ &g, b], 0 < dy < 1. The derivative y(z) is zero for such a
value of z and so the equality (4.33) is satisfied. Now take s € [0, d1 ] with 0 < 247 < dg.
Then y(z+1-8)-y(z-s) =y(z+1-5) > y(b+dp—01) >0, and for 1 -§p+26; <u<1
we have y(z+u—-s) >y(b+01) so _[01 duy(z+u-s)> (1+00—201)y(b+01) >0. Thus
the right hand side of (4.33) does not vanish which is a contradiction. We carry out
the same analysis as above for z € [b—k + 09,0 — (k- 1) + §p] for k € IN, and thus
deduce that y cannot be flat on [—oo, b].

Finally, consider the case when b = +oo. The analysis is essentially symmetric to
the preceding one. In this case we have y(z) = ymap for z > a and y(z) < ymap for
z < a. First fix z in the interval [a,a+1-0¢]. For such z (4.33) holds. For s € [1-d1,1]
with §; < dg we have y(z+1-3s)—y(z—35) > ymapr —y(a— o +01) > 0. Moreover it is
clear that fol duy(z+u—s)>0. So the right hand side of (4.33) cannot vanish, and
we arrive at a contradiction. We repeat the argument for z € [a+k—dp, a+(k+1)—0do]
for k € IN, and conclude that y cannot be flat on [a, +oco].

O
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4.7.3 Proof of Lemma 4.13

Proof of Lemma 4.13. Suppose that y is a non-decreasing minimizing profile and
that it has a constant value 0 < yg.¢ < ymap on a bounded interval of length greater
than 1. We will construct another profile that has strictly less energy.

We start by expressing the single potential as follows

Waingie(w) = [ d=Wi(y(2)) + | T AWy (=) + | _JrloodeS(y(z))
:[:deS(y(z))+(b—l—a)Ws(y(a))+fb_+:odzws(y(z))'

By applying the change of variables Z = z — (b— 1) + a on the rightmost integral, we
express it as

fb:r:odeS(y(z))=fa+oodes(y(z+b—1—a)).

We define the profile § by

3(2) = {y(z) if z<a,

y(z+b-1-a) if z>a,
and remark that it is also non-decreasing. We thus obtain
Wsingle(y) = Wsingle(g) + (b -1- a)Ws(yﬂat)~

Note that as 0 < ygar < ynap we have Wi(yaar) > 0. Thus Weingte (¥) > Wingle (7).
For the interaction potential, we prove that Wiyt (y) = Wint (7). Indeed,

Wint(y) = EMAP Rdz {y(z)e - ( fol duy(z + u))é}

1
= EMKAP 7: dz {y(z)e— (/:duy(z+u))£} (4.34)
+ EM;P ab_l dz {y(z)é - ( /01 duy(z+ u))g} (4.35)
+ EMKAP b_+loo dz {y(z)e - ( /01 duy(z + u))e} (4.36)

We use the same definition of § as above, and denote the functionals in (4.34), (4.35),
and (4.36) by T1(y), T2(y), and T3(y) respectively. Observe that

e Ti(y) = T1(y) because
y(z)=9(z) if z<a
y(z+u)=g(z+u) if z<a, andO<u<]1.
e T2(y) =0 because y(z) =y(z +u) = ygay when a <z <b-1.
e T3(y) = T2(9) + T3(9) because, by the change of variables Z = z - (b—1) + a, we
have

Ts(y) = eMEAP o dz{y(z+b— 1-a)f - (Alduy(z+b— 1—a+u))£}

= eMEAP a+oo dz{gj(z)e—('[oldug(z+u))z}.
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Thus Ti(y) + T2(y) + Ts(y) = Ti(y) + T2(5) + T3(9)

Combining these results we obtain

Waec(y) = Wara(9) + (b1 - a) Ws(ygar) > Waec(9)






Displacement Convexity for
General Scalar Systems

5.1 Introduction

Considering the excellent performance that spatially coupled systems have exhibited
in various frameworks, such as coding, compressive sensing, statistical physics, and
random constraint satisfaction problems, it should hardly come as a surprise that
there are fundamental mathematical structures behind spatially coupled systems.
This chapter is concerned with the somewhat hidden convexity structure, called
displacement convezity, in coupled systems that are governed by a set of scalar
density-evolution (DE) equations. This structure was introduced by McCann [92]
and is well known in the theory of optimal transport [93].

In this chapter, we consider general coupled systems governed by scalar DE (or
DE-like) equations.® We look at the system during the static phase, when the system
parameter is equal to the static threshold and the DE equations can no longer modify
the state of the system. In the context of coding, for instance, this corresponds to
the case when the channel parameter is equal to the maximum a-posteriori (MAP)
threshold. The definition is different for more general systems (see Section 5.2). We
define an associated potential functional whose stationary point equations are the
fixed points of the DE equations. Then, we use displacement convexity to establish
the strict convexity of this potential. This proves that the potential admits a unique
minimizer. By finding the space of profiles to which this minimizer belongs, we
characterize the unique fixed point of the coupled system’s DE equations.

Displacement convexity is a mathematical tool that was first introduced by Mec-
Cann to describe interacting gases and equilibrium crystals [92] and later applied
to various problems, including optimal transport [93,115,116] and probability the-

! The content of this chapter is based on previous work [73,75].
[73] R. El-Khatib, N. Macris, T. Richardson, R. Urbanke, “Analysis of coupled scalar systems by
displacement convezity,” International Symposium on Information Theory (ISIT) 2014, Honolulu,
Hawaii, IEEE pp. 2321 — 2325.
[75] R. El-Khatib, N. Macris, T. Richardson, R. Urbanke, “Displacement convezity in spatially
coupled scalar recursions,” in preparation (2016) to be submitted to the IEEE Transactions on
Information Theory.
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ory [117,118]. A functional that is displacement convex is essentially convex with
respect to an alternative structure in the space of probability measures. In order
to apply this tool on the potential functional that we consider in this chapter, we
will first show that the profiles that solve the DE equations can be seen as probabil-
ity measures, and then give mild conditions under which the potential is (strictly)
convex, with respect to the alternative structure.

As usual, we construct a spatially coupled system from an uncoupled one by
placing L. + W copies of the latter on a spatial axis and coupling them locally
within some window of size W. We run an iterative message-passing algorithm on
the spatially coupled system and assess its large-system asymptotic performance by
using the solutions of the associated coupled DE-like equations. The fixed points
of these equations can be viewed as the stationary point equations of the potential
functional. In the continuum limit L. > W > 1, the DE equations and the potential
become continuous space objects.

In Chapter 4, we considered the spatially coupled (¢,r)-regular Gallager en-
semble with transmission over the binary erasure channel (BEC). Here, we instead
consider general scalar coupled systems (with general coupling window functions),
but also restrict our analysis to the static phase. Although the formalism in Chap-
ter 4 can be extended to a few general scalar recursions, such as those pertaining to
irregular LDPC codes, it does not appear to extend to a very wide class of general
scalar recursions. The main purpose of the present chapter is to prove that a rather
general class of scalar systems also exhibits the property of displacement convexity,
and even strict displacement convexity, under rather mild assumptions. Although
the analysis in the present chapter is similar in spirit to that in Chapter 4, it is also
significantly different and more far-reaching in its range of applications.

We mention the main differences between the approaches taken in Chapter 4
and the present chapter. There are various possible formulations of the potential
functional. Here, we use the representation from [69,70] for scalar systems, expressed
in terms of both profiles  and y, whereas in the previous chapter, we consider a
potential functional expressed solely in terms of the profile y. The functional we
use in the present chapter enables us to obtain much more general proofs that hold
under quite mild conditions. Moreover, here we allow the update functions f and g
to have discontinuities, a property that the update functions in Chapter 4 inherently
lack (in the case of the specific code ensemble we consider). Although we assume,
in Chapter 4, that the profiles we consider have high (enough) rates of convergence
towards their limits, in this chapter we circumvent this restriction by using analysis
via “K-saturated profiles” that are cut off to the function’s left limit when the spatial
coordinate is smaller than — K, and to the right limit when the spatial coordinate is
larger than K (see Definition 5.9).

In the present chapter, we prove that, under mild conditions, the potential func-
tional governing the general coupled system is strictly displacement convex in the
space of non-decreasing functions with finite left and right limits (that we define
later), and that it attains its minimum in this space. These conditions can be sum-
marized as the strictly positive gap condition that was defined in [69,70], as well as
some boundedness conditions on the coupling window.

At first, we begin our analysis with general profiles that have normalized images
[0,1] and normalized limits 0 and 1 at —oo and +oco, respectively, on the spatial
axis of coupling. Then, using rearrangement inequalities, we prove that the coupled
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potential functional yields smaller values with the rearranged non-decreasing coun-
terparts of these functions than with the original ones. This enables us to restrict
our search for minimizers of the potential to the space of non-decreasing functions
with the above limits. At this point, we can view the profiles as cumulative distribu-
tion functions (cdf’s), which is the right setting for displacement convexity. Using
the direct method in the calculus of variations [109], we prove that the potential
attains its minimum in this space of profiles, as we have done in Chapter 4. We
note that this existence result was proved using a different technique in [69,70].

To prove that the potential functional is displacement convex, we first split it
into two contributions that we call the single and interaction potentials. We then
prove that the single potential is affine in the interpolation parameter A\ and the
interaction potential is convex in it. To do this, we first prove these properties for
“K-saturated” non-decreasing profiles, then we map the result back to more general
non-decreasing ones that have limits 0 and 1 and —oco and +o0, respectively. Finally,
we use displacement interpolation and again some saturation properties to prove
that the minimizing pair of profiles is unique up to translation.

The main propositions of this chapter are: (i) Proposition 5.17 that states
that the potential functional has the displacement convexity property; (ii) Propo-
sition 5.21 that asserts that monotonic minimizers of the potential functional are
fixed-point solutions of the spatially coupled DE equations (in a generalized sense);
(iii) Proposition 5.27 that gives the condition for unicity of the minimizers up to
translations along the spatial axis. It is also of interest that the potential functional
satisfies a rearrangement inequality, namely (iv) Proposition 5.15 that ensures that
one can find minimizers among monotonic spatial fixed points. The conditions for
our results to hold are rather mild and essentially match those in [69, 70] for the
existence of spatial fixed points.

This chapter is organized as follows. In Section 5.2, we introduce spatially cou-
pled recursions and the variational formulation. In Section 5.3, we prove rearrange-
ment inequalities that allow us to reduce the search for minima of the potential to a
space of monotonic functions, and in Section 5.4, we discuss the existence question
using the direct method from functional analysis. In Section 5.5, we prove that the
potential is displacement convex. In Section 5.6, we generalize the notion of fixed-
point solutions to the DE equations and show that such generalized solutions are
minimizers of the potential. In Section 5.7, we address the unicity of the minimizer,
and finally, in Section 5.8, we illustrate displacement convexity with applications to
coding and compressive sensing.

5.2 Preliminaries

5.2.1 Single System

In this section, we explain the set-up for general spatially coupled scalar recursions
and give a variational formulation of these recursions. The fixed-point equations
of the scalar recursions will be generically called “density evolution” (DE) equa-
tions. The case of the (¢,r)-regular LDPC code ensemble with transmission over
the BEC(e) will serve as a concrete running example for the setting. We note that,
although this specific application has been analyzed in detail in Chapter 4, the
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approach we take in the present one is different, as it considers a system of DE
equations, instead of only one DE recursion.
Consider the pair of DE fixed point equations

u=g(v),
{v:ﬂu), 6.1)

where u,v € [0,1]. The update functions f, g are assumed to be non-decreasing from
[0,1] to [0,1], and normalized such that f(0) = g(0) =0 and f(1) = g(1) = 1. We will
think of them as EXIT-like curves of DE (u, f(u)) and (g(v),v) for u,v € [0,1] (see
Figure 5.1). It is always possible to adopt this normalization in specific applications.

Example 5.1. Take an (¢,r)-regular Gallager ensemble, with transmission over
the BEC(e). Lety (resp. x) be the erasure probabilities emitted by the check (resp.
variable) nodes. The DE fized-point equations are y =1 — (1 -x)""" and x = ey’~L.
In this chapter, we are interested in the specific value of the channel parameter
€=eyap. We denote by Xprap, Yuap the non-trivial stable fixed point when € = €prap.
To achieve the normalization of (5.1), we make the change of variables y = yuapu
and x = Xpapv, S0 that the DE equations become u =y, p(1 = (1 = xp4pv) ) and
v = errapXiiapy st "t. Note that we must have 1 =y p(1 - (1= xpap)""") and
1 = €papXaiapyiip. We then set

{g(v) = atap(L= (L= xa0ap0)" ), 52)

fu) =u',
that satisfy the required normalizations f(0) = g(0) =0 and f(1) = g(1) = 1. The
corresponding EXIT curves have three intersections. The one at (0,0) corresponds
to the trivial fized point of DE, the one at (1,1) corresponds to the stable non-trivial
fized point of DE, and the third one at some middle point corresponds to the unstable
fized point.

We will use the “single” potential function associated to the DE equations (5.1);
it was introduced in [69,70] and is defined as

6(f,g:u,v) = foudﬂg_l(ﬂ) ; fovd@ 1) - uw. (5.3)

When the update functions f and g are clear from context or irrelevant, we often
drop them as arguments from the notation and denote this potential function by
d(u,v). As g7t and f~! are non-decreasing, ¢(u,v) is convex in u for fixed v, and
convex in v for fixed w. It is minimized over v by setting v = f(u), and over u by
setting u = g(v).

By substituting v = f(u) in (5.3), we obtain the integral of the signed area
between the two EXIT curves (see fig. 5.1) as

A(f,g5u) = o(f, g;u, f(u))
- [Caate @) - @), (5.4)

The signed area A and the potential function ¢ prove to be crucial quantities in
our analysis and setting. For instance, the following result was shown in [69,70] that
relates them to the DE system of equations (5.6) that corresponds to the spatially
coupled system (that we describe in Section 5.2.2).
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Lemma 5.2. If there exists an interpolating fized point solution to (5.6), then

o(f,g;u,v) 20,
for all u,v €[0,1] and A(f,9;1) =o(f,g;1,1) =0.

The result applies not only to interpolating fixed points, but also to a relaxed
definition of interpolating “consistent” fixed points that we define in Section 5.6. In
[69,70], when the assumption ¢(f,g;1,1) =0 is made, the condition ¢(f,g;u,v) >0
for all w,v € [0,1] is termed the positive gap condition (PGC). In this chapter,
however, we will assume that ¢(f,g;1,1) =0 throughout, so the term “positive gap
condition” will be used to imply both this equality and the inequality in Lemma 5.2.

When the inequality in Lemma 5.2 is strict, i.e., ¢(f,g;u,v) > 0 for (u,v) ¢
{(0,0),(1,1)}, the condition is termed the strictly positive gap condition (SPGC)
in [69,70]. In this case it was shown that an interpolating fixed-point profile exists,
provided that the coupling-window function w is strictly positive on the interior of
some interval [-W, W] and zero off of the interval. This support condition on the
function w can be relaxed under various other conditions, see [69,70].

Definition 5.3. We say that the positive gap condition (PGC) is satisfied when
o(f,9;1,1) =0 and ¢(f,g;u,v) >0 for all u,v € [0,1]. The strictly positive gap con-
dition is satisfied when ¢(f,g;1,1) =0 and ¢(f, g;u,v) >0 for (u,v) ¢ {(0,0),(1,1)}.

Example 5.4. For the (¢,r)-regular Gallager ensemble with transmission over the

BEC(e), when € = €pap, we have the potential function

(-1
l

L
VT — U,

B(u,0) =——fu- T (1 (1 yauapu) )} +

XMAP YmapT
and the signed area

ul

1 r—1 _r_
A(f.gu) =——{ur (L= yaaaru) 7T = D)} +
XMAP YmapPT

Moreover, we have A(f,g;1) = 0. In fact, this last constraint together with the
two fized point equations yyap=1-(1 _XMAP)T_I and Xpap = eMApyﬁ}},P completely
determine €pap, Xpap and yyap. The SPGC holds for this example (see Section 5.8
for further illustration).

5.2.2 Spatially Coupled System

To obtain the spatially coupled version of the “single” system above, we place L.+ W
replicas of the latter on the positions z = =W + 1,..., L. of the spatial axis, and
reconnect their edges locally within a coupling window, so that the original degree
distributions of the nodes are preserved.?

The natural setting for displacement convexity of spatial coupling is the con-
tinuum setting that can be thought of as an approximation of the corresponding
discrete system in the regime of large spatial length L. — +co and coupling window

2We loosely define the construction of the spatially coupled ensemble in this chapter because it
has been described in all the previous chapters. One can consult with Section 1.5 for more details
on this construction.
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size W — +oco. The continuum limit has already been introduced in the litera-
ture as a convenient means to analyze the behavior of an originally discrete model
[54, 55,69, 70].

The potential functional for the spatially coupled system is described in discrete
form in (1.67) and in the continuum limit in (1.83). We write the coupled system
potential here directly in the continuum limit. Consider a spatially coupled system
with an averaging window function w : R — R that is always assumed to be bounded,
non-negative, even, integrable, and normalized such that [ dzw(x) = 1. The aver-
aging window is the means for “coupling” in “spatial coupling”. So far in the thesis,
we have only considered the uniform averaging window, but in the present chapter
we consider the more general window function that we have just described. Let us
define the constant

Cyp = f]R dz 2w (2). (5.5)

We assume throughout the chapter that ', is finite. As we shall see, this is directly
related to the finiteness of the potential. Let z,y : R — [0,1] be two functions
and denote by z¥ = x ® w and y* = y ® w their usual convolution with w, i.e.,
z"(z) = [gdZz(Z)w(z - 2) and y*(z) = [ dZy(Z)w(z - Z). The pair of fixed-point
DE equations of a spatially coupled scalar continuous system are

{y(z) = g(2"(2)),
2(2) = f(y"(2)),

where z € R is the spatial position. We refer to the functions x, y as profiles and
to f, g as update functions. A pair of profiles z,y : R — [0, 1] that solves the above
equations almost everywhere is called a fized point. Note that (5.6) are non-local
equations.

In this chapter, we are interested in profiles p : R — [0,1] (p denotes a generic
profile like z and y) that satisfy the limit conditions

(5.6)

lim p(z) =0, lim p(z)=1. (5.7)
Z—>—00 Z—>+00

We note that these two limit values are the extreme fixed points of (5.1). We refer
to such profiles as interpolating profiles. A pair x,y of interpolating profiles that
solves (5.6) is called an interpolating fized point.

Definition 5.5. A function p: R — [0,1] that satisfies (5.7) is called an interpolat-
ing profile. A pair x,y of interpolating profiles that solves (5.6) almost everywhere,
i.e., up to a set of measure zero, is called an interpolating fized point.

In Section 5.3 we show that, when minimizing the potential functional over the
space of interpolating profiles, we can focus on monotonic (non-decreasing) profiles.

The solutions of spatially coupled DE equations (5.6) are given by the stationary
points of a potential functional Wa of x and y that we define in (1.83). We repeat it
below for convenience. This can be checked by setting the functional derivatives of
this potential functional with respect to each of z and y to zero. We set

Wal(z, y) = []R Az Iy yu(2), (5.8)
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0.8

0.4}

0.2}

Figure 5.1: A generic example of the systems we consider. The EXIT-like curves are
f (in red) and g7! (in blue). The signed area A(f,g;1) from (5.4) is the sum of the
light gray areas (positively signed) and the dark gray areas (negatively signed), and it is
equal to 0.

where we have introduced the notation

(
0

y(2) z(z)
Lyw()= [ dug @)+ [T av @) =2 yx). (5.9)
We note that the potential above is related to that in (1.83) by

Wal,y) = AWa(a,y) + [ dz Pa(z20,30)

= AdZPZ(Zamvy)a

Here, we do not have to subtract a reference energy as done in (1.83). As explained in
the introduction, we consider the static phase in this chapter. Due to the paragraph
below, as well as some “saturation” properties that we prove, we can see that this
integral is well-defined.

Example 5.6. For the ({,r)-reqular LDPC' code and transmission over the BEC!(e)
the potential (5.8) is

Wh(x,y) = fdz{
R

-1

r
YmApP

+ g_Tlx(z)% - xw(z)y(z)}

—{y(:) - (1= (1= yauarp(:)) D)

XM

Note that the limit of the integrand in (5.8) (and the example) vanishes when
z — —oo because of the condition (5.7) on the profiles. It also vanishes when z - +oc0
because of (5.7) and A(f,g;1) = 0. However, this does not suffice for the existence of
the integral, essentially due to the fact that " — x may not be Lebesgue integrable
(for monotonic profiles this difficulty does not arise). So, it is possible that Wa(z,y)
fails to be well-defined as a Lebesgue integral for some choices of the interpolating
profiles.
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Once we consider interpolating profiles and assume the PGC and that C, < oo,
we can circumvent this technical issue by defining the potential functional as

B
Wala,y) = lim [A A2l y(2). (5.10)

We show below that this limit always exists (it is possibly +o0).

Lemma 5.7. Assuming the PGC, for any interpolating profile pair x,y, we have
that

Walay) > [ dzo(e”(2),5(=). (511)

and, given a sequence of interpolating pairs x;,y; converging pointwise almost every-
where to the interpolating pair x,y, we have

liminf Wha (@i, y:) 2 Wa(x,y). (5.12)
Proof. Define Hy(z) = [, dv f~}(v) and Hy(y) = [; dug™*(u). We use the notation
(Hfox)(z)=Hp(x(z)) and (Hyoy)(z) = Hy(y(2)). Note that
Ipyw=(Hgoy)+ (Hfox)-z"y.

Now, if we define

Ipyw = (Hg oy)+ (Hf ox)’ —a"y,

then

[ jdzfx,y,w(z)= f jdzfx,y7w(z)+ / jdz(fx,y,w(z)-fz,y,w(z))
B - B w
:[A dz[x,y7w(z)+[A dz ((Hj o) - (Hj o 2)"(2)).

Taklng the hmlts A, B — +00 by deﬁnltlon (510) and Lemma 529 we Obtain
1 d I
= i I .
Wg(l', y) ’ IHi [ z z,y,w(z)

We will shortly see that the PGC implies that fx,y,w(z) is non-negative so that
Wa(x,y) is well-defined (it is possibly +o0). This also means that it is possible to
adopt

Wg(ﬂ:,y)z[]Rdsz,%w(z), (5.13)

as an alternative expression for Wh(x,y).
Now, note that H(z) and H,(y) are convex functions because f~ and g~! are
non-decreasing. Indeed,

Hi(z+a) - H(z) = ] dv £~ (v)

>af ! (z)
= aHj(z).
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By Jensen’s inequality we have
(Hfox)" > (Hfoz"),
and we therefore obtain
Liyu(2) 2 9(a¥(2), y(2)), (5.14)

that proves the non-negativity of I ,.,(2) because ¢(z¥(2),y(2)) is non-negative
by the PGC.

Integrating (5.14) and using (5.13), we obtain the first claim (5.11) of the lemma.
Furthermore, we obtain the second claim (5.12) directly by applying Fatou’s lemma
to (5.13) (we can apply Fatou’s lemma because by (5.14) I, . », is a non-negative
sequence, and it converges to fx,y,w). ]

Let us remark that, in the process of proving this lemma, we have seen that
Wa(z,y) can be defined as (5.10) or, equivalently, as (5.13), as long as we assume
the PGC, interpolating profiles, and C, < +o0.

5.2.3 Discussion

In Section 5.6, we show that among all interpolating profiles, monotonic interpo-
lating consistent fixed points are minimizers of Ws. To do this, we use rearrange-
ment properties that are summarized in Section 5.3. For a fixed x, we always have
Wa(z,y) > Wa(z,gox™). This is because I 4., (2) is convex in y(z), for fixed z(z),
and setting y(z) = g(«"(2)) minimizes I, ;. (2) over y(z), for fixed z(z).

One of the main results of this chapter is to show the displacement convexity
of W, in its two arguments. More precisely, we can think of interpolating between
two pairs (g, y0) and (x1,y1) of monotonic profiles by interpolating their inverse
functions. Hence, we consider

3t = (1= Nt + Aty
vt o= (L= Nyt +

and show that Wh(x),yy) is a convex function of A. Note that, for a monotonic
interpolating profile p, the inverse function p~'(u) is uniquely defined for almost
all u € (0,1); also, the right and left limits, p~*(u+) and p~'(u-), respectively,
are uniquely determined. Displacement convexity is explained in more detail in
Sections 1.7 and 5.5.

Displacement convexity applies only to monotonic profiles. In the next section,
we address the conditions under which one can conclude that minimizers of W,
satisfying (5.7) can be taken to be monotonic.

The following quantities will play a crucial role in the remainder of the chapter,

Q(z):[;diw(i), V(z):[;diﬁ(i). (5.15)

Here V is called the kernel for reasons that will become clear. As will be seen,
displacement convexity arises from the convexity of V.

Lemma 5.8. Assume that Cy, < co. Then V is well-defined and convez.
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Figure 5.2: A profile = and its saturated version |z]k.

Proof. Using integration by parts, we can write

V()= [W dzQ(3) :29(5)]; —[Oo Az Zw(3). (5.16)

For z <0, we have

foo Az |Zw(3) > foo Az |2|w(3) = |22(2) 2 0,

so taking Z - —oo shows limz_,_o, Z€2(2) = 0. Due to (5.16), we conclude

V(z) = 2Q(2) —f dz 2w (3). (5.17)
Thus, V is finite and well-defined. Convexity follows because V" (2) = w(z) >0. O

Much of the analysis in this chapter proceeds relatively simply under the simple
assumption that

[ az (=2 ())y(z) < oo,

where the integral on the left-hand side can be seen as the interaction potential. Most
of our results will first be established under this assumption. In general, however,
this assumption is not needed and it is sufficient that C, < co. We typically generalize
our results to this case by taking limits. Let us discuss this issue.

Definition 5.9. We say that a function x is saturated off of the finite interval
[-K,K] if x(2) =0 for z€ (—00,-K) and x(z) =1 for z € (K, c0).

Given a profile z, let us define |x]x by
|21 (2) = Lqppery2(2) + Tasky -
By definition, |x]x is saturated off of [-K, K] (see Figure 5.2).

Lemma 5.10. Let x,y be interpolating profiles and assume the PGC and that Cy, <
oo, then

Iy—{%o WQ(Lx]Kv [y]K) = WQ(:U> y)
Proof. See Section 5.9.2. O

We end this section with another useful definition.
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Definition 5.11. Assuming it exists, we define the “single potential”

Wa(a.y) = Wala,y) - [ dz(1-2"())y(2)

- /I;{dz(/ox(z) dvf‘l(v)—/(;y(z) du(l—g_l(u)))- (5.18)

As we will see, the functional Ws 4(z,y) captures the “single” (uncoupled) part
of W : It is invariant under increasing rearrangements and linear under displacement
interpolation.

5.3 Rearrangements

Displacement convexity is usually defined on a space of probability measures. For
measures on the real line, it is most convenient to view displacement convexity on
a space of cumulative distribution functions (cdf’s). It is therefore fortunate that
the search for the global minimum of the potential functional (5.8) can be reduced
to the space of profiles x and y that are non-decreasing. In this section, we use the
tool of increasing rearrangements to show that such rearrangements of x and y can
only decrease the potential.

The notions of rearrangements that we use were also mentioned in Chapter 4;
we repeat them here for completeness. Symmetric decreasing rearrangements are
a classical tool in analysis (see [119]). Here, we use their closely related cousin,
namely, increasing rearrangements (see [94]). Our presentation is self-contained and
no previous exposure to rearrangements is needed. Consider a profile p: R - [0,1]
that satisfies (5.7). The increasing rearrangement> of p is the increasing function
p that has the same limits and that somewhat preserves the mass of each level set
(here, the mass of a level set could be infinite). More formally, let us represent p in
layer cake form as

p(z):/op(Z)dt:/:dt]lEt(z), (5.19)

where 1, is the indicator function of the level set E; = {z|p(z) > t}. For each value
t € [0,1), the level set E; can be written as the disjoint union of a bounded set Ay
and a half line (a;,+00). We define the rearranged set E; = (a; — |A], +00), and then

#(2) = /01 dtlp (2). (5.20)

A simple example capturing the notion of increasing rearrangement is shown in
Figure 5.3.

Lemma 5.12. Let p and q be two profiles satisfying (5.7), and let p and q denote
their respective increasing rearrangements. Then, assuming the left integral exists,
we have

JRECOROEN RECOR O}

3Note that an increasing rearrangement is not necessarily strictly increasing.




130 Displacement Convexity for General Scalar Systems

3.0F ]

2.5F

p(2) p(2)

0.5F

0.0f — 11 ]
L L 1 L L L 1 L L L L L L 1 L L L 1 L L

-4 -2 0 2 4

Figure 5.3: Simple example of an increasing rearrangement for step functions.

Proof. For each t € (0,1), there exists a minimal a; such that (a;,00) c {z:p(z) > t}n
{z:q(2) > t}. Define By,; = {z : p(z) > t}\ (a,0) and By = {z: q(2) > t}\ (at, o).
We also define the same quantities for the rearranged profiles p and ¢, namely a,
B+ and B ;. We show below that

|Bp,t

=Byl = [Bptl = [Bgl, (5.21)

Equation (5.21) gives the result because, by using the layer cake representation, it
follows that

/Rdz (p(2)—q(2)) = /(;1 dt (| Bp.t| = Bg.tl)
1

- [0 dt (| By - | Baal)

- [ 4z () - a(=).

Let us give an explicit argument for (5.21). We note that the infinite part of a
level set can only increase under an increasing rearrangement, thus (a;, c0) c (G, o).
So, (at,00) is common to {z:p(z) >t} and {z:q(z) > t}, and subtracting it leaves
two finite sets with the same finite measure because rearrangements are measure-
preserving; i.e.,

{z:0(2) > t}\ (ar, 00)| = [{z : p(2) > 1}\ (s, 00),

(with the same a; on both sides). Thus,

Bt = 1{z:p(2) > t}\ (ar, 00)
= [{z:p(2) > t}\ (ar, 00)| = |(ay, ar)|
= |Bpt| = (@, at)|.

Similarly, |Bg¢| = |Bgt| —|(at, at)|, and (5.21) follows from these two identities. [

Lemma 5.13. For any interpolating x and y, we have

[ az=a()y(z) > [ dz(1-a(2)5(2).
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Proof. If the left hand side is infinite then the result is immediate, so we assume
that it is finite.

This result is very similar to the Hardy-Littlewood inequality for symmetric
rearrangements. We will, however, give a self-contained elementary proof. The key
inequality is the following, that holds for all ¢,s € (0,1),

Hz:l-z(z)>tin{z:y(z) >s}| 2 [{z:1-2(2) >t} n{z:9(z) > s} (5.22)

This gives the result because

fRdz(l—z(z))y(z)=f]Rdeoldﬂl{l_z<z)>t}(Z)folds]l{y(z»s}(z)
:folfoldtdst:1—1’(Z)>t}ﬂ{z1y(z) > s}].

To see (5.22) for s,t € (0,1), note that {z:1-2(2) >t} = (-o0,a;) U A; and
{z 1 y(2) > s} = (bs,+00) U Bg where the unions are disjoint and |A|,|Bs| < oo. If
a; +|A¢| < bs —|Bs| (see case a) in Figure 5.4), then the right hand side of (5.22) is 0
and (5.22) is immediate so we assume otherwise. If a; > bs (see case b) in Figure 5.4),
then we trivially have equality in (5.22) so we also assume a; < bs. This is case ¢) in
Figure 5.4. We now have

Hz:1-2(2) >t} n{z:9(2) > s}| =| (o0, as + |As]) N (bs —|Bs|, +00) |
=|A¢| + | Bs| = (bs — az).
Remark that the last line is non-negative because we are not in the case a; + |44 <
bs — | Bs|- Now note that A; and By can intersect only in the interval [a¢, bs], so we
have
Hz:1-xz(2) >t} n{z:y(z) > s}| =|As| + |Bs| = [(Ar U Bs) N [ag, bs]|
>[A| +[Bs| = (bs — ar),

and the lemma follows. O

Lemma 5.14. For any interpolating x and y, we have

]]I;dz(l—xw(z))y(z)szdz(l—a‘cw(z))y(z). (5.23)

Proof. If the left hand side is infinite, the inequality holds. Hence, we suppose it is
finite. We have

[]Rdz(l—xw(z))y(z)=[Rdszdéw(E)(l—x(z—é))y(z).

As the integrand is non-negative and the integral is finite, we can apply the Fubini
theorem to rewrite

fRdzu—xw(z))y(z):fRdzw(z)fRdz(l—x(z))y(z+z). (5.24)
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z
z

' — a e
B ! bs Ay “

Figure 5.4: lllustration of level sets used in the proof of Lemma 5.13. a) For a; +|A| <
bs — | Bs|- The intersection in the right hand side of (5.22) is empty and the inequality
is trivial. b) For a; + |A¢| > bs — |Bs| and a; > bs (5.22) is an equality. c) For the last
case a; + |A¢| > bs — | Bs| and a; < b; the inequality (5.22) is non trivial.

Now, we apply Lemma 5.13 to the functions x and yz, where yz(2) = y(z + ). Note
that ys is simply a translated version of y so its rearrangement is just obtained by
the same translation of 7, i.e., §z(2) = y(z + 2). Thus

fRdzu-m(z))y(“z)szdzu—@(z))g(Hz).

Multiplying by w(Z), integrating over Z and using (5.24) we obtain (5.23).

We are now ready to prove a rearrangement inequality for Whs.

Proposition 5.15 (Monotonicity of Minimizers). Let x and y be profiles that sat-
isfy (5.7), and let T and § be their respective increasing rearrangements. Assume
the PGC and that C,, < oo, then we have

Wg(x,y) > WQ(i‘,ﬂ). (5.25)

Proof. If the left hand side of (5.25) is infinite, then the result is immediate, so we
assume that Wh(z,y) is finite. Let us first assume that [ dz (1-z"(2))y(z) < oo (in
fact, we can assume the saturated case). It then follows that Wh ¢(x,y) in Equ. (5.18)
is finite. Note that, if F': R — [0,1] is monotone, then the increasing rearrangement
of Fopis equal to F op. Thus, the increasing rearrangement of fox(z) dv f1(v) is

equal to foj(z) dv f~1(v), and similarly for the term foy(z) du (1-¢g7'(u)). We can now
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apply Lemma 5.12 (with suitable scaling) to conclude that Wh s(z,y) = Wa (2, 7).
For this case, the proposition now follows from Lemma 5.14.

Now, we consider the general case where, possibly, [ dz(1-2z"(2))y(z) = .
Due to Lemma 5.10, we have

Wa(z,y) = lim Wa(lzlk, [y]k)- (5.26)

We remark that [ dz (1 - ([2](2))|y]k(2) < oo due to Lemma 5.30, Equ. (5.48).
Therefore, using the saturated case we have already established above, we have

Wa(lz i, [y i) > Wa(l 2]k, [y ]k )- (5.27)

Finally, it is easy to see that, for any interpolating profile x, we have |z|x — T
pointwise. By Lemma 5.7, Equ. (5.12), we obtain

liminf Wo ([, [yli) 2 Wa(7,9)- (5.28)
Combining (5.26), (5.27), (5.28) concludes the proof. O

Proposition 5.15 shows that minimizers z, y of the functional W (x,y) can be
found in the spaces of non-decreasing profiles. From now on, we therefore restrict
the functional to those spaces.

5.4 Existence of Minimizers

The existence of a monotonic fixed point, that we will show is a minimizer of W,
is proved in [69,70]. In this section, we give an alternative proof, under similar
conditions, using the direct method of the calculus of variations [109], as was done
in Chapter 4.

In the direct method of the calculus of variations, one constructs a minimizer as
a limit point of a minimizing sequence. As Wh(x,y) is invariant under a common
translation of x and y, it is necessary to center the sequence in order to carry out
the method. We can do this by translating x and y so that % € [x(0-),z(0+)]. We
call such a profile pair centered.

Proposition 5.16. Assume Cy, < oo and assume the SPGC is satisfied. Then, there
exists a monotonic non-decreasing profile pair (z(z),y(z)) that minimizes Wa under
the condition that (x,y) has limit (1,1) at z = oo and limit (0,0) at z = —oo.

Proof. We already remarked that we can adopt the alternative expression (5.13) for
the potential functional, namely

W2($’y) = -[Rdz jx,y,w(z)p

where fx,yﬂu(z) > 0. Therefore, Wa(z,y) is bounded from below, thus, by Proposi-
tion 5.15, there exists a minimizing sequence (z;,y;) of monotonic profiles satisfying
the limit condition; i.e.,

lim Wa(z4,y:) = inf Wa(z,y).
+00

71—
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Let us center the sequence so that 3 € [2;(0-),z;(0+)] for each i. Interpreting =
and y; as cumulative probability distributions, our aim is to show the tightness of
the sequence; i.e., that the transition of x; and y; from € to 1 — € must occur in a
bounded region for all ¢ and for any €€ (0,1).

Let C' be an arbitrary finite constant. Then, we claim that, for any € > 0, there
exists Z < oo such that Wh(x,y) < C implies that z(z),y(z) > 1 —€ for z > Z
and z(2),y(z) < € for z < =Z, (assuming z,y is a centered monotonic profile pair
satisfying the limit conditions).

This claim completes the proof. Indeed, we can then extract from (z;,y;) a sub-
sequence (z;,,;, ) that converges to a limit point (z«,yx) that necessarily satisfies
the limit conditions, and by Fatou’s lemma

/ dz I, e,w(2) <liminf dz mlk’ylk’w(z)7

k—+o0

s0 Wa(zx,y.) < inf Wh(x,y), and z.,y. is a monotone minimizing pair for the
potential functional.
Now, we prove the claim. Due to Lemma 5.31, we have

/]Rdz |2 (2) = z(2)| < C.

We see that Wa(z,y) < C implies that

[ 42007, :(2). 2()) = Walaw) = [ dz (=) =2 (2)y(2)
<C+Cy.

By the strictly positive gap condition, there exists > 0 such that ¢(f, g;y(2),z(z)) >
n unless we have either x(z),y(z) < € or x(2),y(z) > 1 — €. Let z; be the smallest
value of z for which #(z),y(2z) >1—-e¢. Then,

C+Cu> [ Tz o(fgiy(2),1(2)) > 7

and z; < (C'+Cy)/n. Thus, for each i we have z;(2),yi(z) > 1€ for z > (C+Cly)/n.
Similarly, for each i, we have x;(2),y;(2) <€ for z < =(C + Cy)/n. O

5.5 Displacement Convexity

A generic functional F(p) on a space X (of profiles say) is said to be convex in
the usual sense if, for any pair pg,p; € X, and for all A € [0,1], and for the lin-
ear interpolation (1 - X)pg + Ap1 of the profiles, the inequality F((1 - X)po + Ap1) <
(1-X)F(po) + AF(p1) holds. Displacement convexity, on the other hand, is defined
as convexity under an alternative interpolation called the displacement interpolation.
The usual setting for displacement convexity is a space of probability measures. For
measures over the real line, one can conveniently define the displacement interpola-
tion in terms of the cdf’s associated to the measures. This is the simplest setting and
the one that we adopt here. We explain this in detail in Section 1.7 and summarize
the main definitions that are relevant to the present chapter here.

We think of the increasing profiles p as right-continuous cdf’s of some underlying
measures dp over the real line. As already stated, the inverse p~'(u) is defined
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almost everywhere and the left and right limits, p~'(u_) and p~!(u, ), respectively,
are uniquely defined. However, at this point, it is useful to settle on the right
continuous inverse that is defined for all u € (0,1), namely p~*(u) = inf{z | p(2) > u}.

Consider two profiles pg and p;. If pg is continuous, the pushforward map 7, :
R — R from dpg to dp; is given by

Tp(2) = p1 (po(2)), (5.29)

and the interpolant py(-) is the cdf of the measure defined by
dpx = ((1 = N)id + XT,)#dpo,

where id denotes the identity map. Therefore, we have

[ @) n) = [ dpo(2) h(T(2),
[dp,\(z)h(z):fdpo(z)h((l—)\)z+)\Tp(z)),

whenever the integrals are well-defined.

The graphical construction of the interpolant py is illustrated in Figure 1.14.
Graphically, T}, finds the position Z = T},(z) on the z-axis so that pi(Z) = po(z) for
some given z. Consider the linear interpolation between points on R,

Zpa = (1= X))z + XTI (2).

The displacement interpolant p) is defined so that the following equality holds for
all Ae[0,1]
pa(2p,2) = po(2).

In the case where pg is discontinuous, we have to be more careful in the definition.
At points of discontinuity of pg, the map T,(z) should not be singled valued. As
we work in one dimension, this issue is easily circumvented and we can, in general,
define p), via its inverse as

Pyt (u) = (1= N)py'(w) + Apy ' (u), (5.30)

and py(z) = inf{u | py*(u) > 2} (which is right continuous). Correspondingly, if p is
an interpolating non-decreasing profile then, under appropriate regularity of h, we
can write

[ane)ne) = [ aunGr ),

and we have

[ amEh) = [ dun((1- g @) + At ().

With this in mind, we will continue to use the notation 7,(z) when the above
interpretation should be understood.

In the remainder of the chapter, we consider two pairs of interpolating profiles
(zo,21) and (yo,y1) and consider the corresponding interpolants x) and ).

We now state one of the main results of this chapter.
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Proposition 5.17. Assume the PGC and C,, < oo. Then, the potential Wa(x,y) is
displacement convex; that is, for all A € [0,1]

Wa(zx,yx) < (1= MWa(z0,90) + \WWa(z1,y1)- (5.31)

We first show that it is sufficient to prove the proposition under the assumption
that (zg,y0) and (z1,y1) are saturated. We recall that, by Lemma 5.10, for any
monotonic interpolating pair z,y we have

im ol Lylie) = Wa (). (5.32)

Given any monotonic interpolating pairs (zo,%0), (x1,¥1), let zx » denote the dis-
placement interpolant of |zo]x and |z1]x. It is easy to see that xk ) converges
pointwise to x) when K — +oo. By Lemma 5.7, Equ. (5.12), we therefore have

liKHLiorif Wa(z g yr.n) 2 Wal(za, yn). (5.33)
In view of (5.32) and (5.33), we see that (5.31) follows from

Wa(zk x, yra) < (1= )Wa([2o]k, (90 |r) + WVa (21K, (91 1K) (5.34)

which is the saturated case of (5.31). For the remainder of the section, we therefore
assume the saturated case, and prove (5.34).
If x and y are saturated then we have

[]Rdz(l —x"(2))y(z) < .

Indeed,
(1-2"(2))y(2) = (1 -2(2))y(2) + (2(2) - 2 (2))y(2),

and the first term is integrable for saturated profiles x,y. The second term is also
integrable for such profiles because of Lemma 5.31 (note that z* is not necessarily
saturated). This is the critical requirement because, by integrating by parts, we
obtain

[]Rdz(l — 2% (2))y(2) = ]g dz(2)dy(3) V(2 - 2). (5.35)
The full derivation of this identity reads
[]Rdz (1-2"(2))y(z) = i! dzdz (1-z(2))w(z - 2)y(2)
= [ az(2)azy(2)2(= - 2)
RQ
= [ da(2)dy(2) V(= - 2),
RQ

where we have used the fact the V' (z) is well-defined.
The identity (5.35) leads to the following key result:
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Lemma 5.18. Let (20,y0) and (x1,y1) be saturated, then [p dz(1-2¥(2))yr(z) is
a convex function of A.

Proof. As x) and y, are saturated, we have, by (5.35), that
[ as(=at)m() - ij day(2)dyr () V(= - 2)
= [ dao(2)dyo(2) V(1 = N (2 - 2) + AT (2) - Ty (2))).
RQ

This is convex in A because the kernel V' is convex (see Lemma 5.8). O

Lemma 5.19. For any saturated pairs (zo,yo), (x1,y1), the functional Wa s(x, yx)
1$ affine in .

Proof. We will show that Wa s(zx,yx) — Wa s(20,y0) is linear in A. We start by the

considering the first term of this difference. Using the layer cake representation and
the monotonicity of the functions we have

]Rdz(fOxA(Z) duf_l(u)—/(;ZO(Z) duf_l(u)) = []Rdz ]x:(:(:) du 71 (u)
= [ ) g () - 5 ().

Because of (5.30) this last term equals

3 [ g ) - @),

that is linear in A. Similarly for the second term in the difference Wh s(xx,yn) -
W s(x0,y0), we obtain

fas( [T wa-g - [ awa g wy)
- [ du g7 ) i @) - ()

We are now ready to prove the main result of this section.
Proof of Proposition 5.17. 1If Wa(x0,y0) = +00 or Wa(x1,y1) = +oo0 then the result

is immediate, so we assume both are finite. As argued above, we can assume that
all functions are saturated. We rewrite the potential in (5.8) as follows.

Walax,yn) = Was (22,55 + [Rdz(l-mf(z))w(z). (5.36)

By Lemma 5.19 the functional Wh s(xx,yy) is affine and hence convex in A. The
second term was shown to be convex in Lemma 5.18. O
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5.6 Fixed Points and Minimizers

The main goal of this section is to prove Proposition 5.21 that states that a pair of
monotonic profiles minimizes W if and only if it is a “consistent” fixed point. It
will be helpful to start with a preliminary discussion that explains the motivation
behind defining consistent fixed points.

We already remarked that ¢(f,g;u,v) is convex in v for fixed v and mini-
mized (over v) by setting v = f(u), and similarly for u and v interchanged. From
the expression (5.9), a similar argument shows that I, ., (2) > Iz goaww(2) and

Ixjij(z) > ]]v<3y1117y’11}(2,')7 SO
Wa(z,y) 2 Wa(x,gox™) and Wa(x,y) > Wa(foy",y).

Under some conditions, we can have Wa(x,y) = Wa(x,g o x") even though it is not
the case that y = g o 2" almost everywhere. This can happen, in particular, if g is
discontinuous and the pair f, g does not satisfy the strictly positive gap condition.

One of the main analytical tools used in [69,70] was the construction of f and g
given x, ¥y, and w so that z, y form a “consistent” interpolating fixed point. Note that,
from an interpolating fixed point, we can recover the graph of f as the parametric
curve (z(z),y"(z)) as z € (o0, +00). Given interpolating = and y we denote the f
so obtained as f[,,w] (see [69,70] for more details). The function f, ,w] is uniquely
determined at points of continuity but may not be uniquely determined at points of
discontinuity. In particular, if y* is constant over some open interval I where x is
increasing, then fi, ,»] has a discontinuity at that value of y*(I), and we see that
we cannot have x = f[, ,»]0y" almost everywhere. Nevertheless, it is the case that
2(2) € [foye1 (¥ (2)=); flayw1(y*(2)+)] for all 2, and, in this sense, it satisfies the
DE equation. In [69,70], the notation

xz foy”
was used to capture this case.* This motivates us to make the following definition:

Definition 5.20. We say that an interpolating pair x,y of profiles is a consistent
fized point if x = foy" and y=gox". Recall that x,y is a fized point if x = foy™
and y = gox™ almost everywhere, i.e., up to a set of measure zero.

Proposition 5.21. Let x,y be monotonic and interpolating. Then Wh(x,y) is min-
imal - in the sense Wa(x,y) < Wa(Z, ) for any monotonic interpolating Z,y - if and
only if x,y is a consistent fixed point.

Proof. If x,y is not a consistent fixed point, then, either Ws(z,y) = oo in which
case the pair cannot be minimal, or we have either Wh(z,y) > Wa(z,g 0 2") or
Wa(z,y) > Wa(f oy®”,y), which shows that Wh(z,y) is not minimal.

To prove the converse, assume xq,%o is a consistent fixed point. The proof
proceeds by contradiction. Hence, we suppose that there exists interpolating x1, y1
with Wa (g, y0) > Wa(x1,y1) and we shall deduce a contradiction. By Lemma 5.10,
we can assume that x; and y; are saturated.

“More precisely if h plays the role of f, g we denote v=h(u) when v = h(w) at points of continuity
of h and v € [h(u-), h(u+)] at points of discontinuity of h.
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We will show that we may also take zq,yp to be saturated. Define

K
fo = f[[:ro]K,lyd}?]’

K
90 = Illyolk Lol

so |xolk,|yolx is a consistent fixed point for fOK,g(?. As x1,y; are saturated, it
follows easily that

I}_EI;OWQ(]COKagé(;xlvyl) = Wa(fo, 905 71,91) = Wa(z1,1),
and, by Lemma 5.32, we have

I}lirio Wa(£35, 55 Lo lies Lwo i) = Wal(zo, o),

and we see that we can assume that xzg, yg are saturated.
As z9,y0 is a consistent fixed point, it follows that Wh (o, y0) < Wa(Z,y0) and
Wa(xo,y0) < Wa(xo,y) for all interpolating Z and g. Hence, we now have

Wa(xx,ya) = Walzo,y0) 2 Wa(zx, yx) = Wa(@a, yo) = Wa(zo, yx) + Wa(zo, y0)
== fRdZ (2 (2) =20 (2)) (ua(2) = yo(2))
> -C\%, (5.37)
where C' is some positive constant. The last step follows from [z¥ (2) — 2y (2)| < C1 A

and [ dz|ya(2) —yo(2)| < CaA for some positive constants C; and Cs, which follows
from the saturation of xg,y9 and x1,y;. By Proposition 5.17, we have

Wa(zx,yn) = Wa(wo,y0) < A(Wa(x1,y1) = Wa(zo,90))- (5.38)

Because of the assumption on z1, y1, the right hand side of (5.38) is strictly negative.
Thus, (5.37) and (5.38) contradict themselves for A sufficiently small. We conclude
that no such z1,y; can exist. O

We conclude this section with a pleasing expression in Lemma 5.23 for Wa(x,y)
when x,y is a monotonic minimizer or, equivalently, a consistent fixed point.
We need the following functional from [69,70],

Eo(wim,yi21,2) = || de(2)dy(2) (16,2(2 - 2) + 16,02 - 2)), (5.39)

with

Cy={(z,2):2<29,2> 21},
and

Co={(2,2):2>29,2< 21}

Note that £, is non-negative; this is closely related to the positive gap condition.
One of the main results in [69] (Lemma 9) is the following (this result is used in
Section 5.7).
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Lemma 5.22. Let x,y be a consistent fized point for (5.6), then

Eop(w;,y; 21, 22) = d(f, g5 y(21+), w(22+)). (5.40)

It turns out that, for our application, we only require the case z; = 2o and in this
case the right hand side of (5.39) simplifies to

H da(2)dy(2) T(amzy)(3-21)<0y U~z = 2]). (5.41)

Lemma 5.23. If x,y is a consistent fived point then

Wa(z,y) = || de(2)dy(2) n(z - 2),
RQ
where ;
K(2) = V(2) = 20(2) = - [m dz 2uw(3).

Note that k is a non-negative even function that tends to 0 at oo (recall that w is
an odd function).

Proof. By Lemma 5.32, it is enough to prove this for the saturated case. For the
saturated case, we can integrate by parts to obtain

JRICEEONOR J[ 4 s (-
From (5.22) and (5.41), we have

[ az6(f.9:9(),a()) = if de(2)dy(2) |z~ 201z 2. (542)

Combining these two equations we obtain
Was(z,y) = [[ da(2)dy(2) (|2 = (|2 = 2) - 1 sz0y (2 - 2))
R2

=~ {[ dz(2)dy(2) (2 = 2) (D (a-zs0y - U2 - 2D))

R2

=~ [[ dz(=)ay(2) (= - 2)02(z - 2).
R2
By (5.36), adding this to (5.35) gives the result. O

5.7 Strict Displacement Convexity

The existence of increasing interpolation solutions to (5.6) was established in [69,70]
under the assumption of the strictly positive gap condition and assuming that w is
strictly positive on an interval (-W, W), W < +oo and 0 off of [-WW,W]. We shall
refer to this as the interval support condition. It was also shown in [69,70] that the
existence of such a fixed point implies the positive gap condition, and, by example,
it was shown that if A(f,g;u) =0 for some u € (0,1), then there may be an infinite
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family of fixed point solutions that are not equivalent under translation. In this
section, we use displacement convexity to show that the solution whose existence
was proved in Section 5.4 and in [69,70] under the strictly positive gap condition is
unique up to displacement.

It follows from Proposition 5.21 that all interpolating minimizers have the same
potential and that they are all consistent fixed points. By Proposition 5.17, we see
that, if xg,y0 and x1,y; are both monotonic interpolating consistent fixed points,
then xy,y, is a consistent fixed point for all A € [0,1]. Displacement convexity can
therefore not be strict in this case. The aim of the proof is to show that the strictly
positive gap condition then leads to the conclusion that all consistent fixed points
are equal up to translation.

Given xg,yo and x1,y; we define

D(u,v) = (21" (v) =1 () = (25" (v) = 5" (u))-

Lemma 5.24. Let xg,y9 and x1,y1 be consistent fized points and assume interval
support condition. Then for all X € [0,1] we have

p{(u,0) H (0) = 3 ()] < W, D(u, 0) # 0, 6(u, v) # 0} =0,
where p denotes the 2-d Lebesgue measure.

Proof. We assume throughout that xg,yp and z1,y; are consistent fixed points.
Formally, we have
2

S Walaa,1) = [Ojlj] dudy D, 0w (0) -5 (1)

The formula is derived in Section 5.9.5 for saturated profiles. Note that the integrand
is always non-negative so the integral is well-defined although it may take the value
+00. We claim that

1 — —
/(; d)\[d[fp dudv D(u, v)*w(zy (v) - y3 ' (u)) = 0. (5.43)

Assume the claim is false. Then, there exists aset A c [0,1]? on which 251, yo !, 271, v
are all bounded, such that

fol dA £f dudv D(u,v)*w(zy (v) = y3' (u)) =1 > 0.

In the saturated case, it is easy to see that Wa(zy,yy) is absolutely continuous and
S0 is (%\WQ(&Z’ A Ux)- It now follows that for all K large enough we have

d2
/{0 1 d)\WWQ(l'K,)nyK,A) 21,

and therefore, using the convexity of Wh(zx x,yx,)) with respect to A, we deduce
that there is a positive constant v such that for all K large enough we have

Wa(lzols [yoli) + Walzn Tk, [yr k) = 2Wa (g 1,0k 1) > -
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Applying Lemma 5.10 and Lemma 5.7(5.12), and noting that xx ,yx x converge
pointwise to xy, y», yields

Wa(xo,y0) + Wa(x1,y1) — 2W2(9C%ay%) >,

which contradicts Proposition 5.21, thereby establishing the claim.
Now, assume that for some X € [0,1], we have

p{(u,0) 3 () = 3" (w)| < W, D(u,0) %0, ¢(u,v) > 0} > 0.

By the continuity and inner regularity of the Lebesgue measure, there exists a con-
stant 77 > 0 and a closed set A € (0,1)? of positive measure such that, for all (u,v) € A,
we have

5! (0) =5 (u)| < W =,
|D(u,v)| >n,
¢(u,v) >n

for all X € [0,1] satisfying |\ - \| < 7.
For all ¢ € [0,2W], we define

0(6) = zef?,l;%/](ﬁ(z) -Q(z-9)).

Note that () > 0 for 6 >0 and that 6 is non-decreasing.
For any (u,v) € A we have for a < b,

fa "AN D, )20 (25 (0) - g5 (1) + AD(u, 0))
= D(u,v)[ Q5" (v) =o' (u) +bD(u,v)) = Qg (v) = yp ' (u) + aD(u,v))]
> |D(u, v)[0((b - a)| D(u,v)|)
>n6((b-a)n).

By the Fubini theorem, this contradicts our above established claim (5.43). O

Let us define Dy = {(u,v) : |7 (v) =y~ (u)| < W}. For k € R let us define

Ti(k)={(z,2): 22k, 2<k,z-Z2< W},
To(k) ={(z,2):2<k, 2>k, Z—-z<W}.

Let B.(u) denote the open interval centered at u of length 2e.

Lemma 5.25. Let x,y be a consistent fixed point and assume the SPGC and the
interval support condition. For all v € (0,1), there exists u € (0,1) and € > 0 such
that Be(u) x B(v) € Dyy.
Proof. Let v e (0,1) and define z,, = %(x‘l(vﬂ +271(v-)). We must have 7! (v+) -
271 (v-) < 2W because otherwise we obtain Eo(W;,Y; Zm, 2m) = 0, which, by Lemma 5.22,
contradicts the SPGC.

More precisely, by (5.41), the SPGC implies that the dxdy measure of at least
one of T1(zp,) and Ta(zy,) is strictly positive. We shall assume that the measure of
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T (zy) is positive, and the other case can be handled similarly. It follows from the
monotonicity of x and y that there exists u € (0,1) and e sufficiently small such that
y N (Be(u)) x 27 ((v,v+€)) € T1(zm). It follows that 31 (Bc(u)) ¢ (2m — W, 2, ] and
because 21 ((v—¢€,v)) € (2 — W, 2], we have Bc(u) x Be(v) ¢ Dy . O

By Lemma 5.24, we have that, if zg,yo and x1,y; are consistent fixed points and
the SPGC and interval support condition hold, then

p{(u,0) o' (0) = 3" (w)| < W, D(u,0) # 0} = 0. (5.44)

We claim that this implies that z7'(v) — 25" (v) is essentially constant. Similarly,
we have y7'(u) - yp'(u) is essentially constant. Moreover, these two constants are
equal.

Lemma 5.26. Assume the SPGC and the interval support condition and that x1,y1
and xg,yo are consistent fixed points. Then, x{l - xal 1s essentially constant on

[0,1].

Proof. Let us assume that iL‘Il - x61 is not essentially constant; i.e., there exists a
real value s so that [{v: D,(v) > s}| € (0,1) and |{v : D,(v) < s}| € (0,1). Then,
there exists v* € (0,1) that is in the support of both sets; i.e., for any € > 0, we have
{v:Dg(v)>s}nBe(v*)|>0and {v: Dgy(v) < s}nB(v*)|>0.

By Lemma 5.25, there exists u € (0,1) and € > 0 such that Be(u) x Be(v*) ¢ Dyy.
Using the definition of v*, we can see that there is a positive constant 1 > 0 such
that fBE(U*) dv |D(u,v)| > n for all u € Be(u), which now contradicts (5.44). This
completes the proof. ]

Proposition 5.27. Assume the SPGC and the interval support condition and that
x1,y1 and xo,yo are interpolating monotonic consistent fized points. Then, there
exists m such that for almost all z we have x1(2) = xo(z+m) and y1(2) = yo(z+m).

Proof. By Lemma 5.26, there exists m such that z7'(v) — 25! (v) = m for almost
all v € [0,1]. Similarly, there exists 7 such that y7'(u) - yg'(u) = m for almost all

€ [0,1]. Tt follows that D(u,v) = m—mm for almost all (u,v) € [0,1]?. It now follows
from Lemma 5.25 and (5.44) that m = m. O

Even though we have stated and proved the results for consistent fixed points,
under the assumptions of this section, consistent fixed points are actually fixed
points.

Lemma 5.28. If x,y is a consistent fized point and f, g satisfies the strictly positive
gap condition and the interval support condition holds then x,y is a fived point.

Proof. If the SPGC and the interval support condition hold, then z" and y“ are
strictly increasing wherever they take values in (0,1). This implies that x,y must
be a fixed point (see [69,70] for further detail.) O
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5.8 [llustrations

In this work, we have shown (using Propositions 5.16, 5.17, 5.21, and 5.27) that
under some conditions, the potential functional W is displacement convex and that
its minimizer exists and is unique up to translation. These conditions are the strictly
positive gap condition, C, < oo, and the interval support condition. In this section,
we apply these results on different scalar systems when these conditions hold. In
particular, for the applications we consider, we use the even uniform window with
W =1/2 which implies the two latter conditions. We illustrate for each application
that the strictly positive gap condition holds.

To check the SPGC, one can directly look at ¢(f, g;u,v), but there is a simpler
way to check the condition. Indeed, we already remarked that, for fixed u, the
potential is minimized by setting v = f(u). Therefore,

o(fg5u,v) > d(f, g5u, f(u)) = A(f, g;u).

So the SPGC is valid as long as the signed area A(f,g;u) >0 for w e (0,1). Similarly,
for fixed v the potential is minimized by setting u = g(v). Thus,

o(f.g;u,v) > ¢(f,g:9(v),v) = A(f, g;v),

where
Afogio)= [ d(f70) - g0,

is the alternative signed area bounded between the two EXIT curves and the hori-
zontal axis at the origin and at height v. The SPGC is valid as long as A(f,g;v) >0
for ve (0,1).

_ Clearly, when ¢(f,g;1,1) = 0 as assumed in this paper, we also have A(f, g;1) =
A(f,9:1).

5.8.1 LDPC Code Ensembles on the BEC

We demonstrate our results on the (3,6)-regular spatially coupled LDPC code en-
semble when transmission takes place over the BEC(¢). For this ensemble, we have
the (unscaled) uncoupled DE equations x = ey? and y = 1 - (1 - x)°. We already
showed how to perform the right scaling x = xyapv and y = ymapu; asking that
(u,v) = (1,1) is a fixed point and A(f,g;1) =0, we find yyap = 0.941, xprap = 0.432
and e = eyap = 0.4881. Replacing these numbers in the expression of the potential
function, we find ¢(u,v). Figures 5.5 and 5.6 illustrate the corresponding EXIT
curves and the potential that is seen to satisfy the SPGC.

5.8.2 Generalized LDPC Codes

We consider a generalized LDPC (GLDPC) code where the check node constraints
are given by a primitive BCH code with minimum distance d = 2e + 1 (see [106] for
more information). We consider the code with degree-2 variable nodes and degree-n
check nodes, with transmission over the BEC(e). The (unscaled) uncoupled DE
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Figure 5.5: We plot the EXIT curves f(u) and g *(u) for u € [0,1] for the (3,6)-
regular LDPC ensemble with transmission over the BEC(0.4881). We note that the
signed area between the curves is equal to zero.

Figure 5.6: We consider the (3,6)-regular LDPC ensemble with transmission over the
BEC(e). We plot ¢(f,g;u,v) for (u,v) € [0,1]? in log scale when € = eyap = 0.4881.
We can see that ¢(f, g;u,v) >0 for (u,v) € (0,1)% and ¢(f,g;0,0) = ¢(f,g;1,1) = 0.

equations are [71]

X = €y,
y= X () (=X
Set € = eyap and y = yyapt, X = Xyapv. We then obtain the scaled equations (5.1);
namely v = f(u), u = g(v)
f(u) = eMapXniapYMAPU,
g(v) = Yi/{lAP Z?:_el (nz_‘l)X%\AAPVZ(l - XMAPU)n_Z_l-
The normalization condition f(1) = g(1) = 1 and the condition A(f,g;1) = 0 com-

pletely determine eyap, Xpap, ymap- The potential function and (alternative) signed
area are given by

2

U v

o(u,v) = _IMAPT [ dv’ g7t (v") - uw.
2enmapymap  JO
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Figure 5.7: We plot the EXIT curves f(u) and g~*(u) for u € [0,1] for the GLDPC
code with n = 15 and e = 3, when transmission takes place over the BEC(0.3901). We
note that the signed area between the curves is equal to zero.

Figure 5.8: We consider theNGLDPC code with n = 15 and e = 3, with transmission
over the BEC(€¢). We plot A(f,g;v) for v € [0,1] when the channel parameter is
€ = EMAP = 0.3901.

2 n-1ln-i-1 . m+i , m+i+1
~ XMAPU 1 n-1\/n-71-1\x v
A(f.g;v) = - > > ( . )( )—MAP :
= m=0

2€MAPYMAP  YMAP j—o m m+i+1

The EXIT curves and signed area are illustrated in Figure 5.7. and Figure 5.8
for the GLDPC code with n = 15 and e = 3. This corresponds to xyap = 0.367,
ymap = 0.9342, eprap = 0.3901. Clearly the SPGC condition is satisfied.

5.8.3 The Gaussian Approximation

There are various forms of the Gaussian approximation [37,102,103] used to simplify
the analysis of coding systems with transmission over binary memoryless symmetric
(BMS) channels. Here, we consider a variant developed in [102,103]. The method
approximates the densities of the log-likelihood ratio (LLR) messages exchanged in
the decoding graph with symmetric Gaussian densities; that is, densities of the form

2
x(a) = 1/V2m0? exp(—(a_m) ) with the property ¢ = 2m. We also approximate

202

the BMS channel ¢ with a binary-input additive white Gaussian noise (BIAWGN)
channel with parameter 0% and with the same entropy H(c) as the original channel
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c. This makes the analysis one-dimensional and has been shown to serve as a good
approximation.

The Gaussian approximation allows us to track the evolution of decoding by
tracking the entropies of the LLR messages. Let ¢(m) denote the entropy of a
symmetric Gaussian density of mean m [61]. In particular, it can be expressed as

1
Varm

Note that 1(+00) = 0 and 9(0) = 1. We consider the (3,6)-regular LDPC code
ensemble with transmission over the BMS.
The (unscaled) uncoupled DE equations are

{x= Y (H(c)) + 297 (y)),
y=1-9(5¢7(1-x)).

We define myap as the value of =1 (H (c)) at the MAP threshold and set ¢ 1 (H(c)) =
muap and X = Xyapv, ¥ = ymapu. We then obtain the scaled equations (5.1), namely

v=f(u), u=g(v),

{f(u) = Xpiap ¥ (maap + 207 (yaarw)),
9(v) = Yatap — Yatap® (5071 (1 = xpapv)).

P(m) =

(z=m)?
v[]Rdsz am - logy(1+e77).

The normalization condition f(1) = g(1) = 1 and the condition A(f,g;1) = 0 com-
pletely determine myap, Xmar, Ymap- LThe potential function is given by

u 1
#(u,0) =ulxihp =) +Xadap [ /v (z07 (1 - yanaen))

-1 o 1 -1 N _ 1
*tYmap /(; dv ¢(§¢ (xMap?") 2mMAP)-
A plot of the EXIT curves and potential function yields curves that are very similar

to the case of the BEC (see e.g. Figs 5.5, 5.6).

5.8.4 Compressive Sensing

Consider a signal vector s of length n where the components are i.i.d. copies of
a random variable S. We assume that E[S?] = 1 and that each component of s
is corrupted with Gaussian noise A (0,02 = 1/snr). We take m measurements of
the signal and assume that the measurement matrix has i.i.d. Gaussian components
N(0,1/y/n). The measurement ratio is defined by § = m/n. Here we are interested in
state evolution [54], which tracks the mean square error of the approximate message-
passing (AMP) estimator (for the signal). We fix the snr to be large enough, and
consider ¢ that is kept fixed as n becomes large.
The state evolution fixed point equations read

o

where the minimum mean square error function mmse is defined as follows. Let
Y = \/snrS + Z where Y is a scalar output and Z ~ AN (0,1) and let S(Y,snr) =
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Egy[S]Y]. Then, mmse(snr) = Egy[(S - S(Y,snr))?]. In the equations above,
when we initialize with 2(?) = 1, 2® is the average mean square error of the AMP
estimator at iteration t.

We now put this system of equations in the form (5.1). Here, there is no trivial
fixed point x = y = 0. However, the picture is very similar to LDPC coding like
systems considered above. The role of the “trivial” fixed point is played by a fixed
point x,,y, that is obtained by initializing state evolution with x = 0. Given snr,
for 0 below the algorithmic threshold this is the only fixed point, and for § above
this threshold one finds three solutions (besides x,,y. which is stable, there are an
unstable and a stable fixed point). Set x' =x—x, and y' =y - y.. Equations (5.45)
become

{y, B (5.46)

x' = —x, + mmse(y. +y’).

Note that x’ =y’ = 0 is a fixed point. We now scale x’ = xyapv, ¥’ = ymapu where
xpap; Ymap are chosen later on. Then (5.46) takes the form (5.1) with the EXIT
curves defined as

_ 1 % _1 —
{g(v) = —yevibe * (o + =24 Ty, (5.47)

f(u) = _X*XK/IIAP +mmse(y. + YMAPU)XK/EAP‘

From these, one can compute the potential and the signed areas. Here, we illustrate
the signed area. We have

97 (1) = —xXypap + 0((+ + ymapu) ' +snrt)
from which it follows that
YmapP ud

A(f,g;u) =Lln(1+ u) +

XMAPYMAP Vs XMAPSDY

1 u
f du' mmse(y. + ymapt')
Xmap YO

Finally, we set the signal to noise ratio to the value snryap defined such that f(1) =
g(1) =1 and A(f,9:1)|sarypp = 0. These conditions also determine xyap,ymap
(note also that these values are a "non-trivial” stable fixed point).

5.9 Appendix

This section contains the proof of the most general results that depend on taking
limits. It contains proofs of the various limit results that allow generalization of
arguments from the saturated case to the non-saturated case and some elementary
technical results.

5.9.1 Integrability

Lemma 5.29. Let p be an interpolating profile and assume Cy, < oo. Then,

B
| o
Jim [ (07(2) - p(2)) =0,
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Proof. Assume that Cy, < co. Note that by evenness of w we have

P -pe) = [T e -2 -pE)+ [ azeE) - 2) -p()
- [T dzu(®) (p(z - 2) +p(z +2) - 20(2))

Let us define P(z) = [, dZp(Z). Applying the Fubini theorem, we have

B w oo ~ _ ~
[, a0 ) -p) = [ () (D(B.2) - D(-A,2),
where

D(B,2)=P(B-%)+P(B+%)-2P(B)
B+z R R B N N
= [, @) - [ azne)

:fBidé(l—p(z?))—[BBJrgdé(l—p(é))'

From these two expressions we obtain the two bounds

|D(B,2)| <z sup p(2),
2<B+Z
ID(B,2)| <% sup (1-p(2)).

z2>B-Z

Letting K > 0 be arbitrary, we have

|f0°°d2w(§)D(B,§)\ < [Owdéw(§)|D(B,£)|
stoodéw(Z)2+ sup (1—p(z))f0Kd2w(2)2.

z>B-K

As C, < o0, we see, by choosing K = B/2, that we have

lim fo dzw(2)D(B, %) = 0.

B—oo

Similarly, we have

\fowdéw(,%)D(—A,éﬂs f; dZw(3)5 + supr(z)[OKdéw(Z)é,

z<—A+

which, by choosing K = A/2, gives

jl_r}r;ov[(] dzZw(Z)D(-A,z) =0.
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5.9.2 Basic Bounds

We begin with some approximation bounds.

Lemma 5.30. Let p be an interpolating profile (i.e., one satisfying (5.7)) and as-
sume Cy, < 0o. Then,

lim [z (- [plR(2)) = 0, (5.48)
Jim [ dz[pliG) =0, (5.49)

K
lm [z p(2) - [pT(:)] = 0. (5.50)

Proof. Define
(K =sup{l=p(2), p(=2)

and note that limg . £(K) = 0. We have

L= plk(2) < Lpcryoy + (K /2) Nk 2eze iy
= (1 —f(K/Q))]l{ng/Q} +5(K/2)]1{ng}
< Taeryoy +§(K/2) 1 cky,s

from which we obtain (using changes of variables)

[ az-plEE) = [T dz [ dzutz -2 k()
< fK dz (QK/2 - 2) + QK - 2)E(K[2))
- V(-K[2) + V(0)E(K/2),

and (5.48) now follows. The inequality (5.49) can be shown similarly by first noting
that

[Pl (=2) < (1= E(K/2) L focreyoy + E(K/2)1 ey
SNekyoy +E(K/2)1 ey,

and writing

[OOK dz |plg(2) = fKOO dz [pl(-2)
- [T [ a2 ll-o).

Using again changes of variables and the upper bound on |p|x(-2), we find that
[ KAz |ple(z) < V(-K/2) + V(0)£(K/2), which proves (5.49).
Now, we show (5.50). We have

K oo
[ dZw(z—Z)p(Z)+/K dzw(z-2)(1-p(3))
<E(K)(QU-2-K)+Q(2 - K)),

() - ol < [
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where we have used the definition of {(K') = sup,s g {1-p(z),p(-2)}. We thus obtain

[ ]I: dz|p*”(2) - [plg (2)] < 2V (0)E(K)
and (5.50) follows. .

We can now prove Lemma 5.10. For convenience we restate the lemma.
(Lemma 5.10): Let x and y be interpolating profiles and assume the PGC and
Cy < 00. Then

Jim W[zl Lyli) = Wa(z,y).-

Proof of Lemma 5.10. If Wh(x,y) = oo, then the result follows from Lemma 5.7
Equ. (5.12). We assume now that Wh(x,y) < oo, and it is sufficient to show that

Jim (Wl ) = [ 2 Leya() =0,

The expression in parentheses can be written as

[ - laEwE) + [ ( [Caug? @+ [Cavr ) - m;z(z))

K 00
- [z (@) - R + [ de (- aT),

where the last term follows from the fact that A(f,g;1) = ¢(f,g;1,1) = 0. The result
now follows from Lemma (5.30). O

5.9.3 Rearrangement

Now, we focus on monotonic profiles. In particular, we prove the following lemma
that is used throughout the chapter.

Lemma 5.31. For any non-decreasing function h, we have
fRdz B (2) — h(2)| < Cop (h(+00) — h(~00)). (5.51)
Proof. First we note that
B2 = h(z) = [ dZ(h(z=2) = h(2))w(Z),
and we obtain
[ @zl )= h()
< fRdszdzyh(z ~3) — h(2)|w(3)
- fRdZ/Rdz Ih(z = 2) - h(2)|w(Z)

:/}Rdi(h(+oo)—h(—oo))|§]w(2)
= Cy(h(+00) = h(-00)),

where the next to last step follows by the layer-cake representation and monotonicity
of h. O
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Let p be an interpolating profile. It it easy to see that, for any z, we have

[plk (2) = (=), (5.52)

for all K large enough and that |p|x converges to p uniformly.

5.9.4 Minimizers

In this section we focus on limit results specific to consistent fixed points.

Lemma 5.32. Assume C,, < oo and let x,y be an interpolating consistent fixed
point. Let us define

Then,
Ig@)owz(fK,gK; |21k, (Y1) = Wa(f, g5 2,y).

Proof. From (5.40) and (5.41), for any consistent fixed point, we have
Jo =0 g5u(2),2(2)) = [[ da()ay()]e - 24021z - 2),
R2

and, because lim,_,_ 2§2(2) = 0, we clearly have

lim [ dlelc(2) dlyl (2)]2 - 20|z - 2]) = [[ da(2) dy(2)]z - 2Q(-|= - 2]).
R2

K—oo
R2
Thus, it remains only to show that

Jim [z (l2li(2) -~ [T Dyl (=) = [ dz(a(2) =2 (2)y(2).

By Lemma 5.31, we have

Jim [ (@) ~a (@) =0,

and by Lemma 5.30, Equ. (5.48), we have

Jim [ de () - LRl () =0

The result now follows from Lemma 5.30, Equ. (5.50). O

5.9.5 Second Derivative

We recall from the proof of Proposition 5.17 that, for saturated profiles,

Walar o) = Was(ann) + [ da(1 =5 (2)a2).
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The representation used in Lemma 5.18 for the second term is equivalent to

JREICEEAOINE)
= ] dudv V(1= M) (5" (0) = 55" () + AT (0) = 51 (1))

(0,1]?

- ﬂ dudo V (25 (v) - y5 (1) + AD(u,v)).
[0,1]2

Moreover, we saw in Lemma 5.19 that Ws s(x5,yy) is affine in X. So, using V" (z) =
w(z), we immediately obtain
d2

TaWa(eaun) = [ dudo D(uv)w(ag! (v) =y (u) + AD(u,))
(0,1]

= If dudvD(u,v)zw(ﬂfxl(U)_yil(u))-

(0,1]






Conclusions and Further
Directions

6.1 Conclusions

Spatially coupled systems have recently received much attention due to their excel-
lent performance across a variety of problems, including coding, in which they have
been proved to be universally capacity-achieving [43, 63, 71], compressive sensing
[52-54], and random constraint-satisfaction problems [55, 56|, among others. The
behavior exhibited by coupled systems has been coined “threshold saturation” and
refers to the fact that the dynamic threshold of a spatially coupled system saturates
to the static threshold of the underlying uncoupled one. In the context of coding,
this means that the Belief Propagation (BP) threshold of the coupled code is equal
to the maximum a-posteriori (MAP) threshold of the underlying uncoupled one.

In this thesis, we have analyzed the performance of spatially coupled systems
under message-passing algorithms. We are interested in the behavior of the coupled
system during the so-called “dynamic phase”, when the system parameter is between
the dynamic and static thresholds, and at the static phase, when the parameter is
equal to the static threshold. For this purpose, we first consider the system in the
large-size limit, also called the continuum limit, obtained by first considering an
infinite coupling chain length L. — +o00 and next an infinite window size w — +oo.
We thus approximate the original discrete system with a continuous one; this makes
the analysis more tractable. Then, w express the performance of the coupled system
in variational form, in terms of the continuous potential functional that describes
its evolution along iterations of the algorithm, and we analyze this functional. The
potential functional is inherently related to the “density evolution” (DE) equations
that track the “error distributions” of the system; the stationary-point equations of
the potential are the fixed-point equations of the DE equations.

In Chapter 2, we have considered irregular LDPC codes when transmission takes
place over general binary-input memoryless symmetric-output (BMS) channels and
decoding is done using the BP algorithm. We consider the system during the dy-
namic phase, when the channel parameter is between the BP and MAP thresholds
and when the DE equations have a unique non-trivial stable fized point. By plotting
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the vector of “error probabilities” (where the 2™ vector component contains the
error probability at the z*" position of the coupled chain) at different iterations of
the BP algorithm, we observe that the vector (or profile) exhibits solitonic behavior.
More specifically, it appears to have a fixed shape that moves at a constant speed.
We conjecture that the profile indeed exhibits the solitonic behavior, and we find
a formula for its velocity of propagation along the chain of coupling. This veloc-
ity is equal to the inverse of the number of iterations of BP required to decode an
entire replica of the underlying system on the coupling axis. The main idea in the
derivation of the formula is to rewrite the DE equations in terms of the potential
functional. Once this is done, taking functional derivatives and making some alge-
braic manipulations yields the result. As we consider transmission over general BMS
channels, the formula involves infinite-dimensional objects. We thus reduce its com-
plexity by approximating all distributions involved in BP by symmetric Gaussian
distributions [37]. This makes the distributions one-dimensional and gives relatively
good estimates of the “real” (empirical) velocity. Moreover, we use our results, once
specialized to the binary erasure channel (BEC), to estimate parameters that appear
in the scaling law of finite-size spatially coupled (4,7, L.) ensembles [96].

The solitonic behavior is not specific to the coding problem, but is, in fact, also
observed on other spatially coupled systems, such as the coupled compressive sensing
and Curie-Weiss systems [53], among others. For this reason, we have considered
general spatially coupled scalar systems governed by message-passing equations in
Chapter 3. We also restrict ourselves in this setting to DE-like equations with only
one non-trivial stable fixed point. Using again the variational tool of the potential
functional, we derive the velocity of propagation of the soliton for such systems, and
apply it to two examples: compressive sensing and generalized LDPC (GLDPC)
codes when transmission takes place over the BEC or the binary symmetric channel
(BSC).

So far, the shape of the soliton for spatially coupled systems, during the dynamic
phase, has not been described analytically. Also, it is not known whether or not
this shape is independent of the initial conditions on the profile. However, due to
empirical observations, we conjecture that the profile attains a shape that is non-
decreasing, such that its left and right limits are the trivial and non-trivial stable
fixed-point values, respectively. These open questions bring into light the second
part of the thesis, summarized below.

In Chapters 4 and 5, we have considered spatially coupled systems at the static
phase and characterize the solution of the DE or DE-like equations. To do so,
we introduce a new tool for the analysis of spatially coupled systems, namely the
concept of displacement convexity. This tool makes use of an alternative structure
of probability distributions; hence, it applies to an appropriate space of increasing
profiles. We prove that the potential functional governing the systems we consider in
these chapters are strictly convex under the alternative structure. This result implies
that the potential functional admits a unique minimizing profile or, equivalently, that
the DE equations governing the system admit a unique fixed point solution, in an
appropriate space of profiles.

In Chapter 4, we have considered the spatially coupled (¢, r)-regular Gallager
ensemble when transmission takes place over the BEC. We first prove that the po-
tential functional attains a minimum; that is, that a minimizer for it exists, using
the “direct method” in the calculus of variations [109,110]. Displacement convexity
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can only be viewed over the space of probability distributions. Thus, we use trunca-
tion and increasing rearrangement techniques (see Section 4.4.1) to prove that the
potential functional is minimized over the space of non-decreasing profiles that have
finite limits. These can be seen as cumulative distribution functions (cdf’s) (up to
scaling), which confirms that displacement convexity is a tool appropriate for the
analysis of spatially coupled systems. In fact, the left and right limits are the trivial
and non-trivial stable fixed points of the DE equations, respectively; this matches
perfectly with the conjecture resulting from our analysis in Chapters 2 and 3. Once
we restrict our analysis to the space of c¢df’s (up to scaling), we prove that the po-
tential functional is displacement convex over this space, and furthermore strictly
displacement convex over the space of “centered” such profiles (where the jump
from the left to the right limit is centered at the origin). We thus prove that the DE
equations converge to a unique solution: a profile that is increasing from the trivial
fixed-point value to the non-trivial fixed-point value, up to translation.

In Chapter 5, we have generalized our results from the previous one to general
spatially coupled scalar systems, considering again the static phase. The approach
in this chapter is different, as we consider the system of DE equations in terms of
two profiles, instead of single DE recursion as considered in Chapter 5. Furthermore,
we use “saturation” techniques (see Section 5.2.3) to avoid assuming that the min-
imizing cdf’s converge to the limits “fast enough”. Besides these (quite technical)
aspects, the analysis follows the same steps (up to appropriate modifications). We
establish the existence of a minimizer for the potential by using the direct method
in the calculus of variations, although this result was already proved in [69]. We
again use rearrangement inequalities to restrict our search of minimizing profiles
to non-decreasing ones that can be viewed as cdf’s. We show that, under mild
conditions on the system, most of which are necessary for the existence of a fixed
point, the potential is displacement convex. Under the conditions used in [69] to
show the existence of spatial fixed points, we show that the displacement convexity
is strict. This ensures that the pair of profiles minimizing the potential is unique
up to translation. Therefore, for general spatially coupled scalar systems, we also
characterize the solution to the DE equations; they are again non-decreasing profiles
that increase from the trivial fixed-point value to the non-trivial one.

6.2 Further Directions

Continuum Limit:
Throughout the thesis, we have used a continuum approximation of the original
discrete systems obtained by taking the spatial length L., and then the window size
w, to be very large L. >> w >> 1. This yields continuous versions of the DE equations
and the potential functionals, that are originally discrete. In Chapters 2 and 3, we
even confirm, using numerical simulations, that this continuum approximation is
good (since the formulas for the velocities yield good estimates for the real, empirical
velocities). It is an interesting open question to find the error in this approximation
or at least to bound it in terms of the chain length and window size.

In Chapters 2 and 3, we have obtained an approximation of the velocity of the
soliton based on the continuous formulation of the problem. We conjecture that
this approximation becomes exact in an asymptotic limit of infinite spatial length
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L. and window size w (keeping the order L. >> w >> 1). It is an interesting open
problem to quantify the quality of this approximation already for L. infinite and w
finite but large. The numerical results tend to indicate that the approximation is
already quite good for small values of w, when it is of the order of a few positions.

In the context of displacement convexity, however, we have used the continuum
version of the potential functional because the continuous space is the natural setting
in which displacement convexity has so far been developed [93]. An interesting
question is whether it is possible to formulate the displacement convexity framework
in the discrete setting, and to apply the analysis in this setting directly. More
specifically, how can we define the displacement interpolant for two discrete vectors
of scalar components? Once the interpolation is defined, how can we define the
displacement convexity of a discrete potential? Otherwise, to account for the error
made in approximating a discrete system with a continuous one, we can again try
to estimate the error involved in this approximation.

The shape of the soliton:

In Chapters 2 and 3, we have considered the system in the dynamic setting, after the
transient phase has passed and during the wave propagation phenomenon. We make
an ansatz, namely that the profile has a unique shape, independent of the initial
condition, that moves with a constant velocity. There are two interesting questions
that directly arise from these assumptions. The first one concerns the minimum size
of the seed required to initiate decoding or signal reconstruction at the boundaries,
therefore wave propagation. The second concerns the (in)dependence between the
size of the seed and the shape and speed of the soliton (as long as the seed is bigger
than the minimum required size). The proof of the ansatz remains an important and
interesting open question that could answer these questions. In particular, proving
the ansatz may establish the independence of the size of the seed from the shape
and speed of the soliton.

One way in which it is possible to characterize the shape of the propagating
wave is to use displacement convexity for the analysis of the dynamic state of the
spatially coupled system. In Chapters 4 and 5, we have characterized the fixed point
of the DE equations using the tool of displacement convexity, during the static phase
of the system. It would thus be interesting to reformulate the convexity problem
in the context of the dynamic system. A first step in this direction is to consider
the “dynamic potential” used in Chapters 2 and 3, along with the “dynamic DE
equations” that still depend on time or the iteration number. Then, we can remove
the “dynamic degree of freedom”, the velocity, from the profile by centering the
moving profile at the origin. This is possible once we assume that the velocity of
propagation is constant. Furthermore, using the tool of displacement convexity to
analyze the dynamic system behavior can shed some light on the questions of the
independence of the soliton shape from the initial conditions.

Approximations for the velocities:
The formulas we derive in Chapters 2 and 3 involve the entire shape of the soliton in
the denominator, which could be expensive to compute. It would be desirable to find
approximations (or bounds) for the velocities that are independent of the shape of
the soliton, and that are good for the entire range of channel parameters between the
BP and MAP thresholds, where the solitonic behavior is observed. The idea is to find
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an approximation for the denominator that would involve only primitive quantities
related to the underlying uncoupled ensemble (such as the degree distributions, the
single system potential etc), as the numerator is already expressed in terms of these
quantities. Such an approximation scheme has been proposed in [76] for the special
case of coding with transmission over the BEC, where it works quite well close to the
MAP threshold. It would be desirable to find an extension to more general settings.

Generalizations to analyses via displacement convexity:

By moving from Chapter 4 to Chapter 5, we have successfully generalized the anal-
ysis via displacement convexity from a particular code ensemble to general scalar
systems. However, displacement convexity seems to be a generic tool that could
also be applied to higher-dimensional problems, such as coding with transmission
over general BMS channels or multiple-access channels. Furthermore, in Chapters 4
and 5, we have restricted our search of minimizing profiles to the space of increasing
profiles. It is not clear in our settings when this inequality is strict, so we cannot
exclude the existence of a minimizing pair outside the spaces of increasing profiles.
It would be interesting to find the conditions under which the inequality is strict.
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