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Abstract

We initiate the study of the classical Submodular Cover (SC) problem in the data streaming
model which we refer to as the Streaming Submodular Cover (SSC). We show that any single
pass streaming algorithm using sublinear memory in the size of the stream will fail to provide
any non-trivial approximation guarantees for SSC. Hence, we consider a relaxed version of
SSC, where we only seek to find a partial cover.

We design the first Efficient bicriteria Submodular Cover Streaming (ESC-Streaming) algorithm
for this problem, and provide theoretical guarantees for its performance supported by numerical
evidence. Our algorithm finds solutions that are competitive with the near-optimal offline
greedy algorithm despite requiring only a single pass over the data stream. In our numerical
experiments, we evaluate the performance of ESC-Streaming on active set selection and large-
scale graph cover problems.
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1 Introduction

We consider the Streaming Submodular Cover (SSC) problem, where we seek to find the smallest
subset that achieves a certain utility, as measured by a monotone submodular function. The data
is assumed to arrive in an arbitrary order and the goal is to minimize the number of passes over
the whole dataset while using a memory that is as small as possible.

The motivation behind studying SSC is that many real-world applications can be modeled as
cover problems, where we need to select a small subset of data points such that they maximize a
particular utility criterion. Often, the quality criterion can be captured by a utility function that
satisfies submodularity [27, 16, 15], an intuitive notion of diminishing returns. Despite the fact that
the standard Submodular Cover (SC) problem is extensively studied and very well-understood, all
the proposed algorithms in the literature heavily rely on having access to whole ground set during
their execution. However, in many real-world applications, this assumption does not hold. For
instance, when the dataset is being generated on the fly or is too large to fit in memory, having
access to the whole ground set may not be feasible. Similarly, depending on the application, we
may have some restrictions on how we can access the data. Namely, it could be that random access
to the data is simply not possible, or we might be restricted to only accessing a small fraction of it.
In all such scenarios, the optimization needs to be done on the fly.

The SC problem is first considered by Wolsey [28], who shows that a simple greedy algorithm
yields a logarithmic factor approximation. This algorithm performs well in practice and usually
returns solutions that are near-optimal. Moreover, improving on its theoretical approximation
guarantee is not possible under some natural complexity theoretic assumptions [12, 10]. However,
such an offline greedy approach is impractical for the SSC, since it requires an infeasible number
of passes over the stream.

1.1 Our Contribution

In this work, we rigorously show that achieving any non-trivial approximation of SSC with a single
pass over the data stream, while using a reasonable amount of memory, is not possible. More
generally, we establish an uncontidional lower bound on the trade-off between the memory and
approximation ratio for any p-pass streaming algorithm solving the SSC problem.

Hence, we consider instead a relaxed version of SSC, where we only seek to achieve a fraction
(1 − ε) of the specified utility. We develop the first Efficient bicriteria Submodular Cover Streaming
(ESC-Streaming) algorithm. ESC-Streaming is simple, easy to implement, and memory as well time
efficient. It returns solutions that are competitive with the near-optimal offline greedy algorithm.
It requires only a single pass over the data in arbitrary order, and provides for any ε > 0, a 2/ε-
approximation to the optimal solution, while achieving a (1 − ε) fraction of the specified utility.
In our experiments, we test the performance of ESC-Streaming on active set selection in materials
science and graph cover problems. In the latter, we consider a graph dataset that consists of more
than 787 million nodes and 47.6 billion edges.

1.2 Related work

Submodular optimization has attracted a lot of interest in machine learning, data mining, and
theoretical computer science. Faced with streaming and massive data, the traditional (offline)
greedy approaches fail. One popular approach to deal with the challenge of the data deluge is
to adopt streaming or distributed perspective. Several submodular optimization problems have
been studied so far under these two settings [25, 11, 9, 2, 20, 8, 18, 7, 14, 1]. In the streaming setting,
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the goal is to find nearly optimal solutions, with a minimal number of passes over the data stream,
memory requirement, and computational cost (measured in terms of oracle queries).

A related streaming problem to SSC was investigated by Badanidiyuru et al. [2], where the
authors studied the streaming Submodular Maximization (SM) problem subject to a cardinality
constraint. In their setting, given a budget k, the goal is to pick at most k elements that achieve
the largest possible utility. Whereas for the SC problem, given a utility Q, the goal is to find the
minimum number of elements that can achieve it. In the offline setting of cadinality constrained
SM, the greedy algorithm returns a solution that is (1 − 1/e) away from the optimal value [21],
which is known to be the best solution that one can obtain efficiently [22]. In the streaming setting,
Badanidiyuru et al. [2] designed an elegant single pass (1/2 − ε)-approximation algorithm that
requires only O((k log k)/ε) memory. More general constraints for SM have also been studied in
the streaming setting, e.g., in [8].

Moreover, the Streaming Set Cover problem, which is a special case of the SSC problem is
extensively studied [25, 11, 9, 7, 14, 1]. In this special case, the elements in the data stream are m
subsets of a universe X of size n, and the goal is to find the minimum number of sets k∗ that can
cover all the elements in the universe X. The study of the Streaming Set Cover problem is mainly
focused on the semi-streaming model, where the memory is restricted to Õ(n)1. This regime is
first investigated by Saha and Getoor [25], who designed a O(log n)-pass, O(log n)-approximation
algorithm that uses Õ(n) space. Emek and Rosén [11] show that if one restricts the streaming
algorithm to perform only one pass over the data stream, then the best possible approximation
guarantee is O(

√
n). This lower bound holds even for randomized algorithms. They also designed

a deterministic greedy algorithm that matches this approximation guarantee. By relaxing the
single pass constraint, Chakrabarti and Wirth [7] designed a p-pass semi-streaming (p + 1)n1/(p+1)-
approximation algorithm, and proved that this is essentially tight up to a factor of (p + 1)3.

Partial streaming submodular optimization. The Streaming Set Cover has also been studied
from a bicriteria perspective, where one settles for solutions that only cover a (1 − ε)-fraction of
the universe. Building on the work of [11], the authors in [7] designed a semi-streaming p-pass
streaming algorithm that achieves a (1−ε, δ(n, ε))-approximation, where δ(n, ε) = min{8pε1/p, (8p+
1)n1/(p+1)

}. They also provided a lower bound that matches their approximation ratio up to a factor
of Θ(p3).

Distributed submodular optimization. Mirzasoleiman et al. [20] consider the SC problem in the
distributed setting, where they design an efficient algorithm whose solution is close to that of the
offline greedy algorithm. Moreover, they study the trade-off between the communication cost and
the number of rounds to obtain such a solution.

To the best of our knowledge, no other works have studied the general SSC problem. We
propose the first efficient algorithm ESC-Streaming that approximately solves this problem with
tight guarantees.

2 Problem Statement

Preliminaries. We assume that we are given a utility function f : 2V
7→ R+ that measures the

quality of a given subset S ⊆ V, where V = {e1, · · · , em} is the ground set. The marginal gain

1The Õ notation is used to hide poly-log factors, i.e., Õ(n) := O(n poly{log n, log m})
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associated with any given element e ∈ V with respect to some set S ⊆ V, is defined as follows

∆ f (e|S) := ∆(e|S) = f (S ∪ {e}) − f (S).

In this work, we focus on normalized, monotone, submodular utility functions f , where f is referred
to be:

1. submodular if for all S,T, such that S ⊆ T, and for all e ∈ V \ T, ∆(e|S) > ∆(e|T).

2. monotone if for all S,T such that S ⊆ T ⊆ V, we have f (S) 6 f (T).

3. normalized if f (∅) = 0.

In the standard Submodular Cover (SC) problem, the goal is to find the smallest subset S ⊆ V that
satisfies a certain utility Q, i.e.,

min
S⊆V
|S| s.t. f (S) > Q. (SC)

Hardness results. The SC problem is known to be NP-Hard. A simple greedy strategy [28]
that in each round selects the element with the highest marginal gain until Q is reached, re-
turns a solution of size at most H(maxe f ({e}))k∗, where k∗ is the size of the optimal solution set
S∗.2 Moreover, Feige [12] proved that this is the best possible approximation guarantee unless
NP ⊆ DTIME

(
nO(log log n)

)
. This was recently improved to an NP-hardness result by Dinur and

Steurer [10].

Streaming Submodular Cover (SSC). In the streaming setting, the main challenge is to solve
the SC problem while maintaining a small memory and without performing a large number of
passes over the data stream. We use m to denote the size of the data stream. Our first result states
that any single pass streaming algorithm with an approximation ratio better than m/2, must use
at least Ω(m) memory. Hence, for large datasets, if we restrict ourselves to a single pass streaming
algorithm with sublinear memory o(m), we cannot obtain any non-trivial approximation of the SSC
problem (cf., Theorem 4.1 in Section 4). To obtain non-trivial and feasible guarantees, we need
to relax the coverage constraint in SC. Thus, we instead solve the Streaming Bicriteria Submodular
Cover (SBSC) defined as follows:

Definition 2.1. Given ε ∈ (0, 1) and δ > 1, an algorithm is said to be a (1 − ε, δ)-bicriteria approxi-
mation algorithm for the SBSC problem if for any Submodular Cover instance with utility Q and
optimal set size k∗, the algorithm returns a solution S such that

f (S) > (1 − ε)Q and |S| 6 δk∗ . (2.1)

3 An efficient streaming submodular cover algorithm

ESC-Streaming algorithm. The first phase of our algorithm is described in Algorithm 1. The
algorithm receives as input a parameter M representing the size of the allowed memory. The
discussion of the role of this parameter is postponed to Section 4. The algorithm keeps t + 1 =
log(M/2) + 1 representative sets. Each representative set S j ( j = 0, .., t) has size at most 2 j, and has a
corresponding threshold value Q/2 j. Once a new element e arrives in the stream, it is added to all

2Here, H(x) is the x-th harmonic number and is bounded by H(x) 6 1 + ln x.
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the representative sets that are not fully populated, and for which the element’s marginal gain is
above the corresponding threshold, i.e., ∆(e|S j) >

Q
2 j . This phase of the algorithm requires only one

pass over the data stream. The running time of the first phase of the algorithm is O(log(M)) for
every element of the stream, since the per-element computational cost is O(log(M)) oracle calls.

In the second phase (i.e., Algorithm 2), given a feasible ε̃, the algorithm finds the smallest set
Si among the stored sets, such that f (Si) > (1 − ε̃)Q. For any query, the running time of the second
phase is O(log log(M)). Note that after one-pass over the stream, we have no limitation on the
number of the queries that we can answer, i.e., we do not need another pass over the stream.
Moreover, this phase does not require any oracle calls, and its total memory usage is at most M.

Algorithm 1 ESC-Streaming Algorithm - Picking representative set
t = log(M/2)

1: S0 = S1 = ... = St = ∅
2: for i = 1, · · · ,m do
3: Let e be the next element in the stream
4: for j = 0, · · · , t do
5: if ∆(e|S j) >

Q
2 j and |S j| 6 2 j then

6: S j ← S j ∪ e
7: end if
8: end for
9: end for

Algorithm 2 ESC-Streaming Algorithm - Responding to the queries
Given value ε̃, perform the following steps

1: Run a binary search on the S0, ...,St
2: Return the smallest set Si such that f (Si) > (1 − ε̃)Q
3: If no such set exists, Return “Assumption Violated”

In the following section, we analyze ESC-Streaming and prove that it is an (1− ε̃, 2/ε̃)-bicriteria
approximation algorithm for SSC. Formally we prove the following:

Theorem 3.1. For any given instance of SSC problem, and any values M, ε̃, such that k∗/ε̃ 6M, where k∗

is size optimal solution to SSC, ESC-Streaming algorithm returns a (1 − ε̃, 2/ε̃)-approximation solution.

4 Theoretical Bounds

Lower Bound. We start by establishing a lower bound on the tradeoff between the memory
requirement and the approximation ratio of any p-pass streaming algorithm solving the SSC
problem.

Theorem 4.1. For any number of passes p and any stream size m, a p-pass streaming algorithm that, with

probability at least 2/3, approximates the submodular cover problem to a factor smaller than m
1
p

p+1 , must use

a memory of size at least Ω

(
m

1
p

p(p+1)2

)
.

We defer the proof of this theorem to Section 5. Note that for p = 1, Theorem 4.1 states
that any one-pass streaming algorithm with an approximation ratio better than m/2 requires at
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least Ω(m) memory. Hence, for large datasets, Theorem 4.1 rules out any approximation of the
streaming submodular cover problem, if we restrict ourselves to a one-pass streaming algorithm
with sublinear memory o(m). This result motivates the study of the Streaming Bicriterion Submodular
Cover (SBSC) problem as in Definition 2.1.

Main result and discussion. Refining the analysis of the greedy algorithm for SC [28], where
we stop once we have achieved a utility of (1 − ε)Q, yields that the number of elements that we
pick is at most k∗ ln(1/ε). This yields a tight (1 − ε, ln(1/ε))-bicriteria approximation algorithm
for the Bicriteria Submoludar Cover (BSC) problem. One can turn this bicriteria algorithm into an
(1 − ε, ln(1/ε))-bicriteria algorithm for SBSC, at the cost of doing k∗ ln(1/ε) passes over the data
stream which may be infeasible for some applications. Moreover, this requires mk∗ ln

(
1
ε

)
oracle

calls, which may be infeasible for large datasets.
To circumvent these issues, it is natural to parametrize our algorithm by a user defined memory

budget M that the streaming algorithm is allowed to use. Assuming, for some 0 < ε 6 e−1, that the
(1 − ε, ln(1/ε))-bicriteria solution given by the offline greedy algorithm’s fits in a memory of M/2
for the BSC variant of the problem, then our algorithm (ESC-Streaming) is guaranteed to return a
(1 − 1/ ln(1/ε), 2 ln(1/ε))-bicriteria solution for the SBSC problem, while using at most M memory.
Hence in only one pass over the data stream, ESC-Streaming returns solutions guaranteed to cover,
for small values of ε, almost the same fraction of the utility as the greedy solution, loosing only
a factor of two in the worst case solution size. Moreover, the number of oracle calls needed by
ESC-Streaming is only m log M, which for M = 2k∗ ln(1/ε) is bounded by

m log M = m log(2k∗ ln(1/ε))︸                ︷︷                ︸
oracle calls by ESC-Streaming algorithm

� mk∗ ln
(1
ε

)
︸     ︷︷     ︸

oracle calls by greedy

,

which is more than a factor k∗/ log(k∗) smaller than the greedy algorithm. This enables ESC-
Streaming algorithm to perform much faster than the offline greedy algorithm. Another feature of
ESC-Streaming is that it performs a single pass over the data stream, and after this unique pass,
we are able to query a (1 − 1/ ln(1/ε′), 2 ln(1/ε′))-bicriteria solution for any ε 6 ε′ 6 e−1, without
any additonal oracle calls. Whenever the above inequality does not hold, ESC-Streaming returns
“Assumption Violated”. More precisely, we prove the following theorem:

Theorem 4.2. For any given instance of SSC problem, and any values M, ε, such that 2k∗ ln 1/ε 6M, where
k∗ is the optimal solution size, ESC-Streaming algorithm returns a (1− 1/(ln 1/ε), 2 ln 1/ε)-approximation
solution.

Proof. Choose j such that 2 j

2 ln 1/ε 6 k∗ < 2 j+1

2 ln 1/ε . We first show that the number of elements in S j is
at most 2k∗ ln 1/ε and f (S j) > (1 − 1

ln 1/ε )Q. We know that |S j| 6 2 j, and hence

|S j| 6 2 j 6 2k∗ ln 1/ε

If |S j| = 2 j then we get f (S j) > Q. Now assume that |S j| < 2 j and let S∗ be the optimum solution,
so |S∗| = k∗ and f (S∗) > Q. By monotonicity, we get that f (S∗ ∪ S j) > Q. Let S∗\S j = {w1, ...wd}.
We know that the marginal gain that wi gives to a subset of S j is less than Q

2 j for all 1 6 i 6 d. By

submodularity, we get that ∆(wi|S j) <
Q
2 j for all 1 6 i 6 d. Therefore,

f (S∗ ∪ S j) − f (S j) 6
d∑

i=1

∆(wi|S j) < d
Q
2 j 6 d

Q
k∗ ln 1/ε

6
Q

ln 1/ε
,
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which gives

f (S∗ ∪ S j) − f (S j) 6
Q

ln 1/ε
→ f (S j) > Q

(
1 −

1
ln 1/ε

)
.

Hence the set S j is indeed a good candidate solution. Therefore, the algorithm does not return
any solution, only if the assumption is not satisfied, i.e., k∗ ln 1/ε > M. Otherwise, if the algorithm
returns a solution S j1 , such that j1 < j, then S j1 must satisfy f (S j1) > (1 − 1

ln 1/ε )Q, and it contains
fewer elements than 2 j, then it also satisfies size and utility guarantees. �

Remarks. Note that in Algorithm 1, we can replace the constant 2 by another choice of the
constant 1 < α 6 2. The representative sets are changed accordingly to α j, and t = logα(M/α).
Varying α provides a trade-off between memory and solution size guarantee. More precisely,
for any 1 < α 6 2, ESC-Streaming achieves a (1 − 1

ln 1/ε , α ln 1/ε)-approximation guarantee, for
instances of SSC where αk∗ ln 1/ε 6 M. However, the improvement in the size approximation
guarantee, comes at the cost of increased memory usage M−1

α−1 , and increased number of oracle calls
m(logα(M/α) + 1).

Notice that in the statement of Theorem 4.2, the approximation guarantee of ESC-Streaming is
given with respect to a memory only large enough to fit the offline greedy algorithm’s solution.
However, if we allow our memory M to be as large as k∗/ε, then Theorem 3.1 follows immediately
for ε̃ = 1/ ln(1/ε).

5 Lower Bound

In this section, we prove an unconditional lower bound on any p-pass streaming algorithm that
approximates the streaming submodular cover problem, as stated in Theorem 4.1. A common way
to prove lower bounds for streaming algorithms is through communication complexity. For our
purposes, the suitable communication problem to start with is the Multi-Player Pointer Jumping
Problem.

In what follows, we start by defining the Multi-Player Pointer Jumping Problem and stating its
known communication complexity hardness results in Section 5.1. We then present in Section 5.2
a reduction from the streaming submodular cover problem to the aformentioned communication
problem. The proof of Theorem 4.1 then follows in Section 5.3.

5.1 Multi-Player Pointer Jumping Problem

In the Multi-Player Pointer Jumping Problem, we are given a rooted tree T of depth ` > 1, where
the nodes in the tree are divided into k = `+ 1 layers according to their distance from the root, with
the convention that the root is at layer k, and the leaves are at layer 1. For 1 6 i 6 k, we refer to the
set of nodes in layer i asVi. In this problem, denoted MPJT,k for a given tree T, we have k players
P1, . . . ,Pk where each player i is in charge of the vertices in layer i. An input π for MPJT,k is divided
as follows:

– For each 2 6 i 6 k, and for each v ∈ Vi, player Pi gets a pointer indicating one outgoing edge
from v to one of its children, say u, in layer i − 1, and we write in this context that π(v) = u.

– For each v ∈ V1, player P1 gets a bit b(v) := bπ(v) ∈ {0, 1}.

Note that given π, the tree Tπ restricted to the edges indicated in π contains a unique root-to-leaf
path, leading to a unique leaf vπ ∈ V1, and hence the output of this problem given an input π is
MPJT,k(π)= b(vπ) ∈ {0, 1}.

6



This problem is interesting from a communication protocol perspective, where the k players
get the input π as defined earlier, and broadcast messages in r rounds. In each round, players
P1,P2, . . . ,Pk each send a message, in that order. In this setting, the message in the last round is a
single bit, corresponding to their guess about MPJT,k(π). The goal in this problem then is to figure
out this bit using the minimum amount of communication per round. At each round, we think of
the players as writing their messages in the order from P1 to Pk on a shared blackboard. Formally
speaking, an [r,C, ε]-protocol for MPJT,k is defined as

– The game is played in r rounds.

– The total number of bits communicated per round is at most C.

– The protocol’s output is equal to MPJT,k(π) with probability at least 1 − ε.

We quantify the complexity of such communication problems by studying their r-round randomised
communication complexity Rr(MPJT,k) of MPJT,k as follows:

Rr(MPJT,k) = min{C : there exists a [r,C, 1/3]-protocol for MPJT,k}

A result in communication complexity shows that if the number of players is k, then the problem
requires a large number of communicated bits if we restrct ourselves to r-rounds protocol for r < k.
Formally, the authors of [6] prove the following:

Theorem 5.1. Let T be complete t-ary tree of depth ` > 1 (and consequently k = ` + 1 > 2 layers). Then

Rk−1(MPJT,k) = Ω
( t
k2

)
The MPJT,k problem will serve as the starting hard communication problem that we use to prove

our streaming lower bounds for the submodular cover problem. In what follows, we will prove a
lower bound on the required memory of any p-pass streaming algorithm with good approximation
guarantee for the submodular cover problem. To do that, let m be the number of sets that arrive in
the stream, and p be the number of passes that the streaming algorithm is allowed to perform. We
will show that if a p-pass streaming algorithm can provide an approximation guarantee smaller

than m
1
p /p for the the set cover problem using a memory less than Ω(m

1
p /p3), then we can solve the

Multi-Player Pointer Jumping Problem on any complete t-ary tree with p + 1 player in p rounds
while communicating less than Ω(t/p2) bits per round, which yields a contradiction to Theorem 5.1.
We formalise this in what follows.

5.2 Reduction to Submodular Cover

Let T := T(t, k) be a complete t-ary tree with k layers over the vertex set V, where each layer
contains verticesVi ⊆ V for 1 6 i 6 k. Note that

|Vi| = tk−i
∀i ∈ {1, 2, . . . , k}

|V| =

k∑
i=1

|Vi| =

k∑
i=1

tk−i =
tk
− 1

t − 1

Without loss of generality, assume the children of every node v ∈
⋃k

i=2Vi are ordered, i.e., for
every 2 6 i 6 k, for every v ∈ Vi, and for every 1 6 j 6 t, c j(v) ∈ Vi−1 denotes the jth child of v in
layer i − 1.
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Given a complete t-ary tree T with k layers, we construct a structure Tt,k,` for ` > t, such that T
has the same tree structure as T, but we additionally have sets associated with each v ∈ V. To do
that, let X be a universe of elements such that |X| = tk−1`. We partition X into tk−1 equal sized (i.e.,
each of size `) disjoint sets, and assign each such set S̃ to one of the tk−1 leafs of T (i.e., the vertices
in V1). For every vertex v ∈ V1, we denote its corresponding set by S̃v. This process defines the
sets assigned to leaf vertices. We now recursively define the sets associated with the remaining
vertices as follows:

– For every i = 2, . . . , k, and for every v ∈ Vi, the set S̃v associated with the vertex v is the union
of the sets corresponding to its children, i.e.,

S̃v =

t⋃
j=1

S̃c j(v)

Note that with this construction, if we denote by r the root of the tree (i.e., the unique vertex in
Vk), then S̃r = X. In fact, one can easily verify that for any i ∈ {1, 2, . . . , k}, and any v ∈ Vi, our
construction satisfies that

|S̃v| = `ti−1 (5.1)

Before we proceed, we record the following easy observation.

Observation 1. For any 2 vertices v,u ∈ V such that v is neither the ancestor nor the descendent
of v, we have that S̃v ∩ S̃u = ∅.

Now given an input π for MPJT,k over T := T(t, k), we construct an instance I(π) of SMCt,k,`
using T t,k,` as follows, where each player out of the k players P1,P2, . . . ,Pk gets a collection of sets.
Namely,

– Player Pk gets the following sets; let r be the root of the tree, and let u = π(r) be the chosen
child of v according to π, then Pk gets the set Sr = S̃r\S̃u, and a singleton set for each element
e ∈ S̃u. It follows from (5.1) that Pk gets `tk−2 + 1 sets.

– For each 2 6 i 6 k − 1, player Pi gets the following sets: For each v ∈ Vi, let u = π(v) be the
chosen child of v according to π. Then Player Pi gets for each such vertex v the set Sv = S̃v\S̃u.
Hence, for 2 6 i 6 k − 1, player Pi gets in total tk−i sets.

– Player P1 gets the following sets: For each v ∈ V1, player P1 gets the set Sv = S̃v if b(v) = 1,
and nothing from this vertex if b(v) = 0. Hence P1 gets at most tk−1 sets.

Let Si be the family of sets that player Pi gets, and S be the family of all the sets in our instance,
then m := |S| is at most

m 6 tk−1︸︷︷︸
P1

+

k−1∑
i=2

tk−i

︸ ︷︷ ︸
P2,...,Pk−1

+ `tk−2 + 1︸   ︷︷   ︸
Pk

=
tk
− 1 + `tk−2(t − 1)

t − 1
sets.

The submodular function f that we consider for SMCt,k,` is the cover function defined as follows:

f (S) = |S| ∀S ∈ S
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f (S̃) = |
⋃
S∈S̃

S| ∀S̃ ⊆ S

Then the goal in this submodular cover problem is to find the minimum cardinality family of sets
S
∗
⊂ S such that

f (S∗) > `tk−1 := Q

Note that in our construction, we can always achieve the desired value Q, no matter whether
MPJT,k(π) is 0 or 1, as the sets assigned to player Pk are enough to coverX. In other words, one can
easily check that f (Sk) = `tk−1 = Q.

In order to see the intuition behind this construction, recall that in the communication problem
MPJT,k, we were interested in the value of MPJT,k(π) = b(vπ) given an input π. We will show in the
following claim how to relate the value of b(vπ) to the size of the submodular cover in the instance
I(π) of SMCt,k,` that we have constructed.

Claim 1. Let MPJT,k be an instance of the Multi-Player Pointer Jumping Problem, and let I(π) be
the resulting submodular cover instance of SMCt,k,`. Then the following holds:

1. If b(vπ) = 1, then there exists a family of sets S such that |S| = k, and f (S) = Q.

2. If b(vπ) = 0, then any family of sets S of size less than ` will have f (S) < Q.

Proof. Let vk, vk−1, . . . , v1 be the unique root-to-leaf path resulting from π.
We start with the first case, i.e., b(vπ) = 1. In this case, consider the sets Svk ,Svk−1 , . . . ,Sv1 . It

follows from the definition of the sets according to π that

Svk = S̃vk\S̃vk−1 = X\S̃vk−1

Svk−1 = S̃vk−1\S̃vk−2
... =

...
Sv2 = S̃v2\S̃v1

where S̃v1 = Sv1 since b(v1) = b(vπ) = 1 in π. It then follows that

k⋃
i=1

Svi = X

and hence for S =
{
Svk ,Svk−1 , . . . ,Sv1

}
, we get f (S) = Q.

Now for the second case, also consider vk, vk−1, . . . , v1 the unique root-to-leaf path resulting
from π. In this case, since b(vπ) = b(v1) = 0, Sv1 = ∅. Note however that S̃v1 contained ` elements.
We claim that for any non-singleton set S ∈ S, S∩ S̃v1 = ∅. To see this, observe that for any vertex v,
Sv ⊆ S̃v, and hence we never add to Sv an element that was not already in S̃v. Thus, Observation 1
yields that for any Su ∈ S such that u is not an ancestor of v1, Su ∩ S̃v1 = ∅. It remains to show that
Svi ∩ S̃v1 = ∅ for all 2 6 i 6 k, i.e., for the set associated with the vertices on the unique root-to-leaf
path. But this easily follows from the child-exclusion nature of our construction , that yields that S̃v1

does is disjoint from any set on the path leading from the root to v1.
This says that in order to cover the elements of S̃v1 , we need to include all the required singletons

(recall that these singletons must be in Sk), and hence since |S̃v1 | = `, we need to include at least `
singleton sets, which yields the second part of the claim. �
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In our argument for the second case, we assumed that we can cover X\Sv1 for free. One can
refine the analysis to show that in this case, any family of sets S̃ that achieves f (S̃) > Q must have
a size of at least ` + k − 1. For our purposes, we think of ` >> k, and hence a gap between k and `
is enough for the main result of this section.

5.3 Lower bound for the Submodular Cover Problem

We are now ready to prove the main theorem of this section.

Theorem 5.2. For any number of passes p and any stream size m, a p-pass streaming algorithm that, with

probability at least 2/3, approximates the submodular cover problem to a factor smaller than m
1
p

p+1 must use at

least Ω

(
m

1
p

p(p+1)2

)
.

Proof. Let MPJT,p+1 be an instance of the Multi-Player Pointer Jumping Problem over a complete
t-ary tree T with p + 1 levels, and let π be the input to the problem spread amongst the p + 1 players
P1,P2, . . . ,Pp+1 as discussed in Section 5.1. We now construct the instance I(π) of SMCt,p+1,` for
some integer ` > t over m sets as described in Section 5.2. Recall that

m 6
tk
− 1 + `tk−2(t − 1)

t − 1
and k = p + 1 in our case.

It follows from Claim 1 that distinguishing between the case when b(vπ) = 1 and b(bπ) = 0 is
equivalent to distinguishing whether the minimal set cover S∗ of SMCt,p+1,` is of size at most p + 1,
or at least `.

Consider a p-pass streaming algorithm Alg that approximates SMCt,p+1,` using memory M, to
a factor smaller than `

p+1 , where the stream consist of the sets of P1 followed by those of P2 and
so on. We will use Alg to design the following an [p, (p + 1)M, 1/3]-protocol Prtcl for MPJT,k as
follows:

– In each round i = 1, . . . , p, we emulate the ith pass of Alg on the stream; When Alg processes
the last set corresponding to P1 in the stream, the content of the memory is broadcasted to
all the players. Then we do the same after Alg finishes P2’s chunk on the stream, and so on
up to Pp+1, in that order.

Since Alg approximates the size of S∗ for I(π) to a factor smaller than `
p+1 with probability at least

2/3, then Prtcl outputs MPJT,k(π) with probability at least 2/3. Recall that the game MPJT,p+1 is

played among p + 1 players, and we know from Theorem 5.1 that Rp(MPJT,p+1) = Ω
(

t
(p+1)2

)
, hence

M must be at least M = Ω
(

t
p(p+1)2

)
.

It remains to relate the approximation ratio and the required memory size, to the size of the
stream m. Recall that:

m 6
tk
− 1 + `tk−2(t − 1)

t − 1

For ` = t, we get that m 6 2tk
−tk−1

t−1 6 2tk−1 = 2tp, and equivalently ` = t ≈ m1/p. Thus we get that
any p-pass streaming algorithm that, with probability at least 2/3, approximates the submodular

cover problem to a factor smaller than m
1
p

p+1 must use at least Ω

(
m

1
p

p(p+1)2

)
memory. �
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6 Example Applications

Many real-world problems, such as data summarization [27], image segmentation [16], influence
maximization in social networks [15], can be formulated as a submodular cover problem and can
benefit from the streaming setting. In this section, we discuss two such concrete applications.

6.1 Active set selection

To scale kernel methods (such as kernel ridge regression, Gaussian processes, etc.) to large data
sets, we often rely on active set selection methods [23]. For example, a significant problem with
Gaussian process prediction is that it scales as O(n3). Storing the kernel matrix K and solving the
associated linear system is prohibitive when n is large. One way to overcome this is to select a small
subset of data while maintaining a certain diversity. A popular approach for active set selection
is Informative Vector Machine (IVM) [26], where the goal is to select a set S that maximizes the
utility function

f (S) =
1
2

log det(I + σ−2KS,S), . (6.1)

Here, KS,S is the submatrix of K, corresponding to rows/columns indexed by S, and σ > 0 is a
regularization parameter. This utility function is monotone submodular, as shown in [17].

6.2 Graph set cover

In a lot of applications, e.g., influence maximization in social networks [15], community detection
in graphs [13], etc., we are interested in selecting a small subset of vertices from a massive graph
that “cover” in some sense a large fraction of the graph.
In particular, in section 7, we consider two fundamental set cover problems: Dominating Set and
Vertex Cover problems. Given a graph G(V,E) with vertex set V and edge set E, let ρ(S) denote the
neighbours of the vertices in S in the graph, and δ(S) the edges in the graph connect to a vertex
in S. The dominating set is the problem of selecting the smallest set that covers the vertex set V,
i.e., the corresponding utility is f (S) = |ρ(S) ∪ S|. The vertex cover is the problem of selecting the
smallest set that covers the edge set E, i.e., the corresponding utility is f (S) = |δ(S)|. Both utilities
are monotone submodular functions.

7 Experimental Results

We address the following questions in our experiments:

1. How does ESC-Streaming perform in comparison to the offline greedy algorithm, in terms
of solution size and speed?

2. How does α influence the trade-off between solution size and speed ?

3. How does ESC-Streaming scale to massive data sets?

We evaluate the performance of ESC-Streaming on real-world data sets with two applications:
active set selection and graph set cover problems, described in section 6. For active set selection,
we choose a dataset having a size that permits the comparison with the offline greedy algorithm.

11



Q=f(V )
0.5 0.55 0.6 0.65 0.7 0.75

N
um

be
r 

of
 o

ra
cl

e 
ca

lls
 (

%
)

0

5

10

15

20

25

ESC-Streaming , = 1.1
ESC-Streaming , = 1.25
ESC-Streaming , = 1.5
ESC-Streaming , = 1.75
ESC-Streaming , = 2
Lazy Greedy

Q=f(V )
0.5 0.55 0.6 0.65 0.7 0.75

S
iz

e 
of

 s
ol

ut
io

ns

0

500

1000

1500

2000

2500

3000
ESC-Streaming , = 1.1
ESC-Streaming , = 1.25
ESC-Streaming , = 1.5
ESC-Streaming , = 1.75
ESC-Streaming , = 2
Lazy Greedy
Offline Greedy

Q=f(V )
0.5 0.55 0.6 0.65 0.7 0.75

S
iz

e 
of

 s
ol

ut
io

ns

0

50

100

150

200

250
ESC-Streaming , = 1.1
ESC-Streaming , = 1.25
ESC-Streaming , = 1.5
ESC-Streaming , = 1.75
ESC-Streaming , = 2
Lazy Greedy
Offline Greedy

Figure 1: Active set selection of molecules: (Left) Percentage of oracle calls made relative to offline
greedy, (Middle) Size of selected sets for ε = 0.01, (Right) Size of selected sets for ε = 0.5.

For graph cover, we run ESC-Streaming on a large graph of 787 million nodes and 47.6 billion
edges.

We measure the computational cost in terms of the number of oracle calls, which is independent
of the concrete implementation and platform.

7.1 Active Set Selection for Quantum Mechanics

In quantum chemistry, computing certain properties, such as atomization energy of molecules,
can be computationally challenging [24]. In this setting, it is of interest to choose a small and
diverse training set, from which one can predict the atomization energy (e.g., by using kernel
ridge regression) of other molecules.

In this setting, we apply ESC-Streaming on the log-det function defined in Section 6.1 where we

use the Gaussian kernel Ki j = exp(−
‖xi−x j‖

2
2

2h2 ), and we set the hyperparameters as in [24]: σ = 1, h =
724. The dataset consists of 7k small organic molecules, each represented by a 276 dimensional
vector. We set M = 215 and vary Q from f (V)

2 to 3 f (V)
4 , and α from 1.1 to 2.

We compare against offline greedy, and its accelerated version with lazy updates (Lazy
Greedy)[19]. For all algorithms, we provide a vector of different values of ε̃ as input, and ter-
minate once the utility (1 − ε̃)Q, corresponding to the smallest ε̃, is achieved. Below we report the
performance for the smallest and largest tested ε̃ = 0.01 and ε̃ = 0.5, respectively.

In Figure 7.1, we show the performance of ESC-Streaming with respect to the offline greedy
and lazy greedy, in terms of size of solutions picked and number of oracle calls made. The
computational costs of all algorithms are normalized to those of offline greedy.

It can be seen that standard ESC-Streaming, with α = 2, always chooses a set at most twice
(largest ratio is 2.1089) as large as offline greedy, using at most 3.15% and 25.5% of the number
of oracle calls made, respectively, by offline greedy and lazy greedy. As expected, varying the
parameter α leads to smaller solutions at the cost of more oracle calls: α = 1.1 leads to solutions
roughly of the same size as the solutions found by the offline greedy. Note also that choosing larger
values α leads to jumps in the solution sets sizes (c.f., 7.1). In particular, varying the required utility
Q, even by a small amount, may not be possible to achieve by the current solution’s size (α j) and
would require moving to a set larger by at least an α factor (α j+1).

Finally, we remark that even for this small dataset, offline greedy, for largest tested Q, required
1.2 × 107 oracle calls, and took almost 2 days to run on the same machine.
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Figure 2: (Left) Vertex cover on "uk-2014" (Middle) Dominating set on "uk-2014" (Right) Domi-
nating set on "Friendster"

7.2 Cover problems on Massive graphs

To assess the scalability of ESC-Streaming, we apply it to the "uk-2014" graph, a large snapshot of
the .uk domain taken at the end of 2014 [5, 4, 3]. It consists of 787,801,471 nodes and 47,614,527,250
edges. This graph is sparse, with average degree 60.440, and hence requires large cover solutions.
Storing this dataset (i.e., the adjacency list of the graph) on the hard-drive requires more than
190GB of memory.

We solve both the Dominating Set and Vertex Cover problems, whose utility functions are
defined in Section 6. For the Dominating Set problem, we set M = 520 MB, α = 2 and Q = 0.7|V|.
We run the first phase of ESC-Streaming (c.f., Algorithm 1), then query for different values of ε̃
between 0 to 1, using Algorithm 2. Similarly, for the Vertex Cover problem, we set M = 320 MB,
α = 2 and Q = 0.8|E|. Figure 7.2 shows the performance of ESC-Streaming on both the dominating
set and vertex cover problems, in terms of utility achieved, i.e., number vertices/edges covered,
for all the feasible ε̃ values, with respect to the size of the subset of vertices picked.

As a baseline, we compare against a random selection procedure, that picks a random per-
mutation of the vertices and then select any vertex with a non-zero marginal, until it reaches
the same partial cover achieved by ESC-Streaming. Note that the offline greedy, even with lazy
evaluations, is not applicable here since it does not terminate in a reasonable time, so we omit it
from the comparison. Similarly, we do not compare against the Emek–Rosén’s algorithm [11], due
to its large memory requirement of n log m, which in this case is roughly 20 times bigger than the
memory used by ESC-Streaming.

We do significantly better than a random selection, especially on the Vertex Cover problem,
which for sparse graphs is more challenging than the Dominating Set problem.

Since running the greedy algorithm on “uk-2014” graph goes beyond our computing infras-
tructure, we include another instance of the Dominating set cover problem on a smaller graph
“Friendster", an online gaming network [29], to compare with offline greedy algorithm. This
graph has 65.6 million nodes, and 1.8 billion edges. The memory required by ESC-Streaming is
less than 30MB for α = 2. We let offline greedy run for 2 days, and gathered data for 2000 greedy
iterations. Figure 7.2 (Right) shows that our performance almost matches the greedy solutions we
managed to compute.
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8 Conclusion

In this paper, we consider the SC problem in the streaming setting, where we select the least number
of elements that can achieve a certain utility, measured by a submodular function. We prove that
there cannot exist any single pass streaming algorithm that can achieve a non-trivial approximation
of SSC, using sublinear memory, if the utility have to be met exactly. Consequently, we develop
an efficient approximation algorithm, ESC-Streaming, which finds solution sets, slightly larger
than the optimal solution, that partially cover the desired utility. We rigorously analyzed the
approximation guarantees of ESC-Streaming, and compared these guarantees against the offline
greedy algorithm. We demonstrate the performance of ESC-Streaming on real-world problems.
We believe that our algorithm is an important step towards solving streaming and large scale
submodular cover problems, which lie at the heart of many modern machine learning applications.
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