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1. Research directions
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3. The transport model2. Trajectory optimization [2]
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Examples:

Constraints:
 Safety factor q (>1.0)
 Plasma inductance l
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 Edge loop voltage U
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 … various physical and
technical constraints
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Diffusion equations: electron temperature and poloidal flux  

Electron heat diffusivity: gradient-based model [3,4]

Fig. 2. RAPTOR simulated profiles (black solid) vs the experimental
ones for the TCV shots: ● ─ #50719 I
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3.2 for TCV L-mode, 3.0/2.3 for AUG L-/H-mode.
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Fig. 1. Scheme of the nonlinear procedure for
the actuator trajectories optimization [2].

6. Generic ramp down optimization
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MODEL

VALIDATION

3. Include diffusion equation for electron density to the transport model: 

ne(0, t )=min (neref (0, t ) ,nGR)=min (neref (0, t ) ,0.9
I p(t )

πa2 )

1. Development of an optimization procedure for the 
ramp down phase of the plasma discharge to 
terminate plasmas in the fastest and safest way: 

 Determination of the optimal time evolution of the plasma 
parameters, like plasma current I

p
, plasma elongation κ, auxiliary 

power Paux to terminate plasmas (decrease I
p
) as fast as possible.

 For safe termination physical constraints have to be specified: 
constraint on normalized β

N
 and poloidal β

pol
 (not too high) to avoid 

MHD modes, constraint on plasma inductance l
i
 to avoid vertical 

instability,… 
 Define technical constraints to match experimental limits, like max 

ramp rate of plasma current I
p
, constraint on rate of change in 

vertical magnetic field B
v
 for radial position control,…

 Determination of optimal time of H- to L-mode transition.

2. Development of the RAPTOR transport model:
The RAPTOR code – Rapid Plasma Transport simulatOR [1,2]:

1D transport code without an equilibrium solver oriented to plasma 
real-time control.

 Time dependent geometry can be used.
 A new gradient-based transport model [3,4] for electron heat 

transport has been implemented.
 Successful validation via simulation of TCV and AUG full plasma 

discharges and comparison with the experimental measurements. 

 now to keep density within Greenwald density limit during optimization:

4. Continue ramp-down optimization with an extended set of parameters:
● time of H- to L-mode transition as an optimization parameter (already implemented, need tests);
● constraints related to radiated power and impurities;
● technical constraints on rate of change of electron density, plasma shape;
● technical constraint on vertical position control (constraint on dl

i
/dt).

5. Full AUG plasma simulation: #32546, NBH, ECRH, L-H-L modes

Prescribed parameters:  same as for TCV case, total input NBI and EC power over time and their deposition,H
e
 factor

fixed at 0.4 for H-mode and at 0.2 for L-mode, λ
Te

=3.0/2.3 for L-/H-mode, Gaussian radial profiles for heating sources.

Predicted variables: as for TCV case 
Equilibrium: 11 CHEASE equilibria (marked as ● on the I

p
 plot).

CPU time: less than 10 min for a time grid with 1 ms step (shot duration 8.5 s) on a standard PC.
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OPTIMIZATION

9. Further research directions

7. Ramp-down optimization: TCV #53852

Ramp down optimization of plasma current and elongation
at t=0.5 s for AUG-like plasma: cost function
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Fig. 4. The contours for J
ip 

are shown with the coloured circles which correspond to values of I
p

and κ at t=0.5 s. An area where the constrained parameter violates the constraint is yellow-marked.

J Ip=∫ I p dt

8. Ramp-down optimization: AUG #32546
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Optimization of plasma current
and elongation at
t = [0.14 0.1 0.08] s (in series).
Technical constraints on rate of change of
plasma current and vertical magnetic field:
dI

p
/dt < -1.9 [MA/s], dB

v
/dt<0.7 [T/s]

Optimization of plasma current
and elongation at t = [1.2 0.8] s
(in series).
Technical constraints on rate of change
in plasma current and edge value of
internal inductance:
dI

p
/dt < -0.7 [MA/s], l

i
(3)< 1.2

4. Full TCV plasma simulation: #53852, ohmic plasma, L-mode

Prescribed parameters:  total plasma current I
p
 over time,  radial profiles of electron density n

e
 over time, H

e
 factor

fixed at 0.4, λ
Te

=3.2 (λ
ne

, line averaged electron density n
el
 if n

e
(ρ,t) not provided), scaling law H98(y,2) for total confinement time.

Predicted variables: electron temperature Te, poloidal flux ψ, electron heat diffusivity χ
e
, various physical quantities.

Equilibrium: 10 CHEASE equilibria (marked as ● on the I
p
 plot).

CPU time: less than 2 min for a time grid with 1 ms step (shot duration 1 s) on a standard PC.

=> Faster I
p
 and κ ramp down can be used. => Reducing κ during ramp down would allow to better control l

i
.

PLANS

2. Need a scaling law for pedestal pressure for L-/H-mode (to determine μ
Te

 directly).

now prescribed n
e
 is used;

AUG #32546: controlled vs prescribed μ
Te

Present oscillations do not disturb physics result <= 
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1. Need better control on μ
Te

 (less oscillations):
now μ

Te
 = feed-forward + feed-back control.

To get a good trajectory optimization
1) realistic predictive simulations ( => an appropriate transport model) and 
2) fast solver ( => RAPTOR) are needed.
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