P-16

MODEL

OPTIMIZATION

Theory of Fusion Plasmas, Joint Varenna – Lausanne International Workshop, Varenna, Italy, 29th August – 2nd September 2016

SWISS PLASMA **CENTER**

Numerical optimization of ramp-down phases for TCV and AUG plasmas

<u>A.A. Teplukhina¹, O. Sauter¹, F. Felici², A. Merle¹, D. Kim³, the TCV team¹, the Asdex-Upgrade team⁴</u>

¹ Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland

² Eindhoven University of Technology, Department of Mechanical Engineering, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

- ³ ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067, St. Paul-lez-Durance, France
- ⁴ Max-Planck-Institut für Plasmaphysik, 85748 Garching, Germany

1. Research directions

1. Development of an optimization procedure for the ramp down phase of the plasma discharge to terminate plasmas in the fastest and safest way:

- Determination of the optimal time evolution of the plasma parameters, like plasma current I_{p} , plasma elongation κ , auxiliary **power** P_{aux} to terminate plasmas (decrease I_n) as fast as possible.
- For safe termination **physical constraints** have to be specified: constraint on **normalized** β_{N} and poloidal β_{pol} (not too high) to avoid MHD modes, constraint on **plasma inductance I**, to avoid vertical instability,...
- Define technical constraints to match experimental limits, like max ramp rate of plasma current I_p, constraint on rate of change in vertical magnetic field B, for radial position control,...
- Determination of optimal time of H- to L-mode transition.

2. Trajectory optimization [2]

To get a good trajectory optimization

1) realistic predictive simulations (=> an appropriate transport model) and 2) fast solver (=> RAPTOR) are needed.

3. The transport model

Diffusion equations: electron temperature and poloidal flux

$$\frac{3}{2} (V')^{-5/3} \left(\frac{\partial}{\partial t} - \frac{\dot{B}_0}{2B_0} \frac{\partial}{\partial \rho} \rho \right) \left[(V')^{5/3} n_e \mathbf{T}_e \right] = \frac{\partial}{\partial \rho} V' G_1 n_e \chi_e \frac{\partial \mathbf{T}_e}{\partial \rho} + V' P_e$$
$$\sigma_{\parallel} \left(\frac{\partial \psi}{\partial t} - \frac{\rho \dot{B}_0}{2B_0} \frac{\partial \psi}{\partial \rho} \right) = \frac{J^2 R_0}{\mu_0 \rho} \frac{\partial}{\partial \rho} \left(\frac{G_2}{J} \frac{\partial \psi}{\partial \rho} \right) - \frac{V'}{2\pi\rho} (j_{BS} + j_{CD})$$

2. Development of the RAPTOR transport model:

The RAPTOR code – Rapid Plasma Transport simulatOR [1,2]:

1D transport code without an equilibrium solver oriented to plasma real-time control.

- Time dependent geometry can be used.
- A new gradient-based transport model [3,4] for electron heat transport has been implemented.
- Successful validation via simulation of TCV and AUG full plasma discharges and comparison with the experimental measurements.
- [1] F. Felici *et al* 2011 *Nucl. Fusion* **51** 083052
- [2] F. Felici, O. Sauter 2012 *PPCF* **54** 025002
- [3] O. Sauter et al 2014 Phys.of Plasma 21 055906
- [4] D. Kim *et al* 2016 *PPCF* **58** 055002

Prescribed parameters: total plasma current I over time, radial profiles of electron density n over time, H factor fixed at 0.4, λ_{T_0} =3.2 (λ_{T_0} , line averaged electron density n_{el} if $n_{e}(\rho,t)$ not provided), scaling law H98(y,2) for total confinement time. **Predicted variables:** electron temperature Te, poloidal flux ψ , electron heat diffusivity χ_{a} , various physical quantities. **Equilibrium:** 10 CHEASE equilibria (marked as • on the I plot).

CPU time: less than 2 min for a time grid with 1 ms step (shot duration 1 s) on a standard PC.

Prescribed parameters: same as for TCV case, total input NBI and EC power over time and their deposition, H_a factor fixed at 0.4 for H-mode and at 0.2 for L-mode, λ_{T_0} =3.0/2.3 for L-/H-mode, Gaussian radial profiles for heating sources. Predicted variables: as for TCV case

Equilibrium: 11 CHEASE equilibria (marked as • on the I plot).

CPU time: less than 10 min for a time grid with 1 ms step (shot duration 8.5 s) on a standard PC.

and κ at t=0.5 s. An area where the constrained parameter violates the constraint is yellow-marked.

- now $T_e(\rho_{ped})$ for μ_{Te}^{ff} is estimated: $T_e(\rho_{ped}) = T_{e0} \cdot \exp(-\lambda_{Te}(\rho_{ped} \rho_{inv}))$
- $T_{e0} \text{ scaling law for TCV:} \quad T_{e0} = 7.5 \cdot 10^3 \cdot (I_p[MA])^{0.93} \cdot (P_{tot}[MW])^{0.3} \cdot (n_{el}[10^{19}m^3])^{-0.6}$
- $T_{e0} \text{ scaling law for AUG:} \quad T_{e0} = 3.3 \cdot 10^3 \cdot (I_p[MA])^{0.93} \cdot (P_{tot}[MW])^{0.3} \cdot (n_{el}[10^{19}m^3])^{-0.6}$
- 2. Need a scaling law for pedestal pressure for L-/H-mode (to determine $\mu_{T_{\alpha}}$ directly).
- **3.** Include diffusion equation for electron density to the transport model:
- now prescribed n is used;
- now to keep density within Greenwald density limit during optimization: $n_e(0,t) = min(n_{eref}(0,t), n_{GR}) = min(n_{eref}(0,t), 0.9 \frac{I_p(t)}{\pi a^2})$
- . Continue ramp-down optimization with an extended set of parameters:
- time of H- to L-mode transition as an optimization parameter (already implemented, need tests);
- constraints related to radiated power and impurities;
- technical constraints on rate of change of electron density, plasma shape;
- technical constraint on vertical position control (constraint on dl/dt).