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Abstract

Everybody knows what it feels to be surprised. Surprise raises our attention and

is crucial for learning. It is a ubiquitous concept whose traces have been found in

both neuroscience and machine learning. However, a comprehensive theory has

not yet been developed that addresses fundamental problems about surprise : (1)

surprise is difficult to quantify. How should we measure the level of surprise when

we encounter an unexpected event ? What is the link between surprise and startle

responses in behavioral biology ? (2) the key role of surprise in learning is somewhat

unclear. We believe that surprise drives attention and modifies learning ; but, how

should surprise be incorporated, in general paradigms of learning ? and (3) can we

develop a biologically plausible theory that explains how surprise can be neurally

calculated and implemented in the brain ?

I propose a theoretical framework to address the above issues about surprise. There are

three components to this framework : (1) a subjective confidence-adjusted measure

of surprise, that can be used for quantification purposes, (2) a surprise-minimization

learning rule that models the role of surprise in learning by balancing the relative

contribution of new and old data for inference about the world, and (3) a surprise-

modulated Hebbian plasticity rule that can be implemented in both artificial and

spiking neural networks. The proposed online rule links surprise to the activity of

the neuromodulatory system in the brain, and belongs to the class of neo-Hebbian

plasticity rules.

My work on the foundations of surprise provides a suitable framework for future

studies on learning with surprise. Reinforcement learning methods can be enhanced

by incorporating the proposed theory of surprise. The theory could ultimately become

interesting for the analysis of fMRI and EEG data. It may also inspire new synaptic

plasticity rules that are under the simultaneous control of reward and surprise. More-

over, the proposed theory can be used to make testable predictions about the time

course of the neural substrate of surprise (e.g., noradrenaline), and suggests behav-

ioral experiments that can be performed on real animals for studying surprise-related

neural activity.
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Résumé
Tout le monde sait ce que cela fait d’être surpris. La surprise attire notre attention et est

cruciale pour l’apprentissage. C’est un concept omniprésent dont les origines ont été

fondées au travers des neurosciences et de l’apprentissage automatique. Cependant,

aucune théorie globale n’a encore été développée abordant les problèmes fondamen-

taux concernant la surprise car : (1) la surprise est difficile à quantifier. Comment

mesurer le niveau de surprise quand nous rencontrons un événement inattendu ?

Quel est le lien entre la surprise et le sursaut en biologie comportementale ? (2) le rôle

clé de la surprise dans l’apprentissage reste un peu flou. Nous croyons que la surprise

attire l’attention et modifie l’apprentissage ; mais, comment la surprise doit-elle être

incorporée dans les paradigmes d’apprentissage ? et (3) pouvons-nous développer

une théorie biologiquement plausible qui explique comment la surprise peut être

calculée et implémentée dans le cerveau ?

Je propose un cadre théorique pour aborder les questions mentionnées ci-dessus à

propos de la surprise. Il existe trois composantes dans ce cadre théorique : (1) une

mesure de surprise subjective ajustée en fonction de la confiance, qui peut être util-

isée à des fins de quantification ; (2) une règle d’apprentissage de minimisation de

la surprise qui modélise le rôle de la surprise dans l’apprentissage en équilibrant la

contribution relative de données nouvelles et anciennes inférant le monde extérieur,

et (3) une règle de plasticité Hebbienne modulée par la surprise qui peut être implé-

mentée dans des réseaux de neurones artificiels et à impulsions. La règle proposée

ici relie la surprise à l’activité du système de neuromodulation dans le cerveau, et

appartient à la classe des règles de plasticité néo-Hebbienne.

Mon travail sur les fondements de la surprise fournit un cadre approprié pour les

futures études sur l’apprentissage avec la surprise. Les méthodes d’apprentissage

par renforcement peuvent être améliorées en incorporant la théorie proposée de

la surprise. Cette théorie pourrait finalement être intéressante pour l’analyse des

données d’IRMf et d’EEG. Il peut également inspirer de nouvelles règles de plasticité

synaptique qui sont sous le contrôle simultané de la récompense et de la surprise.

De plus, la théorie proposée peut être utilisée pour établir des prédictions pouvant

être testées sur la dynamique des neuromodulateurs de la surprise (par exemple, la
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noradrénaline) et suggère des expériences comportementales pouvant être réalisées

sur des animaux réels pour étudier l’activité neuronale liée à la surprise.

Mots clefs : Surprise, Règles d’apprentissage multi-facteurs, Plasticité synaptique,

Neuromodulation, Noradrenaline, Locus coeruleus, Neurones à impulsions, Énergie

libre, Exploration labyrinthe, Modèle de Markov caché, Espérance-maximisation,

Algorithme du gradient, Théorie de l’information, Inférence Bayésienne.
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1 Introduction

A strong mathematical framework is required to elucidate how the brain learns to make

decisions, to form new memories, and to organize behaviors. One of the crucial yet

largely undetermined factors that affects learning and plasticity in the brain is Surprise.

It is a widely used concept describing a range of phenomena from unexpected events

to behavioral responses. Surprise can play a role in learning that is similar to that of

reward, but surprise is obviously much less well understood than reward. Although

traces of surprise and surprise-related concepts (such as novelty) have been found

in both neuroscience and machine learning, a well-established theory that links

conceptual as well as computational considerations of surprise to behavioral research

and neuroscience is still missing.

Surprise is difficult to quantify. Neither is there a comprehensive theory that quantita-

tively links surprise to the startle responses in biology, nor is there an agreement on

how surprise should affect learning speed or other parameters in statistical learning

algorithms. Moreover, much less is known about how surprise is neurally calculated

and how it affects plasticity in a biologically plausible way. The research described in

this thesis aims in providing a theory of quantification, utilization, and neural imple-

mentation of surprise. The theory could ultimately become interesting as a correlator

for fMRI or EEG, but could also influence learning theory.

1.1 Surprise in neuroscience

Behaviorally, surprise can be identified through startle responses [Kalat, 2012], which

are vital for humans and animals. It manifests itself as physiological responses such

as pupil dilation [Hess and Polt, 1960, Nassar et al., 2012] and tension in the mus-

cles [Kalat, 2012]. Surprise is usually followed by emotions such as joy or confusion.

Neurally, the P300 component of the event-related potential [Pineda et al., 1997, Mis-
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Chapter 1. Introduction

sonnier et al., 1999] measured by electroencephalography is associated with the viola-

tion of expectation [Jaskowski et al., 1994, Kolossa et al., 2015]. Surprising events have

been shown to influence the development of the sensory cortex [Fairhall et al., 2001],

and to drive attention [Itti and Baldi, 2009]. It triggers associative learning [Schultz

and Dickinson, 2000, Fletcher et al., 2001] and affects memory formation [Ranganath

and Rainer, 2003, Hasselmo, 1999, Wallenstein et al., 1998].

Novel stimuli are often very surprising. Although surprise and novelty differ in some of

their conceptual aspects, for many researchers they are considered as interchangeable

concepts. Therefore, many interesting neuroscientific facts that have been discovered

about novelty can also be associated to surprise and its importance in controlling

learning and attention. For instance, neural responses have been reported to be larger

for novel (i.e., surprising) stimuli than repeated and prolonged stimuli in cortical

areas [Müller et al., 1999, Ulanovsky et al., 2003, Nelken et al., 1999] as well as sub-

cortical structures [Solomon et al., 2004, Kennedy et al., 2003].

Memory retention, in both humans and animals, is enhanced when something novel

happens [Takeuchi et al., 2016]. Recent findings, using optogenetic methods, show

that neuronal firing in Locus coeruleus (LC, a brainstem neuromodulatory nuclei

that releases Noradrenaline (NE) throughout the brain) is sensitive to environmental

novelty, and its dopaminergic projection to the hippocampus modulates memory

formation [Takeuchi et al., 2016]. Neurophysiological evidence suggests that Hip-

pocampus plays a key role in novelty (and surprise) detection [Knight et al., 1996,Stern

et al., 1996, Li et al., 2003]. Moreover, it has been hypothesized that seeking novel and

surprising inputs during exploration of unknown environments is associated with a

dopamine receptor gene [Ebstein et al., 1996, Lusher et al., 2001].

1.1.1 Neural correlate of surprise

There is ample evidence for a neural substrate of surprise. Existing measures of

expectation violations such as absolute and variance-scaled reward prediction er-

rors [Schultz et al., 1997, Schultz, 2016, Schultz, 2015], unexpected uncertainty [Yu

and Dayan, 2005] and risk prediction errors [Preuschoff et al., 2008] have been linked

to different neuromodulatory systems. Among those, the noradrenergic system has

emerged as a prime candidate for signaling unexpected uncertainty and surprise:

noradrenergic neurons respond to unexpected changes such as the presence of a

novel stimulus, unexpected pairing of a stimulus with a reinforcement signal dur-

ing conditioning, and reversal of the contingencies [Sara and Segal, 1991, Sara et al.,

1994, Vankov et al., 1995, Aston-Jones et al., 1997]. The P300 component of the event-

related potential [Pineda et al., 1997, Missonnier et al., 1999] which is associated with

2



1.2. Surprise in machine learning

novelty [Donchin et al., 1978] and surprise [Jaskowski et al., 1994] is modulated by No-

radrenaline (NE). It also modulates pupil size [Costa and Rudebeck, 2016, Preuschoff

et al., 2011] as a physiological response to surprise.

The dynamics of the noradrenergic system are fast enough to quickly respond to

unexpected events [Rajkowski et al., 1994, Clayton et al., 2004, Bouret and Sara, 2004],

a functional requirement for surprise to control learning; see [Sara, 2009, Bouret

and Sara, 2005, Aston-Jones and Cohen, 2005] for a review. Locus coeruleus (LC)

and anterior cingulate cortex (ACC, a part of the brain’s limbic system) have been

frequently reported as neural structures included in the surprise-related circuitry

of the brain [Hayden et al., 2011, Bouret and Sara, 2005]. For instance, the neural

responses to rewards in macaque dorsal anterior cingulate cortex (ACC) enhances

when the outcome is surprising [Hayden et al., 2011]. It has been shown that lo-

cus coeruleus-norepinephrine (LC-NE) system regulates cognitive performance in

cortical areas [Usher et al., 1999] and influences neuronal responses via gain modu-

lation [Aston-Jones and Cohen, 2005]. ACC, whose functional role in conflict/error

detection and performance monitoring has been frequently reported [Carter et al.,

1998, Bush et al., 2000], sends prominent inputs to LC neurons [Aston-Jones and Co-

hen, 2005], consistent with aforementioned hypothesis that links surprise to LC and

noradrenaline.

1.2 Surprise in machine learning

Quantities related to surprise have been previously used in machine learning. Plan-

ning to be surprised so as to maximize information gain has been suggested as an

optimal exploration technique in dynamic environments [Sun et al., 2011, Little and

Sommer, 2011, Kolter and Ng, 2009]. Signatures of surprise have been observed in

artificial models of curiosity and interestingness both of which drive active explo-

ration for learning unknown environments, in the absence of external reward [Frank

et al., 2013]. Surprise is also linked to Bayesian experimental design [Chaloner and

Verdinelli, 1995] and active learning [Settles, 2010]. Furthermore, a surprise measure

defined as a prediction error has been optimized in the context of free energy mini-

mization [Friston, 2010, Friston and Kiebel, 2009, Rezende and Gerstner, 2014, Brea

et al., 2013].

Being able to detect novel and surprising stimuli is necessary for efficiently learning

new memories without altering past useful memories [Carpenter and Grossberg, 1988].

Furthermore, it is critical to consider novelty information (related to the structure

of the environment) in addition to reward information in models of reinforcement
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Chapter 1. Introduction

learning (RL) [Sutton and Barto, 1998b]. Surprise enables an agent to generate (trigger)

new states (in the context of RL), an essential feature for learning new environments.

As such, surprise is a crucial factor in both learning and memory formation [Ranganath

and Rainer, 2003], and should be incorporated in existing machine learning tools to

empower them for learning a wide range of learning problems.

1.2.1 Implications of surprise

Surprise has wide-reaching implications: surprise can not only modulate learning

and drive attention, but can be used as a trigger signal for an algorithm that needs

to choose between several uncertain states or actions as is the case in change point

detection [Nassar et al., 2010,Wilson et al., 2013,Rüter et al., 2012], memory and cluster

formation [Gershman and Niv, 2015], exploration/exploitation tradeoff [Cohen et al.,

2007, Jepma and Nieuwenhuis, 2011], novelty detection [Knight et al., 1996, Bishop,

1994], and network reset [Bouret and Sara, 2005].

Surprise can be used for learning unknown environmental states that a learning agent

encounters while interacting with an environment. This empowers the existing re-

inforcement learning algorithms for coping with learning paradigms in which the

environment is not completely known for the agent. The exploration-exploitation

tradeoff can also be addressed by surprise. Surprise appears whenever large mis-

matches between bottom-up sensory information and top-down expectations occur.

For instance if a learning agent expects a reward at a certain location, and that loca-

tion is manually changed, a surprise may be required for increasing the exploration

to quickly adapt to the new environment [Cohen et al., 2007, Jepma and Nieuwen-

huis, 2011]. The idea is related to the vigilance signal in adaptive resonance theory

(ART) [Carpenter and Grossberg, 1988].

ART is based on the insight that learning in artificial and biological neural systems

requires a balance between plasticity and stability (the challenge of stability-plasticity

dilemma [Carpenter and Grossberg, 1988]). While plasticity is necessary for being

able to integrate new knowledge, stability is needed to prevent forgetting previously

learned memories. The role of surprise for this purpose is crucial, and it is highlighted

in ART [Carpenter and Grossberg, 1988], that has been proposed to address this

challenge by using a surprise-like “vigilance” signal.

Humans and animals learn invariant properties of the environment by building a set

of critical features or prototypes that provide compressed representation of the input

data space. These prototypes efficiently represent different classes of environmental

inputs that the learner encountered beforehand. Such a coding is required for percep-
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1.3. Multi-factor learning rules for synaptic plasticity

tion and cognition, because it is neither possible nor efficient to store the full sensory

information in a limited memory system. Once a data sample arrives, our brain de-

cides whether it should be associated to one of the existing prototypes or whether it

belongs to a new prototype which has never been learned (or has been forgotten in

case of earlier occurrence). The answer to this question is determined after the brain

evaluates how novel (surprising) the data sample is. If the newly acquired sample does

not belong to any of the existing prototypes, then surprise could trigger mechanisms

for the formation of new memories by opening a gate for a set of synapses that do not

yet represent environmental features.

1.3 Multi-factor learning rules for synaptic plasticity

Learning in neural system has been postulated to be linked to synaptic plasticity. This

refers to experimental findings in biology which suggest that the strength of a connec-

tion between neurons in neural circuitry of the brain is not fixed, but subject to change.

The change in strength of neural connections can persist from a few seconds to days

and even years, serving as a neural substrate of memory. Theoretical descriptions of

synaptic plasticity have been dominated by Hebb’s rule [Hebb, 2002] which is based

on two major insights: locality and coactivity. According to Hebb’s rule, both pre- and

post-synaptic neurons have to be active to make their connection stronger. We call

these, the two local factors necessary for Hebbian learning. Hebbian rules are simple

yet invaluable tools for modeling developmental plasticity such as development of

receptive fields. However, Hebbian rules are limited to the realm of unsupervised

learning paradigms. Unsupervised paradigms, however, are often incapable of coping

with motor learning tasks or conditioning.

Empirical studies, on the other hand, show the existence of additional global factors

that can influence synaptic plasticity [Reynolds and Wickens, 2002]. These global

factors correspond to the activity of neuromodulators that are broadly distributed

via multiple ramifications of axons. Deficits in activity of the neuromodulatory sys-

tem (corresponding to global factors) in humans and animals leave many tasks un-

learnable [Decker and McGaugh, 1991]. For instance, Dopamine (DA) as a neuro-

modulator is used in signaling reward prediction error that takes part in temporal

difference (TD) learning algorithms such as Q-learning and SARSA [Schultz et al.,

1997, Sutton and Barto, 1998b, Steinberg et al., 2013]. Acetylcholine (ACh) is another

candidate neuromodulator used in signaling alertness [Posner and Fan, 2004] and

modulating spike-timing dependent plasticity (STDP) [Seol et al., 2007, Couey et al.,

2007]. Noradrenaline (NA) influences STDP [Lin et al., 2003, Seol et al., 2007] and

modulates neural responses [Aston-Jones and Cohen, 2005, Usher et al., 1999].
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Chapter 1. Introduction

It is thus of interest to expand on Hebbian learning rules and formulate general new

synaptic plasticity rules that combine the two local Hebbian activity factors with one

or multiple global factors. The simplest 3-factor learning rule, including two Hebbian

terms modulated by a third factor, is sketched in Fig. 1.1. We believe that surprise-

based learning falls into the category of multi-factor learning rules. A surprise signal,

just like a reward or success signal in RL, can be theoretically interpreted as a global

factor, and biologically explained by the release of a non-specific neuromodulator

(e.g., norepinephrine (NE) released from locus coeruleus neurons). Therefore, it can

modulate the strength of plasticity that depends, as before, on local Hebbian factors

(i.e., the coactivity of pre- and post-synaptic neurons).

Reward Surprise 
A B 

3-factor: Hebb + global factor Hebb: two local factors 

 w = f (pre, post)  w = g(Hebb,M )

pre 
post 

M1 M2 

Figure 1.1 – Hebbian versus 3-factor plasticity. A. Standard Hebbian plasticity rule is
described by the co-activity of pre and post synaptic neurons. All the information that
is needed for change in the strength of a connection is locally available for the neurons
that are connected by that synapse. B. In 3-factor learning rules a global factor (such
as reward or surprise) is required to modulate the strength of plasticity in addition to
the two local Hebbian factors.

1.4 Structure of the thesis

In Chapter 2, we first conceptually discuss the requirements that should be taken

into account for quantification of surprise. We review existing methods and explain

their shortcomings. Inspired by information theoretic and Bayesian approaches, we

then propose a confidence-corrected surprise measure to incorporate subjectivity and

uncertainty, two conceptually different aspects of surprise.

We use our proposed measure of surprise in Chapter 3 to develop a new framework

for surprise-driven learning. We formulate the principle of surprise minimization as
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a learning strategy and derive a class of learning rules which obey that principle. A

surprise-minimization learning rule, or SMiLe-rule, is derived by a constraint opti-

mization problem in that framework. The SMiLe rule can be used for learning within

changing environments by dynamically adjusting the balance between new and old

information for inference about the world, without making prior assumptions about

the temporal statistics of the environment.

We apply our proposed method to a dynamic decision making task in a Gaussian

environment, as well as an exploration task in a maze-like environment. We demon-

strate how surprise and uncertainty interact with each other to make learning in

changing environments possible. The proposed algorithm benefits from a reduced

computational complexity and simpler implementation compared to an explicit so-

lution of a hierarchical Bayesian model. The proposed surprise-modulated belief

update algorithm provides a framework to study and model the behavior of humans

and animals encountering surprising events. It captures a wide range of behaviors in

realistic experimental environments. Moreover, it makes testable prediction about the

time course of Noradrenaline [Sara, 2009] or LC-dopamine [Takeuchi et al., 2016] as a

neuronal surprise signal, and suggests behavioral experiments that can be performed

on real animals.

Chapter 4 links our theory of surprise to the multi-factor learning rules introduced

above, and demonstrates how surprise could play the role of a global factor for affect-

ing synaptic plasticity. We first propose a general framework for approximating the

exact optimal solution (i.e., the maximizer) of a functional (objective function) that is

expressed as an average over many data samples, using an online stochastic learning

rule. The proposed learning rule has the form of a 3-factor learning rule, if a neural

network is used for parametrization. We then apply our proposed technique to the

objective function of the SMiLe rule. We show that the obtained online rule can be

interpreted as a covariance learning rule. We implement the online rule in a spiking

neural network to demonstrate that our proposed SMiLe rule can also be neurally

implemented.

In summary, our work on the foundations of surprise in this thesis provides a frame-

work for future studies on learning with surprise. These include computational studies,

such as understanding the interplay between surprise and reward, and neurobiologi-

cal studies, such as unraveling the interaction between different neural circuits that

are functionally involved in learning under surprise. This helps us in addressing unre-

solved issues about understanding the neural basis of learning.

My contribution to each of these chapters is detailed in the last chapter of the thesis.
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2 A Mathematical Description of Sur-
prise

The Webster dictionary defines surprise as “an unexpected event, piece of informa-

tion” and “the feeling caused by something that is unexpected or unusual” [merriam-

webster.com]. Therefore, surprise is unexpectedness and represents the gap between

what happens and what was expected to happen.

Surprise occurs whenever there is uncertainty, be it in the world or in the model that

we build of the world. While the former corresponds to the probabilistic nature of

the world, the latter is caused by an imperfect internal model of the outside world.

We emphasize that surprise is subjective: events that are surprising to me may not be

surprising to you, although we may both have used the same data to build our models

of the world. Subjectivity may arise from different methods for building our internal

models, or different prior beliefs about the world [Baldi and Itti, 2010, Palm, 2012].

Individuals may also differ in the way they perceive a same event. Therefore they may

differently be surprised by the same data because of that subjective perception.

Model uncertainty differs from subjectivity in that the former refers to uncertainty in

parameter estimation, given the available data, that remains even in the “best” model

(e.g., Bayes-optimal). The latter incorporates individual differences in the construction

of a (potentially suboptimal) model given identical data.

Inspired by information theoretic and Bayesian approaches we propose a confidence-

corrected surprise measure to incorporate subjectivity and uncertainty, two concep-

tually different aspects of surprise. Our proposed measure of surprise inherits the

advantages of Shannon surprise [Shannon, 1948, Tribus, 1961] (a data-driven measure

of unexpectedness) and Bayesian surprise [Baldi and Itti, 2010, Itti and Baldi, 2005] (a

model-driven approach for quantifying surprise), and overcome their shortcomings.

We also emphasize that the confidence-corrected surprise is defined for a single data

sample, such that an organism can respond to a single event. In contrast, information
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Chapter 2. A Mathematical Description of Surprise

theoretic quantities, such as data entropy and mutual information, are usually defined

as average quantities, and thus are not suitable for quantifying surprise in one-shot

paradigms.

2.1 Probability-based surprise measures

In order to quantify surprise we need to measure “how much wow" [Baldi and Itti,

2010] we get when we encounter an event that deviates from our expectation. Through-

out this section, we use a (Bayesian) statistical framework to formulate probability-

based surprise measures.

2.1.1 Shannon surprise

We assume that the world is governed by a set of parameters θ∗ chosen by nature. If

θ∗ is known, the information content − ln p(X |θ∗) for a specific outcome X ∈ X is

a measure of surprise [Tribus, 1961, Shannon, 1948, Palm, 2012] which says that the

occurrence of a rare (i.e., unlikely to occur) data sample X is surprising.

As the information content relates to the true probabilities p(X |θ∗) of samples in

the real world, it is an objective, model-independent, measure of unexpectedness.

However, the true set of parameters θ∗, and so the true probability p(X |θ∗), is rarely

known to the observer, such that it is difficult to evaluate the exact information content

of a data sample X .

We can bypass this issue by modeling the world as a joint distribution p(X ,θ) =
p(X |θ)π0(θ) which specifies how data X is generated if the model parameter is θ ∈Θ.

The distribution π0(θ) represents the current belief of the observer about the model

parameters θ before X is observed. In what follows we may call the distribution π0(θ)

the prior belief, but it always reflect the most recent belief before data sample X is

observed.

The marginal likelihood Z (X ) =∫
Θ p(X ,θ)dθ is a subjective interpretation of the true

likelihood p(X |θ∗), where we integrate out the model parameters θ from the joint

distribution. Therefore, we can replace the exact information content − ln p(X |θ∗)

with the Shannon surprise

SSh(X ;π0) =− ln z(X ) =− ln

[∫
Θ

p(X |θ)π0(θ)dθ

]
, (2.1)

which depends on the marginal likelihood Z (X ) and can be considered as a subjective
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2.1. Probability-based surprise measures

version of the information content.

Although Shannon surprise [Eq. (2.1)] captures both uncertainty and subjectivity, it

may not be the best measure for quantification of surprise. One of the shortcomings

of the Shannon surprise is that the calculation of the marginal likelihood Z (X ) (also

known as the evidence function) could be very intractable [MacKay, 2003,Barber, 2012].

Moreover, Shannon surprise does not incorporate the effect of model uncertainty, that

a subject has about his expectation of the world, in surprise evaluation (see Fig. 2.1).

x

θ

x

θ

p(x,θ )π 0 (θ )

p̂X (θ )

p(x |θi )

Z(x)

X

Figure 2.1 – Confidence-corrected surprise. The impact of confidence on surprise.
Top: Two distinct internal models (red and blue), described by joint distributions
p(x,θ) (contour plots) over observable data x and model parameters θ, may have the
same marginal distribution Z (x) =∫

θ p(x,θ)dθ (distributions along the x-axis coin-
cide) but differ in the marginal distribution π0(θ) =∫

x p(x,θ)d x (distributions along
the θ-axis). Surprise measures that are computed with respect to Z (x) neglect the un-
certainty as measured by the entropy H (π0). Therefore, a given data sample X (green
dot) may be equally surprising in terms of the Shannon surprise SSh(X ) [Eq (2.1)]
but results in higher confidence-corrected surprise Scor r (X ) [Eq (2.8)] for the blue as
compared to the red model, because π0 in the red model is wider (corresponding to a
larger entropy) than in the blue model. Bottom: The scaled likelihood p̂X (θ) (magenta)
for the “red” internal model is calculated by evaluating the conditional probability
distribution functions p(x|θi ) (specified by different color for each θi ) at x = X (inter-
section of dashed green line with colored curves). The confidence-corrected surprise
Scor r (X ) is the KL divergence between p̂X (θ) (bottom, magenta) and π0(θ) (top, red).
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2.1.2 Bayesian surprise

Once a data sample X is observed, a subject can modify his current belief π0(θ) about

the model parameters using Bayes’ rule:

π(θ|X ) = p(X |θ)π0(θ)

Z (X )
. (2.2)

Bayesian surprise [Itti and Baldi, 2005, Baldi and Itti, 2010] is defined as the Kullback-

Leibler (KL) divergence [Kullback and Leibler, 1951] between the prior π0(θ) and the

posterior π(θ|X ) either in the form

SB ayes(X ;π0) = DK L[π0(θ)||π(θ|X )] (2.3)

or in the mirror form DK L[π(θ|X )||π0(θ)]. Bayesian surprise measures the discrepancy

or dissimilarity between the prior π(θ) and the posterior π(θ|X ) believes about the

model parameters θ. According to this measure, a data sample X is more surprising

than a data sample X ′ if it causes a larger change in our belief.

One of the shortcomings of the Bayesian surprise is that it is computed only after

learning (i.e., once we have changed our belief from prior to posterior). However,

behavioral and neural responses indicate that surprise is concurrent with the unex-

pected event. Our working hypothesis is that the brain evaluates surprise even before

recognition, inference or learning occurs. We thus need to evaluate surprise before we

update our belief so that surprise may control learning rather than emerge from it.

We believe that Bayesian surprise [Eq. (2.3)] resembles, by construction, a measure that

quantifies the effectiveness of a data sample X on belief update, rather than quantifying

how surprising that data sample is perceived. But since surprising samples result in

larger change in our belief than non-surprising samples (it will be discussed later in

Chapter 3), we may be deceived by Eq. (2.3) as a measure of surprise, while it should

not be the case.

2.1.3 Confidence-corrected surprise

Shannon surprise Eq. (2.1) and Bayesian surprise Eq. (2.3) are two distinct yet com-

plementary approaches for calculating surprise. Shannon surprise is about data as it

captures the inherent unexpectedness of a piece of data given a model. However, it

suffers from not covering the influence of model uncertainty on surprise. Bayesian

surprise is about a model as it measures the change in belief about model parameters.
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However, it is computed only after learning, which is inconsistent with behavioral

and neural data that suggest an instantaneous response to surprise. Our definition of

confidence-corrected surprise (what follows) combines these two measures to use their

complementary benefits and overcome their shortcomings.

Our confidence-corrected surprise measure is derived in three steps. First we replace

the exact information content − ln p(X |θ∗) of the observed data sample X with a

weighted average over all possible model parameters. It gives us the raw surprise of a

data sample X :

Sr aw (X ;π0) :=−
∫
Θ
π0(θ) ln p(X |θ) dθ. (2.4)

In the raw surprise [Eq. (2.4)], we calculate the information content − ln p(X |θ) of a

data sample X if the true model parameter is θ, and then we average this quantity

over all model parameters with a weight that is determined by the current belief π0(θ).

Interestingly, the raw surprise in Eq (2.11) can be expressed as a sum of the Shannon

surprise and the Bayesian surprise (see Materials and Methods for the proof):

Sr aw (X ;π0) = SSh(X ;π0)+SB ayes(X ;π0). (2.5)

As such, it combines both data-driven approach (Shannon surprise) and the model-

driven approach (Bayesian surprise) for measuring surprise.

In addition to the raw surprise [Eq (2.4)] being subjective, we would also like to capture

the impact of a subject’s confidence in her belief. Intuitively, if we are uncertain about

what to expect (because we have not yet learned the structure of the world), receiving a

data sample that occurs with low probability under the present model is less surprising

than a low-probability sample in a situation when we are almost certain about the

world.

Our confidence about the current model of the world is represented by the entropy

H (π0) =−∫
Θπ0(θ) lnπ0(θ)dθ of our current belief about the model parameters. To

arrive at the confidence-corrected surprise, we subtract the entropy H (π0) of our

current belief from the raw surprise, i.e.,

Sr aw (X ;π0)−H (π0) =
∫
Θ
π0(θ) ln

π0(θ)

p(X |θ)
dθ. (2.6)

While the right-hand side of Eq (2.6) is reminiscent of a KL divergence (between π0(θ)

and p(X |θ) as a function of θ), the likelihood function p(X |θ) is not a normalized
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probability distribution function with respect to θ. To rewrite Eq (2.6) as a KL diver-

gence, we divide the likelihood p(X |θ) by a scaling factor ||pX || =
∫
Θ p(X |θ′) dθ′. The

scaled likelihood

p̂X (θ) = p(X |θ)

||pX ||
= p(X |θ)∫

Θ p(X |θ′) dθ′
, (2.7)

can be considered as a probability distribution function over θ, just like the prior π0(θ).

Therefore, the scaled likelihood p̂X (θ) and the prior belief π0(θ) both belong to the

space of well-defined probability density functions for the model parameters θ. Note

that we may need to discretize the space of the model parameters θ to ensure that

everything is well-defined and easy to be calculated.

The KL divergence DK L[π0(θ)||p̂X (θ)] between the two distributions is the confidence-

corrected surprise:

Scor r (X ;π0) = DK L[π0(θ)||p̂X (θ)] =
∫
Θ
π0(θ) ln

π0(θ)

p̂X (θ)
dθ. (2.8)

The confidence-corrected surprise measure [Eq. (2.8)] represents the difference be-

tween what we expected to happen (as indicated by the current belief π0(θ)) and what

actually happened in the world, where the relevance of a new data point X is indicated

by the (scaled) likelihood p̂X (θ) [Eq. (2.7)]. Therefore it meets our requirements: a

subjective, confidence-adjusted measure of the difference between expectation and

realization.

We can alternatively interpret the confidence-corrected surprise in the following way.

The scaled likelihood p̂(θ) is in fact the posterior belief that is achieved under a flat

prior, i.e., where we have no prior knowledge about the world (see Materials and
Methods). The prior π0(θ), on the other hand, can be interpreted as a posterior belief

that is achieved without taking into account the newly acquired data sample X . The

confidence-corrected surprise [Eq. (2.8)] quantifies how different these two posteriors

are, using the KL divergence.

Note that our proposed confidence-corrected surprise measure Scor r (X ;π0) in Eq (2.8)

inherits the property of the raw surprise Sr aw (X ;π0) in Eq (2.4), that can be expressed

as the sum of Shannon surprise and Bayesian surprise (see Eq. (2.5)). As such, it

also combines the benefits of both data-driven and model-driven approaches for

measuring surprise.

In principal one could have a fixed model of the world, with no ability to further adapt

it, and one can be surprised many times under this model. However, in order for
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surprise to be (behaviorally) meaningful, i.e., carry valuable information, there needs

to be consequences to surprise. These include interruption of an ongoing action,

attentional shifts, change in choice, or learning. In Chapter 3 we will more precisely

discuss the implications of surprise in learning.

2.2 Discussion

2.2.1 Absolute z-score

Apart from probability-based surprise measures, model-free approaches can also be

used to quantify surprise in simplified experimental paradigms. In a simple paradigm,

model-free approaches might even be preferred to probability-based surprise mea-

sures in fMRI and behavioral studies. Here we would like to emphasize that the

confidence-corrected surprise can be simplified when they are put in a given context.

Here is an example:

In the context of reward-based learning, the prediction error signal δ= r −E(r ) quan-

tifies the difference between the actual reward r and the expected reward E(r ), and

has been frequently used in error-driven algorithms such as temporal difference (TD)

learning [Sutton and Barto, 1998a]. Larger prediction errors in noisy and volatile en-

vironments (where the standard deviation σ of random reward r is high) are less

surprising than in stable environments (with small σ). As such the scaled absolute

prediction error (also known as z-score)

S(r ) = |r −E(r )|
σ

, (2.9)

may be considered as one of the simplest model-free approaches for quantifying

surprise.

All probability-based surprise measures, we introduced in this chapter, can be simpli-

fied to the absolute z-score Eq. (2.9), in case of random reward delivery that is modeled

in a Gaussian setting (see Materials and Methods).

2.2.2 Binary or graded surprise?

A key question in the quantification of surprise is whether we should think about

surprise in a binary way (surprised or not surprised) or in a graded way (different

levels of surprise). Behavioral sciences almost suggest the former (i.e., in case of a

surprising event, I either interrupt what I’m doing or I don’t), but from the view point
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of neural implementations, surprise should be graded.

All the surprise measures introduced here can be bounded in the range of [0,1] by

using a sigmoid function (e.g., hyperbolic tangent). This formulation also accom-

modates binary theories of surprise in which an organism is either surprised or not,

without specifying a level of surprise. Moreover, a further incorporation of subjective

parameters to determine the shape of the function can be beneficial for fitting data to

behavior. An example in which the propensity of a subject in changing his belief is

modeled by a subjective parameter will be provided in Chapter 3.

2.2.3 Subjective perception affects surprise

Surprise is not directly related to the observation. It rather depends on how an out-

come is perceived in the subject’s mind. Different individuals may differently perceive

a same outcome, even if the world is completely known and even if they do not need

to build an internal model for that. In other words, subjectivity may not only arise

from different priors or different methods for model construction, but the subjects

may also have different perception approaches. For clarification of the statement

above, we provide an example, studied in Palm theory of surprise (see Appendix A for

a review, [Palm, 2012]).

In the context of game of lotto 6 numbers are drawn from a set L = {1,2, ...,49} of

numbers without replacement. Without loss of generality, we display these 6 random

numbers ordered by their size x1 < x2 < ... < x6 with xi ∈ L. In what follows, we would

like to discuss how surprising an observed data batch X = {x1, x2, ..., x6} is perceived in

different subjects’ minds. Note that in this example, there is no learning as the model

of the world is completely known (i.e., subject knows that all data batches X are equally

probable with probability p(X ) = (49−6)!
49! . In case of no learning, all surprise measures

we discussed earlier would be equivalent to the information content − ln p(x|θ∗),

except the Bayesian surprise which is not well-defined in this context (because it

depends on model change while we have no change in the model). The information

content, however, results in an equal amount of surprise for all outcomes X , which is

not the case in real behavioral experiment.

For instance, the occurrence of X = {11,12,13,14,15,16} seems to be perceived as

much more surprising than the occurrence of Y = {7,16,23,35,40,48}, in reality. This

is because we “perceive” X and Y differently. X is perceived as a set of subsequent

numbers which is very unlikely to occur again. However, data batch Y is interpreted

as an ordinary set of numbers with no significant relation between its entries. We can

simply model this finding by replacing p(X ) with p(c[X ]) where c[X ] is the class of
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all data batches (including X ) that are similarly perceived as X . In other words, to

quantify how surprising the outcome X above is perceived, we need to evaluate how

surprising is to have a data batch with six subsequent numbers. All data batches that

fulfill this description belongs to the class c[X ]. In fact, the surprise of X should be

calculated by − ln p(c[X ]) and not − ln p(X ).

Perception is a subjective concept and is affected by subjects’ background. To clarify,

we ask a question. Among outcome Y = {7,16,23,35,40,48} and Z = {2,7,19,23,37,43},

which one is more surprising? The answer depends on the subjective perception. For

those who recognize that all the numbers in Z are prime numbers, this configuration

is probably more surprising than Y . This is because the probability of observing

six prime numbers as an outcome is less than an appearance of an ordinary set of

numbers. But for those who could not easily recognize such a relation between the

entries, both configurations Y and Z might be equally surprising.

2.3 Materials and Methods

2.3.1 The scaled likelihood is the posterior belief under the flat prior

Let us assume that all model parameters θ must stay in some bounded convex interval

of volume A. Given a data sample X , the posterior belief p f l at (θ|X ) about the model

parameters θ (derived by the Bayes rule) under the assumption of a flat prior π̂0(θ) =
1/A is:

p f l at (θ|X ) = p(X |θ)π̂0(θ)∫
Θ p(X |θ)π̂0(θ) dθ

= p(X |θ)∫
Θ p(X |θ) dθ

= p(X |θ)

||pX ||
= p̂X (θ). (2.10)

2.3.2 The raw surprise increases with the Shannon surprise and the

Bayesian surprise

An interesting feature of the raw surprise Eq. (2.4) is that it incorporates both data-

driven (Shannon surprise) and model-driven (Bayesian surprise) approaches for

calculating surprise. This is because the raw surprise can be expressed as the sum of
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the Shannon surprise and Bayesian surprise:

Sr aw (X ;π0)
(2.4)= −

∫
Θ
π0(θ) ln p(X |θ) dθ

(2.2)= −
∫
Θ
π0(θ) ln

[π(θ|X )
(∫

Θ p(X |θ)π0(θ) dθ
)

π0(θ)

]
dθ

= DK L[π0(θ)||π(θ|X )]− ln
[∫

Θ
p(X |θ)π0(θ) dθ

]
(2.3),(2.1)= SB ayes(X ;π0)+SSh(X ;π0). (2.11)

Therefore, the raw surprise is always lower bounded by the Shannon surprise, i.e.,

Sr aw (X ;π0) ≥ SSh(X ,π0), (2.12)

because the difference between these two surprise measures is equal to the Bayesian

surprise, according to Eq. (2.11), which is expressed as a KL divergence (a non-negative

quantity). The fact that the raw surprise is always bigger than or equal to the Shannon

surprise, can also be explained by the Jensen’s inequality: If θ is a random variable and

φ(θ) =− ln p(X |θ) is a convex function, then E[φ(θ)] ≥φ(E[θ]), i.e.,

Sr aw (X ;π0)
(2.4)= Eπ0 [− ln p(X |θ)] ≥ − lnEπ0 [p(X |θ)]

(2.1)= SSh(X ;π0). (2.13)

2.3.3 Absolute z-score is linked to probability-based surprise mea-

sures in a Gaussian setting

In the following we provide a simple example in a Gaussian setting, and analytically

calculate all the probability-based surprise measures introduced in this chapter, for a

given data sample X . We show that all these surprise measures can be linked to the

z-score Z (X ) using a quadratic mapping:

S(X ) = mZ (X )2 +n, (2.14)

for some constants m,n ∈R.

Suppose that the world generates samples that are normally distributed around the

(unknown) mean μ∗. We assume that the variance σ2
x of the distribution from which

samples X are drawn is known. Therefore, the only parameter that we may be un-

certain about (in our internal model of the external world) is the true underlying

mean. The uncertainty about the true mean μ∗ is modeled by the current belief
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π0(μ) ∼ N (μ∗,σ2
μ) which is a normal distribution with mean μ∗ and variance σ2

μ.

Larger σ2
μ implies higher uncertainty about the mean. Note that the probability of ob-

serving X given the mean μ is also normal, i.e., p(X |μ) ∼N (μ,σ2
x). We first calculate

all the probability-based surprise measures, introduced in this chapter, for a given

data sample X :

The information content (as an objective, model-independent measure of surprise) is

equal to

− ln p(X |μ∗) = 1

2
ln[2πσ2

x]+ (X −μ∗)2

2σ2
x

(2.15)

Since both likelihood p(X |μ) and the prior π0(μ) are normal, the marginal likelihood

Z (X ) =∫
μ p(X |μ)π0(μ)dμ is also expressed by a normal distribution N (μ∗,σ2

x +σ2
μ).

Therefore, the Shannon surprise SSh(X ;π0) [Eq. (2.1)] is equal to

SSh(X ;π0) = 1

2
ln[2π(σ2

x +σ2
μ)]+ (X −μ∗)2

2(σ2
x +σ2

μ)
. (2.16)

The posterior belief π(μ|X ) that is obtained by the Bayes’ rule in Eq. (2.2) has also a

normal distribution N (αX +(1−α)μ∗,σ2
x ⊕σ2

μ), where α= σ2
μ

σ2
x+σ2

μ
and σ2

x ⊕σ2
μ =

σ2
xσ

2
μ

σ2
x+σ2

μ
.

The Bayesian surprise SB ayes(X ;π0) [Eq. (2.3)] is therefore equal to:

SB ayes(X ;π0) =
σ2
μ

2σ2
x

(
(X −μ∗)2

σ2
μ+σ2

x

)
+ 1

2

(
σ2
μ

σ2
x
− ln

[
1+

σ2
μ

σ2
x

])
, (2.17)

where we used the following formula for the KL divergence of the normal distributions:

DK L[N (a1,b2
1)||N (a2,b2

2)] = (a1 −a2)2

2b2
2

+ 1

2

(
b2

1

b2
2

−1− ln
b2

1

b2
2

)
. (2.18)
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The raw surprise Sr aw (X ;π0) [Eq. (2.4)] is equal to

Sr aw (X ;π0)
(2.4)=

∫
μ
− ln p(X |μ) N (μ|μ∗,σ2

μ) dμ

(2.15)=
∫∞

−∞

(
1

2
ln[2πσ2

x]+ (X −μ)2

2σ2
x

)
N (μ|μ∗,σ2

μ) dμ

= 1

2
ln[2πσ2

x]+ 1

2σ2
x

∫∞

−∞
(X 2 −2Xμ+μ2) N (μ|μ∗,σ2

μ) dμ

= 1

2
ln[2πσ2

x]+ 1

2σ2
x

[
X 2 −2Xμ∗+ (σ2

μ+μ∗2)
]

= 1

2
ln[2πσ2

x]+ (X −μ∗)2

2σ2
x

+
σ2
μ

2σ2
x

. (2.19)

The confidence-corrected surprise [Eq. (2.8)] is equal to

Scor r (X ;π0) = (X −μ∗)2

2σ2
x

+ 1

2

(
σ2
μ

σ2
x
−1− ln

σ2
μ

σ2
x

)
(2.20)

where we used Eq. (2.18) for calculating the KL divergence between p̂X (θ) ∼N (X ,σ2
x )

and π0(μ) ∼N (μ∗,σ2
μ). The confidence-corrected surprise [Eq. (2.8)], in this example,

can also be derived by subtracting the entropy form the raw surprise:

Scor r (X ;π0) = Sr aw (X ;π0)−H (π0)

(2.19)= 1

2
ln[2πσ2

x]+ (X −μ∗)2

2σ2
x

+
σ2
μ

2σ2
x
− 1

2
ln[2πeσ2

μ]

= (X −μ∗)2

2σ2
x

+ 1

2

(
σ2
μ

σ2
x
−1− ln

σ2
μ

σ2
x

)
, (2.21)

where we used H (π0) = 1
2 ln[2πeσ2

μ] in the second line of derivation above. Note that

in case of Gaussian likelihood, the scaled likelihood is the same as the likelihood (be-

cause ||pX || = 1,∀X ). Therefore, the confidence-corrected surprise can be expressed

as Eq. (2.6).

To see why all probability-based surprise measures above can be linked to the absolute

z-score Z (X ) = X−μ∗

σ2
x

via Eq. (2.14), assume σ2
x =σ2

μ and rewrite Eqs.(2.15-2.20).
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3 Balancing New Against Old Informa-
tion: The Role of Surprise in Learning

Encountering unexpected (surprising) events is part of our daily experience. How

humans and animals can rapidly detect unexpected events and quickly adapt to

changing environments is an open question. Our hypothesis is that humans and

animals use a surprise signal to define the moments when learning should be most

effective. In the present study, a new framework for surprise-driven learning is pro-

posed which consists of two components: (i) a confidence-adjusted surprise measure

to capture environmental statistics as well as subjective beliefs (see Chapter 2), and

(ii) a surprise-minimization learning rule, or SMiLe-rule, which dynamically adjust

the balance between new and old information for inference about the world, without

making prior assumptions about the temporal statistics of the environment.

We apply our framework to a dynamic decision-making task and a maze exploration

task to demonstrate that it is suitable for learning in complex environments that

undergo gradual or sudden changes. The proposed algorithm benefits from a reduced

computational complexity and simpler implementation compared to an explicit so-

lution of a hierarchical Bayesian model. The proposed surprise-modulated belief

update algorithm is able to capture a wide range of behaviors in realistic experimental

environments. It provides a framework to study the behavior of humans and animals

encountering surprising events. Moreover, it makes testable prediction about the time

course of Noradrenaline as a neuronal surprise signal.

3.1 Introduction

Humans and animals rely on previously learned knowledge to guide their behavior. A

crucial challenge when collecting new data in uncertain environments is the balance

between new and old information. How much should we trust what we have learned

in the past and how much should we adjust our model of the world based on newly
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acquired data? In noisy environments, individual data samples are not reliable and a

model needs to average over the past data. However, when a structural change occurs

in the environment, the most recent data samples are the most informative ones and

we would like to quickly forget what was learned in the past.

Both humans and animals adaptively adjust the relative contribution of old and

newly acquired data on learning [Behrens et al., 2007, Nassar et al., 2012, Krugel et al.,

2009, Pearce and Hall, 1980] and rapidly adapt to changing environments [Pearce and

Hall, 1980,Wilson et al., 1992,Holland, 1997]. To capture this behavior, existing models

detect and respond to sudden changes using (absolute) reward prediction errors [Hay-

den et al., 2011,Pearce and Hall, 1980], risk prediction errors [Preuschoff and Bossaerts,

2007, Preuschoff et al., 2008], uncertainty-based jump detection [Nassar et al., 2010,

Payzan-LeNestour and Bossaerts, 2011] and hierarchical modeling [Behrens et al.,

2007, Adams and MacKay, 2007]. The nature of the environmental change determines

which of these models works best. Here we aim to generalize these approaches by

using surprise as a trigger for shifting the balance between old and new information.

We formulate the principle of surprise minimization as a learning strategy and de-

rive a class of learning rules which obey that principle. We then propose a surprise-

modulated belief update rule that can be used for learning within changing envi-

ronments. We apply our proposed method to a dynamic decision making task in a

Gaussian environment, as well as an exploration task in a maze-like environment. We

demonstrate how surprise and uncertainty interact with each other to make learning

in changing environments possible. Finally, we discuss implications of surprise in

reinforcement learning, and link surprise and its role in learning/plasticity to existing

neurophysiological evidence and behavioral data.

3.2 Results

3.2.1 Surprise minimization: the SMiLe-rule

Successful learning implies an adaptation to the environment such that an event

occurring for a second time is perceived as less surprising than the first time. In

the following surprise minimization refers to a learning strategy which modifies the

internal model of the external world such that the unexpected observation becomes

less surprising if it happens again in the near future. Surprise minimization is akin to –

though more general than – reward prediction error learning. Reward based learning

modifies the reward expectation such that a recurring reward results in a smaller

reward prediction error. Similarly, surprise-minimization learning results in a smaller
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surprise for recurring events.

To mathematically formulate learning through surprise minimization, we define a

learning rule L(X ,π0) as a mapping from a prior belief π0(θ) to a posterior belief q(θ)

after receiving data sample X , i.e., q = L(X ,π0). Moreover, we define a belief update as

the learning step after a single data sample.

We define the class L of plausible learning rules as the set of those learning rules L

for which the surprise S (X ; q) of any data sample X under the posterior belief q(θ)

is at most as surprising as the surprise S (X ;π0) of that data sample under the prior

belief π0(θ), i.e.,

L = {L : S (X ; q) ≤S (X ;π0), q = L(X ,π0),∀X ∈X }. (3.1)

In other words, if the same data sample X occurs a second time right after a belief

update, it is perceived as less surprising than the first time.

After the belief update we can measure how much the new data X has impacted the

internal model by comparing the surprise of data sample X under the posterior belief

to its surprise under the prior belief:

ΔS (X ;L) =S (X ;π0)−S (X ; q). (3.2)

Given a learning rule L, a data sample X is considered more effective for a belief

update than X ′, if ΔS (X ;L) >ΔS (X ′;L). Note that definitions in Eqs (3.1) and (3.2)

do not depend on our specific choice of surprise measure S . In the following we

choose S to be the confidence-corrected surprise Scor r [Eq (2.8)].

The impact function ΔScor r (X ;L) [Eq (3.2)], for a given data sample X , is maximized

by the learning rule that maps the prior belief π0(θ) to the scaled likelihood p̂X (θ).

However, as this posterior distribution q = p̂X does not depend on the prior belief π0,

it discards all previously learned information. Therefore, it amounts to a valid though

meaningless solution.

To avoid overfitting to the last data sample, we need to limit our search to posteriors q

that are not too different from the prior π0. This limited set can be expressed as the set

of posteriors q that fulfill the constraint DK L[q||π0] ≤ B , for some non-negative upper

bound B ≥ 0. The parameter B determines how much we allow our belief to change

after receiving a data sample X . Maximizing the impact function ΔScor r (X ;L) under
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such a constraint, is equivalent to the following constraint optimization problem:

min
q :DK L[q||π0]≤B

Scor r (X ; q). (3.3)

Using the method of Lagrange multipliers we find the solution of problem in Eq (3.3)

to be

qγ(θ) = p(X |θ)γπ0(θ)1−γ

Z (X ;γ)
, (3.4)

where Z (X ;γ) =∫
Θ p(X |θ)γπ0(θ)1−γ dθ is a normalizing factor and 0 ≤ γ≤ 1 is uniquely

determined by the bound B (see Materials and Methods for the proof). The unique

relationship between γ and B means that once B has been chosen, γ is no longer a

free parameter and vice versa.

We call the learning rule of Eq (3.4) surprise minimization learning (SMiLe) rule. It is

reminiscent of Bayes’ rule except for the parameter γ which modulates the relative

contribution of the likelihood p(X |θ) and the prior π0(θ) to the posterior q(θ). Note

that the SMiLe rule belongs to the class L of plausible learning rules, for all 0 ≤ γ≤ 1.

Choosing γ in the range 0 ≤ γ ≤ 1 is equivalent to choosing a bound B ≥ 0. To un-

derstand how the optimal solution in Eq (3.4), and thus γ, relates to the boundary

B , we illustrate its limiting cases (see Fig 3.1): (i) B = 0 yields γ= 0 and the posterior

q is identical to the prior π0. In other words, the new information is discarded. (ii)

For B ≥ Bmax = DK L[p̂X ||π0], the solution is always the scaled likelihood p̂X (cor-

responding to γ = 1) because q = p̂X fulfills the constraint DK L[q||π0] ≤ B for any

B ≥ Bmax and minimizes Scor r (X ; q) among all posteriors q . This is equivalent to

the unconstrained case, and implies that all previous information is discarded. (iii)

For 0 < B < Bmax the optimal solution is the posterior qγ [Eq (3.4)] with 0 < γ < 1

satisfying DK L[qγ||π0] = B . Moreover, B > B ′ implies γ> γ′ (see Fig 3.1, and Materials
and Methods for the proof).

While the SMiLe rule [Eq (3.4)] depends on a parameter γ which is uniquely deter-

mined by the bound B , we have yet to indicate how to choose B . Highly surprising

data should result in larger belief shifts. As such, the bound B should increase with

the level of surprise Scor r .

The definition of an optimal (nonlinear) mapping from Scor r to B (and thus to γ)

would require further assumptions about how surprise is related to the bound and

we will therefore not search for optimality. However, it is instructive to study a few

examples. For instance, if the nonlinear mapping were a step function, the system

24



3.2. Results

π 0

Scorr (X;q)
qγ

p̂X

B = 0 B = Bmax0 < B < Bmax

0 < γ <1 γ

B

γ = 0 γ = 1

Figure 3.1 – Constraint surprise minimization. Solutions to the (constraint) optimiza-
tion problem in Eq (3.3). The objective function, i.e. the posterior surprise Scor r (X ; q)
(black) for a given data sample X , is a parabolic landscape over γ where each γ cor-
responds to a unique posterior qγ. Its global minimum is at γ = 1 (corresponding
to q1 = p̂X ) which is equivalent to discarding all previously observed samples. The
boundary B constrains the range of γ and thus the set of admissible posteriors. At
B = 0 no change is allowed resulting in γ= 0 with a posterior equals to the prior π0

(green). B ≥ Bmax = DK L[p̂X ||π0] (red dashed line) implies that we allow posteriors
that are further away from the prior than the sample itself so the optimal solution is
the scaled likelihood p̂X or γ= 1 as for the unconstrained problem. For 0 < B < Bmax

(blue dashed line) the objective function is minimized by qγ in Eq (3.4) that fulfills the
constraint DK L[qγ||π0] = B with 0 < γ< 1.

would make a binary choice between either keeping the old belief or relying on the

last new data point. On the other hand, an extremely slow increase would amount

to largely ignoring the surprise and sticking to the same old belief. Therefore, the

sharpness of the transition in the mapping function matters. The exact link between

the bound and surprise is, however, not crucial as long as B is monotonic in surprise

in a reasonable way.

In the following, we choose a simple monotonic function to link the bound to the

surprise. For each data sample X , we take

B(X ) = mScor r (X ;π0)

1+mScor r (X ;π0)
Bmax(X ), (3.5)
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where Bmax(X ) = DK L[p̂X ||π0]. Here, the monotonic function depends on a subject-

specific parameter m that describes an organism’s propensity toward changing its be-

lief. Note that in Eq (3.5), m = 0 indicates that the subject will never change her belief.

As m increases so does a subject’s willingness to change her belief. Thus, differences

in m from one subject to the next will eventually allow us to capture heterogeneity

in belief update strategies. Although m is inserted in Eq (3.5) to model subjective

behaviors, one could also search for the best m algorithmically in a given simulated

environment or other computational setting.

Note that biological correlates of surprise such as pupil dilation or the activity of a

neuromodulator will normally saturate at some maximal value, consistent with our

choice of a saturating function in Eq (3.5).

3.2.2 Surprise-modulated belief update

The surprise-modulated belief update combines the confidence-corrected surprise

[Eq (2.8)] and the SMiLe rule [Eq (3.4)] to dynamically update our belief: after receiving

a new data point X , we evaluate the surprise Scor r (X ;π0) which sets the bound B

[Eq (3.5)] for our update and allows us to solve for γ. We then update the belief, using

the SMiLe rule [Eq (3.4)] with parameter γ (see Algorithm 1).

Algorithm 1 Pseudo algorithm for surprise-modulated belief update (SMiLe)

1: N ← number of data samples
2: Belief ←π0 (the prior belief)
3: m ← 0.1 (subject-dependent)
4: for n: 1 to N do
5: Xn ← a new data sample
6: (i) evaluate the surprise Scor r (Xn ;Belief), Eq (2.8)
7: (ii-a) calculate Bmax(Xn) = DK L[p̂Xn ||Belief]

8: (ii-b) choose the bound B(Xn) = mScor r (Xn ;Belief)
1+mScor r (Xn ;Belief) Bmax(Xn)

9: (iii) find γ by solving DK L[qγ||Belief] = B(Xn)

10: (iv) update using SMiLe, Eq (3.4): Belief(θ) ← p(Xn |θ)γBelief(θ)1−γ∫
Θ p(Xn |θ)γBelief(θ)1−γ dθ

11: Return Belief;

Note 1: In each iteration, we first calculate the surprise, step (i), before the model
is updated in step (iv).
Note 2: The steps (ii-a), (ii-b), and (iii) can be merged and approximated by γ=
f (Scor r (Xn ;Belief)) where f (.) is a subjective function that increases with surprise.

The parameter γ in the SMiLe rule controls the impact of a data sample X on belief
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update such that a bigger γ causes a larger impact. More precisely, the impact func-

tion ΔScor r (X ;L) in Eq (3.2), where L is replaced by the SMiLe rule [Eq (3.4)], is an

increasing function of γ (see Materials and Methods for the proof).

We note that in classical models of perception and attention [Itti and Baldi, 2009,Baldi

and Itti, 2010], surprise has been defined as a measure of belief change (such as

DK L[qγ||π0] or its mirror form DK L[π0||qγ]). We emphasize that our model of surprise

is “fast” in the sense that it can be evaluated before the beliefs are changed. Interest-

ingly, the impact function is linked to the measure of belief change by the following

equation (see Materials and Methods for derivation),

ΔScor r (X ;L) = 1

γ
DK L[π0||qγ]+

(
1

γ
−1

)
DK L[qγ||π0] ≥ 0. (3.6)

Therefore a larger reduction in the surprise implies a bigger change in belief.

3.2.3 Simulations

In the following we will look at two examples to illustrate the functionality of our

proposed surprise-modulated belief update Algorithm 1. The first is a simple, one-

dimensional dynamic decision-making task which has been used in behavioral stud-

ies [Nassar et al., 2012, Behrens et al., 2007] of learning under uncertainty. While

somewhat artificial as a task, it is appealing as it nicely isolates different forms of

uncertainty. This allows us: (i) to demonstrate the basic quantities and properties of

our algorithm, and (ii) to show how its flexibility allows it to capture a wide range of be-

haviors. The second example is a multi-dimensional maze-exploration task which we

will use to demonstrate how our algorithm extends to and performs in more complex

and realistic experimental environments.

Gaussian estimation

Task. In the one-dimensional dynamic decision-making task, subjects are asked to

estimate the mean of a distribution based on consecutively and independently drawn

samples. At each time step n, a data sample Xn is drawn from a normal distribution

N (μn ,σ2
x) and the subject is asked to provide her current estimate μ̂n of the mean of

the distribution. Throughout the experiment, the mean may change without warning

(Fig 3.2A). Changes occur with a hazard rate of H = 0.066. The variance σ2
x remains

fixed.

Model. We model the subject’s belief before the n-th sample Xn is observed, as the
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Figure 3.2 – Gaussian mean estimation task. At each time step, a data sample Xn

is independently drawn from a normal distribution whose underlying mean may
change within the interval [−20,20] at unpredictable change points. On average, the
underlying mean remains unchanged for 15 time steps corresponding to a hazard rate
H = 0.066. The standard deviation of the distribution is fixed to 4 and is assumed to be
known to the subject. A. Using a surprise-modulated belief update (Algorithm 1), the
estimated mean (blue) quickly approaches the true mean (dashed red) given observed
samples (black circles). A few selected change points are indicated by green arrows.
B. The weight factor γ in Eq (3.8) (magenta) increases at the change points, resulting
in higher influence of newly acquired data samples on the posterior mean. C. The
estimation error ε per time step versus the weight factor 0 ≤ γ ≤ 1 in the delta-rule
method with constant γ for four different hazard rates. The minimum estimation
error (for best fixed γ) is achieved by a γ (points on the horizontal axis) that decreases
with the hazard rate, indicating that a bigger γ is preferred in volatile environments.
Error bars indicate standard deviation over all trials and 50 episodes. D. For all models,
the average estimation error ε increases with the hazard rate. Moreover, surprise-
modulated belief update (SMile, dark blue) outperforms the delta-rule with the best
fixed γ (Best fixed γ, yellow). The best fixed γ for each hazard rate corresponds to the
learning rate that has minimal estimation error (indicated by points on the horizontal
axis in sub-figure C). Although the surprise-modulated SMile rule performs worse
than the approximate Bayesian delta-rule [Nassar et al., 2010] (App. Bayes, light blue),
the difference in the performance is not significant, except for the very small hazard
rate of 0.01.
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normal distribution N (μ̂n−1,σ2
n−1) where μ̂n−1 is the estimated mean and σ2

n−1 deter-

mines how uncertain the subject is about her estimation. In order to keep the scenario

as simple as possible, we assume σ2
0 =σ2

x . The posterior mean μ̂n resulting from the

surprise-modulated belief update (Algorithm 1) is a weighted average of the prior

mean μ̂n−1 and the new sample Xn (see Materials and Methods for derivation),

μ̂n = γXn + (1−γ)μ̂n−1. (3.7)

The weight factor, that determines to what extent a new sample Xn affects the posterior

mean μ̂n , is determined by γ which increases with the surprise Scor r (Xn) of that

sample (Fig 3.2B), i.e.,

γ=
√

mScor r (Xn)

1+mScor r (Xn)
, Scor r (Xn) = (Xn − μ̂n−1)2

2σ2
x

. (3.8)

Note that in this example, the confidence-corrected surprise measure is related to

the normalized unsigned prediction error |Xn − μ̂n−1|/σx . This outcome of our SMiLe-

update is consistent with recent approaches in reward learning that suggest to use

reward prediction errors scaled by standard deviation or variance [Preuschoff and

Bossaerts, 2007].

Results. The confidence-corrected surprise increases suddenly in response to the

samples immediately after the change points, as they are unexpected under the

current prior. As a consequence, surprising samples increase the influence of a new

data sample on the posterior mean (Fig 3.2B). We can compare our surprise modulated

belief update [Eqs (3.7) and (3.8)] with a delta-rule [Eq (3.7)] with constant weighting

factor γ. To enable a fair comparison we consider two situations: (i) we arbitrarily fix γ

at 0.5 or (ii) for a given hazard rate H , we first search for the optimal value of fixed γ so

as to minimize the estimation error (Fig 3.2C). We find that our surprise-modulated

belief update outperforms the delta-rule with any constant learning rate (Fig 3.2D).

This clearly shows that an adaptive learning rate is preferable to a fixed learning rate.

We also compared our proposed algorithm with a delta-rule that approximates the

optimal Bayesian solution [Nassar et al., 2010]. In the optimal model, the subject

knows a-priori that the mean will change at unknown points in time, i.e., the subject

makes use of a hierarchical statistical model of the world. The algorithm proposed

in [Nassar et al., 2010] provides an efficient approximate solution to estimate the

parameters of the hierarchical model. In this algorithm, the subject increases the

learning rate as a function of the probability of encountering a change point at a given
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time step. This probability requires knowledge or online estimation of the hazard

rate, which indicates how frequently change points occur. Although our surprise-

modulated belief update does not outperform the approximate Bayesian delta-rule,

the difference in performance is, in most cases, not significant (see Fig 3.2D). In other

words, our method, which does not require any information about the hazard rate, can

nearly reach the quality of the optimal Bayesian solution, with significantly reduced

computational complexity. Note that the SMiLe rule is not designed for (almost)

stationary environments where no fundamental change in context occurs. Therefore,

in the case where the true mean is constant (low hazard rate), the SMiLe rule results in

increased volatility in estimation. This is why the difference in performance of SMiLe

and the optimized Bayesian delta-rule becomes more evident for smaller hazard rates

than bigger ones (see Fig 3.2D).

Maze exploration

Task. The maze exploration task is similar to tasks used in behavioral neuroscience

and robotics [Morris, 1984, Gillner and Mallot, 1998, Nelson et al., 2004, Rezende

and Gerstner, 2014]. There are two environments A and B, each composed of the

same uniquely labeled (e.g., by colors or cue cards) rooms. A and B only differ in

the topology / spatial arrangement of rooms (see Fig 3.3). Neighboring rooms are

connected and accessible through doors. Initially, the agent is placed into either A or

B. At each time step, a door of the current room opens and the agent moves into the

adjacent room, thus exploring the environment. After a random exploration time the

environment is switched. Once it is changed, the agent must quickly adapt to the new

environment. Note that this task differs from a reinforcement learning task because

the task at hand just consists of the exploration phase. In particular, there is no reward

involved in learning.

Model. We model the knowledge of the environment by a learning agent that updates

a set of parameters α(s, š) ≥ 1 used for describing its belief about state transitions from

s ∈ {1,2, ...,16} to š ∈ {1,2, ...,16}\s, where 16 is the number of rooms. More precisely,

an agent’s belief about how likely it is to visit š, given the current state s, is modeled

by a Dirichlet distribution parametrized by a vector of parameters �α(s) ∈ R15. The

components of the vector �α(s) are denoted as α(s, š).

The surprise-modulated belief update (Algorithm 1), with the Dirichlet distribution

inserted, yields Algorithm 2 for the maze exploration task (see Materials and Methods
for derivation). Immediately after a transition from the current state s to the next

state s′, the posterior belief qγ obtained by the SMiLe rule [Eq (3.4)] is a Dirichlet

distribution �αnew (s) with components αnew (s, š) = γ(1+ [š = s′])+ (1−γ)αol d (s, š),
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Figure 3.3 – Maze exploration task. Environments A (left) and B (right) both con-
sist of 16 rooms, but differ in topology. At each time step, one of the four available
doors (up, down, right, left) in the current room (e.g. s = 6) is randomly opened (with
probability 0.25). While the learning agent is in environment A , the environment may
change to B with probability PA→B ≤ 0.1 in the next time step of duration Δt . Simi-
larly, PB→A indicates the environment switches from B to A . Therefore, as the agent
starts moving out of state s = 6, depending on the current environment and switch
probabilities PA→B and PB→A , it will end up in environment A (i.e., s′ ∈ {2,10,7,5})
or B (i.e., s′ ∈ {10,1,3,13}). The duration of a stay in environment A is therefore expo-
nentially distributed with mean τA =Δt/PA→B , where the parameter τA determines
the time scale of stability in environment A , i.e., for larger τA an agent has more time
for adapting to A after a change point. The expected fraction of time spent in total
within environment A is equal to ψA = PB→A /(PB→A +PA→B). Note that τA and
ψA are two free parameters that we can change to study how the agent performs in
different circumstances (e.g., see Fig 3.7).

that can be written as a weighted average of the parameters of the prior belief π0 (i.e.,

αol d (s, š)) and those of the scaled likelihood p̂X (i.e., 1+[š = s′]). Here, [š = s′] indicates

a number that is 1 if the condition in square brackets is satisfied, and 0 otherwise.

In order to see how well our proposed surprise-modulated belief update algorithm

performs in this task, we compare it with a naive Bayesian learner and an online

expectation-maximization (EM) algorithm [Mongillo and Deneve, 2008]. While in the

former the agent assumes that there is only a single stable, but stochastic environment,
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the latter benefits from knowing the true hidden Markov model (HMM) of the task

and approximates the optimal hierarchical Bayesian solution (see Materials and
Methods).

Algorithm 2 Surprise-modulated belief update for the maze exploration task

1: N ← number of data samples
2: α(s, š) = 1, ∀s ∈ {1,2, ...,16}, š ∈ {1,2, ...,16}\{s} (a uniform prior belief)
3: m ← 0.1 (subject-dependent)
4: Start in state s
5: for n: 1 to N do

# at this time step we only update the parameters that describe state transitions
from the current state s to all possible next states š ∈ {1,2, ...,16}\{s}. The prior
belief, for the state s, is π0 ∼ Di r (a), a ∈R15, a(š) =α(s, š).

6: Xn : s → s′ (a new transition is observed)
# the scaled likelihood is p̂X ∼ Di r (b),b ∈R15, b(š) = 1+ [š = s′]

7: (i) Scor r (Xn ;π0) = DK L[Di r (a)||Di r (b)]
8: (ii-a) Bmax(Xn) = DK L[Di r (b)||Di r (a)]
9: (ii-b) B(Xn) = mScor r (Xn ;π0)

1+mScor r (Xn ;π0) Bmax(Xn)
10: (iii) find γ by solving DK L[Di r (γb+ (1−γ)a)||Di r (a)] = B(Xn)
11: (iv) α(s, š) ← (1−γ)α(s, š)+γ(1+ [š = s′])
12: Return α(s, š),∀s, š;

Note 1: DK L[Di r (m)||Di r (n)] = lnΓ(
∑

š m(š)) − lnΓ(
∑

š n(š)) − ∑
š lnΓ(m(š)) +∑

š lnΓ(n(š))+∑
š(m(š)−n(š))(Ψ(m(š))−Ψ(

∑
š m(š))).

Note 2: Γ(.) and Ψ(.) denote the gamma and digamma functions, respectively.
[š = s′] denotes the Iverson bracket, a number that is 1 if the condition in square
brackets is satisfied, and 0 otherwise.

Results. Similar to the Gaussian mean estimation task, surprise is initially high and

slowly decreases as the agent learns the topology of the environment (Fig 3.4A). When

the environment is switched, the sudden increase in the surprise signal (Fig 3.4A)

causes the parameter γ to increase (Fig 3.4B). This is equivalent to discounting previ-

ously learned information and results in a quick adaptation to the new environment.

To quantify the adaptation to the new environment, we compare the state transition

probabilities of the current model with the true transition probabilities of the two

environments. We find that the estimation error of the state transition probabilities in

the new environment is quickly reduced after the switch points (Fig 3.4C). Following a

change point, the model uncertainty, measured as the entropy of the current belief

about the state transition probabilities, increases indicating that the current model

of the topology is inaccurate (Fig 3.4D). A few time steps later the uncertainty slowly

decreases, indicating increased confidence in what is learned in the new environment.
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Figure 3.4 – Time-series of relevant signals in the surprise-modulated belief up-
date (Algorithm 2) applied to the maze exploration task. All the curves have been
smoothed with an exponential moving average (EMA) with a decay constant 0.1. The
plots are shown for 1100 time steps (horizontal axis) toward the end of a simulation
with 20000 time steps. The agent visits environments A and B equally often and
spends on average 200 time steps in each environment before a switch occurs. Red
bars indicate the time that the agent explores environment A . Blue diamonds indicate
100 time steps after a change point from B to A . A. Confidence-corrected surprise
Scor r [Eq (2.8)] (green) increases at switch points and decreases (with fluctuations)
till the next change point. B. The parameter γ (magenta) increases with the surprise
at the change points and causes the next data samples to be more effective on belief
update than the samples before the change point. C. The estimation errors for the
transition matrix T̂ , EA [t ] = ||T̂ [t ]−TA ||2 = 256−1 ∑

s,s′[T̂ [t ](s, s′)−TA (s, s′)]2 (solid
black) and EB[t ] = ||T̂ [t ]−TB ||2 (solid yellow) while in environment A and B, respec-
tively, indicate a rapid adaptation to the new environment after the change points.
The dashed black and yellow lines correspond to the estimation errors EA and EB ,
respectively, when the naive Bayes rule (as a control experiment) is used for belief
update. The naive Bayes rule converges to a stationary solution (no significant change
in the estimation error after a switch of environment). D. The model uncertainty (light
blue) increases for a few time steps following a change in the environment, an alert
that the current model might be wrong. It then starts decreasing as the agent becomes
more certain in the new environment.

If we look more closely at the model parameters, we find that the surprise-modulated

belief update (Algorithm 2) enables the agent to adjust the estimated state transition
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probabilities. In Fig 3.5 we compare the estimated and the true transition probabilities

100 time steps after a switch. Given that the environment is characterized by 64

different transitions (in a space of 16×15 = 240 potential transitions), 100 time steps

allow an agent to explore only a fraction of the potential transitions. Nevertheless, 100

time steps after a switch, the matrix of transition probabilities already resembles that

of the present environment (Figs 3.5C and 3.5D).

The surprise-modulated belief update is a method of quick learning. How well does

our SMiLe update rule perform relative to other existing models? We compared it

with two well-known models. First, we compared to a naive Bayesian learner which

tries to estimate the 240 state transition probabilities using Bayes rule. Note that, by

construction, the naive Bayesian learner is not aware of the switches between the

environments. Second, we compared to a hierarchical statistical model that reflects

the architecture of the true world as in Fig 3.3. The task is to estimate the 2×240 state

transitions in the two environments as well as transition probabilities between the

environments pA→B and pB→A by an online EM algorithm.

For the naive Bayesian learner, we find that its behavior indicates a steady increase in

certainty, regardless of how surprising the samples are. In other words, it is incapable

of changing its belief after it has sufficiently explored the environments (Fig 3.4C). The

state transition probabilities are estimated by averaging over the true parameters of

both environments, where the weight of averaging is determined by the fraction of

time spent in the corresponding environment (Figs 3.5E and 3.5F).

The comparison of our surprise-modulated belief update with the online EM algo-

rithm for the hierarchical Bayesian model associated with the changing environments

provides several insights (see Fig 3.6). First, already after less than 1000 time steps, the

estimation error for environment A during short episodes in environment A drops

below EA = 0.002. Only after 10000 time steps, the online EM algorithm achieves the

same level of accuracy. While the solution of the SMiLe rule in the long run is not as

good, our algorithm benefits from a reduced computational complexity and simpler

implementation.

To further investigate the ability of an agent to adapt to the new environment after a

switch, we analyzed performance as a function of two free parameters that control the

setting of the task: (i) the fraction of time spent in environment A , and (ii) the average

time spent in environment A before a switch to B occurs. To do so, we calculate

the average estimation error in state transition probabilities 64 time steps after a

switch occurs. We consider only those switches after which the agent stays in that

environment for at least 64 time steps. Note that 64 is the minimum number of time

steps that is required to ensure that all possible transitions from 16 room to their 4
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Figure 3.5 – True and estimated state transition probabilities in the maze explo-
ration task. The color intensity for each entry (s, s′) represents the probability of
transition from a current state s (row) to a next state s′ (column). A. The true state
transition probability matrix TA (s, s′) in environment A . Each row TA (s, :) has only
four non-zero entries (small squares with the light brown color) whose position indi-
cate the neighboring rooms of state s in environment A . Note that

∑
š TA (s, š) = 1 ,∀s.

B. The true state transition probability matrix TB(s, s′) for the environment B which
has a different topology compared to A . C. The estimated state transition probabil-
ity matrix T̂A when the surprise-modulated Algorithm 2 is used for belief update.
T̂A = K −1 ∑K

k=1 T̂ [t k
B→A

+ 100] is calculated by averaging the estimated transition

matrix T̂ [t ] at 100 time steps after each of K change points t k
B→A

. Here, t k
B→A

de-
notes the k-th time that the environment is changed from B to A and has remained
unchanged for at least the next 100 time steps (relevant time points are indicated
by blue diamonds in Fig 3.4). The similarity between T̂A and TA indicates that Al-
gorithm 2 enables the agent to quickly adapt to environment A once a switch from
B to A occurs. D. The estimated transition matrix T̂B (similarly defined as T̂A but
for environment B) when Algorithm 2 is used for belief update. Note its similarity
to the true matrix TB . E-F. The estimated state transition probability matrices T̂A

(top) and T̂B (bottom) when the naive Bayesian method (as a control experiment) is
used for belief update. A Bayesian agent does not adapt well to the new environment
after a switch occurs, because it learns a weighted average of true transition matrices
TA and TB , where the weight is proportional to the fraction of time spent in each
environment. Since both environments are visited equally in this experiment, the
estimated quantities approach (TA +TB)/2.

neighbors could occur. A smaller estimation error for a given pair of free parameters

indicates a faster adaptation to the new environment for that setting.
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Figure 3.6 – Comparison of surprise-modulated belief update with an online EM
algorithm for the hierarchical Bayesian model. A. The estimation error EA (vertical
axis) of state transition probabilities within environment A versus time (horizontal
axis), for surprise-modulated belief update (black) and online EM learner (blue). Bot-
tom plots depict zooms during the early (left) and late (right) phases of a simulation of
20000 time steps. In the early phase of learning (bottom left), the surprise-modulated
belief update enables the agent to quickly learn model parameters after a switch to
environment A (indicated by red bars). In the late phase of learning (right), however,
the online EM algorithm adapts to the new environment faster and more accurately
than the surprise-modulated belief update. B. The inferred probability PA of being
in environment A (blue, right vertical axis) used in the online EM algorithm, and
the confidence-corrected surprise Scor r (black, left vertical axis) used in the surprise-
modulated belief update.

We found that the surprise-modulated belief enables an agent to quickly readjust its

estimation of model parameters, even if the fraction of time spent in an environment

is relatively short. In that sense, it behaves similarly to the approximate hierarchical

Bayesian approach (online EM algorithm). This is not, however, the case for a naive

Bayesian learner whose estimation error in each environment depends on the fraction

of time spent in the corresponding environment (see Fig 3.7).

The naive Bayesian learner suffers from low accuracy in estimation and cannot adapt

to environmental changes. A full hierarchical Bayesian model, however, requires prior

information about the task and is computationally demanding. For example, the

computational load of the hierarchical Bayesian model increases with the number

N of environments between which switching occurs. The surprise-modulated belief

update, however, balances accuracy and computational complexity: computational

complexity remains, by construction, independent of the number of switched envi-

ronments.
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Figure 3.7 – The estimation error ε in the maze exploration task, as a function of
(1) the average time spent in environment A before a switch to environment B

(τA = Δt/pA→B , vertical axis) and (2) the fraction of time spent in environment
A (ψA = PB→A /(PB→A +PA→B), horizontal axis). A. The average estimation error
(of state transition probabilities), 64 time steps after a switch from B to A , when
surprise-modulated belief update (Algorithm 2) is used for learning. The spread of blue
color (lower estimation error) illustrates that the surprise-modulated belief update
enables an agent to quickly adapt to the environment visited after a switch. For
each pair (τA ,ψA ), the simulation is repeated for 20 episodes, each consisting of
20000 time steps. In each episode a different rearrangement of rooms for building
environment B is used to make sure that the result is not biased by a specific choice
of this environment. B. The average estimation error when the online EM algorithm is
used for learning the hierarchical statistical model. C. The average estimation error
when the naive Bayesian learner is used for belief update. The estimation error for this
model is mainly determined by the fraction of time spent in environment A (i.e., ψA ).
The estimation error decreases with the time spent in environment A , regardless of
the time scale of stability determined by τA .

3.3 Discussion

We proposed a new framework for surprise-driven learning. There are two compo-

nents to this framework: (i) a confidence-adjusted surprise measure to capture envi-

ronmental statistics as well as subjective beliefs, and (ii) the surprise-minimization

learning rule, or SMiLe-rule, which dynamically adjusts the balance between new

and old information without prior assumptions about the temporal statistics in the

environment. Within this framework, surprise is a single subject-specific variable that

determines a subject’s propensity to modify existing beliefs. This algorithm is suitable

for learning in complex environments that are either stable or undergo gradual or

sudden changes. The latter are signalled by high surprise and result in placing more

weight on new information. The significance of the proposed method is that it neither

requires knowledge of the full Bayesian model of the environment nor any prior as-

sumption about the temporal statistics in the environment. Moreover, it provides a
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simple framework that could potentially be implemented in a neurally plausible way

using probabilistic population codes [Ma et al., 2006, Beck et al., 2008].

New versus old information

The proposed algorithm’s performance is primarily driven by two features: (i) the

algorithm adaptively increases the influence of new data on the belief update as

a function of how surprising the data was; and (ii) the algorithm increases model

uncertainty in the face of surprising data thus increasing the influence of new data

on current and future belief updates. The importance of the first point has been

recognized and incorporated previously [Nassar et al., 2012, Pearce and Hall, 1980].

The second point is particularly worth noting: a surprising sample not only signals

a potential change, it also signals that our current model may be wrong, so that we

should be less certain about its accuracy. This increase in model uncertainty implies

discounting the influence of past information in current and future belief updates.

Both humans and animals adaptively adjust the relative contribution of old and

newly acquired data on learning [Behrens et al., 2007, Nassar et al., 2012, Krugel et al.,

2009, Pearce and Hall, 1980] and rapidly adapt to changing environments [Pearce and

Hall, 1980, Wilson et al., 1992, Holland, 1997]. Standard Bayesian and reinforcement

learning models in humans [Tenenbaum and Griffiths, 2001] or animals [Dayan et al.,

2000, Kakade and Dayan, 2002] assume a stable environment and are slow to adapt

to sudden changes in the environment. To quickly learn in dynamic environments,

models need to include a way to detect and respond to sudden changes.

A full (hierarchical) Bayesian approach works only if the subject is aware of the correct

model of the task, (e.g., the time scale of change in the environment or the number of

environments between which switches occur). Calculating the probability of a change

point in a Gaussian estimation task [Nassar et al., 2010], estimating the volatility of

the environment in a reversal learning task [Behrens et al., 2007], and dynamically

forgetting the past information with a controlled time constant [Rüter et al., 2012]

are all examples of addressing learning in changing environments without explicit

knowledge of the full Bayesian model.

In changing environments, hierarchical Bayesian models outperform the standard

delta-rule with a fixed learning rate. However, hierarchical models either make as-

sumptions about how fast the world is changing on average or about the underlying

data generating process, in order to accurately detect a change in the environment.

While our proposed surprise-based algorithm may not be theoretically optimal, it

approximates the optimal (hierarchical) Bayesian solution without making any such
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assumption.

Model uncertainty

The ability of our proposed method to increase model uncertainty solves a common

problem in standard Bayesian learning, namely, a model uncertainty or a learning

rate approaching zero when the number of data samples increases. This is particularly

prominent in Bayes’ rule which is derived under the assumption of stationarity and

which thus reduces posterior uncertainty in each step no matter how surprising

a sample is. The SMiLe rule [Eq (3.4)] guarantees that a small model uncertainty

remains even after a long stationary period. This remaining uncertainty ensures that

an organism can still detect a change even after having spent an extensive amount

of time in a given environment (see Fig 3.4C). One might argue, that reducing the

learning rate to zero after extensive training is desirable under certain conditions

as it corresponds to the well-documented phenomenon of overtraining whereby an

organism no longer responds to changes in goal value. We would argue that this

insensitivity is a consequence of behavioral control being handed over to the habitual

system and thus to a different neural substrate [Balleine and O’Doherty, 2010, Balleine

and Dickinson, 1998, Redgrave et al., 2010].

Potential applications

Surprise minimization is a more general approach to learning than learning by re-

ward prediction error. Recent approaches in reward learning suggest using a scaled

reward prediction error [Preuschoff and Bossaerts, 2007]. A recurring problem in

reward-based learning is the observation that subjects use different learning rates

on a trial-by-trial basis even in stable environments. Researchers typically assume

an average learning rate for fitting data. Note that in our approach, the learning rate

varies naturally as a function of the last data point (as it should) while keeping the

subject-specific parameter m constant.

Note that both confidence-corrected surprise and the SMiLe rule have wide-reaching

implications outside the framework presented here. On the one hand, our surprise

measure can not only modulate learning, but can be used as a trigger signal for an

algorithm that needs to choose between several uncertain states or actions as is the

case in change point detection [Nassar et al., 2010,Wilson et al., 2013,Rüter et al., 2012],

memory and cluster formation [Gershman and Niv, 2015], exploration/exploitation

tradeoff [Cohen et al., 2007, Jepma and Nieuwenhuis, 2011], novelty detection [Knight

et al., 1996, Bishop, 1994], and network reset [Bouret and Sara, 2005]. On the other
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hand, the SMiLe-rule could add flexibility in learning and replace existing learning

algorithms in scenarios where dynamically balancing old and new information is

desired. This includes fitting γ to behavioral data without computing surprise or

controlling γ by something other than surprise. Replacing the full Bayesian model

of a learning task in changing environment with the SMile rule simplifies calcula-

tions, which makes the SMiLe-framework suitable for fitting relevant parameters to

behavioral data.

Relation to the free energy principle and variational methods

Although the free energy principle [Friston, 2010] is a contemporary theory of surprise

minimization, the idea behind it differs from our proposed surprise modulated belief

update. In the free energy principle (or in variational Bayesian methods in general)

the aim is to “approximate” the Bayesian posterior q(θ) ∝ p(X |θ)π0(θ) that is difficult

or intractable to be directly derived. In fact, given a candidate posterior distribution

q(θ) a variational bound J (X ; q) = DK L[q||π0]−〈ln p(X |θ)〉q on the Shannon surprise

SSh(X ; q) [Eq. (2.1)] is introduced such that SSh(X ; q) ≤ J(X ; q). Then the aim is to

minimize the bound J (X ; q) with respect to q . The minimum of the variational bound

J (X ; q) with respect to q simply recovers the posterior Bayes q(θ) ∝ p(X |θ)π0(θ).

In the surprise-modulated belief update, however, the aim is not to approximate the

Bayesian posterior. Instead, we would like to have a belief-update rule that enables us

to dynamically adjust the balance between the influence of the prior and the likelihood

for deriving the posterior, using a surprise-related signal. Although our approach for

deriving the SMiLe rule Eq. (3.4) was different from the variational method, we can

rederive an equation that is somewhat equivalent to the SMiLe rule but using the

variational method. The constraint DK L[q||π0] ≤ B that we introduced for deriving the

SMiLe posterior q(θ) ∝ p(X |θ)γπ0(θ)1−γ (see Eqs. (3.3), (3.4)) can also be imposed on

the variational bound J ′(X ; q) =βDK L[q||π0]−〈ln p(X |θ)〉q with the help of a Lagrange

multiplier β. By minimizing the variational bound J ′(X ; q) we can interpolate between

the prior (β→∞) and the scaled likelihood (β→ 0).

Experimental predictions

The noradrenergic system has emerged as a prime candidate for signaling unexpected

uncertainty and surprise. We predict that in experiments with changing environments,

the activity of NE should exhibit a high correlation with the confidence-corrected

surprise signal. Note that Acetylcholine (ACh), on the other hand, is a candidate

neuromodulator for encoding expected uncertainty [Yu and Dayan, 2005] and thus is
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linked to the model uncertainty (although it might also be linked to other forms of

uncertainty such as environmental stochasticity).

A variety of experimental findings are consistent with and can be explained by our

definition of confidence-corrected surprise and the SMiLe rule. It has been suggested

that ACh and NE interact in a complex manner [Yu and Dayan, 2005]. For instance, the

effectiveness of NE in controlling learning and detecting contextual changes is gated

by ACh [Yu and Dayan, 2005]. This is consistent with our hypothesis that if an agent is

uncertain about its current model of the world, unexpected events are perceived as less

surprising than when the agent is almost certain about its model (the idea behind the

confidence-corrected surprise). The impairment of adaptation to contextual changes

due to NE depletion [Sara, 1998] can be explained by the incapability of subjects to

respond to surprising events signaled by NE. The absence/suppression of ACh (low

model uncertainty) implies little or no variability of the environment so that even

small prediction error signals are perceived as surprising [Jones and Higgins, 1995],

consistent with the excessive activation of NE system in such situations.

Moreover, there is empirical evidence that NE and ACh both affect synaptic plasticity

in the cortex and the hippocampus [Gu, 2002,Bear and Singer, 1986], suppress cortical

processing [Kimura et al., 1999, Kobayashi et al., 2000], and facilitate information

processing from thalamus to the cerebral cortex [Gil et al., 1997, Hasselmo et al.,

1996, Hsieh et al., 2000]. This is consistent with our theory that surprise balances

the influence of newly acquired data (thalamocortical pathway) and old information

(corticocortical pathway) during belief update.

In summary, we proposed a measure of surprise and a surprise-modulated belief

update algorithm that can be used for modeling how humans and animals learn in

changing environments. Our results suggest that the proposed method can approxi-

mate an optimal hierarchical Bayesian learner, but with significantly reduced compu-

tational complexity. Our model provides a framework for future studies on learning

with surprise. These include computational studies, such as how the proposed model

can be neurally implemented, and neurobiological studies, such as unraveling the

interaction between different neural circuits that are functionally involved in learning

under surprise.
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3.4 Materials and Methods

Derivation of the SMiLe rule.

We note that the KL divergence DK L[a||b] is convex with respect to the first argument

a. Therefore, both the objective function Scor r (X ; q) in Eq (2.8) and the constraint

DK L[q||π0] ≤ B in the optimization problem in Eq (3.3) are convex with respect to q ,

which ensures the existence of the optimal solution. In the following, small numbers

above an equality sign refer to equations in the main text.

We solve the constraint optimization by introducing a non-negative Lagrange multi-

plier λ−1 ≥ 0 and a Lagrangian

L(q,λ) = Scor r (X ; q)− 1

λ
(B −DK L[q||π0])

(2.6)= 〈− ln p(X |θ)+ ln q(θ)+ 1

λ
ln

q(θ)

π0(θ)
〉

q
− B

λ
+ ln ||p||, (3.9)

where 〈.〉q denotes the average with respect to q . Similar to the standard approach

that is used in support vector machines [Schölkopf and Smola, 2002], the Lagrangian

L defined in Eq (3.9) must be minimized with respect to the primal variable q and

maximized with respect to the dual variable λ (i.e., a saddle point must be found).

Therefore the constraint problem in Eq (3.3) can be expressed as

argmin
q

max
λ≥0

L(q,λ). (3.10)

By taking the derivative of L with respect to q and setting it equal to zero,

∂L

∂q
=− ln p(X |θ)+ [

1+ ln q(θ)
]+ 1

λ

[
1+ ln

q(θ)

π0(θ)

]= 0, (3.11)

we find that the Lagrangian in Eq (3.9) is minimized by the SMiLe rule [Eq (3.4)], i.e.,

q(θ) ∝ p(X |θ)γπ0(θ)1−γ, where γ is determined by the Lagrange multiplier λ:

0 ≤ γ= λ

λ+1
≤ 1. (3.12)

Note that the constant Z (X ;γ) in Eq (3.4) follows from straight normalization of q(θ)

to integral one.
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A larger bound B > B ′ on belief change implies a bigger γ > γ′ in the

SMiLe rule.

For 0 < B < Bmax the solution of optimization problem in Eq (3.3) is the posterior

qγ [Eq (3.4)] with 0 < γ < 1 satisfying DK L[qγ||π0] = B . In order to prove that B > B ′

implies γ> γ′, we just need to show that DK L[qγ||π0] is an increasing function of γ

and thus its first derivative with respect to γ is always non-negative.

For this purpose, first we need to evaluate the derivative of qγ(θ), [Eq (3.4)], with

respect to γ:

∂

∂γ
qγ(θ) = 1

Z (X ;γ)

∂

∂γ

[
p(X |θ)γπ0(θ)1−γ]+p(X |θ)γπ0(θ)1−γ ∂

∂γ

[ 1

Z (X ;γ)

]
= 1

Z (X ;γ)

[
p(X |θ)γπ0(θ)1−γ ln

p(X |θ)

π0(θ)

]− p(X |θ)γπ0(θ)1−γ

Z (X ;γ)2

∂

∂γ

[
Z (X ;γ)

]
= qγ(θ) ln

p(X |θ)

π0(θ)
−qγ(θ)

1

Z (X ;γ)

[∫
Θ

ln
p(X |θ)

π0(θ)
p(X |θ)γπ0(θ)1−γ dθ

]
= qγ(θ)

(
ln

p(X |θ)

π0(θ)
−〈ln p(X |θ)

π0(θ)
〉

qγ

)
. (3.13)

Note also that

∫
Θ

∂

∂γ
qγ(θ) dθ

(3.13)=
∫
Θ

qγ(θ)

(
ln

p(X |θ)

π0(θ)
−〈ln p(X |θ)

π0(θ)
〉

qγ

)
dθ = 0. (3.14)
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Then we calculate the derivative of DK L[qγ||π0] with respect to γ:

∂

∂γ
DK L[qγ||π0] =

∫
Θ

∂

∂γ

[
qγ ln

qγ(θ)

π0(θ)

]
dθ

=
∫
Θ

(
ln

qγ(θ)

π0(θ)

∂

∂γ

[
qγ(θ)

]+qγ(θ)
∂

∂γ

[
ln

qγ(θ)

π0(θ)

])
dθ

=
∫
Θ

(
ln

qγ(θ)

π0(θ)
+1

)
∂

∂γ

[
qγ(θ)

]
dθ

(3.4)=
∫
Θ

(
γ ln

p(X |θ)

π0(θ)
− ln Z (X ;γ)+1

)
∂

∂γ

[
qγ(θ)

]
dθ

(3.14)= γ

∫
Θ

(
ln

p(X |θ)

π0(θ)

)
∂

∂γ

[
qγ(θ)

]
dθ

(3.13)= γ

∫
Θ

(
ln

p(X |θ)

π0(θ)

) (
ln

p(X |θ)

π0(θ)
−〈ln p(X |θ)

π0(θ)
〉

qγ

)
qγ(θ) dθ

= γ

∫
Θ

(
ln

p(X |θ)

π0(θ)

)2

qγ(θ) dθ

− γ〈ln p(X |θ)

π0(θ)
〉

qγ

∫
Θ

(
ln

p(X |θ)

π0(θ)

)
qγ(θ) dθ

= γ

(
〈
(
ln

p(X |θ)

qγ(θ)

)2

〉
qγ

−
(
〈ln p(X |θ)

π0(θ)
〉

qγ

)2)

= γ var [ln
p(X |θ)

π0(θ)
] ≥ 0. (3.15)

The impact of a data sample X on belief update increases with γ in

the SMiLe rule.

To prove the statement above we need to show that the impact function ΔScor r (X ;L)

in Eq (3.2), where L is replaced by the SMiLe rule in Eq (3.4), increases with the

parameter γ. In the following we show that the first derivative of the impact function
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ΔScor r (X ;L(γ)) with respect to γ is always non-negative.

∂

∂γ
ΔScor r (X ;L(γ)) = − ∂

∂γ
Scor r (X ; qγ)

(2.8)=
∫
Θ

∂

∂γ

[
qγ ln

p(X |θ)

qγ(θ)

]
dθ

=
∫
Θ

(
ln

p(X |θ)

qγ(θ)

∂

∂γ

[
qγ(θ)

]+qγ(θ)
∂

∂γ

[
ln

p(X |θ)

qγ(θ)

])
dθ

=
∫
Θ

(
ln

p(X |θ)

qγ(θ)
−1

)
∂

∂γ

[
qγ(θ)

]
dθ

(3.4)=
∫
Θ

(
(1−γ) ln

p(X |θ)

π0(θ)
+ ln Z (X ;γ)−1

)
∂

∂γ

[
qγ(θ)

]
dθ

(3.14)= (1−γ)
∫
Θ

(
ln

p(X |θ)

π0(θ)

)
∂

∂γ

[
qγ(θ)

]
dθ

(3.13)= (1−γ)
∫
Θ

(
ln

p(X |θ)

π0(θ)

)(
ln

p(X |θ)

π0(θ)
−〈ln p(X |θ)

π0(θ)
〉

qγ

)
qγ(θ) dθ

= (1−γ)
∫
Θ

(
ln

p(X |θ)

π0(θ)

)2

qγ(θ) dθ

− (1−γ)〈ln p(X |θ)

π0(θ)
〉

qγ

∫
Θ

(
ln

p(X |θ)

π0(θ)

)
qγ(θ) dθ

= (1−γ)

(
〈
(
ln

p(X |θ)

qγ(θ)

)2

〉
qγ

−
(
〈ln p(X |θ)

π0(θ)
〉

qγ

)2)

= (1−γ) var [ln
p(X |θ)

π0(θ)
] ≥ 0. (3.16)
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A larger reduction in the surprise implies a bigger change in belief.

The minimal value of the Lagrangian L(q,λ) in Eq (3.9) that is achieved by the posterior

qγ in Eq (3.4), obtained by the SMiLe rule, is equal to

L(qγ,λ)
(3.9)= 〈− ln p(X |θ)+ ln qγ(θ)+ 1

λ
ln

qγ(θ)

π0(θ)
〉

qγ

=C︷ ︸︸ ︷
−B

λ
+ ln ||p||

= 〈− ln p(X |θ)+ ln
p(X |θ)γπ0(θ)1−γ

Z (X ;γ)
+ 1

λ
ln

p(X |θ)γπ0(θ)1−γ

Z (X ;γ)π0(θ)
〉

qγ

+C

= 〈(−1+γ+ γ

λ
) ln p(X |θ)+ (1−γ− γ

λ
) lnπ0 − (1+ 1

λ
) ln Z (X ;γ)〉

qγ

+C

= 〈
(
−1+γ(1+ 1

λ
)

)
ln

p(X |θ)

π0(θ)
− (1+ 1

λ
) ln Z (X ;γ)〉

qγ

+C

= −1

γ
ln Z (X ;γ)+C . (3.17)

Note that we used the equality 1
γ
= 1+ 1

λ
, from Eq (3.12), in the last line of Eq (3.17). If

the minimizer qγ is approximated by any other distribution function q , then its corre-

sponding functional value L(q,λ) differs from its minimal value L(qγ,λ) in proportion

to the KL divergence DK L[q||qγ]. This is because,

L(q,λ)−L(qγ,λ)
(3.9),(3.17)= 〈− ln p(X |θ)+ ln q(θ)+ 1

λ
ln

q(θ)

π0(θ)
〉

q
+ 1

γ
ln Z (X ;γ)

= 1

γ
〈− ln p(X |θ)γ+ ln q(θ)γ+ ln

(
q(θ)

π0(θ)

) γ
λ + ln Z (X ;γ)〉

q

= 1

γ
〈ln q(θ)γ(1+ 1

λ )Z (X ;γ)

p(X |θ)γπ0(θ)
γ
λ

〉
q

= 1

γ
〈ln q(θ)Z (X ;γ)

p(X |θ)γπ0(θ)1−γ 〉
q

= 1

γ
DK L[q||qγ]. (3.18)

Replacing q with π0 in Eq (3.18) follows the impact function ΔScor r (X ;L) in Eq (3.2)
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to be,

ΔScor r (X ;L(γ)) = Scor r (X ;π0)−Scor r (X ; qγ)

(3.9)= L(π0,λ)+ 1

λ
B −L(qγ,λ)− 1

λ
(B −DK L[qγ||π0])

= L(π0,λ)−L(qγ,λ)+ 1

λ
DK L[qγ||π0]

(3.18)= 1

γ
DK L[π0||qγ]+ 1

λ
DK L[qγ||π0]

(3.12)= 1

γ
DK L[π0||qγ]+

(
1

γ
−1

)
DK L[qγ||π0] ≥ 0. (3.19)

Therefore, the reduction in the posterior surprise is related to the belief changes

DK L[π0||qγ] and DK L[qγ||π0] via Eq (3.19). Note that the equality in Eq (3.19) holds

if and only if there is no change in the prior belief, i.e., if qγ =π0. This happens only

if γ= 0 which is equivalent to the full neglect of the new data point in deriving the

posterior belief.

The SMiLe rule for beliefs described by Gaussian distribution.

Suppose we have drawn n −1 samples X1, ..., Xn−1 from a Gaussian distribution of

known variance σ2
x , but unknown mean. The empirical mean after n −1 samples is

μ̂n−1.

Assume that the current belief about the mean μ is a normal distribution, i.e., π0(μ) ∼
N (μ̂n−1,σ2

n−1). Since the likelihood of receiving a new sample Xn is also normal, i.e.,

p(Xn |μ) ∼N (μ,σ2
x), the posterior belief obtained by the SMiLe rule [Eq (3.4)] is

qγ(μ) ∝
(
exp

(
− (Xn −μ)2

2σ2
x

))γ (
exp

(
− (μ− μ̂n−1)2

2σ2
n−1

))1−γ

∝ exp

(
− (Xn −μ)2

2(σ′
x)2

)
exp

(
− (μ− μ̂n−1)2

2(σ′
n−1)2

)
, (3.20)

where (σ′
x )2 =σ2

x /γ and (σ′
n−1)2 =σ2

n−1/(1−γ). Because the product of two Gaussians

is a Gaussian, we arrive at a posterior distribution qγ ∼N (μ̂n ,σ2
n) with the mean μ̂n =

wn Xn+(1−wn)μ̂n−1 (with wn = (σ′
n−1)2

(σ′
x )2+(σ′

n−1)2 ), and the variance σ2
n =

(
1

(σ′
x )2 + 1

(σ′
n−1)2

)−1
;

see [MacKay, 2003] for the exact derivation. Assuming σ2
n−1 =σ2

x , then wn = γ. More-
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over, we can evaluate the confidence-corrected surprise to be

Scor r (Xn ;π0) = DK L[N (μ̂n−1,σ2
n−1)||N (Xn ,σ2

x)] = (Xn − μ̂n−1)2

2σ2
x

. (3.21)

Note that in Eq (3.21), we used the following equality in Eq (3.22) (assuming σ2
x =σ2

n−1),

DK L[N (a1,b2
1)||N (a2,b2

2)] = (a1 −a2)2

2b2
2

+ 1

2

(
b2

1

b2
2

−1− ln
b2

1

b2
2

)
. (3.22)

The SMiLe rule for beliefs described by a Dirichlet distribution.

Assume that the current belief about the probability of transition from state s ∈
{1,2, ...,D} to all D −1 possible next states š ∈ {1,2, ...,D}\s is described by a Dirichlet

distribution π0(θs) ∝ Πš θ(s, š)α(s,š)−1 parametrized by αs = α(s, :). Here, θs = θ(s, :)

denotes a vector of random variable θ(s, š) that determines the probability of transi-

tion from s to š, i.e., 0 ≤ θ(s, š) ≤ 1 and
∑

š θ(s, š) = 1. The likelihood function for an

occurred transition X : s → s′ is p(X |θs) = θ(s, s′) =Πš θ(s, š)[š=s′], where [.] denotes

the Iverson bracket. Therefore, the posterior belief qγ(θs) obtained by the SMiLe rule

[Eq (3.4)],

qγ(θs) ∝
(
Πš θ(s, š)[š=s′]

)γ
.
(
Πš θ(s, š)α(s,š)−1

)1−γ ∝Πš θ(s, š)β(s,š)−1, (3.23)

is again a Dirichlet distribution parametrized by β(s, š) = (1−γ)α(s, š)+γ(1+ [š = s′]).

The probability T̂ [t ](s, s′) of transition from s to s′ at time step t is estimated by

T̂ [t ](s, s′) = α[t ](s,s′)−1+ε∑
š (α[t ](s,š)−1+ε) , where α[t ](s, š) denotes the updated model parameter at

time step t . Here, ε> 0 is a very small number which prevents the denominator from

being zero.

The online EM algorithm for the maze-exploration task.

The online EM algorithm, presented in [Mongillo and Deneve, 2008], is an estima-

tion algorithm for the unknown parameters of a hidden Markov model (HMM). For

the maze-exploration task we adapted the method presented in [Mongillo and Den-

eve, 2008] such that the transition probability to a new room also depends on the

previously visited room (and not just the current environment). The HMM of the maze-

exploration task consists of two sets of unknown parameters: (i) a set P = [Pi j ]2×2 of
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(unknown) switch probabilities from environment i to j (where we use 1 for environ-

ment A and 2 for environment B), and (ii) a set T = [T j ss′]2×16×16 of state transition

probabilities, where T j ss′ denotes the probability of transition from state s to state s′

within environment j . The set of all unknown parameters is denoted by Θ≡ (P,T).

At each time step t , we estimate the probability q t
l = P (Et = l |s0→t ) of being in en-

vironment Et = l ∈ {1,2}, given all previous state transitions s0→t = {s0, s1, ..., st }. The

probability q t
l can be recursively calculated by

q̂ t
l =

∑
m

q̂ t−1
m γt

ml , (3.24)

where γt
ml = P (s′=st |s=st−1,Et=l )P (Et=l |Et−1=m)

P (s′=st |s0→(t−1)) belongs to a set of auxiliary variables Γ=
[γlh]2×2 that are calculated by the last estimate Θ̂t−1 of the model parameters:

γt
l h =

P̂ t−1
lh T̂ t−1

hst−1st∑
m,n q̂ t−1

m P̂ t−1
mn T̂ t−1

nst−1st

. (3.25)

Then, using these auxiliary variables γlh , a set Φ= [φ̂i , j ,s,s′,h]2×2×16×16×2 of parameters

is recursively updated:

φ̂t
i , j ,s,s′,h =∑

l
γt

lh

[
(1−η)φ̂t−1

i , j ,s,s′,l +ηq̂ t−1
l Δ

lhst−1st
i j ss′

]
, (3.26)

where Δ
lhst−1st
i j ss′ = δ(i − l )δ( j −h)δ(s − st−1)δ(s′ − st ), δ(.) is the Kronecker delta (i.e., 1

when its argument is zero and 0 otherwise), and η is the learning rate.

Finally, the model parameters are updated by

P̂ t
i j =

∑
s,s′,h φ̂

t
i j ss′h∑

j ,s,s′,h φ̂
t
i j ss′h

; T̂ t
j ss′ =

∑
i ,h φ̂

t
i j ss′h∑

i ,s′,h φ̂
t
i j ss′h

. (3.27)

We emphasize that in order for the online EM algorithm to work properly, some tech-

nical considerations must be respected. For instance, in the beginning of learning,

only online estimation of Φ must be updated (without updating the model parameters

Θ), so that the estimation error for the first 2000 time steps of our simulation (Fig 3.6A,

blue) remains fixed. Moreover, we found that the online EM algorithm works well only

if it is correctly initialized. To make our comparison fair, we assumed the agent “be-

lieves in” frequent transitions between environments by initializing the probabilities

P̂ 0
i j that describe the switch between environment A and B to be very close to true
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ones. Without such an assumption, the online EM takes even more time than what we

reported here to learn the maze-exploration task. The actual initialization values were

P̂ 0
12 = P̂ 0

21 = 0.1 while the true values were P12 = P21 = 0.005.
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4 A Biologically Plausible 3-Factor
Learning Rule from Gradient Descent
Optimization
One of the most frequent problems in both decision making and reinforcement learn-

ing (RL) is maximizing an expected quantity involving functionals such as reward

or utility. Generally, these problems consist of computing the optimal solution of a

density function. Instead of trying to find this exact solution, a common approach is

to approximate it iteratively through a learning process.

In this work we propose a functional gradient rule for the maximization of a general

form of density-dependent functionals using a stochastic gradient ascent algorithm. If

a neural network is used for parametrization of the desired density function, the pro-

posed learning rule can be viewed as a modulated Hebbian rule. Such a learning rule is

biologically plausible, because it consists of both local and global factors correspond-

ing to the coactivity of pre/post-synaptic neurons and the effect of neuromodulation,

respectively.

We first apply our technique to standard reward maximization in RL and a variational

learning problem to show that reward and surprise signals can be interpreted as third

factors in this framework. We then use our functional gradient method to derive an

online rule for the approximation of the SMiLe rule, introduced in Chapter 3. We

implement the aforementioned maze-exploration task in a spiking neural network

using our proposed online rule. We show that the proposed online rule is a covariance

learning rule, where the strength of the connections between the neurons changes as a

function of covariance between the activity of post-synaptic neurons and an estimate

of confidence-corrected surprise.
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4.1 Introduction

Maximizing an expected quantity, is one of the most frequently encountered problems

in both decision making [Janis and Mann, 1977] and reinforcement learning [Sutton

and Barto, 1998b]. It usually implies computing the optimal solution of a density

function. The density might represent a learning agent’s policy in RL, or the likeli-

hood of selecting different choices in a decision making process. We introduce a

functional gradient rule for the maximization of a general form of density-dependent

functionals, such as reward or utility, using a stochastic gradient ascent algorithm. The

resulting learning rule approaches the optimal solution through an iterative process.

This learning rule benefits from biological plausibility if a neural network is used for

parametrization of the desired density function. As we will see below, it is consistent

with a modulated Hebbian learning rule (i.e., 3-factor learning rule) in which both

global and local factors influence the synaptic connections among the neurons.

We first apply our technique to standard reward maximization in RL. As expected,

this yields the standard policy gradient rule [Baxter et al., 2001, Florian, 2007, Peters

and Schaal, 2006, Pfister et al., 2006, Williams, 1992, Xie and Seung, 2004, Sutton et al.,

1999], in which parameters of the model are updated proportional to the amount of

reward. Next, we use variational free energy as a functional and find that the estimated

change in parameters is modulated by a measure of surprise (the subjective Shannon

surprise Eq. (2.1)). We then apply our technique to the constraint surprise minimiza-

tion problem, introduced in Chapter 3, to approximate the SMiLe rule. It yields an

online rule, in which the estimated change in the parameters is determined by the

covariance of surprise and the activity of the post-synaptic neuron. These examples

demonstrate that reward and surprise can both play the role of global third factors in

the general framework of three-factor learning rules.

4.2 Results

4.2.1 Functional gradient rule: Theory

We apply stochastic gradient ascent to approximate the optimal density function that

maximizes a functional

F[P ] = 〈F [P ]〉P , (4.1)

where 〈.〉P denotes the average with respect to the probability density P (x) of a random

variable x. The term F [P ] might be considered as a general form of reward, utility,
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or surprise function which may itself depend on the density function P . The general

form of the online gradient rule is given in the following theorem.

Theorem 1 (functional gradient rule): The stochastic gradient ascent algorithm for

maximizing the functional F[P ] in Eq. (4.1) over all possible distributions P parametrized

by θ ∈Rn yields the online learning rule,

Δθ∝ F̃∇θ lnP, (4.2)

where the multiplicative factor F̃ is defined as

F̃ = ∂

∂P
(PF [P ]) =F [P ]+ ∂F [P ]

∂ lnP
, (4.3)

evaluated at a sample x = X ∗.

Proof: In order to have an online learning rule for θ ∈Rn , we first need to calculate the

gradient of F [P ] with respect to θ. The exact gradient of the functional in Eq. (4.1) is

∇θ 〈F [P ]〉P =
∫

d x
[

P∇θF [P ]+F [P ]∇θP
]

=
∫

d x
[

P

(
∂F [P ]

∂P
∇θP

)
+F [P ] (P∇θ lnP )

]
= 〈∂F [P ]

∂P
∇θP +F [P ]∇θ lnP〉

P
= 〈∂F [P ]

∂P
(P∇θ lnP )+F [P ]∇θ lnP〉

P

= 〈
(
∂F [P ]

∂P
P +F [P ]

)
∇θ lnP〉

P
= 〈∂ (PF [P ])

∂P
∇θ lnP〉

P
, (4.4)

where we used the equality P∇θ lnP =∇θP in the first two lines of derivation above.

In gradient ascent algorithm, the amount of change in the model parameter is in

proportion to the exact gradient. However it might be difficult or intractable to exactly

calculate the gradient. For instance, the exact gradient in Eq. (4.4) is expressed as an

average quantity 〈.〉P which may be difficult to be calculated at each time step. There-

fore, we may replace the exact gradient with an estimate using one or a few samples

drawn from the distribution P . This replacement is the idea behind the stochastic

gradient method. For deriving the online learning rule Eq. (4.2), we replace the exact

gradient with a point-estimate of that quantity to change the model parameters (at

each time step) by a Δθ that fulfills the equation 〈Δθ〉P =∇θF[P ].

Corollary 1: The multiplicative factor F̃ in the learning rule (4.2) can be replaced by
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F̃ +c where c is a constant or a variable that does not depend on x, because

〈(F̃ +c
)∇θ lnP〉P = 〈F̃∇θ lnP〉P +c 〈∇θ lnP〉P , (4.5)

and 〈∇θ lnP〉P =∫
d x P∇θ lnP =∫

d x ∇θP =∇θ

∫
d x P =∇θ(1) = 0.

Corollary 2: If F [P ] is linear with respect to lnP , then the multiplier factor F̃ can be

replaced by F . The proof is simply done by using Corollary 1 in (4.3).

Corollary 3: The proposed online stochastic gradient rule (Eq. (4.2)) can be trans-

formed to a covariance learning ruleΔθ∝Cov(F̃ ,∇θ lnP ). This is done by subtracting

a constant c = 〈F̃ 〉P from the third factor (according to Corollary 1), i.e.,

〈Δθ〉P = 〈(F̃ −〈F̃ 〉P
)∇θ lnP〉P = 〈F̃∇θ lnP〉P −〈F̃ 〉P 〈∇θ lnP〉P . (4.6)

Cor. 1 - Cor. 3 are generalizations of the policy-gradient method [Baxter et al., 2001].

We want to stress that our proposed learning rule (4.2) can indeed be embedded in

the class of biologically plausible 3-factor learning rules, if a neural network is used

for parametrization. Detailed examples will be shown below, but the two generic

aspects are: (i) the term F̃ represents a globally modulating third factor. We note that

to evaluate F̃ we need information from all neurons in the ensemble. Importantly, we

need to evaluate F̃ only once and this information is then used in the update step

for all neurons; (ii) the term ∇θ lnP represents a local Hebbian term, and depends on

both pre-synaptic and post-synpatic neural activity as shown now.

The two local factors

As an example, we use a population of spiking neurons for learning the density func-

tion P such that the spontaneous activity of the neural population at each time step

represents a sample drawn from that distribution. Importantly, we assume that there

are no “hidden” neurons so that the spike trains of all neurons are observable and

part of the density function P (x). The neuron model that we use here is a generalized

linear model (GLM). This model has the form of a Spike Response Model (SRM) with

escape noise [Pillow et al., 2008, Jolivet et al., 2006]. The membrane potential ui (t ) of

neuron i at time t is given as

ui (t ) =∑
j

wi j (X j ∗φ)(t )+ηi (t ), (4.7)

where wi j is the synaptic efficacy between pre-synaptic neuron j and post-synaptic

neuron i , X j (t ) =∑
f δ(t − t f

j ) denotes the presynaptic spike train, φ(t ) is the somatic
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Excitatory Post Synaptic Potential (EPSP), and ηi (t) = −η0
∫t

0 d s e− t−s
τa Xi (s) is the

adaptation potential (η0 and τa are constants). The spikes are then generated by

a stochastic Point process using an exponential intensity ρi (t) [Jolivet et al., 2006]

conditioned on the membrane potentials,

ρi (t ) = ρ0 exp(
ui (t )−θ

ΔU
), (4.8)

where θ and ΔU are physical constants of the neuron. The synaptic efficacies wi j

between neurons are free parameters θ ∈Rn and parametrize P . A set of spike trains

{Xi } generated by all the neurons in a time interval T represents a data sample x.

Therefore, the relative frequency of the occurrence of a given set of spike trains x =
{Xi } compared to all other possible sets of spike trains represents the corresponding

probability density P (x).

The likelihood of a particular spike train x = {Xi } which is observed in the interval

[0,T ] can be written as [Pfister et al., 2006, Rezende et al., 2011]

lnP (x) =∑
k

∫T

0
d t [lnρk (t )Xk (t )−ρk (t )], (4.9)

and its gradient with respect to the particular synaptic weight wi j is calculated as

(see [Pfister et al., 2006, Rezende et al., 2011, Rezende and Gerstner, 2014] for details)

∇wi j lnP (x) = 1

ΔU
(X j ∗φ)(t ) [Xi (t )−ρi (t )]. (4.10)

Therefore, we conclude that an update of synaptic weights wi j according to gradient

ascent Δwi j ∝∇wi j lnP (x) can be calculated locally and is written as a product of

two local (Hebbian) factors: (X j ∗φ)(t ) which depends on the firing times of the pre-

synaptic neuron j and [Xi (t)−ρi (t)] that depends on the state of the post-synaptic

neuron i . Note that similar derivations can be performed for simpler neuronal models

such as binary neurons without refractoriness [Xie and Seung, 2004].

4.2.2 Functional gradient rule: Applications

The functional online gradient rule of Eq. (4.2) can be applied to a wide range of

learning problems in different contexts. In this section, we first review two of the

existing learning algorithms (policy gradient methods and variational learning meth-

ods) and predict how their corresponding online learning rule in a neural network

should look like. We show that our prediction (using the functional gradient rule of
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Eq. (4.2)) is consistent with the existing models that have been used for the neural

implementation of such learning methods.

We then apply our technique to the constraint surprise minimization problem, from

which the SMiLe rule was derived, to provide an appropriate online rule for the neural

implementation of the surprise belief update algorithm. In Section 4.3 we will use

that online rule in a spiking neural network to simulate the aforementioned maze-

exploration task in a neural system.

Policy gradient (review)

Reward maximization in the context of reinforcement learning is formulated as finding

an action policy π(a|s) that maximizes the expected reward 〈R(s, a)〉π(a|s) f (s), where

R(s, a) denotes the reward for taking action a in state s and f (s) is the density function

of state space. Policy gradient methods [Baxter et al., 2001, Florian, 2007, Peters and

Schaal, 2006, Pfister et al., 2006, Williams, 1992, Xie and Seung, 2004, Sutton et al.,

1999] are well-established iterative algorithms to address the reward maximization

problems. They iteratively learn the optimal action policy π(a|s) by modifying the

model parameters in the direction of the gradient of the expected reward function

〈R(s, a)〉π(a|s) f (s) with respect to the corresponding parameters.

Policy gradient methods have been applied to spiking neural networks [Pfister et al.,

2006, Florian, 2007, Xie and Seung, 2004, Vasilaki et al., 2009]. To keep things simple,

we assume that the state s of the environment and the action a that the agent chooses

are respectively determined by the spike trains of place cells and action cells as two

separate neuronal populations. The synaptic weights wi j between the place cells

j and the action cells i are then used as free parameters that encode the action

policy π(a|s). Policy gradient method for the network of spiking neurons suggests

reward maximization (also known as R-max [Frémaux et al., 2010]) learning rule that

is generally expressed as (see [Pfister et al., 2006, Vasilaki et al., 2009] for the details of

derivation)

dei j

d t
= −ei j

τ
+ (X j ∗φ)(t ) [Xi (t )−ρi (t )], (4.11)

d wi j

d t
= η(R(t )−b)ei j (t ). (4.12)

R-max learning rule in Eqs. (4.11),(4.12) is an example of three-factor learning rule. The

eligibility trace ei j [Sutton and Barto, 1998b] defined as a low-pass filter of co-activity

between neurons j and i combines the two local Hebbian factors. The success signal
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R(t )−b modulates the direction and speed of weight update. The constant baseline b

in the success signal R(t )−b is often replaced by the average reward R̄ [Frémaux et al.,

2010].

We emphasize again that the amount of change in wi j (Eq. (4.12)) does not only

depend on the local Hebbian factors (i.e., the eligibility trace ei j ), but it also depends

on the reward R(t ) delivered at time t . This is consistent with the functional gradient

rule (Theorem 1) in combination with Eq. (4.10), which predict that the change in the

model parameters should have the following form:

Δwi j ∝ (R ±c) ∇wi j lnπ
(4.10)= (R ±c) (X j ∗φ)(t ) [Xi (t )−ρi (t )]. (4.13)

Note that for maximizing the expected reward 〈R(s, a)〉π(a|s) f (s), the third factor F̃

[Eq. (4.3)] may be equal to R := R(s, a) or R ±c because the reward does not explicitly

depend on the policy π (and the model parameters wi j ) and so F̃ =F (according to

Corollary 2) or F̃ =F±c (according to Corollary 1). The shift by an arbitrary amount

c is a well-known result for policy gradient rules [Baxter et al., 2001, Sutton et al., 1999]

Variational learning (review)

Variational methods are typically used in complex statistical models which are de-

fined by a joint distribution p(v,h) over a set of observed (visible) variables v and

latent (hidden) variables h. The joint distribution p can be interpreted as a generative

model for the input statistics p(v) governed by some adaptive parameters θ ∈ Rn .

Variational methods are used in machine learning to approach two important aims:

first, to analytically approximate the posterior distribution p(h|v) of hidden variables

(for statistical inference over them); second to derive a lower bound for a marginal

likelihood p(v) =∑
h p(v,h) of the visible variables (usually for model selection). We

focus on this second aim. A computationally tractable lower bound L (q ; w,θ) for the

marginal likelihood p(v) of the visible variables is calculated by using an auxiliary

distribution q(h|v):

ln p(v) = ln
∑
h

p(v,h) = ln
∑
h

q(h|v)
p(v,h)

q(h|v)

≥ ∑
h

q(h|v) ln
p(v,h)

q(h|v)
:=L (q ; w,θ), (4.14)

where we have applied Jensen’s inequality. Here w ∈Rm denotes adaptive parameters

used for expressing q(h|v). The difference between the true log likelihood ln p(v) and
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its approximated lower bound L (q ; w,θ) is

ln p(v)−L (q ; w,θ) =∑
h

q(h|v) ln
q(h|v)

p(h|v)
:= DK L(q||p). (4.15)

Therefore, maximizing the lower bound L (q ; w,θ) with respect to w is equivalent to

minimizing the Kullback-Leibler divergence DK L(q||p) between the true posterior

distribution p(h|v) and the approximated one q(h|v). The lower bound L (q ; w,θ)

is known as (negative) variational free energy F[q ; v] in statistical learning [MacKay,

2003] and can be expressed as

F[q ; v] =−L (q ; w,θ) = 〈− ln p(v,h)〉q −H(q) = 〈− ln p(v,h)+ ln q(h|v)〉q . (4.16)

The variational free energy F[q ; v], for a given observed sample v , is an estimate of

the Shannon surprise SSh(v) =− ln
∫

h p(v,h)dh =− ln p(v) [Eq. (2.1)] [Friston, 2010].

Therefore, it indicates how surprising a new observed sample v is perceived for a

subject whose internal model of the external world is modeled by a generative model

p(v,h) and an auxiliary distribution q(h|v).

Let us now relate the above results to our Theorem 1 [Eqs. (4.2), (4.3)]. We can ex-

press the variational free energy F[q ; v] as an expected quantity 〈F [q ; v]〉q , where

F [q ; v] =− ln p(v,h)+ ln q(h|v). We introduce weights w which parametrize the dis-

tribution q(h|v). Therefore we can apply our technique for approximating the optimal

solution. The online learning rule, suggested by Theorem 1, for variational free energy

minimization is then given by

Δw ∝−(F ±c)∇w ln q, (4.17)

where the minus sign arises because of the minimization. Here F = F [q ; v] is the

point-estimate of free energy for the observed sample v : note that the modulation

factor F in Eq. (4.17) is − ln p(v,h)+ ln q(h|v) evaluated at a randomly sampled h

from q(h|v). According to Corollary 2, the multiplicative factor F̃ in Eq. (4.2) is equal

to F [q ; v] since F [q ; v] is linear in ln q .

The learning rule Eq. (4.17) suggests that the amount of change in model parameters

w is proportional to an estimate of the Shannon surprise SSh(v). In other words, the

surprise signal measured as the instantaneous free energy (an estimate of the Shannon

surprise) modulates the learning rate such that more surprising samples v result in a

larger change in model parameters. A practical example of this technique has been

reported in [Rezende and Gerstner, 2014], where the same quantity as in Eq. (4.10) is

used for the Hebbian term and the third factor is considered to be a novelty-related
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signal e(t ) =F −F , consistent with what we suggested in Eq. (4.17).

Surprise minimization

In Chapter 3, we derived the posterior belief qγ(θ) from the SMiLe rule [Eq. (3.4)] as a

solution to the constraint surprise minimization problem in Eq. (3.3). As before, given

a data sample X , we define the objective function to be the confidence-corrected sur-

prise Scor r (X ; q) = DK L[q(θ)||p̂X (θ)] of the data sample X , under a parametrized belief

q(θ) about the latent variables θ. Before observing X , we have q(θ) = π0(θ), where

π0(θ) is the current belief about the model parameters, built from previous samples. If

we minimize the above objective function under the constraint DK L[q(θ)||π0(θ)] ≤ B ,

we will have q(θ) = qγ(θ) [Eq. (3.4)].

Instead of solving for the exact solution, we can approximate it iteratively using

stochastic gradient descent on the following Lagrangian:

L[q] = DK L[q(θ)||p̂X (θ)]+ 1

λ

(
DK L[q(θ)||π0(θ)]−B

)−λ′
(∫

θ
q(θ)dθ−1

)

= 〈ln q(θ)− ln p̂X (θ)+ 1

λ
ln

q(θ)

π0(θ)
−λ′〉

q
− B

λ
+λ′, (4.18)

where 1
λ is the Lagrange multiplier for the constraint on bound B , and λ′ is the La-

grange multiplier for constraint on q(θ) to be a probability density function that

integrates to 1. We expressed the first Lagrange multiplier as 1
λ (and not λ) just to

be consistent with our notation in Chapter 3 (see Eq. (3.9)). We emphasize that the

Lagrangian Eq. (4.18) is expressed for a single data sample X , and not an average (or

summation) over a set of data samples.

We now apply Theorem 1 and find an update Δw for the parameters w that control

the current belief:

Δw =−η(F [q]±c)∇w ln q. (4.19)

The third factor F [q] in Eq. (4.19) is equal to

F [q] = ln q(θ)− ln p̂X (θ)+ 1

λ
ln

q(θ)

π0(θ)
. (4.20)

The third factor F [q] in Eq. (4.20) consists of three terms. The first two terms (i.e.,

ln q(θ)− ln p̂X (θ)) quantify a point-estimate of the confidence-corrected surprise
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(using a sample θ from the latent variable space), and the third term 1
λ

ln q(θ)
π0(θ) controls

the stickiness of the model parameters to its previous values. The degree of stickiness

is determined by the Lagrange multiplier 1
λ

.

Note that in Eqs. (4.19) and (4.20), q(θ) is not the updated belief, which is obtained

only after updating w using Eq. (4.19). We can think of q(θ) as the current approximate

of the posterior belief after the data sample X is observed. Therefore, one could also

replace q(θ) with π0(θ) (as the initial guess for the posterior belief) and update w using

the online rule Eq. (4.19). Such as assumption simplifies all the above derivations.

Note that in all expressions above, we can replace the scaled likelihood p̂X (θ) with the

likelihood p(X |θ) = p̂X (θ)
(∫′

θ p(X |θ′)dθ′
)
, because they differ only in a multiplicative

factor
∫′
θ p(X |θ′)dθ′ which does not depend on θ and is absorbed during normaliza-

tion. We emphasize again that since the Lagrangian Eq. (4.18) is expressed for a single

data sample X , the scale factor
∫′
θ p(X |θ′)dθ′ is a constant. We can further add other

constant terms to the online rule to ensure that it works in practice.

4.3 Neural implementation of the SMiLe rule

4.3.1 Neural network model

We propose a neural network model that can be used for the neural implementa-

tion of the maze-exploration task, introduced in Chapter 3. Our model consists of a

recognition network and a prediction network (see Fig. 4.1).

Recognition network

The recognition network is a two-layer feed-forward spiking network whose aim is

to correctly recognize the room from which environmental inputs are received. The

input layer consists of 784 neurons whose activities y j , j ∈ {1, ...,784} stand for the

neural representation of the environmental inputs (sensory cues). The output layer

consists of 16 excitatory neurons corresponding to 16 available rooms. Given an input

vector �y (a sensory stimulus from the current room), only one of the output neurons

k ∈ {1, ...,16} is allowed to be active in a time step. We imagine this to be neurally

implemented by a winner-take-all (WTA) framework. This neuron determines the

most likely room that the agent visits at that time. Such WTA assumption provides

computational benefits for the neural implementation of Bayesian modeling and

simplifies analysis of such neural networks [Nessler et al., 2013, Kappel et al., 2014].
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Figure 4.1 – Neural network model for the maze exploration task. A. The model con-
sists of a recognition and a prediction network as well as a sub-network M evaluating
surprise. The neural representation of the current state st is given as binary input
vectors �y . One of the neurons in the output layer of the recognition network responds
and indicates to which state that input belongs. The previously visited state is recalled
by working memory (WM) which clamps one neuron (orange) in the first layer of the
prediction network to the active state. The agent’s model about state transition prob-
abilities q(s′|s) is encoded in synaptic strengths of the prediction network. Multiple
samples (red) are selected via a soft-max spiking probability rule and communicate
information to a modulatory sub-network M (green). Once surprise is calculated by
M , the global signal is propagated through the network and affects plasticity in the
prediction model. In both recognition and prediction networks a WTA framework is
employed using an abstract inhibitory neuron (magenta). B. Time schedule of net-
work operation during the time spent in a state (lasting for 5 seconds). Once the agent
enters a state, the recognition phase starts. Then it starts predicting the next states
until the surprise is calculated (at the end of prediction phase). The recognition and
the prediction phases could also be in parallel. By release of the global modulatory
surprise signal, synaptic strengths change during an update phase. Excess time re-
maining before entering the next state may be used by the agent for consolidation or
advance prediction of the next visited state.

We consider a simplified Spike Response Model for the neurons in the output layer

of the recognition model, where the instantaneous firing rate vk = exp(uk ) of each

neuron k is exponentially linked to its membrane potential uk = Ek − I . Here, Ek =∑
j wk j y j denotes the total excitatory input received by neuron k and I is the common
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inhibitory input to all neurons k ∈ {1, ...,16} in the output layer. Following [Nessler et al.,

2013], inhibitory neurons are not modeled explicitly but calculated algorithmically as

I = ln
∑
k

eEk . (4.21)

Such an assumption results in soft-max spiking probability rule vk = eEk∑
k eEk

and nor-

malization of the firing rates, i.e.,
∑

k vk = 1 (see [Nessler et al., 2013, Kappel et al.,

2014]). The aim of learning in the recognition model is to modify the synaptic strengths

between the neurons such that the agent correctly recognizes the room from which

environmental inputs are received. We use the following online Hebbian rule (derived

from Likelihood maximization) to learn the recognition model (see Materials and
Methods for derivation):

Δwk j = ηδkk∗(y j −ewk j ). (4.22)

Here y j is the state of the presynaptic neuron, δkk∗ denotes Kronecker delta function

and k∗ indicates the index of winner neuron in the WTA network of the output layer

of the recognition network. The online rule Eq. (4.22) has a simple interpretation. If

the post-synaptic neuron k is inactive, the strength of none of its afferent synapses

change. If the post-synaptic and pre-synaptic neurons are both active, then LTP occurs.

Otherwise (i.e., if only post-synaptic neuron is active) LTD occurs. The term ewi j in

Eq. (4.22) stands for heterosynaptic plasticity that is naturally derived as a result of

normalization. The online rule Eq. (4.22) enables our recognition network to correctly

learn the association between the environmental inputs and their corresponding

sources that generated them (see Fig. 4.2). The rule Eq. (4.22) is identical to that of

Nessler et al. [Nessler et al., 2013], but our derivation is more direct (see Materials
and Methods). After learning, a neuron with index k codes for a state (or room) s and

another neuron k̃ for a different state s̃. The neuron k in the recognition network is

linked (via a working memory) to a neuron with index s in the prediction network.

Prediction network

The prediction network is also a two-layer feed-forward network but with 16 neurons

in each layer. The activity of the input layer of this network is driven by working

memory (see Fig. 4.1). Working memory recalls the last visited room and enforces

neuron s to be the only active neuron at time t in the first layer of the prediction

network, if room k was visited at time t −1. The activity of the output layer is then

driven by neuron s. A neuron with index s′ in the output layer of the prediction network

indicates a state that is predicted to be visited in the next time step. The agent’s belief
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Figure 4.2 – Inputs and outputs of the recognition network before and after learn-
ing. A. An example of noisy environmental inputs the agent receives from state 2
(top) and state 11 (bottom). The majority (= 15

16 ×784) of entries of an input vector �y
(visualized as 28×28 square) are independently and identically drawn from a binomial
distribution with probability of generating a black pixel equal to 0.1. The remaining
entries correspond to the spatial position of the current state and have a black pixel
with probability 0.9. The indices of the pixels are randomly shuffled in input vector �y .
B. The raster plot (spiking activity) of the input and output neurons in the recognition
model before and after learning. After the network learns the hidden statistical struc-
ture of the input data set, a unique neuron is assigned to the class of input vectors that
are generated by a same source corresponding to a particular state (“room”). After
learning, the network correctly recognizes the state from which an input vector is
presented to the network.

about the state transition probabilities is modeled by synaptic weights ws′s between

the two layers. Note that our prediction network also uses a WTA framework to ensure

that at each time step, only one neuron in each layer remains active. The WTA of the

prediction network is implemented analogously to that of recognition network.

In the prediction network, we use the same neuronal model as in the recognition

network, i.e., a simplified Spike Response Model, where the instantaneous firing rate

vs′ = exp(us′) of each neuron s′ is exponentially linked to its membrane potential us′ =
Es′ − I , with Es′ =

∑
s ws′sδsst−1 = ws′st−1 and I = ln

∑
s′ eEs′ = ln

∑
s′ ews′st−1 . Note that in

above equations, we assumed that the synaptic weights in the recognition network

have converged to their stationary values, and the recognition network is now capable

of correctly recognizing the current state, given environmental inputs. Therefore, the
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state that is recalled from working memory at time t indeed corresponds to previously

visited state st−1. The same assumption will be used in following derivations.

We introduce a surprise-related modulatory signal M(s′, st ) expressed as

M(s′, st ) = ws′st−1 − ln (1+δs′st )+ 1

mS(X )
(ws′st−1 −w ol d

s′st−1
), (4.23)

where s′ denotes a predicted next state (using the prediction network with parameters

ws′s), given the last visited state was st−1. The probability of predicting s′ as the

next state is determined by the current model qt−1(s′), and is equal to ews′st−1 . The

modulatory signal M(s′, st ) in Eq. (4.23) depends on whether the predicted state s′

is the same as the real visited state st via δs′st . Therefore, it is linked to a notion of

prediction error signal.

The first two terms (i.e., ws′st−1 − ln (1+δs′st )) in the modulatory expression M(s′, st )

[Eq. (4.23)], in fact, quantifies a point-estimate of the confidence-corrected surprise

(i.e., 〈ln q(θ)− ln p̂X (θ)〉q(θ) in Eq. (4.20), where q is expressed in terms of synaptic

weights wss′). The third term 1
mS(X ) (ws′st−1 − w ol d

s′st−1
) controls the stickiness of the

model parameters at their previous values. The degree of stickiness is determined

by the surprise S(X ) of the most recent state transition X : st−1 → st , such that if X

is more surprising than X ′, then the updated belief moves more towards p̂X (θ) after

observing X than after observing X ′.

We emphasize that S(X ) stands for “prior” surprise (i.e., the surprise of data sample X

before the model is updated). In derivation of the SMiLe rule in Chapter 3, however, we

minimized “posterior” surprise (i.e., the surprise of data sample X after belief update)

with a constraint that was linked to the “prior” surprise S(X ). Therefore, we can ignore

any dependency between S(X ) and current model parameters ws′s (i.e., ∂S(X )
∂ws′s

= 0).

The plasticity rule that we use in the prediction model is derived by applying stochastic

gradient descent to the Lagrangian Eq. (4.18). We emphasize that the functional

Eq. (4.18) is expressed for a “single” data sample X , and not an average over a set of

data samples. The online rule (see Materials and Methods for derivation) is analogous

to Eq. (4.19):

Δws′′s = ηδsst−1

(
〈M(s′, st )δs′s′′ 〉q(s′) −〈M(s′, st )〉q(s′) 〈δs′s′′ 〉q(s′)

)
. (4.24)

The online rule Eq. (4.24) is a covariance learning rule (see Corollary 3) in which the

strength ws′′s of connection between the pre-synaptic neuron s ∈ {1, ...,16} and the

post-synaptic neuron s′′ ∈ {1, ...,16} changes as a function of covariance between the
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activity of the post-synaptic neuron (i.e., δs′s′′) and the surprise-related modulatory

signal M(s′, st ), where covariance is approximated by averaging over multiple pre-

dicted states s′. Note that the online rule Eq. (4.24) also depends on the activity of the

presynaptic neuron s via δsst−1 , indicating that only the efferent synapses of neuron

s = st−1 that is activated by working memory are under the influence of the online rule

Eq. (4.24) at time t .

Surprise-related sub-network

The online rule Eq. (4.24) requires a covariance term to be approximated. Therefore

modules in our neural network need to calculate three separate quantities: (1) a

correlation term 〈M(s′, st )δs′s′′ 〉q , (2) an estimate of the firing rate 〈δs′s′′ 〉q of each

neuron s′′, and (3) the average modulatory signal 〈M(s′, st )〉q . While the first two

quantities are neuron-specific parameters, the third one does not depend on the

post-synaptic neuron s′′. In what follows we explain how these three quantities can be

implemented by artificial neurons.

When neuron s = st−1 in the first layer of the prediction network is clamped to be

active, multiple samples s′ are drawn from the second layer using the current model

q(s′). Whenever a neuron is active, it sends a signal to the modulatory sub-network M

(see Fig.4.1). A signal from M is fed back to the prediction network, but it only affects

the presently active neuron s′. Note that at each time step, only one of the neurons

in the second layer becomes active (because of WTA). Once a neuron s′ fires, three

neuron-specific traces e1(s′),e2(s′), and e3(s′) as well as a modulatory trace e(M) will

be updated according to the following rules (see also Fig. 4.3)

ė1(s′) = −e1(s′)
τb

+ ∑
t f (s′)∈Tp

δ(t − t f (s′)) (4.25)

ė2(s′) = −e2(s′)
τs

+ ∑
t f (s′)∈Tp

δ(t − t f (s′)) (4.26)

ė3(s′) = −e3(s′)
τb

+e2(s′)M(s′, st )
∑

t f (s′)∈Tp

δ(t − t f (s′)−d t ) (4.27)

ė(M) = −e(M)

τb
+∑

s′
e2(s′)M(s′, st )

∑
t f (s′)∈Tp

δ(t − t f (s′)). (4.28)

The trace e1(s′) in Eq. (4.25) approximates the firing rate of neuron s′ during the

prediction phase (in a time interval Tp ), with a long time constant τb . On a short time
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scale τs , the trace e2(s′) in Eq. (4.26) tags the currently active neuron to ensure that the

“global” feedback M(s′, st ) only affects the tagged neuron s′. We assume that e2(s′) has

a very small time constant τs and decays back to zero before the next sample appears.

The third trace e3(s′) in Eq. (4.27) estimates the correlation term 〈M(s̃, st )δs̃s′ 〉q(s̃) for

neuron s′ using multiple samples s̃. The time delay d t in Eq. (4.27) is because of the

delay in receiving the feedback from the modulatory sub-network M . Note that the

first and the the third traces e1(s′) and e3(s′) have big time constant τb >> τs and act

as integrators. Finally, the trace e(M) in Eq. (4.28) integrates M(s′, st ) over all samples

s′. We emphasize that during prediction phase, the subnetwork M fires whenever any

neuron s′ in the second layer fires. At the end of the prediction phase, all the local

traces e1(s′),e2(s′),e3(s′) [Eqs. (4.25)-(4.27)], as well as the global trace e(M) [Eq. (4.28)]

will be used for updating the model parameters, i.e., the synaptic strengths. Upon

presentation of the next state, all traces will reset to zero.

The online rule Eq. (4.24), therefore, can be transformed to

Δws′′s = ηδsst−1

(
e3(s′′)−e(M)e1(s′′)

)
. (4.29)

Three-cycle regime

We assume that the time spent in each room (i.e., the time between visiting st−1 and st )

is 5 seconds. This time will be further divided into 4 smaller time duration as follows

(see Fig. 4.1). Once the agent enters a room, it takes some time to recognize what

the state st is (the recognition phase). Then the last visited state st−1 is recalled from

working memory, and the agent starts thinking about those states that were most likely

to be visited at time t . This phase is called prediction phase during which neuron st−1

is clamped to be active in the first layer of the prediction network and multiple sample

states s′ are drawn from the second layer according to the soft-max spiking probability

rule. Neurons s′ leave traces when they fire. Surprise of the observed state transition

st−1 → st is then calculated by a modulatory trace e(M) in the sub-network M . Note

that there is a non-plastic 1-to-1 connection from any neuron s′ to modulatory sub-

neuron M , such that M fires whenever a neuron in the second layer of the prediction

neuron fires.

Once surprise is calculated (at the end of the prediction phase), the synaptic strengths

will be ready to change. The strength ws′′s of each synaptic connection in the pre-

diction network is then modified using both local factors (presynaptic activity δsst−1 ,

and post-synaptic traces e1(s′′),e3(s′′)) and global factors (modulatory trace e(M) and

learning rate η) according to Eq. (4.29). All synaptic changes occur during the update
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Modulatory  
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next state 
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δ (t − t f (s '))∑

M

Figure 4.3 – Local and global traces required for plasticity. A. Each one of the states s′

is equipped with three local traces. The first trace (blue) estimates the firing rate of the
neuron by integrating over the spike train (orange) of the neuron. The second trace has
a very fast decay and is used to ensure that at the time of feedback from the modulatory
sub-network M , the only neuron that is affected by that feedback is the one that is
recently fired. The third trace approximates the correlation term between the activity
of the post-synaptic neuron and the modulatory signal M(s′, st ). B. The modulatory
sub-network M fires whenever one of the neurons in the second layer of the prediction
network (e.g., s′ or s′′) fires. The trace e(M) increases by M(s′, st ) whenever neuron
s′ fires and it increases by M(s′′, st ) whenever neuron s′′ fires. Therefore, the change
size at each time step is different and depends on the neuron that has just fired in the
prediction network.

phase. After these three phases (i.e., recognition, prediction, and update phases) the

agent may still have some excess time that can be used for the consolidation of the

recent updates or for developing a prior expectation of what it may visit as next time.

But these ideas have not been implemented. Note that whether the network is in the

phase of recognition, prediction, or update can be determined by a background signal

that controls the timing of regimes in which the network operates (like a three-cycle

clock).

4.3.2 Simulation results

The setting of the maze exploration we neurally simulate is exactly the same as in

Chapter 3. We use the exact parameters as before to generate the same sequence of
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states that had been visited by the agent in our previous simulation. However, in the

neural network implementation of this task, the agent is not aware of the exact state,

and it has to recognize the true state using the recognition network.

As described earlier, each time step between states st−1 and st is divided into recog-

nition, prediction, and update phases. Once the agent enters state st and during

recognition phase, 50 input vectors �y ∈R784 are randomly generated and given to the

recognition network (see Fig. 4.2). These vectors correspond to the neural representa-

tion of the sensory cues within state st . In the early phase of learning, the recognition

network does not perform well. However, as time goes by, the network becomes capa-

ble of recognizing the true state (the current room) by assigning a unique neuron k to

the set of all input vectors that are generated by the same source (see Fig. 4.2).

During the prediction phase, the previous state is first recalled from working memory

and its corresponding neuron is clamped to be the only active neuron in the first layer

of the prediction model. Then we sample 10 times from the prediction network, where

at each time one of the neurons s′ ∈ {1, ...,16} can be selected (according to the soft-

max spiking probability, discussed earlier). Fig. 4.3 depicts a schematic representation

of traces obtained at the end of prediction phase.

The estimation error in the model parameters is depicted in Fig. 4.4 indicating that

the neural network quickly adapts to the parameters of the new environment once

a switch occurs. Our estimation error graphs are similar to Fig. 3.4 in Chapter 3. The

surprise-related modulatory signal M(s′, st ) averaged over multiple samples using

current model q(s′) responds to unexpected switch points (see Fig. 4.4).

To analyze the sensitivity of network performance to the number of samples at each

state, we simulated the network with two different settings. In the first setting, we

reduced the number of samples in the recognition network to 1. This increases the time

required for the recognition network to learn the state (room) given the one sensory

input vector�y . As such the network does not perform well (see Fig. 4.5A). In the second

setting, we reduced the number of samples in the prediction network to 1. Here the

recognition network quickly learns the statistical structure of the feature space, but

using online rule Eq. (4.24) the prediction network cannot learn at all, because when

only one s∗ is sampled as the predicted next state (in the second layer of the prediction

network), then Δws′s = 0 for all s′ in the second layer (Fig. 4.5B). To resolve this issue

(when there is only one sample s∗ in the prediction network), we suggest to replace

the online rule Eq. (4.24) with a learning rule of the form pr e.post .(M −M), where

post = 〈δs′s′′ 〉q(s′) = ews′′s is explicitly linked to the synaptic strengths ws′′s . Fig. 4.5C

shows that using this online rule, the network now starts learning but still it does

not perform very well. Therefore, a sufficient number of samples in both recognition
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Figure 4.4 – The estimation error and the modulatory signal in spiking network
during maze-exploration task A. The normalized estimation error EA and EB when
the estimated probabilities are compared with the true parameters in environment A

(black) and in environment B (yellow). The red bars indicate the time steps the agent
stays in environment A . All the setting parameters are chosen as before (see details
of the maze-exploration task in Chapter 3). During 5 seconds of staying in a given
state (room), the number of samples for the recognition and the prediction networks
are selected as 50, and 10, respectively. The estimation error EA during exploration
of environment A decreases and then it starts increasing when the agent enters
the environment B B. The average modulatory signal M = 〈M(s′, st )〉q(s′) [Eq. (4.23)]
(green) which depends on the point-estimate of surprise (but, is not exactly the same
as surprise) increases at switch points.

network and prediction network is necessary for the neural network to work properly.
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Figure 4.5 – The effect of number of samples in the recognition network and the pre-
diction network on the learning performance The estimation errors EA (black) and
EB (yellow) during maze exploration are depicted. A. When the number of samples in
the recognition network is set to 1, the network requires much more time than before
to correctly recognize the visited state given one environmental input. Therefore, no
learning happens in the early phase of simulation. B. If the number of samples for the
prediction network is reduced to 1, then Eq. (4.24) implies no change in all synaptic
strengths. This is because for (the “only”) sampled state s∗ in the prediction network,
Δws′′s ∝ M(s∗, st )−< M(s′, st ) >= 0 and for all other states s′′ �= s∗ we have δs′s′′ = 0
(see Eq. (4.24)). The estimation errors EA (black) and EB (yellow) coincide. C. For the
case of “one sample” in the prediction network, learning can be (partially) recovered if
the online rule is changed to the form of pr e.post .(M −M), where we directly express
the firing rate post =< δs′′s′ >q(s′) of neuron s′′ as the probability of that neuron to fire,
i.e., post = ews′′s .

4.4 Discussion

We proposed a general framework for approximating the exact solution of a functional

that is expressed as an average quantity. The proposed learning rule is derived from

stochastic gradient ascent and has the form of a 3-factor learning rule. The proposed
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online rule depends on both local Hebbian factors as well as global modulatory factors,

if a neural network is used for learning. As such it benefits from a certain degree of

biological plausibility and can be applied to various neural network models.

We showed that well-known existing learning methods such as policy gradient and

variational learning fall into this general class of 3-factor learning rules. We further

applied our model to the same functional from which the SMiLe rule was derived,

and showed that it is transformed to a covariance learning rule. We used that learning

rule in a spiking neural network to demonstrate that the SMiLe rule can be neurally

implemented.

Maximum likelihood estimate as minimization of the Shannon surprise

Maximum likelihood is often used to find the most likely model under which a set

of observed input samples/vectors could have been generated by that model. In this

method we usually maximize a sum over the log-likelihood of data samples. This is in

fact a variant of surprise minimization technique in which the aim of learning is to

find a set of parameters under which the observed input samples on average become

less surprising than before. The surprise function that is used in maximum likelihood

method is the subjective Shannon surprise Eq. (2.1).

Applying stochastic gradient descent for likelihood maximization results in deriving a

pure Hebbian online rule. An example was Eq. (4.22) used for training the recognition

network. However, if we replace the subjective Shannon surprise by our confidence-

corrected surprise, then the online rule becomes a covariance learning rule. In other

words, if we apply stochastic gradient on the latter we derive an online rule similar

to Eq. (4.24), except that the modulatory term M(s′, st ) [Eq. (4.23)] becomes only the

point-estimate of the confidence-corrected surprise, i.e., ln q(θ)− ln p̂X (θ) without

additional term that controls the stickiness of the model parameters i.e., 1
λ

ln q(θ)
π0(θ) (see

Eq. (4.20)). Using confidence-corrected surprise opens a gate to a series of covariance

online rules that are driven by a surprise-related signal.

Estimation of the covariance rule

The online rule Eq. (4.24) is a covariance learning rule. For the neural implementa-

tion of the maze-exploration task we approximated the covariance using multiple

samples randomly drawn from the network. Alternatively, one could approximate the

covariance using only one sample. The resulting learning rule would be a modulated
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Hebbian rule of the following form

Δws′′s = ηδst−1s M(s∗, st )(δs′′s∗ −ews′′s ), (4.30)

where s∗ denotes the only sampled state. Although the learning rule above is not

capable of learning the maze-exploration task (see Fig. 4.5), it represents a general

form of modulated Hebbian rules in which the modulatory factor is the point-estimate

of the confidence-corrected surprise where it is approximated only by one sample s∗.

Another extreme case for the implementation of the covariance rule Eq. (4.24) is to

analytically calculate the covariance term. This is equivalent to the case in which all

states s′ had the chance of being sampled with the correct probability. This method

results in an online rule of the following form

Δws′′s = ηδst−1s 〈δs′′s′ 〉q(s′)

(
M(s′′, st )−〈M(s′, st )〉q(s′)

)
, (4.31)

where 〈δs′′s′ 〉q(s′) = ews′′s represents the firing rate of post-synaptic neuron.

In other words the covariance rule in Eq. (4.24) has a form of pr e.(post −post ).(M −
M), but the two most extreme cases for approximation of the covariance (i.e., one-

sample-based approximation Eq. (4.30) and many-sample-based approximation

Eq. (4.31)) have the online forms M .pr e.(post − post) and pr e.post .(M − M), re-

spectively. All proposed learning rules above can be considered as variants of 3-factor

learning rules.

Relation to a generalized theory of expected utility maximization

Inspired by our method for maximizing a density-dependent functional, we also

propose (in Appendix B) an information theoretical equivalent of existing models in

expected utility maximization, as a standard model of decision making, to incorporate

both individual preferences and choice variability. We then show that its exact solution

(as the optimal decision making policy) can also be approximated by our functional

gradient rule through an online three-factor learning rule.

Learning associations with a novelty signal

In the neural network that we proposed for the recognition network, we assumed

that the number of rooms is known for the agent. Therefore, the only thing that the

recognition network has to learn is the association between the environmental inputs

and the current room (state). In reality, however, the agent does not know the exact
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number of rooms and it requires to form new memories once a new room is visited

for the first time. We can imagine this problem as a clustering task, where the number

of clusters is unknown for the agent. Inspired by the Adaptive Resonance Theory

(ART) [Carpenter and Grossberg, 1988], we propose a model in Appendix C that uses

a neurally computed novelty signal to enable the agent to add more clusters whenever

it judges an input sample to be novel.

The proposed model requires making a decision about whether an input sample is

novel or not. If the new sample is “sufficiently” different from the previous samples,

then the new sample is considered to be novel. The problem is then to determine

a threshold that indicates the border between the class of familiar samples and the

novel samples. In Appendix D, we discuss this problem, but in a different context.

We propose a theoretical argument that explains why it is difficult for a Bayesian

critic (in the context of reinforcement learning) to distinguish similar tasks. Our

analysis provides a preliminary hypothesis about the existence of an optimal Bayesian

threshold that may determine the border of novelty and familiarity.

4.5 Materials and Methods

Derivation of the online rule for the recognition model

Environmental inputs that the agent receives from rooms are neurally represented as

an ensemble of binary vectors {�y(a)}. We assume that these vectors encode several

environmental features, where each feature uses a 1-out-of-n code. For example if

feature number 3 takes the second out of 5 possibilities we would write (0,1,0,0,0) to

encode that particular feature. Feature number 3 may correspond to the color of a cue

that may take one of 5 possibilities of being blue, red, green, yellow, or black. In the

above example, the cue is red. We assume that each input vector�y encodes m features

(e.g., color, shape, size, etc.). Therefore, each �y is a binary vector with mn entries,

where m entries are equal to 1 and the rest of entries are equal to 0. This assumption

helps us to easily derive the online learning rule by which we can solve unsupervised

clustering tasks [Nessler et al., 2013]. The following paraghraph follows unpublished

notes of W. Gerstner “Local learning rules for a generative model: Remarks on a paper

of Nessler, Pfeiffer and Maass”.

We assume that the inputs are generated by a mixture of multinomial distributions

with k = 16 components. Each source k generates an input vector �y with probability

p(�y |k) using the following rule. The probability that the q-th feature of vector �y

(generated by source k) takes the i -th possibility is equal to μ(i ,q)(k), where μ(i ,q)(k) is
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unknown to the agent. Therefore, the total probability of generating a vector �y is

p(�y) =∑
k

p(k)p(�y |k) =
16∑

k=1
p(k)Πm

q=1Π
n
i=1

(
μ(i ,q)(k)

)y(i ,q) . (4.32)

Here, y(i ,q) := y j denotes the j -th entry of the input vector �y , where j is uniquely

determined by pair (i , q) via a 1-to-1 mapping and a shuffling operator.

The aim is to estimate the unknown probabilities μ(i ,q)(k) from the set of data vectors

{�y(1),�y(2), ...} using a neural network. To do so, we parametrize the unknown probabil-

ities μ(i ,q)(k) by synaptic weights wk(i ,q) using the transform μ(i ,q)(k) = exp(wk(i ,q)).

Note that wk(i ,q) denotes the synaptic weight between neuron 1 < j < mn in the

first layer, whose index j is uniquely determined by its corresponding pair (i , q), and

neuron k in the second layer. Mixture proportions p(k) are also parametrized via

p(k) = exp(wk0). This gives

p(�y) =∑
k

exp

(
wk0 +

∑
i ,q

wk(i ,q) y(i ,q)

)
=∑

k
exp(uk ). (4.33)

The parameter uk is interpreted as the membrane potential of neuron k in the second

layer that sums over all the inputs y(i ,q) from the first layer using the weights wk(i ,q).

We need to choose synaptic weights wk(i ,q) so as to maximize the likelihood that

the set of observed data vectors {�y(1),�y(2), ...} could have been generated by our

mixture model. We maximize the log-likelihood L =∑
a ln p(�y(a)) under the constraint∑

i μ(i ,q)(k) =∑
i exp(wk(i ,q)) = 1 for any k, q .

The maximum of the constraint log-likelihood

L̃ =∑
a

ln p(�y(a))−∑
k,q

λ
q
k

(∑
i

exp(wk(i ,q))−1

)
, (4.34)

where λ
q
k denote Lagrange multipliers, is found by setting the derivatives to zero

0 = ∂L̃

∂wk ′(i ,q)
= ∑

a
y(i ,q)(a)

exp(uk )

p(�y(a))
−λ

q
k ′exp(wk ′(i ,q))

= ∑
a

y(i ,q)(a)p(k ′|�y(a))−λ
q
k ′exp(wk ′(i ,q)), (4.35)
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where we have introduced

p(k ′|�y(a)) = p(k ′)p(�y(a)|k ′)
p(�y)(a)

= euk′ (a)∑
k euk (a)

. (4.36)

The expression in Eq. (4.36) is interpreted as the soft-max spiking probability rule in a

stochastic network with lateral interactions that make neuron k ′ to compete with its

neighbors k �= k ′.

We sum Eq. (4.35) over i which gives us an explicit expression for the Lagrange multi-

pliers

λ
q
k ′ =

∑
a

∑
i

y(i ,q)(a)p(k ′|�y(a)) =∑
a

p(k ′|�y(a)). (4.37)

Because of the 1-out-of-n coding in each feature of �y , we have
∑

i y(i ,q)(a) = 1 so that

the expression for the Lagrange multipliers and so the online rule (as shown later)

become very simple. Note that all the Lagrange multipliers λq
k ′ that depend on source

k ′ are the same, i.e., they are independent of feature q ∈ {1, ...,m} (see Eq. (4.37)). That

means it is not necessary to distinguish which input neurons are linked to a particular

feature q .

Instead of going directly to the minimum of the constraint log-likelihood L̃ in Eq. (4.34),

one can also do a 1-step gradient descent. From Eqs. (4.35),(4.37) we get

Δwk(i ,q) = η
∂L̃

∂wk(i ,q)
= η

∑
a

y(i ,q)(a)p(k|�y(a))−∑
a

p(k|�y(a))exp(wk(i ,q))

= η
∑
a

p(k|�y(a))
(
y(i ,q)(a)−exp(wk(i ,q)

)
(4.38)

The weight update in Eq. (4.38) can be easily transformed to our desired learning rule

in Eq. (4.22). To do so, we first go from batch to online and neglect the sum over the

patterns a. This is a standard step done for all online learning rules in neural network

theory. Second, upon repeated representations of pattern a, the factor p(k|�y(a)) gives

exactly the probability that the post-synaptic neuron fires. Therefore, thanks to the

WTA framework in the second layer, we can replace p(k|�y(a)) with a Kronecker delta

function δkk∗ , where k∗ denotes the index of winner neuron upon presentation of

input �y(a). The Kronecker delta δkk∗ is in fact a point-estimate of the probability

p(k|�y(a)).
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Finally if we replace each pair (i , q) with its corresponding index j , we will arrive in the

online learning rule Δwk j = ηδkk∗(y j (a)−exp(wk j )) that is presented in Eq. (4.22).

Derivation of the online rule for the prediction model

In Chapter 3, our belief about the state transition probabilities from state s to s′ ∈
{1, ...,16} \ s was described by a set of parameters α(s, s′). These parameters are used

for describing 16 Dirichlet distributions, where each distribution is used to model

state transition probabilities from a particular state s. We parametrize the model

parameters α(s, s′) by synaptic weights ws′s using the transform

ws′s = ln
α(s, s′)∑
s′′α(s, s′′)

, (4.39)

where ws′s denotes the strength of connection from pre-synaptic neuron s in the input

layer of the prediction network to the post-synaptic neuron s′ in the output layer of

the prediction network.

To derive the online rule Eq. (4.24) we need to apply the stochastic gradient descent

on the constraint Lagrangian Eq. (4.18), which we re-express it as

L̃ =∑
θ

qt−1(θ)

(
ln qt−1(θ)− ln p̂X (θ)+ 1

λ
ln

qt−1(θ)

qt−2(θ)

)
−λ′

(∑
θ

qt−1(θ)−1

)
, (4.40)

where we denoted q(θ) and π0(θ) in Eq. (4.18) by qt−1 and qt−2 in Eq. (4.40), respec-

tively, to emphasize that these two distributions correspond to our belief in subse-

quent time steps. We reserve qt to denote the updated belief after using the online

rule Eq. (4.24).

In Eq. (4.40), qt−1(θ) denotes a Dirichlet distribution and describes our most recent

belief about the state transitions from the last observed state st−1. The support of

qt−1(θ) is the set of 15-dimensional vectors θ whose entries are real numbers in

the interval (0,1) with the sum of the coordinates is 1. Since our neural network

cannot handle the distributions with a “continuous” support, we replace qt−1(θ) with

a suitable categorical distribution (with a “discrete” support):

qt−1(θ) =Πs′

(
α(st−1, s′)∑
s′′α(st−1, s′′)

)[θ=1s′ ]
=Πs′exp(ws′st−1 [θ = 1s′]), (4.41)

where 1s′ ∈ R15 denotes a unity vector with entry s′ equal to 1, and [θ = 1s′] denotes

Iverson bracket (a variable that is 1 if the condition θ = 1s′ is fulfilled, and is 0 other-

76



4.5. Materials and Methods

wise). The support of vectors θ now becomes a set of 16 unity vectors {1s′}
16
s′=1, where

each unity vector is chosen with the probability

qt−1(θ = 1s′) =
α(st−1, s′)∑
s′′α(st−1, s′′)

= exp(ws′st−1 ). (4.42)

The scaled likelihood (which is originally a Dirichlet distribution) can also be replaced

by its corresponding categorical distribution, indicating that the likelihood of visiting

state st if the latent parameter is θ = 1s′ is equal to

p̂X (θ = 1s′) =
1+δs′st

16
. (4.43)

In the surprise modulated belief update (Algorithm 1 in Chapter 3), the parameter

γ increases with the surprise S(X ) of the newly acquired sample X . Without loss

of generality, we assume that γ = mS(X )
1+mS(X ) , where m determines the propensity of

a subject to change his belief (see Eq. (3.5)). The Lagrange multiplier parameter 1
λ

in Eq. (4.18) is explicitly linked to the parameter γ that is used in the SMiLe rule

via γ = λ
1+λ (see Eq. (3.12)). As such, the Lagrange multiplier λ is linearly linked to

the surprise of the new data sample via λ= mS(X ). Therefore, in combination with

Eqs. (4.42), (4.43), the Lagrangian Eq. (4.40) can be expressed as

L̃ =∑
s′

ews′st−1

(
ws′st−1 − ln

1+δs′st

16
+

ws′st−1 −w ol d
s′st−1

mS(X )

)
−λ′

(∑
s′

ews′st−1 −1

)
. (4.44)

Setting the derivative to zero

∂L̃

∂ws′′st−1

= ∑
s′
δs′s′′e

ws′st−1

(
ws′st−1 − ln

1+δs′st

16
+

ws′st−1 −w ol d
s′st−1

mS(X )
+ (1+ 1

mS(X )
)

)

− λ′∑
s′
δs′s′′e

ws′st−1 = 0, (4.45)

and summing Eq. (4.45) over s′′ gives an explicit expression for the Lagrange multiplier

λ′ =∑
s′

ews′st−1

(
ws′st−1 − ln

1+δs′st

16
+

ws′st−1 −w ol d
s′st−1

mS(X )
+ (1+ 1

mS(X )
)

)
(4.46)
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Therefore, we can derive the online rule by inserting Eq. (4.46) in Eq. (4.45):

∂L̃

∂ws′′st−1

=∑
s′

ews′st−1
(
δs′s′′M̃(s′, st )

)−
(∑

s′
ews′st−1 M̃(s′, st )

)(∑
s′

ews′st−1δs′s′′

)
, (4.47)

where

M̃(s′, st ) = ws′st−1 − ln
1+δs′st

16
+

ws′st−1 −w ol d
s′st−1

mS(X )
+ (1+ 1

mS(X )
). (4.48)

From there there is only a few minor steps to derive the online rule in Eq. (4.24). First,∑
s′ ews′st−1 f (s′) is replaced by an average 〈 f (s′)〉qt−1

because qt−1(θ = 1s′) = ews′st−1 .

Second, the modulatory term M(s′, st ) in Eq. (4.23) differs from M̃(s′, st ) in Eq. (4.48)

only in constant terms which creates no problem (according to Corollary 2). In all

derivations above we assumed that s = st−1. Therefore, the dependency to the activity

of the pre-synaptic neuron is manually inserted by δsst−1 in Eq. (4.24).
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5 Future Works

5.1 Dissociation between negative and positive surprise

Surprise may result either from the occurrence of an unexpected event or the non-

occurrence of an expected one. These two cases are known in the literature as positive

and negative surprise, respectively, and different neural substrates have been sug-

gested to be responsible for encoding each of them [Alexander and Brown, 2011].

Positive surprise is often more “surprising” than negative surprise consistent with our

theory of surprise, where we assign bigger surprise to zero-probability events than

low-probability events.

Note that whether surprise is positive or negative does not determine the actual

valance of the surprise consequent. In other words, the consequence to surprise can

be neutral, pleasant, or unpleasant regardless of surprise being positive or negative.

Negative surprise corresponds to the non-occurrence of an expected event. If our

expectation is rewarding and the reward is not delivered (i.e., omission of an expected

reward), we experience a negative surprise with a negative (unpleasant) valence. If

we expect a punishment and it does not occur, we experience a negative surprise but

with a positive (pleasant) valence. Positive surprise corresponds to the occurrence of

an unexpected outcome. In this case, an event occurs with no prior expectation. If

an unexpected reward is delivered we experience a positive surprise with a positive

(pleasant) valence, but if we encounter an unexpected punishment then we experience

a positive surprise with a negative (unpleasant) valence.

Which computational models can clearly dissociate these two types of surprises is

an interesting question that may worth to be studied in future. Moreover, surprise is

usually followed by emotional states such as joy or confusion. How we can integrate

such emotional responses into the surprise theory is also interesting to be investigated.
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5.2 Surprise in language of neurons

Although surprise is often studied in the behavioral level, we argue that surprise is

a neural phenomenon which is reflected globally, in emotions among other things.

What psychologists call surprise is really something that arises when surprise does

not just happen at the sensory level but propagates to higher cognitive and emotion

areas and as a result is reflected even in physiological responses and affects behavior.

In the microscopic level of neural activity, surprise might also be viewed as a drive

factor that makes a neuron fire (the idea is originally proposed in [Palm, 2012]). Most

of the neurons in the brain fire, if they are sufficiently excited or dis-inhibited. One

could interpret these excitation and dis-inhibition, as two variants of unexpected

surprising events.

In one hand, if a neuron is used to not receive so much excitation from its affer-

ent neurons, then sudden bursts of spikes in its excitatory afferents are unexpected.

Occurrence of such unexpected event may surprise the neuron leading to its firing

(corresponding to the positive surprise). Many neurons in striatum (a part of basal

ganglia) behave like what was just explained. They fire because of sudden excitation

they receive from cortical area.

On the other hand, if a neuron is used to receive lots of inhibition from its afferent

neurons, then the omission of inhibitory inputs, or a sudden relaxation of such in-

hibition may lead to its firing (corresponding to the negative surprise). Unexpected

omission of inhibitory inputs from the complex of substantia nigra pars reticulata

(SNr) and globus pallidus internus (GPi) to the thalamus causes the thalamic neurons

to fire, consistent with what mentioned above.

In fact, a neuron fires whenever it is surprised either by excitation (positive surprise) or

dis-inhibition (negative surprise); but how surprise can efficiently be calculated in the

subthreshold regime of neural activity, and how it is linked to other neural parameters

(such as membrane potential) are not yet resolved.

It has been hypothesized that the actual information that is propagated in the brain is

linked to surprise [Palm, 2012]. The argument behind this hypothesis is the “sparse-

ness” of the neuronal activity, where it is compared to the volume of the information

that is required to internally describe the state of the external world, suggesting that

our external world is described only by unexpected and surprising information. This

hypothesis would need to be more scientifically investigated.
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5.3 Relation between neuromodulators and the global

factors

There are different neuromodulators in the brain such as Dopamine (DA), nora-

drenaline (NE), acetylcholine (ACh), serotonin (5-HT), etc. They play essential roles

for the modulation of neural activity all over the brain regions. On the other hand,

multi-factor learning rules may depend on several global factors corresponding to the

activity of these neuromodulatory systems. An interesting question then would be

how different neuromodulators are mapped / associated to the global factors that are

theoretically derived.

For instance, we do not know whether assigning reward to DA and surprise to NE is a

correct assumption. DA and NE might both encode reward as well as surprise using

non-linear mappings. Furthermore, neuromodulators significantly interact with each

other, a fact that should be incorporated in theories about global factors.

5.4 Interplay between surprise and different forms of un-

certainty

Surprise interplay with different forms of uncertainty. We already saw in our proposed

theory that surprise decreases with model uncertainty, and the model uncertainty

increases after surprising events. However, a more-in-depth study may be required to

understand the exact way that different forms of uncertainty affect each other and

surprise. In the following we briefly describe some of the forms of uncertainty:

(1) World uncertainty quantifies inherent stochasticity of the environment. This un-

certainty is irreducible, even if a perfect model of the environment is available. In

Bayesian framework, the conditional entropy H (x|θ) is a measure of world uncer-

tainty. This quantity calculates how much uncertainty remains in a random variable

x, without considering any uncertainty for the model of the world, i.e., the model

parameters θ.

(2) Model uncertainty determines how uncertain we are about the current model of

the environment. This incorporates uncertainty about model parameters or their

estimation. Despite of the world uncertainty, the model uncertainty is reducible

if additional information is provided. In Bayesian setting, the model uncertainty is

quantified by the entropy H (θ) of the model parameters. Note that H (θ|x) or H (θ|X )

also quantifies model uncertainty; but after a random variable x or a data sample X

has been used to modify our knowledge about the model parameters.
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(3) Expected uncertainty is the amount of uncertainty that we expect about the out-

come of a stochastic world. The expected uncertainty can be quantified by H (x),

where it implicitly incorporates both world uncertainty as well as model uncertainty.

An alternative to the expected uncertainty is the total uncertainty which is defined

as the sum of the world uncertainty and model uncertainty. The total uncertainty

is quantified by the joint entropy H (x,θ) =H (x|θ)+H (θ). Although the expected

uncertainty is different from the total uncertainty, they both increases with model

uncertainty and the world uncertainty but in different ways. Total uncertainty is lin-

early expressed in terms of world uncertainty and model uncertainty, but the expected

uncertainty is non-linearly related to them.

(4) Unexpected uncertainty is a different form of uncertainty that is linked to the oc-

currence of an unexpected event beyond the known stochasticity of the environment.

Unexpected uncertainty in our terminology corresponds to surprise, as a result of a

violation in a subjective expectation about the environmental outcome. Unexpected

uncertainty quantifies the uncertainty that a subject has about whether a fundamental

change in the environment is occurred or the unexpected observation is just because

of an outlier without any change in the context.
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A Palm Theory of Surprise

Uncertainty and subjectivity are amongst essential requirements for evaluating sur-

prise. They may be originated from different sources including uncertainty about

message perception and the subjective element of interestingness in describing the

outcomes of a probabilistic world.

Gunther Palm [Palm, 2012] studied novelty and surprise using a new approach to

information theory. He has modified the classic information theory to consider the

process of perception or formation of the message as well as to incorporate the sub-

jective elements of interestingness by proposing two interesting concepts: description

and repertoire. Here we briefly “review” his proposed method for quantification of

novelty and surprise.

In classic information theory, any uncertainty in the perception of a message stems

from a noise that is added to the original message through communication channel,

i.e., the channel noise. There is no uncertainty about how the message was encoded

and thus no uncertainty about how it should be decoded. In other words, both sender

and receiver have agreed on a common language (a set of codes) that is used for mes-

sage transmission. The receiver just need to find out that the received noisy message

is indicative of which code. However in reality, different individuals may use different

expressions for describing a same message. As a result, we usually receive information

through channels in which there is not only channel noise for corruption of the mes-

sage, but also we suffer from lacking a common agreed language for perception of the

message. Different channels provide different amount of information when we have

no direct access to the outcome of the stochastic world
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A.1 Description and repertoire

Throughout this section, we use terminologies from classic probability theory. The

probability space (Ω,Σ, p) is a mathematical construct which is used to model real-

world stochastic processes. It consists of three segments: (1) a sample space Ω which is

defined as the set of all possible outcomes ω ∈Ω, (2) a set Σ of events defined as the set

of all subsets of the sample space Ω. where each event is a subset of Ω containing zero

or more outcomes ω, and (3) a probability function p : Σ→ [0,1] that assigns a positive

number from 0 to 1 to each event A ∈Σ. For example, in a probabilistic task such as

dice throwing, the sample space is all possible numbers which can be appeared, i.e,

Ω= {1,2,3,4,5,6}. The appearance of an even number is an event A = {2,4,6}, and the

probability of this event is p(A) = 0.5.

Description

Different individuals may use different expressions to describe a same outcome ω ∈Ω.

An expression that is used for describing ω may also be correct for a different outcome

ω′ �=ω. Therefore, given an expression, we may not be able to distinguish whether the

true outcome is ω or ω′. For instance, if the outcome of a thrown dice is expressed by

“an even number”, then we cannot distinguish whether the actual outcome is 2, 4, or 6.

In Palm theory of novelty and surprise, a concept called description is defined in order

to distinguish the way different people describe outcomes of a random process. A

description d : Ω→ Σ is a mapping from the sample space Ω to the event space Σ.

Each outcome ω is described by an expression d(ω) ∈Σ (as a subset of sample space

Ω) which is fulfilled by all the elements which comprise it including the outcome

ω ∈ d(ω).

Here we provide three different ways of describing the actual outcome of a thrown

dice. The person number 1 describes the actual outcome by telling you exactly the

number that is appeared when the dice is thrown. The description function that the

person number 1 uses for describing the outcomes is d1(ω) = {ω} ∀ω ∈Ω, indicating

that each proposition d1(ω) is fulfilled only by the outcome ω. The person number 2

describes each outcome just by letting you know whether the number is even or odd

(i.e., d2(ω) = {1,3,5} ∀ω ∈ {1,3,5} and d2(ω) = {2,4,6} ∀ω ∈ {2,4,6}). So, the proposition

d2(ω= 4) which is used for describing the outcome ω= 4 is fulfilled by all outcomes

ω ∈ {2,4,6}, because they are all even numbers. The third person describes each

outcome by telling that the appeared number is bigger than zero and less than seven

(a description that provides no useful information because all the possible outcomes

fulfill this condition). This way of description corresponds to d3(ω) =Ω ∀ω ∈Ω (see
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Fig. A.1).

Figure A.1 – Description functions. Each outcome ω is described differently using
different description functions di (ω). Each description is identified by a color. Blue
boxes indicate the set of outcomes Ω, where each description maps an outcome from
left box to a subset of outcomes in the right box. For instance, description number
3 (green) describes outcome ω = 4 by a statement that is fulfilled by all outcomes
{1, ...,6}.

A description d is finer than a description d ′ (written as d ⊆ d ′), if d(ω) ⊆ d ′(ω), ∀ω ∈Ω.

In fact, the finer description d more precisely describes the outcomes than d ′. In

the example above, d1 ⊆ d2 ⊆ d3, meaning that d1 is the most informative way of

describing the outcomes and d3 is the least informative one. Here, informativeness

corresponds to the level of uncertainty (about the actual outcome) that is reduced by

a description d .

Novelty and Surprise

The novelty provided by ω for the description d is defined as Nd (ω) = − log p(d(ω)).

Note that Nd : Ω→R+ is a random variable. The expected value of this random variable

determines the average novelty N (d) = E(Nd ) of the description d , that quantifies, on

average, the usefulness of the information provided by a description d in reducing the

uncertainty about recognizing the true outcome. In the example above, the average

novelty of each description is equal to N (d1) = log6,N (d2) = log2, andN (d3) = 0.

To quantify how surprising the information provided by a description d is, we first

construct a new description �d , defined as �d(ω) = {ω′ : p(d(ω′)) ≤ p(d(ω))} ∀ω ∈ Ω.

The description �d describes each outcome ω by an expression �d(ω) that is fulfilled

by all the outcomes ω′ for which p(d(ω′)) ≤ p(d(ω)). The surprise provided by ω

for the description d is defined as the novelty provided by ω for description �d , i.e.,

Sd (ω) = N�d (ω). Just like novelty, surprise Sd (ω) is also a random variable by which
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we can define the average surprise S (d) of a description d as the average of this

random variable which is equal to the average novelty of directed description �d , i.e.,

S (d) = E(N�d ). The average surprise S (d) of a description measures how different

size of all propositions {d(ωi )}n
i=1 (used for describing different outcomes {ωi }n

i=1) is

in comparison to each other.

We already saw that d1,d2, and d3 have different average novelties corresponding to

different amounts of usefulness in reduction of uncertainty about the outcomes in the

example of dice throwing (N (d1) >N (d2) >N (d3)). However, all these descriptions

are equally surprising with the average surprise equal to zero, i.e., S (di ) = 0 for

i = 1,2,3. The reason is that in all these descriptions di ∈ {d1,d2,d3}, the novelty

Ndi (ω) is the same for all the outcomes ω ∈Ω. In other words, all the outcomes are

similarly described for a given description. We as subjects who receive information

about actual outcomes through these channels will never be surprised as there is no

unpredictability in the way that they describe different outcomes. Mathematically,

this is because �di (ω) =Ω ∀ω ∈Ω and i = 1,2,3.

Now consider a fourth description d4 which describes all the outcomes except for ω=
1, for which he describes it perfectly. Such describer is modeled as d4(ω) =Ω ∀ω ∈Ω\

{1} and d4(ω= 1) = {1}. Here the channel is surprising because some one who receives

information from this channel faces an unexpected proposition (when outcome ω= 1

happens). For a person who is often used to receive no useful information through this

channel, the average surprise of the fourth describer is equal to S (d4) = 1
6

∑6
i=1 Sd4 (ω=

i ) = 1
6 log6 > 0 because

Sd4 (ω= 1) = N�d4
(ω= 1)

= − log p(�d4(ω= 1))

= − log p({ω′ : p(d4(ω′)) ≤ p(d4(ω= 1))})

= − log p({ω′ = 1})

= log6, (A.1)

and Sd4 (ω) =− log p(Ω) = 0 ∀ω ∈Ω\ {1}.

Repertoire

Palm has proposed the concept repertoire. For a probability space (Ω,Σ, p), a repertoire

α = {Ai }m
i=1 (as a subset of Σ \ {�}) is a collection of non-empty expressions Ai that

their union covers the whole sample space Ω (i.e., ∪m
i=1 Ai =Ω, where ∪ denotes the
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union operator). A repertoire α is basically a collection of expressions Ai by which a

subject describes different outcomes ω ∈Ω. Each subject may have his own repertoire

α as it is determined by his own personal desires and interests.

In the example of game of lotto, imagine some one is interested in those configurations

in which 3 or more numbers come in a row. This interest in configurations can be

expressed by repertoire α = {A3, A4, A5, A6,Ω} where An = [n numbers in a row] for

n = 3,4,5,6 is a proposition which is fulfilled by all configurations in which n numbers

are in a row. Note that ∪α =Ω. It means that if she wants to describe configuration

X = {11,22,33,47,48,49} in example above, she can use A3 ∈α and Ω ∈α as statements

she is interested in for describing the outcomes. The way that she perceives both

configurations Y = {7,16,23,35,40,48} and W = {2,7,19,23,37,43} is that they are

ordinary configurations. In fact they will be described by her using proposition Ω ∈α

which means they do not have any specific property (as she perceived) except that

they are ordinary members of sample space Ω with no specific relation between

their elements. However, configuration Z = {1,2,3,4,5,6} can be described by all

propositions in repertoire α= {A3, A4, A5, A6,Ω} as all the propositions in α is fulfilled

by configuration Z .

If we use the propositions within α to describe lottery drawings, we first observe that

α is no partition of a sample space Ω as there is overlap between the propositions;

on the contrary, A6 ⊆ A5 ⊆ A4 ⊆ A3 ⊆Ω. So, if a particular drawing ω fulfills A6 (like

configuration Z in example above), it also fulfills A5, A4, A3, and Ω. Therefore it may

be correctly described by all of existing propositions in α. However, a proper choice

from α always describes ω by A6 if there are 6 numbers in a row because it is the most

accurate and informative description for such outcome among all the propositions

in α. One may also calculate the average novelty and surprise for repertoire α as

N (α) =N (dα) and S (α) =S (dα), respectively.

If there is no description, we can also think of the novelty and surprise of a repertoire

per se. The idea is that if we were able to be informed of the actual outcomes with

no restriction of receiving information from a describer, how should we describe the

events in a most accurate way with respect to a given repertoire? For an event ω ∈Ω,

the set of all possible descriptions of ω in α is denoted by αω = {Ai ∈α : ω ∈ Ai }. What

we assume is that a minimal proposition in αω should be chosen to describe ω. The

statement A is minimal if there is no other proposition in αω that is contained in A. So

a minimal proposition describes the event ω in a most accurate way compared to any

other proposition in αω. Indeed, for a repertoire α, it would be reasonable to define

the novelty of repertoire α provided by ω as the maximal novelty of all propositions in
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αω, i.e.,

Nα(ω) = max{N (A) : A ∈αω}. (A.2)

A description d is called a proper choice from α if for every ω ∈Ω, there is no propo-

sition A ∈α such that ω ∈ A ⊂ d(x). In fact, a proper choice d has this property that

it describes each event ω by a minimal proposition A ∈αω. In general, there may be

several proper choices in α. We denote by D(α) the set of all proper choices from α.

The average novelty N (α) and surprise S (α) of a repertoire α is defined as:

N (α) = max{N (d) : d ∈ D(α)} (A.3)

S (α) = max{S (d) : d ∈ D(α)}. (A.4)

A repertoire α is called tight if there is exactly one proper choice from it. In this case,

this choice is denoted by dα and so D(α) = {dα}.

Given a predefined repertoire α for a person, we may also be interested in measuring

the amount of novelty or surprise that is provided by an event ω through a description

d for that specific person characterized by α. The average novelty or usefulness of a

description d with respect to a repertoire α is defined as Nα(d) = E(Nα
d ) where

Nα
d = max{N (A) : d(ω) ⊆ A ∈α}. (A.5)

The novelty of description d with respect to repertoire α, provided by event ω, is

considered as a random variable Nα
d : Ω → R and is computed as the maximum

possible novelty that you may receive by a proposition A ∈ α which contains d(ω).

The average novelty, then would be the expectation of such random variable. For

any finite repertoire α and any description d , we have Nα(d) ≤N (d) and Nα(d) =
N (d) if and only if R(d) ⊆α where R(d) denotes the range of description d . In other

words, the average novelty of a description with respect to a repertoire is always less

than or at most equal to the average pure novelty of that description. The equality

holds whenever all the propositions used in description for describing the events is a

member of the repertoire, meaning that we are interested in all of the propositions

d(ω) ∈ R(d). One could also similarly define the average surprise of description d with

respect to repertoire α as Sα(d) = E(Sα
d ) where

Sα
d = max{S (A) : d(ω) ⊆ A ∈α}. (A.6)
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B Generalized Expected Utility Maxi-
mization for Decision Making

A standard model of decision making is expected utility maximization [Meyer, 1987]

in which a decision maker selects a choice x∗ ∈X with the highest subjective expected

utility U (x∗) among all other alternatives x ∈X . In a probabilistic framework, it can

be interpreted as selecting choice x∗ with probability 1 and choosing the rest with

probability 0 (i.e. P (x) = δ(x − x∗) is the corresponding choice selection density func-

tion which determines the likelihood of selecting different choices, where δ(.) denotes

the Kronecker delta function). The density function P (x) = δ(x −x∗) maximizes the

expected value of the utility function 〈U (x)〉P among all possible density functions

P (x) because

〈U (x)〉P =∑
x

U (x)P (x) ≤∑
x

U (x∗)P (x) =U (x∗) = 〈U (x)〉δ(x−x∗) . (B.1)

In reinforcement learning, however, choosing the action with the highest value func-

tion does not allow for sufficient exploration; this requires choice variability, e.g., by

adding noise. Furthermore, individual preferences should be incorporated into the

decision making processes, such as action selection in RL.

Expected utility theory accounts for individual differences by explicitly modeling

different beliefs about the probabilities of different outcomes. Instead of using a

stochastic action selection function (such as a sigmoid) we propose an information

theoretical equivalent of existing models to incorporate both individual preferences

and choice variability. As such we do not need to impose any specific form of con-

straints existing in different models. In contrast to maximizing just the average utility
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〈U (x)〉P , maximizing the functional

F[P ] = 〈U (x)〉P + 1

λ1
H(P )− 1

λ2
H(P,P0)

= 〈U (x)− 1

λ1
lnP (x)+ 1

λ2
lnP0(x)〉

P
, (B.2)

yields a choice selection density function P (x) which not only leads to a relatively

high average utility, but also allows exploration. Further, it does not allow the solution

to be highly different from a reference P0. While the entropy H(P ) = 〈− lnP (x)〉P

of a density function P in Eq. (B.2) models choice variability, the relative entropy

H (P,P0) = 〈− lnP0(x)〉P models subjectivity by involving a subjective reference density

function P0. The minus sign in the last term of the first line in Eq. (B.2) penalizes

those density functions that are highly different from a subjective reference P0. The

parameters λ1 and λ2 control the fuzziness of the solution by changing the weights

of the second and third terms, respectively. By taking the derivative of Eq. (B.2) with

respect to P and setting it equal to zero, one could find that the functional in Eq. (B.2)

is maximized by

P∗(x) = argmax
P

F[P ] = P0(x)
λ1
λ2 eλ1U (x)

Z (λ1,λ2)
, (B.3)

where Z (λ1,λ2) =∑
x P0(x)

λ1
λ2 eλ1U (x) is the normalizing factor. Equation (B.3) resem-

bles a (modified) Bayes’ rule in the sense that the effect of utility U in making the

posterior density function P∗ is controlled by a free parameter λ1 and a prior belief P0

that is affected by the ratio λ1
λ2

. Although the optimal density P∗ that yields the maxi-

mal functional value F[P∗] = 1
λ1

ln Z (λ1,λ2) is explicitly derived in Eq. (B.3), it can also

be learned using the functional gradient rule Eq. (4.2). This is because the functional

Eq. (B.2) can be expressed as 〈F [P ]〉P where F [P ] =U (x)− 1
λ1

lnP (x)+ 1
λ2

lnP0(x) is a

density-dependent functional.

If the maximizer P∗ is approximated by any other density P̃ , then its corresponding

functional value F[P̃ ] differs from its maximal value F[P∗] in proportion to the KL
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divergence DK L(P̃ ||P∗) ≥ 0. This is because,

F[P∗]−F[P̃ ] = 1

λ1
ln Z (λ1,λ2)−〈U (x)− 1

λ1
ln P̃ (x)+ 1

λ2
lnP0(x)〉

P̃

= 1

λ1
〈ln Z (λ1,λ2)− lneλ1U (x) + ln P̃ (x)− λ1

λ2
lnP0(x)〉

P̃

= 1

λ1
〈ln Z (λ1,λ2)P̃ (x)

eλ1U (x)P0(x)
λ1
λ2

〉
P̃

= 1

λ1
〈ln P̃ (x)

P∗(x)
〉

P̃
= 1

λ1
DK L

(
P̃ ||P∗)

.(B.4)

B.1 Derivation of the soft-max rule from expected util-

ity maximization

As an example, we investigate a binary decision making task (such as the two-armed

bandit problem) in which a subject has to make a decision between two alternatives

x = 1 and x = 0. The probability P (x) of making decision x is modeled by a Bernoulli

distribution parametrized by θ such that P (x) = θx(1−θ)(1−x). We use P0(x) = 0.5 to

incorporate no prior preference in making different decisions. We further assume that

λ1 =λ2 =λ to make the formula simpler. As such, the optimal probability of making

the decision x = 1 in our binary example is equal to

P∗(x = 1) = eλU (x=1)

eλU (x=1) +eλU (x=0)
= 1

1+e−λΔU
, (B.5)

where ΔU =U (x = 1)−U (x = 0) is the difference between the decisions’ utilities. If

U (x = 1) >U (x = 0), the probability P∗(x = 1) of making decision x = 1 in Eq. (B.5) is

greater than 0.5. The parameter λ then determines how big that probability should

be for different values of ΔU . Note that the stochastic (sigmoid) action selection

function, which is used in the expected utility theorem for modeling choice variability,

is explicitly derived in Eq. (B.5) as the optimal solution in the sense that it maximizes

the functional Eq. (B.2).
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C Learning Associations with a Neurally
Computed Global Novelty Signal

Here we propose a model to measure novelty based on the activity of decision units in

a decision making process in neural networks. We also propose a way by which novelty

can implicitly modulate (gate) Hebbian plasticity to control learning at underlying

synapses. We apply our model to a clustering task, in which the total number of

clusters is initially unknown to the network. The proposed model is able to add more

clusters whenever it judges an input sample to be novel, i.e., a sample which may

belong to none of the existing clusters. This model represents an agent that is able to

generate (trigger) new states, an essential feature for learning new environments. The

proposed model can be used to explain how humans and animals efficiently encode

and discover the inherent characteristics of the environment with which they interact.

We argue that the novelty signal in this framework can be interpreted as a (global)

modulatory signal, corresponding to the diffusion of a non-specific neuromodulator

(e.g., norepinephrine (NE) released from locus coeruleus (LC) neurons) and can mod-

ulate the local Hebbian factors (i.e., the coactivity of pre- and post-synaptic neurons)

in synaptic plasticity rules. As such, it can be considered as a biologically plausible

third factor in multi-factor learning rules.

C.1 A neural network model

We use a two-layer feed-forward neural network with Oja’s learning rule in the frame-

work of competitive learning (winner-takes-all (WTA)) to classify input patterns (see

Fig. C.1A). The network consists of mmax = mused +m f r ee output units, corresponding

to the maximum number of clusters the system can learn. Each of the mused units

represents a previously learned cluster (e.g., known fruits such as apple and banana).

m f r ee is the number of loser units which have never been used for describing environ-

mental features. These are called loser units as they always lose the competition in
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WTA network [Hertz et al., 1991] unless a novel pattern (e.g., an unknown fruit such as

rambutan or jabuticaba) is presented.

Each output unit xi = g (hi ) is fully connected to a set of inputs x j via excitatory

connections wi j ≥ 0. Here g : R+ → [0,1] is the activation function and

hi = b +Ei − Ic − In Θ(x̄i ), (C.1)

is the net input to neuron i , where b ≥ 0 is a common excitatory input (constant

baseline activity), 0 ≤ Ei =∑
j wi j x j ≤ 1 is the normalized forward excitatory input, Ic

stands for the competitive inhibition (required for implementing WTA) and

In = c N (X ) ≥ 0, (C.2)

with a constant c is the absolute value of the inhibitory signal proportional to the

novelty 0 ≤N (X ) ≤ 1 of each presented input pattern X . The Heaviside function Θ(.)

ensures that the novelty-related inhibitory signal is applied only to active output units

(i.e., neurons with x̄i > 0, where x̄i is the mean activity, averaged over a large number

of past examples). In what follows, we assume that

If the presented input pattern X is not novel, then we can neglect the influence of

inhibition In [Eq. (C.2)] on the net input hi [Eq. (C.1)]. Therefore, one of mused output

units (denoted by i∗) that receives maximal excitation Ei remains activated. All other

output units becomes silent as a result of WTA architecture. The set of afferent weights

to unit i∗, denoted by Wi∗ = (wi∗1, ..., wi∗n), represents the prototype of a cluster to

which input X belongs.

Dynamics of WTA network causes only one output unit (the winner i∗) to remain

active. This makes sure that only the set of afferent weights to the winner unit, i.e.,

Wi∗ , is modified. This is a consequence of the Oja’s learning rule:

Δwi j = ηxi (x j −xi wi j ), (C.3)

in which learning is gated by the activity xi of the post-synaptic neuron. That is if the

post-synaptic neuron is not activated (i.e., xi = 0), there is no change in its afferent

synaptic weights (Δwi j = 0, ∀ j ).

According to Oja’s learning rule [Eq. C.3], the set of afferent weights to the winner unit

i∗ (with xi∗ = 1) is changed by ΔWi∗ = η(X −Wi∗) where η is a small learning rate. Such

an update shifts the prototype Wi∗ a bit towards X . After many trials, the prototype

approaches to the center of all data samples X that are classified in the corresponding

cluster.

94



C.2. Our measure of novelty

If data sample X is sufficiently novel, then the inhibitory term In will exceed the

excitatory term Ei . Therefore, the net input hi in Eq. (C.1), for all mused output units

(with x̄i > 0), falls below the baseline b− Ic . The net input to all m f r ee loser units (with

x̄i = 0), however, is bigger than b − Ic because they never receive such an inhibition

unless they are used for learning environmental features. Therefore, in the presence of

a novel sample, one of the loser units finds the chance of winning the competition in

the WTA network. As such only one of m f r ee units finally remains active in the output

layer. A learning gate is then open for the afferent weights of that unit, corresponding

to creation of a new prototype. Once a loser unit is used for representing a new cluster

for describing environmental features, it no longer belongs to the set of loser units.

C.2 Our measure of novelty

The novelty signal N (X ) in our model is negatively proportional to the maximum

excitatory input to the neurons in the output layer i.e.,

N (X ) = 1−maxi [Ei ]. (C.4)

The idea behind this measure is that if none of the decision units in the output layer is

sufficiently activated, there is not enough evidence that the input pattern belongs to

one of existing clusters that they represent. Therefore, the input sample is novel with

respect to what the system has learned (encoded as synaptic efficacies between input

and output layers).

The inhibitory signal In in Eq. (C.2) not only depends on the novelty signal [Eq. C.4],

but also it depends on a constant c. We propose to choose

c = T

1−T
, 0 ≤ T < 1. (C.5)

Here, T is indicative of a threshold. If the activity of none of mused output units is above

T (i.e., if maxi Ei < T ), then the input data sample X is recognized as sufficiently

novel (with N (X ) > 1−T ). The net input hi [Eq. (C.1)] to all mused output units falls

below b − I because:

hi = b+Ei −Ic−In < b+maxi Ei −Ic−cN (X ) < b+T −I− T

1−T
(1−T ) = b−I . (C.6)

As a consequence, a former loser unit now becomes the winner of the WTA compe-

tition and a new prototype will be built. The threshold T in Eq. (C.5) is a subjective
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parameter. A larger T results in a finer description of the environment. Data samples

are more frequently recognized as novel (and so more prototypes or clusters are cre-

ated) for a large T than a low T . On the other hand the coarsest description of the

environmental features is achieved by the smallest threshold, i.e., T = 0. In that case,

no data sample is recognized as novel and all the inputs are classified into one of the

existing clusters.

C.3 Simulation

We apply our proposed model to an online clustering task in which the number of

prototypes is unknown to the subject. The aim is to learn the inherent structure of the

input data space in an unsupervised fashion.

Two-dimensional input patterns randomly drawn from four multivariate normal

distributions with underlying means (±3,±3) and covariance matrix 2.56 I2 (where

In is an n ×n identity matrix) are given to the network in four blocks. Each block

contains 100 samples and has a different mean. The model is capable of recognizing

all 4 clusters, although from the beginning it was not aware of how many clusters exists

in the dataset (see Fig. C.1B). The novelty signal calculated by Eq. (C.4) is depicted in

Fig. C.1C. As expected, the novelty signal rises at those time steps where that samples

from a different distribution is presented (i.e., t = 101,201,301).

C.4 Discussion

We proposed a simple model in which a novelty signal is efficiently used for generating

new memories without disruption of past learned memories. Novelty signal triggers

an inhibitory signal (whenever the input pattern is not familiar for the prototypes

that have been learned) and drives learning at synapses that do not yet represent

environmental features. Using this method we adapts number of output units we

need for describing environmental features.

Once an input pattern is presented to the network, the activity of each output unit

determines to what extent it is likely that the input belongs to its corresponding

cluster. A higher activity then corresponds to a bigger extent. In classic WTA network,

a unit with maximum activity always wins the competition no matter how much it is

activated. However, in our framework low-activation is not acceptable for a unit to

be considered as a winner in the WTA network. The winner unit does not only have a

higher activity compared to the outher output units, but also it has to have an activity

that is larger than a given threshold T .
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Figure C.1 – Neural network model for novelty-based clustering. A. Input units (blue
circles in bottom layer) provide excitatory input for excitatory decision units in mid-
dle layer consisting of both loser units (cyan circles) and active units (yellow circles)
through weak (dashed arrows) and strong (solid arrows) connections, respectively.
WTA between decision units is implemented via mutual inhibition through a common
inhibitory pool (red circle). Additionally, the decision units project to an inhibitory
unit (magenta circle) via pre-defined non-plastic connections to determine their max-
imum activity. A novelty detector (green circle) strongly inhibits the active units if the
maximum activity among decision units is not high enough. It will increase the chance
that one of always-loser units wins the competition. Hence, a new cluster is created.
B. Two-dimensional input patterns (colored dots). The network is able to add new
clusters (black squares) whenever a novel pattern is presented. Each color indicates
the cluster into which samples are classified. The black squares among colored dots
represent the center of each learned cluster. Black squares at (0,0) correspond to weak
synapses afferent to loser units which have not yet been used for learning a new cluster.
C. The measured novelty for each input pattern presented to the network. Whenever
the distribution from which samples are drawn is changed (i.e., trials 101,201, and
301), the novelty signal increases resulting in creation of a new cluster.
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A functional requirement for our model to work properly is that the novelty signal

has to be generated fast enough before WTA network (using competitive inhibition

Ic ) determines the winner neuron. Therefore the dynamics of the novelty-triggered

inhibitory signal must be faster than the competitive inhibition. This is a plausible

assumption, as there is neurophysiological evidence that the LC-NE system (as neural

correlate of novelty) is fast enough to affect the outcome of a decision process (WTA

network), in the cortical areas [Usher et al., 1999].

The inhibitory signal In in Eq. (C.2) is a global signal. The significance of this model

is that the novelty signal is globally available for all the output units, and can be

considered as a neuromodulatory signal which implicitly affects Hebbian plasticity.

Moreover, novelty only depends on the maximum activity in the output layer. In other

words, we do not need to track the activity of whole network in order to calculate

novelty. This is not, however, the case for other novelty measures whose calculation

depends on many parameters that have to be collected from the whole network.

The stability of categories formed by competitive learning is not guaranteed as there

is always a weight change if a new pattern is presented to the network. This problem

can be solved by freezing the learned categories by gradually stopping the learning.

However, stopping the ability to learn causes the network to lose its plasticity and not

to react to any new data. This is why we need a triggering signal like novelty that opens

a gate for a set of synapses that should be used for learning new memories. However,

too much plasticity in the neural system results in forgetting past memories. Adaptive

resonance theory (ART) [Carpenter and Grossberg, 1988] has been proposed to address

the stability-plasticity dilemma by proposing a set of neural network models to address

the problem of pattern recognition. The idea behind the ART is very similar to what

we proposed in our model. However, ART models mainly use artificial neural networks

with algorithmic approach to address the problem, while our proposed model tries

to explain how novelty can be neurally calculated and how it can be incorporated

into plasticity rules. Although our current model is not yet fully implemented in a

biological plausible setting, we believe that our proposed model can provides some

insights about how memories can be formed in our brain.

An application of the proposed model is to address one of the challenges in clustering

problem: how many prototypes is needed to efficiently encode the input data space?

By efficiency, we mean trying not to use too many prototypes for describing an envi-

ronment, if a few is enough for doing so. In fact, the number of prototypes one need

for encoding the environment should be adaptively adjusted according to the level of

environment’s complexity. Despite of classic clustering algorithms like K-means in

which the total number of clusters is initially known to the learning agent (a machine
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or a neural system), our brain does not consider a pre-defined number of prototypes

for describing the world. Instead, it gradually increases the number of prototypes as

the complexity of the environment increases.

99





D What Hinders Bayesian Optimal Critic
to Distinguish Similar Tasks?

In the framework of reinforcement leaning guided by a critic [Sutton and Barto, 1998a,

Doya, 2000, Frémaux et al., 2013], simple running average can be used to estimate the

expected reward corresponding to a single task which is repeated several times during

training. However, if multiple tasks have to be learned in parallel, then the critic has to

distinguish different stimuli corresponding to different tasks in order to estimate the

expected reward separately for each underlying task [Frémaux et al., 2010].

Psychophysical experiments on perceptual learning have shown that learning two

similar tasks in parallel is impossible [Herzog et al., 2012, Tartaglia et al., 2009]. It

suggests that the brain has an imperfect critic to calculate the expected reward in a

sense that if task A and task B are highly similar, the critic can no longer distinguish

them. As such, it is not able to correctly estimate the expected reward for each of the

two tasks, separately.

Here we would like to address this problem from a theoretical point of view. We for-

mulate this problem as a simple mathematical problem in the framework of statistical

decision theory, to give an abstract theoretical answer to experimental finding above.

We argue that if the two tasks are sufficiently similar, reporting them as a single task

would be less riskier than reporting them as two separate tasks. Therefore, it makes

sense (from the view of decision making theory) for the subject not to make a riskier

decision (i.e., reporting them as separate tasks).

D.1 Argument 1: using statistical decision theory

Imagine that there are two different tasks A and B that must be learned in parallel. We

model different stimuli corresponding to tasks A and B as realizations of two Gaussian

distributions N (μ,1) and N (−μ,1), respectively. Here, μ ≥ 0 is the absolute mean
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value of the underlying distributions. For the simplicity we fixed the standard deviation

σ of Gaussian distributions to 1 in order that similarity between task A and task B is

determined just by μ; otherwise the ratio μ
σ

determines how much two tasks are similar.

Smaller μ indicates more similarity because it causes the Gaussian distributions to

have overlap (see Fig. D.1). In other words, when μ is small, the distinction between

the two tasks becomes difficult.

We assume that tasks A and B are interleaved during training; called roving condition

[Herzog et al., 2012, Tartaglia et al., 2009]. That is at each time step, either task A

or B is chosen with 50% chance. Then a random number corresponding to a noisy

stimulus associated to the chosen task is presented accordingly. As such, stimulus x

which represents either task A or task B can be modeled as a random variable with

probability density function

P (x) = 0.5 N (μ,1)+0.5 N (−μ,1). (D.1)

Using observed samples X = {xi }n
i=1, a decision rule δ(X) is defined as a statistics which

can be used for estimating the true unknown parameter μ. For a given observation

set X, two hypotheses (represented as two decision rules) should be compared. If the

critic believes in existence of a single task (the first hypothesis), then the sample mean

δ1(X) = 1

n

n∑
i=1

xi , (D.2)

is a good candidate for estimation of the underlying parameter μ. If it believes in two

different tasks (the second hypothesis), then decision rule

δ2(X) = 0.5 (
1

|A +|
∑

i∈A +
xi − 1

|A −|
∑

i∈A −
xi ), (D.3)

could be considered as a simple and rational method for the point estimation of

unknown parameter μ. Here A + and A − denote the set of indices for which samples

are non-negative (xi ≥ 0) or negative (xi < 0) values, respectively. Equation (D.3)

calculates half of distance between the sample means of positive and negative samples;

a quantity which can be used for estimation of μ.

A key notion of decision theory is that decision rules (here δ1(X) and δ2(X)) should

be compared by their risk functions. A less riskier decision is more appreciated [Pratt

et al., 1995]. The risk of a decision rule is defined as the expected loss incurred when
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that decision rule is employed. Here we use a quadratic loss function

L (μ,δ(X)) = (μ−δ(X))2, (D.4)

which indicates how much critic loses because of its estimation method μ̂= δ(X) as

a decision rule, if true parameter is μ. Since loss function L in Eq. (D.4) depends on

observation X, its expectation with respect to underlying distribution P (x) in Eq. (D.1)

is defined as risk

R(μ,δ) = E[L (μ,δ(X))]. (D.5)

Note that the risk function in Eq. (D.5) does not depend on observation X, and it solely

depends on true parameter μ and applied decision rule δ(.) as a point estimation

method. Fig. D.2 depicts risks R(μ,δ1) and R(μ,δ2) associated with decision rules

in Eqs. (D.2) and (D.3), respectively (details of calculation are given at the end of

Appendix).

We argue that this finding is actually an answer to explain why critic is not able

to distinguish similar tasks. The reason is that if two tasks are sufficiently similar

(which is the case if μ < μ∗ where μ∗ is associated with the intersection point in

graph of Fig. D.2)), decision rule Eq. (D.2) (i.e., no distinction between the two tasks)

is less riskier than its alternative in Eq. (D.3) (i.e., decision on their distinctions).

Hence, if critic decides not to distinguish two similar tasks, it might be because of a

rational decision making strategy, that prefers less riskier decisions than more riskier

ones [Pratt et al., 1995].

D.2 Argument 2: using Bayesian reasoning

We show that Bayesian theory can also explain such a phenomenon. Let us assume

that stimuli are generated by a mixture of two Gaussian distributions

P (x|μ,σ) = 0.5 N (μ,σ)+0.5 N (−μ,σ), (D.6)

where mean μ and standard deviation σ are unknown parameters. A uniform prior

π(μ,σ) over two-dimensional space (μ,σ) is assumed. Using Bayes’ rule we calculated

posterior distribution over parameters (μ,σ) after observation of n = 1000 iid sam-

ples, where the true parameters (μ,σ) were (0.5,1) (two similar tasks) and (2,1) (two

different tasks).

Joint posterior distribution π(μ,σ|X) is depicted in Fig. D.3 and Fig. D.4 when true
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parameters are (0.5,1) and (2,1), respectively. Despite Fig. D.4 (case of different tasks)

in which the posterior distribution π(μ,σ|X) looks like a bump around true parameters

(0.5,1), in Fig. D.3 (case of similar tasks) the posterior distribution is bended over

a wider region. It shows that if two tasks are similar (i.e., when μ < μ∗), Bayesian

framework is not also capable of distinguishing two tasks because region around

(0,1.2) (one task with a bigger standard deviation than the true value) is as likely as

region around (0.5,1) (two different tasks).

We also numerically calculated the amount of uncertainty in final estimation (mea-

sured as the entropy of joint posterior distribution π(μ,σ|X)) for each true mean value

μ in the range of [0,2]. Fig. D.5 shows that for smaller μ estimation uncertainty is much

higher than that for bigger μ; consistent with the results inferred from Fig. D.3 and

Fig. D.4.

We would like to emphasize that the experimental results in [Herzog et al., 2012,

Tartaglia et al., 2009] are consistent with the logic of a critic. A critic which distin-

guishes all different stimuli suffers from a specific form of overfitting and would never

generalize. At the other extreme case, a critic which maintains just a single running

average for all stimuli is not able to learn those tasks in parallel. Therefore, an opti-

mal critic must detect the essence of stimulus and neglect the noise, which requires

building clusters on input data set. If the stimuli from two different tasks are very

similar, then it makes sense if the critic assign only one cluster to all of them, and not

distinguishing as separate tasks.

D.3 Calculation of the risk functions

R1(μ) = R(μ,δ1) = E[(μ−δ1(X))2],

= E[(μ− 1

n

∑
i

xi )2]

= μ2 + 1

n2
E[

∑
i

x2
i +

∑
i �= j

xi x j ]− 2μ

n
E[

∑
i

xi ]

= μ2 + 1

n2

(
nE[x2]+n(n −1)E2[x]

)
− 2μ

n
nE[x]

= (1+ 1

n
)μ2 + 1

n
n→∞≈ μ2. (D.7)

104



D.3. Calculation of the risk functions

R2(μ) = R(μ,δ2) = E[(μ−δ2(X))2],

= E[(μ− 0.5

|A +|
∑

i∈A +
xi + 0.5

|A −|
∑

i∈A −
xi )2]

(i )≈ E[(μ− 1

n

∑
i∈A +

xi + 1

n

∑
i∈A −

xi )2]

= μ2 + 1

n2
E[

∑
i∈A +

x2
i +

∑
i �= j∈A +

xi x j ]+ 1

n2
E[

∑
i∈A −

x2
i +

∑
i �= j∈A −

xi x j ]

− 2μ

n
E[

∑
i∈A +

xi ]+ 2μ

n
E[

∑
i∈A −

xi ]− 2

n2
E[

∑
i∈A +

xi
∑

i∈A −
xi ]

= μ2 + 1

n2

(n

2
E[x2

+]+ n

2
(

n

2
−1)E2[x+]

)
+ 1

n2

(n

2
E[x2

−]+ n

2
(

n

2
−1)E2[x−]

)
− 2μ

n

n

2
E[x+]+ 2μ

n

n

2
E[x−]− 2

n2

n2

4
E[x+]E[x−]

(i i )= μ2 + 1

n
E[x2

+]+ (1− 1

n
)E2[x+]−2μE[x+]

(i i i )= μ2 + 1

2n

(
(1+μ2)[1−Φ(−μ)]+μφ(−μ)+ (1+μ2)[1−Φ(μ)]−μφ(μ)

)
+ 1

4
(1− 1

n
)
(
μ[1−Φ(−μ)]−φ(−μ)−μ[1−Φ(μ)]−φ(μ)

)2

− μ
(
μ[1−Φ(−μ)]−φ(−μ)−μ[1−Φ(μ)]−φ(μ)

)
(i v)= μ2 + 1

2n
(1+μ2)[2−Φ(μ)−Φ(−μ)]

+ 1

4
(1− 1

n
)
(
μ[Φ(μ)−Φ(−μ)]−2φ(μ)

)2

− μ
(
μ[Φ(μ)−Φ(−μ)]−2φ(μ)

)
(v)= (1+ 1

2n
)μ2 + 1

2n
+ 1

4
(1− 1

n
)[μ er f (

μ�
2

)−2φ(μ)]2

− μ[μ er f (
μ�

2
)−2φ(μ)]

= (1+ 1

2n
)μ2 + 1

2n
+ 1

4
(1− 1

n
)Ψ2(μ)−μΨ(μ)

n→∞≈ 1

4
Ψ2(μ)−μΨ(μ)+μ2 (D.8)

In calculation above, we used approximation |A +| ≈ |A −| ≈ n
2 in (i ) and equalities

E[x2−] = E[x2+] and E[x−] =−E[x+] in (i i ). In (i i i ) we used the fact that E[x+] = 0.5[ f (μ)+
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f (−μ)] and E[x2+] = 0.5[g (μ)+ g (−μ)] where

f (μ) =
∫∞

0
xN (μ,1) d x =μ[1−Φ(−μ)]−φ(−μ), (D.9)

g (μ) =
∫∞

0
x2N (μ,1) d x = (1+μ2)[1−Φ(−μ)]+μφ(−μ). (D.10)

Here φ(x) = e−
x2
2�

2π
is the standard normal probability density function and Φ(x) =∫x

−∞φ(t)d t = 1
2

(
1+ er f ( x�

2
)
)

is its corresponding cumulative distribution function

where er f (x) = 2�
π

∫x
0 e−t 2

d t is the error function. We further used equalities φ(μ) =
φ(−μ) in (i v) and Φ(μ)+Φ(−μ) = 1 as well as Φ(μ)−Φ(−μ) = er f ( μ�

2
) in (v) to simplify

the final expression written as a function of μ and Ψ(μ) :=μ er f ( μ�
2

)−2φ(μ).
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Figure D.1 – Mixture of two Gaussian distributions. Probability density function
P (x) = 0.5 N (μ,1)+0.5 N (−μ,1) for μ= 0.5 (top) and μ= 2 (bottom). Two Gaussian
distributions have overlap when true mean μ is small. It makes difficult to distin-
guish two similar tasks corresponding to each of Gaussian distributions N (μ,1) and
N (−μ,1).
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Figure D.2 – Decision risks for optimal Bayesian critic. Risk functions corresponding
to two decision rules Eq. (D.2) in blue and Eq. (D.3) in red. For similar tasks (i.e., for
μ<μ∗ where μ∗ corresponds to the intersection point), deciding not to distinguish
two tasks is less riskier than deciding to distinguish them. As such, a rational critic
(which minimizes its decision risk) must not distinguish the two tasks if they are
sufficiently similar.
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Figure D.3 – Bayesian decision for identification of two similar tasks. The joint pos-
terior distribution π(μ,σ|X) obtained by the Bayes’ rule (after 50 samples) when the
true mean (horizontal axis) is μ = 0.5 and the true standard deviation (std, vertical
axis) is σ= 1. Since the true mean is small (two tasks are similar), the Bayesian agent
cannot distinguish whether the samples are generated by one Gaussian component
(with higher std) or two Gaussian components (with smaller std).
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Figure D.4 – Bayesian decision for identification of two different tasks. The joint
posterior distribution π(μ,σ|X) obtained by the Bayes’ rule (after 50 samples) when
the true mean (horizontal axis) is μ= 2 and the true standard deviation (std, vertical
axis) is σ= 1. Since the true mean μ= 2 is relatively large, the Bayesian agent does not
have a problem in estimating the true parameters. In fact it recognizes that there are
two sufficiently different tasks.
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Figure D.5 – Estimation uncertainty for different mean values. The uncertainty (in-
dicated by color intensity) about the estimated mean μ̂ (vertical axis) is smaller for
the larger true means μ> 1 (horizontal axis) than for smaller true means μ< 1. This
indicates that the estimation uncertainty decreases as the similarity between the two
tasks decreases. The graph also shows that the accuracy of estimation is higher for
larger μ than smaller μ (because the dots are less distributed around the diagonal
for larger μ than smaller μ). The estimated mean μ̂ is calculated by averaging over

the joint distribution (i.e., μ̂=∫
dμ

(
μ

∫
dσ π(μ,σ|X )

)
). The estimation uncertainty is

calculated by the entropy of the joint distribution π(μ,σ|X ).

110



Contributions

This section summarizes my contribution to each of the preceding chapters.

Chapter 1: I wrote the introduction. It was then edited by Wulfram Gerstner (WG) and

Kerstin Preuschoff (KP). The idea of the multi-factor learning rules and how they can

be linked to the activity of neuromodulatory system in the brain is proposed by WG.

Chapter 2: I introduced the confidence-corrected surprise and I did the mathematical

derivations. The theory was then refined by WG. The consistency of the proposed

model with the conceptual and computational characteristics of surprise has been

checked and discussed with KP. The text was written by me in collaboration with WG

and KP.

Chapter 3: I formulated the problem of learning through surprise minimization. I did

the mathematical derivations as well as the simulations. I performed data analysis

and produced the figures. I wrote the text in collaboration with WG and KP. The

dynamic decision-making task was proposed by KP, and the high-dimensional maze-

exploration task was proposed by WG, and was inspired by the previous work of Danilo

Rezende. I derived and implemented the hierarchical Bayesian model in collaboration

with Johanni Brea.

Our results in Chapters 2 and 3 were presented in multiple conferences on compu-

tational neuroscience (either as a poster or a talk), and are ready for submission to a

journal under the name:

“Balancing New against Old Information: The Role of Surprise”

M. Faraji, K. Preuschoff, and W. Gerstner (arXiv 1606.05642 [stat.ML]).

Chapter 4: WG and I derived the learning rules. The text was written by me and was

edited by WG and KP. I did the simulations and produced the figures. This work was

inspired by a previous work of Danilo Rezende. The primary results of this chapter

have been documented as an extended abstract for the International Conference

on Reinforcement Learning and Decision Making (RLDM 2015). The work was then
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extended to incorporate the spiking neural network implementation. A manuscript is

in preparation and will be submitted soon under the name:

“ A Biologically Plausible 3-Factor Learning Rule from Gradient Descent Optimization”

M. Faraji, K. Preuschoff, and W. Gerstner.

Appendix A: This section was a review of the work on surprise by Gunther Palm. I had

no personal contribution in the derivation of his theory, and I only summarized it as a

ready reference.

Appendix B: I did the derivations and wrote the text, edited by KP. The results of this

section were part of the aforementioned extended abstract at RLDM 2015.

Appendix C: The idea behind this model followed from a discussion with WG. Inspired

by Grossberg’s theory of ART, WG and I developed the proposed model in this sec-

tion. I performed the simulations and wrote the text. The results of this section were

presented as a poster at Cosyne 2015.

Appendix D: I did the mathematical derivations and performed simulations. I pre-

sented my results as a talk in Jan. 2015 for a group of researchers from different Swiss

universities working on a collaborative project (Sinergia).

Funding: During my PhD study, I have been financially supported by the European

Research Council (ERC, grant agreement number 268689), and the Human Brain

Project (HBP, grant agreement number 604102).
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