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The important thing is not to stop questioning.

Curiosity has its own reason for existing.

One cannot help but be in awe

when he contemplates

the mysteries of eternity, of life,

of the marvelous structure of reality.

It is enough if one tries merely to comprehend

a little of this mystery every day.

— Albert Einstein
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Abstract

The strong space charge regime of future operation of CERN’s circular particle accelerators is

investigated and mitigation strategies are developed in the framework of the present thesis.

The intensity upgrade of the injector chain of Large Hadron Collider (LHC) prepares the par-

ticle accelerators to meet the requirements of the High-Luminosity LHC project. Producing

the specified characteristics of the future LHC beams imperatively relies on injecting brighter

bunches into the Proton Synchrotron Booster (PSB), the downstream Proton Synchrotron

(PS) and eventually the Super Proton Synchrotron (SPS). The increased brightness, i.e. bunch

intensity per transverse emittance, entails stronger beam self-fields which can lead to harmful

interaction with betatron resonances. Possible beam emittance growth and losses as a conse-

quence thereof threaten to degrade the beam brightness. These space charge effects are partly

mitigated by the upgrade of the PSB and PS injection energies. Nevertheless, the space charge

tune spreads of the future injector beams are found to exceed the values reached by present

LHC or other intense fixed target physics beams.

This thesis project comprises three key tasks: detailed modelling of space charge effects,

measurement at the CERN machines and mitigation of space charge impact. Throughout

the course of this thesis, the simulation tool PyHEADTAIL has been developed and extended

to model 3D space charge effects in circular accelerators across the wide energy range from

PSB to SPS. The implementation for hardware-accelerating GPU architectures enables exten-

sive studies, especially when employing the self-consistent particle-in-cell algorithm. The

implemented models have been benchmarked with analytical results for space charge beam

dynamics. In particular, the spectra of quadrupolar pick-ups – which provide a direct measure-

ment method for the space charge tune shift – have been simulated and compared with the

derived theory. The space charge situation at the SPS injection plateau has been extensively

investigated in the course of comprehensive measurement studies, resulting in the identi-

fication of an optimal working point region for the SPS. The interplay of space charge and

the horizontal quarter-integer resonance has been scrutinised in measurement, theory and

simulation. Last but not least, a new LHC beam type with a hollow longitudinal phase space

distribution has been developed for the PSB and proved to substantially mitigate space charge

impact on the PS injection plateau.

Keywords: particle accelerators physics, electrodynamics, beam dynamics, collective effects,

space charge, particle-in-cell algorithm
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1 Introduction

With the first accelerated protons in CERN’s Proton Synchrotron (PS) in 1959, the era of

alternating gradient synchrotrons began. The foundation of this success story is the concept of

strong focusing of particle beams. First conceived in 1950 and patented by Christofilos [1956],

strong focusing has been independently established by Blewett [1952] and Courant, Livingston,

and Snyder [1952]. The study by the latter led to the construction of the Alternating Gradient

Synchrotron (AGS) at Brookhaven National Laboratory (BNL) in the U.S., which started up just

a year after the PS at CERN. A few decades have passed since then, tremendous advances in

the understanding of beam dynamics as well as in the development of new key technologies

such as reliable superconducting magnets have been made. Yet the largest modern particle

accelerators are still based on the same physics principles of the early synchrotrons proving

the power and scalability of the concept.

1.1 Why Does CERN Want High Brightness Beams?

On how the Large Hadron Collider pushes the high-energy frontier in basic research...

In 2008 the first proton beams circulated around the Large Hadron Collider (LHC). Today,

CERN’s 27 km long synchrotron sketched in figure 1.1 accelerates proton beams up to 6.5 TeV.

The two counter-circulating beams are then brought into collision in four locations. The

resulting interaction products are continuously recorded by four detector collaborations for

the purpose of fundamental particle physics research.

One of the dedicated goals of the particle physics experiments at the LHC is the investigation of

the Higgs boson, a quantum excitation of the Brout-Englert-Higgs field. This field is of crucial

importance in the Standard Model of particle physics (SM) because the mass of fermions and

bosons, the elementary particles, is explained by interaction with it. Therefore, the verification

of this mechanism by detecting the Higgs boson posed a long standing quest for experimental

particle physics.
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Chapter 1. Introduction

Figure 1.1 – The LHC and its surrounding geography in the valley of Geneva, Switzerland [Brice
2008]. The locations of the four major LHC experiments – ALICE, ATLAS, LHCb and CMS – are
indicated along the ring.

Since its proposition in the 1960s it should take half a century to confirm the mechanism. In

July 2012, the two general-purpose LHC experiment collaborations, A Toroidal LHC ApparatuS

(ATLAS) and Compact Muon Solenoid (CMS), finally announced the discovery of a new particle:

a scalar boson. In the meantime, the new particle has indeed been identified as a Higgs

particle at a mass of around mH ≈ 125GeV, so far conforming with the properties predicted by

the SM [ATLAS Collaboration and CMS Collaboration 2015]. The most exciting prospect of

further investigation of the Higgs boson’s properties is the possibility of unveiling new physics

deviating from the otherwise extremely solid and well tested SM. To quote Rolf Heuer [2012],

the Director General of CERN at the time of the discovery:

“We have reached a milestone in our understanding of nature. The discovery of

a particle consistent with the Higgs boson opens the way to more detailed studies,

requiring larger statistics, which will pin down the new particle’s properties, and

is likely to shed light on other mysteries of our universe.”

Even though the quest to find the Higgs particle has been successful, and most predictions
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by the SM have been experimentally verified to great precision, there are many fundamental

questions left open. Due to the expansion of our universe, cosmology predicts a Big Bang

singularity some 13.82×109 years in the past [Ade 2015]. Extrapolating from the present

towards the Big Bang, the temperature or energy density in the universe increases. At some

point very close to the Big Bang, the processes in the universe are entirely microscopic and

are governed by elementary particle physics – hence, our present macroscopic situation

evolved from microscopic dynamics. This strong link between (macroscopic) cosmology and

particle physics gives us a hint of what to expect from a satisfactory model of the microscopic

elementary interactions. There are numerous reasons to believe in physics beyond the SM –

as self-contained as it is, the model must be incomplete. Certain observations and facts, e.g.

from cosmology, cannot be explained by it or are simply not included, such as:

1. the asymmetry between baryonic matter and antimatter,

2. the origin of dark matter,

3. the hierarchy problem (mH is negligibly small compared to the Planck scale),

4. the gravitational force,

5. neutrino oscillations (which have already been experimentally verified).

Besides pushing the accuracies of the experimental verification of the SM predictions, the

LHC experiments explore ever higher energies in single-particle collisions. CERN contributes

to the investigation of physics beyond the SM either by excluding parameter ranges and hence

guiding extended theoretical models that address these shortcomings by falsification, or by

finding new particles and states of matter that give insight on new physics. For this endeavour,

the LHC beams are pushing the boundaries on the high-energy research frontier.

Besides dedicated experiments at CERN’s antimatter decelerator facility [Hangst 2014], a

third LHC experiment collaboration named Large Hadron Collider beauty (LHCb) examines

the violation of the C P (charge and parity conjugation) symmetry between particles and

antiparticles. The SM can only account for a “weak” symmetry breaking (explaining e.g. quark

flavour mixing) while the strong asymmetry between baryonic matter and antimatter cannot

be fully explained. In a simple argument, if there were stars or galaxies made of antimatter

we would observe very violent annihilation events in one of the numerous star collisions

happening in the cosmos. The absence of such experimental evidence leads to the conclusion

that our universe is mostly made of matter. At the same time, the Big Bang is believed to have

produced equal amounts of matter and antimatter. If creation and annihilation of particles

and antiparticles happened symmetrically, our universe would be a rather cheerless place

filled with photons only. A plausible and compelling reason for the abundance of matter in our

present universe is the violation of the C P symmetry leading to this baryogenesis [Wiese 2010].

Nevertheless, the exact mechanism remains a mystery and to date no preferred theory has been

established. LHCb analyses rare particle interactions involving beauty quarks produced during

collisions of the LHC proton beams that might shed a light on the C P violation mechanism in
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weak interactions. First results on direct C P violation involving strange B 0
s mesons have been

reported in 2013 [Aaij 2013]. As a by-product, the collaboration has recently published the

exciting first evidence of a pentaquark state involving five bound quarks instead of the usual

three in baryons [Aaij 2015].

The electroweak symmetry breaking happens O
(
10−12 s

)
after the Big Bang. Its physics is now

well established with the Nobel Prize awarded findings of the weak force carriers (the W and Z

bosons) [Linglin 1983; Sadoulet 1983] as well as the Higgs boson [Aad et al. 2012; Chatrchyan

et al. 2012]. After this electroweak phase transition, the quark epoch begins and free quarks

and gluons fill the universe in a special state of matter called the quark-gluon plasma. Around

O
(
10−5 s

)
, the universe experiences the next phase transition when the quarks and gluons

become bound in hadrons. From our present perspective in a much further cooled down

universe, we only see these confined quark and gluon states such as protons, neutrons, pions

etc. However, if we achieve very high energy densities, we can recreate the circumstances

of asymptotically free quarks and gluons. This can in principle be achieved with lead-lead

and proton-lead ion beam collisions at the LHC. The fourth largest of the LHC experiment

collaborations, A Large Ion Collider Experiment (ALICE), dedicates its research programme

to the detection and investigation of such quark-gluon plasmas. In 2013, they published first

results on the phenomenon and have since reported peculiar properties of this ultra-hot state

of matter. In 2015, a CMS analysis with further data from proton-lead collisions confirmed the

existence and the fluid-like behaviour of the plasma [Khachatryan 2015].

The past two decades have brought forth many new insights in the thriving field of cosmology.

In 1998, the Nobel Prize awarded finding that the expansion of our universe actually acceler-

ates has put the concept of a cosmological constant back on the table [Perlmutter 1999; Riess

et al. 1998]. It had once been introduced by Albert Einstein, ironically in an attempt to make

the universe static, but later it had been abandoned in favour of a decelerating expanding

universe based on the experimental evidence of the time. Today, quoting the latest precision

measurements by the Planck mission [Ade 2015], we are left with an exciting puzzle: we know

that the content of the present universe only consists to a Ωb = 0.049 fraction of luminous,

baryonic matter. In other words, the entire contents of the SM only account for 4.9% of the

mass-energy content of today’s cosmos, the remaining 95.1% are of unknown nature. The

acceleration of the expansion can be included into the dynamics dictated by the Friedmann

equations by adding the aforementioned cosmological constantΛ. Present research in cos-

mology is yet to find the essence behind this “anti-gravitating”, negative pressure constituent

which makes for a good ΩΛ = 0.686 fraction of the content of our universe – the commonly

used term dark energy somewhat lives up to its mystery. But equally so does the name for

the remaining fraction of Ωc = 0.265: cold (i.e. non-relativistic) dark matter is another yet

unknown constituent which is not part of the SM. Among other influences, it is thought to

account for the anomaly in the radial frequency distribution of the rotation of galaxies which

is observed to stay constant at large radii. The presently favoured hypothesis for the nature

of dark matter is that it is made of (so far unknown) weakly interacting massive particles,

i.e. the particles are expected to merely interact through gravity and the weak force. This is
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where particle physics comes into play: the LHC collaborations (with the general-purpose

experiments ATLAS and CMS leading the way) are actively searching for such dark matter

candidates.

To round off the tour into intriguing “beyond-the-SM physics” investigated with the aid of

the LHC particle beams, let us briefly address the hierarchy problem about why the Higgs

mass is so low, which at the same time brings up the gravity subject. A hypothetical generic

theory of everything would involve gravity as the fourth elementary force. The SM on the other

hand only contains the triumvirate of the electromagnetic, the weak and the strong force as

quantised theories. The hierarchy problem enters the discussion when addressing theories

including gravitation.

To date, theoretical research has not brought forth a satisfactory and generally accepted

model of quantum gravity. Quantitatively, the quantum nature of gravity is expected to play a

significant role at the Planck scale, corresponding to a length of O
(
10−35 m

)
or, equivalently,

an energy of O
(
1019 GeV

)
(below this energy or above this length, the classical theory of gravity,

general relativity, provides a trustful model). While the LHC experiments at CERN are pushing

on the upper energy limit of human created physics experiments, we are nevertheless talking

about energies below O
(
104 GeV

)
. This is 15 orders of magnitude below the Planck scale

showing that direct experimental investigation of gravitational quantum effects in particle

collisions is not a realistic project.

How does this discussion relate to the mass of the Higgs boson? Due to the Brout-Englert-Higgs

mechanism, we know that the Higgs particle’s effective (experimentally measured) mass mH is

related to the weak gauge bosons’ acquired masses and thus has to be found at the electroweak

scale, O
(
103 GeV

)
, where it has indeed been experimentally detected. In a quantum field

theory, a scalar boson’s bare mass (i.e. the case of the Higgs particle) is subject to quantum

loop corrections. The impact of these corrections scales with the largest relevant energy scale

of the possible interactions described by the quantum field theory. Consequently, if we add

gravity to create a theory of everything, the quantum corrections to the bare Higgs mass should

be of the order of the Planck scale – which we know is huge. In order to then explain the small

effective mass of the electroweak scale, one would have to postulate a heavy bare Higgs mass,

which could in turn compensate these large quantum corrections in a precisely fine-tuned

manner. Without any specific mechanism to explain such a cancellation this is considered

quite unsatisfactory, hence the terminus of a hierarchy problem between the weak force and

gravitation. A corresponding candidate for a theory of everything is expected to solve this

issue in a natural way without unjustified fine-tuning of parameters.

A step towards this goal is the famous theory of supersymmetry which relates bosons and

fermions in a fundamental symmetry. Supersymmetry is like a joker answering many open

questions at once: the hierarchy problem, the flatness of our universe (which can be explained

via cosmological inflation models based on supersymmetry), it might provide the weakly

interacting massive particles as candidates for dark matter, lead to a precise unification of
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the coupling parameters of the fundamental forces at high energies (which mismatch in SM

extrapolations) and, finally, supersymmetry allows to include general relativity in models called

supergravity. In order for the simplest supersymmetry models to solve the hierarchy problem,

it is constrained to an energy range around the TeV scale. Hence, the LHC experiments are able

to possibly detect or, conversely, to exclude a majority of plausible supersymmetric models.

To date, the analysis of the first LHC research run between 2009 and 2013 has not brought

forth any news on this side. Results from the second run taking place since 2015 are expected

to indicate whether supersymmetry is realised in nature or not.

1.2 Introduction to Accelerator Physics

... and how the beam brightness contributes to this endeavour.

Many of these intriguing questions involve the Higgs making it an interesting study case for

physics beyond the SM. Any measured deviation of the Higgs particle’s characteristics from

the SM predictions might lead us to new insights. For this purpose, the experiments need to

collect as many statistics as possible. In technical terms, the event rate Revent =σeventL of a

specific interaction is determined by its event cross section σevent and the operational acceler-

ator variable L called instantaneous luminosity. The physics of the interaction gives σevent.

Consequently, one aims to maximise the integrated luminosity. The luminosity expresses the

density of collision centres in the two counter-circulating colliding beams. Assuming short

bunches in head-on collisions with a Gaussian transverse profile, we can write down a simple

expression for the effective instantaneous luminosity of a single collision,

L = N 2

4πσxσy
frev , (1.1)

where frev denotes the revolution frequency of the circular collider, N the number of particles

in each of the two identical colliding bunches (termed the intensity) and σx,y the standard

deviation of their horizontal and vertical Gaussian beam profiles (the r.m.s. beam widths)

[Wiedemann 2007, equation (18.40)]. To be precise, the transverse beam size in accelerators

is determined by two factors, the focusing strength of the machine and the inherent phase

space density. The latter is a quantity of fundamental importance called the beam emittance

whose lower limit is mainly determined by the injection quality across the machines of the

accelerator complex. The normalised beam emittance εx,y is conceptually closely related to

entropy, in a closed system it can only grow – therefore one aims to preserve it as much as

possible from right after the particle source until the collider. In absence of further effects, the

beam size simply relates to the emittance via σx,y ∝
√
εx,y . We conclude that two important

ingredients to increase Revent from the operational perspective of the particle accelerators are

(i.) a small transverse normalised emittance εx,y and (ii.) a high intensity N .

Since the 1950s, particle colliders have been used as a powerful tool for experimental basic

research in fundamental particle physics. In the meantime, particle accelerators have found

6



1.3. Space Charge Matters

applications in widely varying fields. Exciting and rapidly developing fields range from nu-

clear physics research using neutron spallation e.g. for exploring nuclear waste treatment (cf.

the new European Spallation Source in Denmark and Sweden) over synchrotron radiation

production for condensed matter physics, biology and chemistry research (cf. the European

XFEL project in Germany or the Swiss Light Source in Switzerland) through to industrial man-

ufacturing processes (e.g. doping of semiconductors) and medical purposes (hadron cancer

therapy). Synchrotrons play a leading role in most of these fields.

Many of these applications have in common the requirement for a high beam brightness, i.e.

intensity per averaged transverse normalised emittance. With increasing beam density, the

electromagnetic fields generated by the beam become stronger which in turn influences the

motion of the particles. Beam distributions under these circumstances become subject to

quite complex internal dynamics, hence making the self-consistent treatment and analysis of

such space charge physics an interesting task. In particular, the periodic nature of the external

focusing system, into which the beam is embedded in the case of circular accelerators, can give

rise to intriguing beam dynamics and the impact on the operation of the particle accelerators

can be significant. Space charge provides an upper limit on a machine’s beam brightness,

although not necessarily the most stringent one as there can be other harmful multi-particle

related effects (involving e.g. the interaction with the beam surroundings such as the vacuum

pipe). Nevertheless, the limitation by space charge usually plays a crucial role for certain

parts of an accelerator complex, most prominently at the low-energy machines. Attempting to

exceed this brightness limit can generate resonant beam motion and instabilities potentially

resulting in (i.) emittance growth (increasing εx,y and hence σx,y ) and (ii.) beam losses (which

decreases N ). Furthermore, such losses may also activate the machine and lead to remnant

radiation doses. To conclude, efforts to maximise the beam brightness are bounded by a

maximum value established by direct space charge effects.

1.3 Space Charge Matters

Space charge knocks on the door...

The veterans among the synchrotrons, the initially mentioned AGS at BNL and the PS at

CERN, continue to deliver beams to the downstream accelerators. The PS has gone from

delivering beam intensities of O
(
1010

)
to the present 3×1013 protonsperpulse (ppp) [Burnet

et al. 2011], cf. figure 1.2. During the more than five decades of operation, these synchrotrons

have been upgraded several times to push space charge limitations. The PS upgrades include

the construction of the Proton Synchrotron Booster (PS Booster) completed in 1972, which

raised the kinetic injection energy of the PS to 800 MeV from the previous 50 MeV from the

Linear Accelerator (LINAC). The PS Booster pushed the space charge limit at injection into

the PS to 1013 ppp resulting in a quick increase of the peak intensity after 1972 in figure 1.2).

Shortly after, in 1978, LINAC2 has been built to replace LINAC1 which resulted again in an

intensity jump. With the decision to build the LHC, the requirements for the PS became more

7
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stringent in terms of beam densities. It became crucial to conserve the normalised emittance

throughout the PS cycle, which has been subject to blow-up due to space charge effects. In

1999, the PS Booster extraction energy has been raised to 1.4 GeV to counter space charge

which is most critical around the injection energy.

Figure 1.2 – Annual PS peak intensity in protons per pulse from 1960 till 2000 [PS Staff 1999].

With the increasing demands on brightness, the understanding of space charge dynamics

and its effects on the beam has significantly advanced. In 1999, the University of Maryland in

the U.S. even designed and constructed an electron ring called UMER solely for the purpose

of beam dynamics research on how to push the brightness limits further. The goal is to

accelerate an extremely intensive, space charge dominated beam by crossing dangerous

betatron resonances quickly enough not to affect the beam quality [Kishek et al. 2000].

There have been various milestones throughout the history of space charge research in circular

accelerators. After the invention of the strong focusing principle in the 1950s, non-linear reso-

nances have been thoroughly investigated in view of the new design of alternating-gradient

synchrotrons – to note the remarkable work of Schoch [1958]. A solid foundation for the self-

consistent description and analytic treatment of the space charge problem has been laid by

Kapchinsky and Vladimirsky [1959]. Kapchinsky and Vladimirsky constructed an equilibrium

beam distribution for a coasting (longitudinally constant) beam taking into account the linear

self-fields of the beam as well as the periodic focusing fields. Equilibrium here refers to the

distribution remaining stationary (i.e. time-independent) exhibiting no growth or redistri-

bution (in the absence of resonance phenomena). For this distribution, all particles turn

out to move at exactly one frequency. This is closely related to the fact that the distribution

function fK V is a singular hyper-shell in 4D transverse phase space reading fK V = δ (H⊥−H0)

in terms of the Hamiltonian H⊥ governing the transverse motion (H0 is a fixed value) and the

Dirac delta function δ. The so-called Kapchinskij-Vladimirskij (KV) distribution is uniform

in the transverse x − y plane and gives rise to linear self-fields over the beam cross-section.

8



1.3. Space Charge Matters

To date, it seems to be the only known equilibrium distribution to the space charge problem

being subject to periodic linear focusing. Kapchinsky and Vladimirsky also introduced the

envelope equations (also known as the KV equations) which describe the time evolution of the

KV equilibrium distribution.

The powerful concept of the envelope equations has later been extended first to beam distri-

butions of circular symmetry by Gluckstern [1970] and then to general elliptical symmetry

by Lapostolle [1971] and Sacherer [1971] even in full 3D for bunched beams (but without the

existence of a KV-like equilibrium solution), provided that the KV distribution’s semi-axes in

the equation are replaced by corresponding r.m.s. values of the general beam distribution. A

central and fundamental result from this work is that r.m.s. equivalent beam distributions

can be compared to the corresponding KV distribution dynamics, which can largely be solved

analytically. We will treat the envelope equations in section 2.2.2.

The envelope equations allow to draw fundamental conclusions on the beam stability re-

garding collective effects. In this context, Hofmann, Laslett, et al. [1983] found that the KV

distribution is more susceptible to instabilities than more realistic distributions due to its

singular δ-function nature. Their work established regions of instability for certain envelope

modes by investigating perturbations about the equilibrium state. Their efforts are continued

by Chen and Davidson [1994] who examine mis-matched KV distributions without the previ-

ously employed linear approximation. The beam envelope oscillations are found to possibly

become subject to non-linear resonances which are related to the instabilities found before

and which can give rise to beam halo formation and emittance growth.

Later, a criterion has been established to distinguish between unstable KV typical modes –

which occur in theory and simulations of KV beams and are not found in realistic distributions

that decrease monotonically from the centre – and modes in principle occurring in all kinds of

distributions [Hofmann, Franchetti, et al. 2003]. The KV specific instabilities are explained

to be non-physical as they are “negative energy” modes, i.e. one needs to take away energy

from the distribution to make it become unstable. Instead, it is the positive energy modes

(requiring energy to be added to the beam to become unstable) which are the dynamically

relevant ones shared by the KV and more realistic distributions: they turn out to be dangerous

for machine operation when excited due to betatron resonances. In the KV case, they can be

analytically solved for exact periodic focusing – realistic distributions can then be compared

via the r.m.s. equivalence principle.

9
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... making numerical simulation software become a crucial tool...

Since the space charge problem is in general not analytically solvable for real accelerator

layouts (which are not exact periodic focusing), one often employs numerical simulation tools

to obtain quantitative results. S. M. Lund, Kikuchi, and Davidson [2009] gave an extensive

review on this subject. The conventional algorithm of choice for self-consistent space charge

simulations is the particle-in-cell approach in which a macro-particle beam distribution is

spread on a regular grid and the beam self-fields are calculated solving the Poisson equation

via finite difference techniques. This strategy originates from plasma physics [Hockney and

Eastwood 1988].

The transverse self-fields of the beam counteract the applied strong focusing of the external

magnetic fields in synchrotrons – resulting in a reduction of the oscillation frequencies. The

more realistic case of Gaussian normal beam distributions exhibits non-linear self-fields as

opposed to the KV case. Figure 1.3 compares the horizontal electric field in the beam frame of

a round coasting beam (with a constant line density in the longitudinal plane) in the CERN

Super Proton Synchrotron (SPS) machine for a Gaussian transverse distribution and the r.m.s.

equivalent uniform distribution: the KV distribution produces the linear radial electric field of

figure 1.3a with the beam edge clearly visible, while the Gaussian normal distribution gives

rise to the non-linear field of figure 1.3b. The peak electric fields of both distributions are of

comparable values but the slope of the linear part around to the origin is twice as large for the

Gaussian distribution as compared to the KV one.
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(b) Non-linear Ex of a Gaussian distribution.

Figure 1.3 – The horizontal electric fields Ex of two r.m.s.-equivalent transverse distributions
obtained via a particle-in-cell (PIC) algorithm are plotted across the transverse plane of the
round SPS beams.

... to analyse the impact of betatron resonances...

Synchrotrons are circular particle accelerators employing strong periodic electromagnetic

fields to focus and guide electrically charged particles. The principle of strong focusing
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1.3. Space Charge Matters

confines the particles in the transverse plane perpendicular to the direction of motion. To

this end one arranges quadrupolar magnets in a regular lattice as illustrated in figure 1.4,

whose quadratic potentials form a chain of harmonic oscillator systems for the beam. A

particle travelling along the accelerator exhibits sinusoidal motion due to the alternating field

gradients. The strength of the magnetic currents in principle determines the design number

of oscillation periods a particle undergoes during one ring revolution. In the transverse plane,

one speaks of the so-called (bare machine) betatron tunes.

Figure 1.4 – A regular alignment of quadrupole magnets following the principle of strong
focusing [KEK, Japan 2013].

The beams often circulate for hundreds of thousands of revolutions around the accelerator

ring. Due to the nature of the system, ever-present small field errors recur periodically for

the beam. In mathematical terms, these field errors show up in the quasi-harmonic system

as a sinusoidal driving term with an amplitude of the field error multipole order. In a simple

picture, a single particle in a synchrotron which is subject to a localised magnet imperfection

experiences a perturbative kick once each turn. If the oscillation phase of this very particle

advances by a harmonic of 2π or a low-order fraction thereof, the particle is repetitively kicked

into the same direction. Correspondingly, the particle may gain in energy as the amplitude of

its motion increases resonantly. This dangerous effect is commonly referred to as a betatron

resonance. The single particle being only subject to the external magnetic fields oscillates at

the betatron tunes (Qx ,Qy ) (also called the working point) and becomes resonant when

m1Qx +m2Qy = n for m1,m2,n ∈Z (1.2)

11
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is met, where the integers |m1| + |m2| determine the resonance order and n its harmonic.

Betatron resonances can lead to serious beam degradation in terms of transverse beam size

growth (emittance blow-up) which may as well result in beam losses as particles hit the

machine aperture.

Since synchrotrons often consist of a certain number of periodically repeating sections, one

speaks of the super-periodicity of a machine. Consider e.g. the CERN PS machine with a super-

periodicity of 10. The PS lattice comprises 50 symmetric pairs of combined function magnets

which provide the alternating gradient quadrupole fields for the strong focusing. Recent

studies have shown a strong impact of the vertical quarter-integer resonance located near to

the operational tunes at Qy = 6.25. The resonance affects high intensity beams in terms of

considerable losses [Wasef et al. 2013], which have been related to the structural composition

of the PS lattice [Gilardoni et al. 2014; Machida 2014; Wasef 2014]. In fact, harmonics of the

PS super-periodicity 10 can drive what is called a parametric structure resonance. At high

beam intensities, these systematic betatron resonances can have an even stronger impact

than the aforementioned generic resonances excited by local magnet imperfections due to the

increased periodicity.

The identified structure resonance in the PS is not observed to have an impact for low intensity

beams. Much on the contrary, the beam losses scale with the brightness of the beam, which

entails that the resonance mechanism is based on the presence of considerable beam self-

fields (it is said to be space charge driven). In a transversely Gaussian normal distributed

particle beam, the particles oscillating at amplitudes much larger than the standard deviation

of the transverse beam distribution are called the beam halo. They act much like test particles

feeling the beam self-field as an external field while not contributing by themselves. These halo

particles can be lost when interacting resonantly with the beam core and a resonance. This has

e.g. been observed for the PS structure resonance in self-consistent space charge simulations

for halo particles at large synchrotron amplitudes in the longitudinal plane [Machida 2014;

Wasef 2014] when the vertical bare tune is located slightly above Qy = 6.25.

The beam core, on the other hand, is also strongly affected by space charge effects, its envelope

dynamics follow to a certain extent the r.m.s. equivalent KV distribution as outlined before. A

qualitative difference is the dependence of the phase advance on the transverse amplitude in

the Gaussian case due to the non-linear self-fields. Particles at different amplitudes oscillate at

different tunes inducing a tune spread across the beam which is shown in the tune histogram

example for the PS plotted in figure 1.5. In fact, the extent of the Gaussian tune spread is twice

as large as the space charge tune shift of the equivalent KV beam, which is closely related to the

previously noted slope of the electric field around the beam core. The tune spread is known to

be responsible for a much weaker resonance response of a Gaussian beam (in terms of r.m.s.

emittance blow-up) as compared to the equivalent KV beam. At the same time, the space

charge modified resonance conditions can lead to emittance blow-up becoming dependent

on the transverse amplitude. This is not possible in the linear KV case, where the whole beam

distribution oscillates at the same frequency, all particles are shifted from the bare machine

12



1.3. Space Charge Matters

6.006.056.106.156.206.25
Qx

6.00

6.05

6.10

6.15

6.20

6.25
Q
y

bare tune Q

r.m.s. equivalent QS. C.

max. suppressed QS. C.

0.0

2.0

4.0

fr
a
ct

io
n
 o

f 
p
a
rt

ic
le

s 
[%

]

Figure 1.5 – Tune diagram with the tune spread of a transversely Gaussian distributed coasting
round PS beam of high brightness. The maximal tune shift of the spread QSC is twice as large
as for the r.m.s. equivalent KV beam.

tune Q0 to the same space charge depressed tune QSC =Q0 −∆QKV.

R. Baartman [1998] clarified this amplitude dependence feature in the context of coherent

(collective mode) and incoherent (single-particle) resonance conditions and demonstrated

numerical simulations with KV and Gaussian distributions for a coasting beam. Figure 1.6

shows simulation results from an intensity scan at a fixed bare tune of Q0 = 2.45. The one-

dimensional third-order 3Q = 7 betatron resonance is slowly crossed from above by increasing

the space charge strength (artificially) via the beam intensity. The abscissa shows the r.m.s.

equivalent space charge shifted tune QSC =Q0 −∆QKV which decreases with increasing inten-

sity. The plot has therefore to be understood as that space charge increases from the right

towards the left, the curves evolve from high to low QSC. The graph shows three different types

of curves:

1. in green crosses: the r.m.s. beam size of the simulated equivalent KV distribution, which

shows a sharp increase where the beam envelope meets the coherent symmetric third-

order mode resonance condition,

2. in thin coloured lines: by fixing a transverse amplitude (i.e. emittance), the fraction of

the distribution contained within this amplitude is plotted, and

3. in black plus symbols: the transverse amplitude (in units of the fraction of therein

contained particles) at which the respective oscillating particles meet the incoherent

single-particle resonance condition 3QSC = 7 with their space charge depressed tunes.

It is worth to spend some moments on understanding this plot as it illustrates the fundamental

difference and transition between the collective nature of the core and the single-particle

behaviour of the halo under the influence of space charge.
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Figure 1.6 – The core and halo response to a betatron resonance [R. Baartman 1998]. The
curves are explained in detail in the text.

The KV distribution shows only the collective response which happens exactly at the space

charge shifted resonant tune QSC = 2.31667. The envelope resonates in the sextupolar sym-

metric mode, the particles are excited to larger single-particle emittances and the r.m.s. beam

size correspondingly increases. In the Gaussian case we have the core-halo distinction. Small

amplitude particles in the beam core are represented by the thin lines in the lower part of the

plot. For all particle fractions below 0.5, these core particles show no considerable excitation

in response to the sextupolar driving term in the simulation – the fixed transverse amplitude

curves contain the same amount of particles irrespective of the space charge strength. These

particles can satisfy the incoherent single-particle resonance condition (where the black plus

symbols intersect e.g. with the blue and red line) and are not affected by it. On the other hand,

if we approach large transverse amplitudes, the halo particles start to become excited exactly

where the incoherent resonance condition is met (following the black plus symbols to the left).

Therefore, the fixed amplitudes lose a fraction of the particles contained within them, and the

curves drop.

R. Baartman reported a “dramatic emittance increase” for the resonating particles “along

with an appearance of an m-fold symmetric island structure” (where m = 3 for the sextupolar

driving term in this simulation). These halo particles experience the electromagnetic fields of

the core as an external space charge force which mainly depends on the number of particles

in the core and not so much on the shape of it.

In total, R. Baartman observed the r.m.s. width of the whole Gaussian distribution to increase

centred around the same space charge shifted tune as the equivalent KV distribution (note the
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1.4. Motivation, Goals and Outline for This Thesis

dropping fraction of particles per fixed amplitude). This relationship between the Gaussian

and the uniform KV distribution, both having the same ∆QKV (which is half the Gaussian

maximal tune shift), illustrates Sacherer’s central theorem regarding the r.m.s. equivalence of

beams. We will come back to this during our SPS experiments on the fourth-order resonance

in chapter 4.

1.4 Motivation, Goals and Outline for This Thesis

... for the present upgrade scenario of the CERN accelerator complex.

As pointed out earlier, the LHC requires quite small beam emittances to be provided by

the injectors. In fact, the plans to upgrade the current LHC – the High Luminosity LHC

(HL-LHC) project [Apollinari et al. 2015] – to increase its discovery potential pose even

tighter constraints: it is foreseen to increase the luminosity through several measures, among

them increasing the intensity by nearly a factor 2 with respect to the presently delivered

N ≈ 1.2×1011 protonsperbunch (p/b) to 2.3×1011 p/b [Arduini et al. 2014]. At the same time,

the normalised transverse emittances are constrained to εx,y = 2.08mmmrad which is approx-

imately what the standard 72 bunch per PS batch scheme currently provides. In summary, the

beam brightness (intensity per emittance) is to be increased by at least a factor 2.

Figure 1.7 presents a schematic overview of the CERN accelerator complex. The LHC is

supplied with protons from a series of injector machines: starting from the LINAC2, the four

PS Booster rings are filled with a multi-turn injection scheme. In the nominal LHC filling

scheme (the “72 bunch scheme”), two subsequent batches of PS Booster beams are injected

into the PS. This requires a full basic cycle during which the four bunches of the first batch

wait at injection energy until the second batch of another two bunches arrives. During the

3 basic periods long PS cycle, radio frequency (RF) gymnastics splits the beam into a total

of 72 bunches which are then injected into the SPS. Up to four of these PS batches are to be

accommodated in the SPS making the injection plateau take (4−1)×3 basic cycles until the

machine is filled and the acceleration ramp begins. Finally, the SPS delivers up to 12 of these

bunch trains to fill the LHC with up to 2808 bunches in total.

In order to satisfy the demanding HL-LHC requirements, the whole LHC injector chain needs

to be prepared and upgraded as well. The corresponding LHC Injectors Upgrade (LIU) project

has been summarised in the LIU Technical Design Report [Damerau et al. 2014]. The doubled

beam brightness is challenging for the PS and the SPS injection plateau during which space

charge could blow up the transverse emittances. To meet the design HL-LHC parameters, the

various LHC injectors have been assigned beam loss and emittance growth budgets [Bartosik,

Argyropoulos, et al. 2014] which are summarised in table 1.1.

In the present accelerator configuration with LINAC2, the LHC beams are produced in the PS

Booster at a constant beam brightness, which is mainly determined by the multi-turn injection

15



Chapter 1. Introduction

Figure 1.7 – Scheme of the present accelerator complex at CERN [De Melis 2016, modified].

process and space charge effects in the low-energy part of the cycle. With LINAC4, the PS

Booster kinetic injection energy will be raised to Ekin = 160MeV from the present 50 MeV. The

space charge tune shift depends on the inverse energy by ∆QSC ∝ 1/(βγ2). Following the

argument of the r.m.s. equivalence of beams with respect to space charge, one can compare the

beams on the basis of equal space charge tune shifts. Correspondingly, one expects to achieve

double beam brightness at the same overall space charge tune spread [Rumolo, Bartosik, et al.

2014] by compensating the injection energy increase. The H− charge-exchange injection will

allow to paint the transverse emittances to obtain tailored values as opposed to the current

multi-turn mechanism where the brightness is fixed.

With these high brightness beams injected into the PS using the nominal filling scheme, the

first of the two batches can suffer from direct space charge while waiting for the second batch.

Hence, the anticipated impact during the injection plateau will have to be mitigated. The

afore-mentioned structure resonance limits the operational PS tunes to below Qy < 6.25.
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Table 1.1 – LHC Injectors Upgrade beam loss and emittance growth budgets over the whole
machine cycle [Bartosik, Argyropoulos, et al. 2014, table 1].

beam loss emittance growth
machine (N0 −N )/N0 (ε−ε0)/ε0

PS Booster 5% 5%
PS 5% 5%
SPS 10% 10%

total 19% 21%

Experimental studies at the current kinetic injection energy of Ekin = 1.4GeV show a Gaussian

tune spread estimate of |∆QSC
y | = 0.31 to be compatible with the allocated budget [ibid.].

Beams exceeding this brightness limit suffer from emittance growth due to the beam core

interacting with the vertical integer resonance. The PS injection plateau essentially poses a

major bottleneck of the injector chain in view of the HL-LHC beam parameters. As the main

counter-measure, the PS injection energy is increased as well – for the third time in its history

– to Ekin = 2GeV. Further possible counter-measures to comply with the assigned budget are

investigated [ibid.].

The HL-LHC high brightness beams also suffer from emittance growth in the SPS at the present

operational machine tunes as they are exposed to strong space charge during the 10.8 s long

injection plateau. Preliminary working point studies below Qy < 20.25 conducted in 2012 with

very bright beams identified a maximum acceptable space charge tune spread of |∆QSC
y | = 0.21

for the SPS [Bartosik, Argyropoulos, et al. 2014].

The space charge limits assessed in the CERN machines have been determined empirically

and a deeper understanding of their origin is of importance. The higher brightness of future

LHC beams will naturally lead to a situation in which most of the LHC beams will be limited

by space charge both in the PS and in the SPS. In view of the upgrade of the CERN machines, it

becomes crucial to fully understand the beam evolution under a strong space charge regime

and to relax the present constraints. The LIU project with the outlined space charge issues

defines the context for the present Ph.D. thesis project titled “Space Charge Effects and Ad-

vanced Modelling for CERN Low Energy Machines”. As sketched in figure 1.8, the goals of

the thesis are three-fold: (1) development of a detailed 3D model of space charge forces with

the application of high-performance computing techniques, as well as the integration into

a suitable particle tracking tool to carry out systematic studies (in close interaction with the

next two topics); (2) measuring of space charge impact in the critical machines under various

experimental conditions to understand the beam behaviour; and (3) mitigation of the beam

quality degradation inflicted by space charge to reach the LIU beam parameter targets.
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Figure 1.8 – Sketch of the core tasks for this Ph.D. thesis project.

The work and results of the Ph.D. project are presented in this thesis. After an introduction

to the key concepts of beam dynamics in chapter 2, where collective space charge dynamics

is treated on the basis of the envelope equations, the structure of the thesis follows the out-

lined three key tasks. In chapter 3 we introduce PyHEADTAIL, a collective beam dynamics

simulation software developed at CERN to which constitutive contributions have been made

throughout the course of the thesis. We focus on our developed space charge suite with a

number of implemented models, viz. an effective longitudinal 1D model, a semi-analytical

transverse 2D model based on assuming Gaussian normal distributions, a 2.5D self-consistent

PIC Poisson solver which assumes relativistic beams and a full 3D PIC Poisson solver which can

be used for CERN’s low-energy circular accelerators as it does not assume relativistic beams.

The development involved high-performance computing techniques in terms of Graphics

Processing Unit (GPU)-accelerated computing, a key ingredient to make studies with the 3D

space charge model feasible. Space charge simulations have been carried out with PyHEAD-

TAIL to compare the collective envelope modes of a KV and a Gaussian distribution with the

theoretical expectation. The relation to quadrupolar pick-ups and possible measurements of

the envelope oscillations are discussed.

Chapter 4 presents the measurements of the SPS space charge situation based on an extensive

working point scan with high brightness beams in the lower left half-integer quadrant of the

tune diagram. The identification of ideal future working points complying with the assigned

beam loss and emittance growth budgets is followed by a thorough analysis of their loss

behaviour. Finally, a study of the identified harmful horizontal fourth-order resonance by

driving with localised octupole magnets explores the interaction of the SPS beams with space

charge. Numerical simulations with PyHEADTAIL complement the understanding of the
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findings.

Last but not least, we present a mitigation strategy for the space charge issues on the PS

plateau in chapter 5. We investigate the creation of hollow longitudinal phase space distri-

butions in the PS Booster as a counter-measure for the space charge impact during the PS

injection plateau. The creation mechanisms are investigated both via numerical simulations

with the aid of PyHEADTAIL as well as the experimental implementation in the CERN ma-

chines. The subsequent improvements on the PS situation are studied in detailed space charge

experiments.

Following the concluding chapter 6, which discusses the outlook and possible future appli-

cations of the developed work, the appendix covers the details of the hollow bunch creation

mechanism in the PS Booster.
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2 Relevant Concepts of Beam Dynamics

We consider a homogeneous collection of one kind of charged particles, e.g. protons, which

are sent through a storage ring at momentum p0. Figure 2.1 illustrates the employed Frenet-

Serret curvilinear coordinate system. The ideal path of the particles, the reference orbit,

is parametrised with the path length s and periodic with the ring circumference C = 2πR.

The local orthonormal coordinate system (x, y, z) moves with the particles, whose motion is

described with respect to s as the independent variable. The coordinates x, y and z respectively

denote the horizontal (normal), vertical (binormal) and longitudinal (tangential) offset from

the reference orbit for a given s and are measured in meter units in the laboratory frame.

Conventionally, x points outwards from the ring centre and s increases clockwise. We consider

planar machines in the x − z plane without any torsion along the reference orbit. The local

(horizontal) curvature radius of the reference orbit is denoted with ρ0(s).

y

z

x

(a) Particle bunch in the laboratory frame.

s
x

y

reference orbit

z

R

p0

(b) Frenet-Serret coordinates.

Figure 2.1 – A bunch of particles with the local coordinate system (x, y, z) for the horizontal,
vertical and longitudinal plane, respectively.

The oscillatory motion of the particles around the reference orbit in the machine comprises

several influences. Magnets and radio frequency (RF) systems in the machine guide, focus,

accelerate and stabilise the particle beam; their effect is commonly referred to as single-particle

dynamics. The influence of other particles from within the beam itself or the ionised rest gas

in the vacuum chamber is summarised under the term collective effects.

21



Chapter 2. Relevant Concepts of Beam Dynamics

We will first revise the most important concepts in single-particle dynamics due to the applied

external electromagnetic fields before we turn to the self-fields of the beam and the corre-

sponding space charge effects on the beam dynamics. The chapter is based on the materials

covered by Lee [2004], S. Lund [2015], and Wiedemann [2007].

2.1 Single-particle Dynamics Due To External Fields

The particles of mass mp move at relativistic velocity v and carry an electric charge q . The

beam of particles is steered by using electric and magnetic fields E and B in the vacuum. The

Lorentz force

FL = q
(
E+v×B

)
(2.1)

indicates that electric fields E can be applied to accelerate the particles into the direction of

motion. In contrast, magnetic fields B act orthogonal to the direction of motion and can thus

be exploited to deflect particles.

In synchrotrons, particle beams are usually paraxial: the transverse velocities vx , vy are very

small compared to the longitudinal velocity vz ≈ v0,

vx ¿ vz and vy ¿ vz . (2.2)

As a consequence, static magnetic fields B =∇×A mainly have a strong deflecting effect when

involving vz , i.e. for the transverse plane. Here it shall therefore suffice to consider vector

potentials of the form

A = (0,0, Az ) (2.3)

where Az = Az (x, y). Conversely, electric fields E =−∇V are most useful in the longitudinal

plane and we restrict the discussion to scalar potentials V =V (z, s).

The equilibrium of centripetal and Lorentz force yield the transverse bending radii ρx,y of a

particle trajectory under the influence of such a purely transverse magnetic field B =∇×A =
(Bx ,By ,0):

Fcentrip. = FL =⇒ mpγv2

ρx,y
= q |vz By,x | , (2.4)

where By determines ρx and Bx determines ρy and we have used the paraxial beam approxi-

mation v2 ≈ v2
z . With the particle momentum p = γmv and dropping subscripts, we find the

expression

|Bρ| = p

q
, (2.5)
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2.1. Single-particle Dynamics Due To External Fields

which defines the beam rigidity Bρ depending on a specific momentum p.

Magnet multipole strengths ki are conventionally defined independent of p. Starting from the

bending radius, which is generated by the corresponding magnetic field, we expand in the

multipole components of the field. For the horizontal plane, we obtain

1

ρx
= q

p
By

= k1︸︷︷︸
dipole

− k2x︸︷︷︸
quadrupole

+ ks2 y︸︷︷︸
skew quadrupole

+ 1

2
k3 x2︸ ︷︷ ︸

sextupole

+ ks3x y︸ ︷︷ ︸
skew sextupole

+O (3) , (2.6)

and an analogous version in y for the vertical plane. The skew components are indicated by a

subscript ‘s’ and refer to the nth multipole field rotated by π/(2n) compared to the upright

field.

2.1.1 Transverse Betatron Motion

Bending magnets are used to guide the particles on a circular trajectory around the ring. Their

dipolar vertical magnetic fields By = p
q k1 curve the reference orbit leading to the local bending

radius ρ0(s) (with ρ0(s) =∞ where dipolar fields vanish).

In the transverse x − y plane, particles may be injected off the reference orbit with non-zero

coordinates x, y and/or non-zero momenta x ′ = d x/d s, y ′ = d y/d s. Synchrotrons confine

beams based on the strong focusing principle: particles are made to oscillate around the refer-

ence orbit with quasi-harmonic motion. To this end, one makes use of quadrupole magnets,

which are periodically arranged with alternating polarities. The quadrupolar magnetic fields

Bx = p

q
k2 y and By =−p

q
k2 x (2.7)

bend particles towards the reference orbit in the focusing plane and simultaneously away

from the orbit in the other, the defocusing plane. Conventionally, a quadrupole magnet with

positive strength k2 > 0 focuses in the horizontal plane and is hence referred to as a focusing

quadrupole.

Consider now a periodic linear lattice, i.e. a regular arrangement of dipole and quadrupole

magnets in the ring layout. We will often refer to this set-up as a periodic focusing channel.

The transverse motion of particles with momentum p0 is governed by a system of linear

second-order ordinary differential equation (ODE),

d 2

d s2

(
x(s)

y(s)

)
+

(
Kx (s) Kx y (s)

Kx y (s) Ky (s)

)
︸ ︷︷ ︸

.=K (s)

(
x(s)

y(s)

)
= 0 , (2.8)

where all quadrupolar field components are collected in the matrix K (s). The matrix compo-
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nents Kx (s),Kx y (s),Ky (s) are functions depending on the path length s and are periodic in

the circumference C (often even in smaller periodically repeating sections). The off-diagonal

terms Kx y represent the coupling between the horizontal and the vertical plane.

The solutions are known as the betatron motion of particles, a quasi-harmonic oscillation

around the closed orbit. Since the focusing K (s) is periodic in s, one can use Floquet theory to

solve (2.8). For demonstration purposes, let us consider the decoupled horizontal equation

with Kx y = 0,

d 2x

d s2 +Kx (s)x = 0 , (2.9)

also known as the (homogeneous) Hill’s equation. We can write the two linearly independent

solutions as

x(s) = Ax wx (s)e iψx (s) and x?(s) = Ax wx (s)e−iψx (s) , (2.10)

where Ax is a constant, wx (s) the betatron amplitude function and ψx (s) the phase advance

function. To solve (2.9), wx and ψx need to satisfy

d 2wx

d s2 +Kx (s)wx − 1

w3
x
= 0 and (2.11a)

dψx

d s
= 1

w2
x

. (2.11b)

According to the Floquet theorem, the betatron amplitude exhibits the same periodicity as

Kx (s) for a stable lattice. Equation (2.11a) entails that wx can never change sign, as the barrier

term 1/w3
x prevents wx from reaching zero. Conventionally, the betatron amplitude is chosen

to be positive, wx (s) > 0. The non-linear ODEs (2.11) are usually solved numerically for a given

lattice design with focusing K (s) by employing iterative algorithms in computer programs like

MAD-X [Accelerator Beam Physics Group 2016].

Once we have found wx (s) andψx (s), the horizontal transfer map for the linear lattice between

two locations s1, s2 can be expressed as the matrix

Ms1→s2 =
( √

βx2 0

− αx2p
βx2

1p
βx2

)(
cos(∆ψx ) sin(∆ψx )

−sin(∆ψx ) cos(∆ψx )

) 1p
βx2

0
αx2p
βx2

√
βx2

 (2.12)

such that horizontal phase space evolves as(
x

x ′

)
s=s2

=Ms1→s2

(
x

x ′

)
s=s1

. (2.13)

The phase advance between the two locations has been denoted by ∆ψx
.=ψx (s2)−ψx (s1) and

we have introduced the Twiss parameters βx and αx which depend on wx and its derivative
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2.1. Single-particle Dynamics Due To External Fields

w ′
x = d wx /d s:

βx (s)
.= w2

x (s) (2.14a)

αx (s)
.=−wx (s)w ′

x (s) ≡−1

2

dβx

d s
. (2.14b)

The third Twiss parameter γx depends on the two others and is defined as

γ(s)
.= 1

w2
x (s)

+ (
w ′

x (s)
)2 ≡ 1+α2

x (s)

βx (s)
. (2.14c)

The solution (2.12) to the betatron equation of motion (2.9) is an equivalent real valued linear

combination of the general amplitude-phase solutions (2.10), the explicit orbit reads

x(s) = Ax

√
βx (s)cos(ψ(s)+ψ0) (2.15a)

x ′(s) = Ax
αx (s)√
βx (s)

cos(ψ(s)+ψ0)− Ax
1√
βx (s)

sin(ψ(s)+ψ0) (2.15b)

with the two integration constants or initial conditions Ax and ψ0. The matrix Ms1→s2 essen-

tially constitutes a rescaling to the constant part Ax of the amplitude in x −x ′ phase space, a

subsequent phase rotation by ∆ψx and finally a transformation stretching the phase space

back to the local Twiss parameters at s2.

Linear betatron motion is integrable and Hill’s equation can be derived from the transverse

betatron Hamiltonian

H⊥(x, y, x ′, y ′; s) = x ′2

2
+ y ′2

2
+ 1

2
Kx (s)x2 +Kx y (s)x y + 1

2
Ky (s)y2 (2.16)

which carries rad2 units as x ′ = ∂x/∂s ≡ px /p0.

A classic harmonic oscillator with K (s) = const conserves energy. This is not the case for

betatron oscillations (2.10) where the magnetic fields along s can pump energy in and out of

the transverse plane. Nonetheless, there are invariants of motion. By rearranging and squaring

equations (2.15), we construct the Courant-Snyder invariant,

ε̃2
x =

(
x(s)

wx (s)

)2

+ (
wx (s)x ′(s)−w ′

x (s)x(s)
)2 = const , (2.17)

which can be expressed in terms of the Twiss parameters as

ε̃2
x = γx x2 +2αx xx ′+βx x ′2 . (2.18)

In fact, the Courant-Snyder invariant corresponds to the constant part of the transverse

amplitude ε̃x = A2
x and may be referred to as the single-particle emittance (or sometimes the

“action” 2Jx ).
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The discussed concepts apply to the vertical plane in the same fashion. In summary, the beta-

tron amplitude of a particle consists of the two separate influences, on the one hand the con-

stant initial condition (from injection) expressed by ε̃x,y and on the other hand the s dependent

focusing by the machine expressed by βx,y (s). The Twiss parameters
(
βx,y (s),αx,y (s),γx,y (s)

)
hence effectively describe how the machine shapes the beam. We will come back to β(z) in

the space charge discussion as the undepressed beam envelope for the case of vanishing space

charge.

The phase advance around the whole ring in units of 2π given by the machine optics is an

important quantity called the bare machine tune,

Qx,y =ψx,y (C ) =
∮

d s

βx,y (s)
. (2.19)

So far, we have described the betatron motion of particles with design momentum p0. Particles

may move at slightly different momentum p than the design momentum p0. We therefore

expand the factor q/p entering the equations of motion via the magnetic fields (2.6) as

q

p
= q

p0
(1−δ)+O (δ2) (2.20)

to first order in the momentum deviation from p0,

δ
.= p −p0

p0
. (2.21)

Off-momentum particles are consequently bent more or less in the respective magnetic field.

This introduces a coupling between the transverse and the longitudinal phase space.

The effect of dipolar magnetic fields on off-momentum particles is called dispersion and leads

to a modified effective radius at which a particle circulates through the ring. As we consider

a planar ring in the x − z plane, we obtain an added inhomogeneity in the horizontal Hill

equation,

d 2x

d s2 +Kx (s)x = δ

ρ0(s)
. (2.22)

Since the ODE is linear, the general solution consists of a superposition of the betatron solution

(2.15a), henceforth referred to as xβ(s), and a particular solution xdisp,

x(s) = xβ(s)+xdisp(s) with xdisp(s) = Dx (s)δ . (2.23)

The dispersion function Dx (s) satisfies the inhomogeneous ODE

d 2Dx

d s2 +Kx (s)Dx = 1

ρ0(s)
. (2.24)
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2.1. Single-particle Dynamics Due To External Fields

Equivalently to the Twiss functions resp. wx (s), Dx (s) exhibits the same periodicity as Kx (s).

The focusing by the quadrupolar magnetic fields is subject to chromatic aberration for particles

travelling at δ 6= 0. This introduced quadrupolar field error

∆Kx,y = Kx,yδ+O (δ2) (2.25)

changes the betatron tune of a particle to first order in the momentum deviation δ by

∆Qx,y =
(−1

4π

∮
βx,y Kx,y d s

)
︸ ︷︷ ︸

.=Q ′
x,y,natural

δ . (2.26)

As chromaticity Q ′
x,y is defined by the change of the tune with the momentum,

Q ′
x,y

.= ∆Qx,y

δ
, (2.27)

equation (2.26) describes the natural chromaticity of the machine. Q ′
x,y,natural is always nega-

tive since higher momentum particles with δ> 0 are less deflected compared to the design

focusing K (s).

A beam as a collection of many particles features a certain width in the transverse plane. For a

vertical Gaussian distribution, the r.m.s. beam size reads

σ2
y (s) = 〈

y2(s)
〉
⊥−〈

y(s)
〉2
⊥ =βy (s)

〈
ε̃y

〉
⊥

.=βy (s)εy,geo (2.28)

where 〈·〉⊥ denotes the transverse expectation value over all particles. We have defined the

vertical geometric r.m.s. beam emittance εy,geo which can be defined as the statistical quantity

εy,geo
.=

√〈
y2

〉
⊥

〈
y ′2〉⊥−〈

y y ′〉2
⊥−〈

y
〉2
⊥

〈
y ′2〉⊥−〈

y2
〉
⊥

〈
y ′〉2

⊥+2
〈

y y ′〉⊥ 〈
y
〉
⊥

〈
y ′〉⊥ . (2.29)

In the case of
〈

y
〉
⊥ = 〈

y ′〉
⊥ = 0, this expression reduces to

εy,geo =
√〈

y2
〉
⊥

〈
y ′2〉⊥−〈

y y ′〉2
⊥ . (2.30)

The geometric emittance shrinks when the beam is accelerated. In synchrotrons, this shrinking

is happening adiabatically. This “adiabatic damping” can be taken into account by defining

the normalised beam emittance

εy
.=βγεy,geo . (2.31)

Without filamentation or dynamical effects e.g. from resonances and neglecting multi-particle

effects, εy remains constant during acceleration. In the horizontal plane, the beam size needs

to take into account the dispersive effect which broadens the distribution.
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The horizontal position of a particle (2.23) consists of the independent sum of two random

variables: xβ as the betatron motion and xdisp = Dxδ as the dispersion contribution depending

on the andomly distributed momentum deviation δ. By looking at the ensemble of particles,

we can therefore express the resulting horizontal distribution as a convolution of the nor-

malised distribution functions of both xβ and xdisp, which we denote fβ and fdisp, respectively.

A normalised distribution function integrates to unity over the entire domain. The dispersion

distribution relates to the normalised momentum distribution fδ via

fdisp(x) = fδ
(
x/Dx

)
|Dx |

. (2.32)

Finally, the horizontal distribution p(x) yields

p(x) =
∞∫

−∞
d x ′ fβ(x −x ′) fdisp(x ′) (2.33)

which corresponds to the beam profile one measures at a given time. We can evaluate the r.m.s.

beam width of p(x) as a sum of the respective variances of fβ and fδ. Given the variance of the

betatron distribution equivalently to (2.28) with the horizontal normalised r.m.s. emittance εx

(cf. (2.31)),

σ2
xβ =

βxεx

βγ
, (2.34)

and the variance of the momentum deviation distribution, δ2
rms, the horizontal r.m.s. beam

width in the presence of dispersion at the location s of the profile measurement reads

σ2
x (s) =βx (s)

εx

βγ
+D2

x (s)δ2
rms . (2.35)

This statement is in general true if and only if xβ and δ are independent random variables (oth-

erwise covariances enter the expression) with σx , δrms and εx strictly being r.m.s. quantities.

2.1.2 Longitudinal Dynamics

In synchrotrons, RF cavities provide longitudinal focusing. A particle crossing the gap of an RF

cavity at a phase ϕ is subject to the electric potential

V (ϕ) = V̂ sin
(
ϕ+∆ϕ)

(2.36)

for a given RF phase offset ∆ϕ and for V̂ the maximal amplitude of the RF voltage oscillating

at frequency fRF. The RF phase ϕ relates to the longitudinal beam offset z via

ϕ=−hz

R
, (2.37)
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2.1. Single-particle Dynamics Due To External Fields

(modulo 2π). The effective machine radius has been denoted by R =C /(2π). The harmonic h

of the RF frequency fRF with respect to the revolution frequency of the beam,

frev = βc

C
, (2.38)

is given by

h
.= fRF

frev
. (2.39)

For a synchrotron to work “synchronous”, the harmonic of the principle RF system needs to

be an integer. Phase feedback loops are often employed to align the main RF phase to the

centre-of-gravity phase of the beam. The RF wave (2.36) then leads to phase focusing of the

beam around the synchronous phase ϕs . For h > 1 one can accommodate several bunches of

particles in the circular accelerator, each spaced by C /h.

Let us follow the particle motion close to the synchronous phase assuming a stationary

situation with no acceleration on average. Fixing the principle RF reference phase at ∆ϕ=π,

a particle arriving at the RF cavity ahead of the z = 0 synchronous particle sitting at ∆ϕ,

i.e. at ϕ < ∆ϕ (z > 0), traverses a negative potential difference across the gap and becomes

decelerated. In contrast, particles arriving at ϕ>∆ϕ (z < 0) become accelerated. In addition,

particles at positive momentum offset δ > 0 travel around the accelerator ring faster than

particles at reference momentum δ= 0 at sufficiently low energies below transition energy

γ< γtr. Therefore, they will arrive ahead of the synchronous particle at some point and be

decelerated until the opposite situation is reached and they are accelerated from behind the

synchronous particle. The particles are thus subject to a net focusing effect, their motion is

confined around a stable fix point at ∆ϕ (for sufficiently small synchrotron amplitudes).

Suppose now the principal RF cavity to pulse at a non-vanishing synchronous phase ∆ϕ=
π−ϕs < π. A bunch of particles arriving at the cavity with its centre-of-gravity phase 〈ϕ〉
aligned with the RF reference phase 〈ϕ〉 = ∆ϕ experiences a net acceleration because its

kinetic energy increases with

∆Ekin = qV̂ sin(ϕs) . (2.40)

The dispersion effect from the dipole bending magnets leads to a difference in the path

length around the accelerator for particles of different momentum deviations δ. This effect

is commonly referred to as (first-order) momentum compaction. To first order in δ we can

define the momentum compaction factor αc via the individual path difference ∆Ci as

∆Ci

C
.=αcδ≡ δ

∮
d s

Dx (s)

ρ0(s)
. (2.41)

At a specific beam velocity β, this increase in path length will outweigh the gain in arrival time
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for a δ> 0 particle. This happens at the transition energy γtr, where all particles arrive at the

same time like the synchronous particle (and therefore phase focusing will be lost). By looking

at the revolution period T =C /(βc), we find the individual particle time offset ∆Ti related to

the individual velocity offset ∆βi via

∆Ti

T
= ∆Ci

C
− ∆βi

β
. (2.42)

From (2.41) with the differential of β expressed with respect to δ we obtain the expression

∆Ti

T
=

(
αc − 1

γ2

)
︸ ︷︷ ︸

.=η

δ , (2.43)

which defines the first-order slippage factor

η
.=αc − 1

γ2 . (2.44)

With the definition of the transition energy as the critical Lorentz factor

γtr
.= 1p

αc
(2.45)

we can therefore relate a negative slippage factor η< 0 to the regime below transition energy,

γ< γtr, and vice versa a positive slippage factor η> 0 to the regime above transition energy,

γ> γtr. In order to maintain phase focusing above transition, where the longer paths ∆Ci > 0

for δ> 0 particles leads to delayed instead of advanced arrival at the RF cavity, the principal

reference RF phase needs to be aligned at ∆ϕ=ϕs (instead of ∆ϕ=π−ϕs below transition).

The arrival time ∆Ti relates to the longitudinal position offset ∆z of the particle via

∆Ti =−βc∆z . (2.46)

We have finally gathered all necessary ingredients to describe the synchrotron motion by a

discrete map from one turn to the next in terms of the pair of conjugate variables (z,∆p = δp0).

For a single-harmonic RF system with one cavity giving a kick at one location, the RF reference

phase corresponds to the synchronous phase (with the π offset depending on the phase

stability)

∆ϕ=
π−ϕs , γ< γtr

ϕs , γ> γtr

. (2.47)

The longitudinal coordinate z measures the offset relative to the location of the synchronous
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particle. The synchrotron map then reads

∆p|n+1 =∆p|n + qV̂

βc

[
sin

(
hz|n

R
+∆ϕ

)
− sin

(
∆ϕ

)]
, (2.48)

z|n+1 = zn +η
(
∆p|n+1

p0

)
∆p|n+1

p0
C . (2.49)

One can extend this one-turn map to include multi-harmonic RF systems with cavities at

different locations in the ring each with respective configurations (hi ,V̂i ,∆ϕi ) by adding the

corresponding kicks in ∆p interleaved by drifts in z over the respective length L ≤C .

Since the synchrotron period is usually on the order of O (10) to O (1000) turns, one can

describe the effect of the sinusoidal RF kick smoothly spread out across the ring via the

non-linear longitudinal Hamiltonian

H∥(z,∆p; t ) =−1

2
ηβc

∆p2

p0(t )
+ q

2π

V̂ (t )

h

[
cos

(
hz

R
+∆ϕ(t )

)
+ sin

(
∆ϕ(t )

)hz

R

]
. (2.50)

For accelerated bunches, the momentum p0(t ) and thus β(t ) and η(t ) change with time t , the

independent parameter of H∥. The RF parameters V̂ (t ) and ϕ(t ) may be modified with time.

We exploit this in chapter 5 to modify the longitudinal phase space distribution.

The non-linear Hamiltonian landscape imprinted on phase space by (2.50) is separated into

two distinct regions by a separatrix: outside the separatrix particles move unbound (and are

usually lost at the machine aperture in the case of acceleration because the horizontal offset

increases with the momentum offset due to dispersion), while inside the separatrix particles

follow bound, periodic motion according to the phase focusing. The area inside the separatrix

is commonly referred to as the RF bucket.

The longitudinal equation of motion derived from the Hamiltonian (2.50) yields

d 2z

d t 2 + ηβcqV̂

p0C

[
sin

(
hz

R
+∆ϕ(t )

)
− sin

(
∆ϕ(t )

)]= 0 . (2.51)

Linearising the potential term in (2.51) around the stable fix point at z = R∆ϕ(t )/h yields

sin

(
hz

R
+∆ϕ(t )

)
= sin

(
hz

R

)
cos

(
∆ϕ(t )

)+cos

(
hz

R

)
sin

(
∆ϕ(t )

)
= hz

R
cos

(
∆ϕ(t )

)+O
(
z2) (2.52)

and we obtain the ODE for linearised synchrotron motion,

d 2z

d t 2 + hηβcqV̂

p0C R
cos

(
∆ϕ(t )

)
︸ ︷︷ ︸

.=(2π fs,0)2

z = 0 , (2.53)
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which describes harmonic oscillation at the linear synchrotron frequency fs,0. The ratio to the

revolution frequency frev =βc/C finally gives the expression for the linear synchrotron tune

Qs,0 =
fs,0

frev
=

√
qV̂ hηcos

(
∆ϕ

)
2πp0βc

(2.54)

for particles oscillating close to the RF bucket centre around the stable fix point.

2.2 Direct Space Charge Dynamics

We now turn our attention to the multi-particle aspect of beams. When describing the motion

of a distribution of particles, one conventionally distinguishes between two categories of

motion. The independent oscillations of a single particle within the beam are referred to

as incoherent motion. The individual betatron amplitude, phase and frequency can usually

not be observed in instruments installed in particle accelerators1. We normally assume the

parameters to be randomly distributed over all particles. The incoherent picture plays a central

role in the previously discussed single-particle beam dynamics effects. Modelling the motion

of beam halo particles in the electromagnetic fields of an intense beam also relies on the

incoherent description.

As opposed to the individual particles, the statistical moments of the confined beam distribu-

tion are accessible e.g. by electric pick-ups. Two electrodes installed on opposite sides of the

vacuum tube, for example, can yield the dipolar moment of the beam in the spanned plane by

subtraction of their signals. The base-band tune measurement system (BBQ) is based on this

principle: it gives the frequency of the beam centroid (i.e. the dipolar beam moment, which is

the mean value of the distribution) relating to the betatron tune. Likewise, higher-order beam

moments can be measured with more electrodes using a corresponding combination of their

signals. In section 3.5, we discuss measuring the quadrupolar beam moment (i.e. the standard

deviation) associated with the envelope oscillations of the beam with a Quadrupolar Pick-up

(QPU) structure. The evolution of the statistical moments is referred to as the coherent motion

of the beam, which always involves many particles moving with strong phase correlation. In

contrast, incoherent motion of the particles is independent of the phase – thus it is possible

that all particles actually oscillate while the beam as a whole remains static in the statistical

sense. The distinction between incoherent and coherent motion is illustrated on the example

of a swing as well as a coasting beam in figure 2.2.

The lowest (zero-order or monopole) moment of a beam distribution f (x, y, z, x ′, y ′,δ; s) gives

its normalisation,

1 =
∫

d 6ζ f (ζ; s) (2.55)

1with the exception of Schottky pick-up electrodes which can measure the incoherent frequency spread of an
unbunched beam (cf. e.g. Schindl [1999])
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2.2. Direct Space Charge Dynamics

(a) Incoherent motion of a swing. (b) Coherent (dipolar) motion of a swing.

(c) Incoherent motion of a particle in a static beam. (d) Coherent dipolar motion of the whole beam.

Figure 2.2 – The distinction between incoherent and coherent motion (courtesy of Zotter
[1998, figure 3] as well as Schindl [1999, figures 9 and 10]).

with ζ
.= (x, y, z, x ′, y ′,δ) the vector of all six phase space coordinates and the integration

domain covering the entire phase space.

The first-order (dipole) moment of any generalised coordinate or momentum u = ζi is equiva-

lent to the expectation value with respect to f and has already been introduced as 〈·〉, it reads

〈u〉(s) =
∫

d 6ζ u f (ζ; s) . (2.56)

Any higher nth-order statistical moment un is then expressed with respect to the mean value

(i.e. the beam centroid) and amounts to

un(s) =
∫

d 6ζ (u −〈u〉)n f (ζ; s) . (2.57)

The moment un can in principle consist of a combination of ζi and it evolves along s. We

already denoted the quadrupolar moment (i.e. the variance) by σ2
x,y and identified σ with the

r.m.s. beam size.

The collective nature of a beam expresses in the coherent modes that can be excited. The
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dipolar mode has already been depicted in figure 2.2d. Pictorially, the beam distribution is

contracted to a point and behaves exactly like a single particle which, if excited e.g. by a dipolar

kicker magnet, oscillates about the reference orbit. In free space, the oscillation frequency

amounts to the bare machine tune as the beam centroid is subjected to the restoring force

of the magnetic fields from the quadrupole magnets. However, the beam is usually confined

within a conducting vacuum tube and also the magnet poles are located at a finite distance to

the beam. The correspondingly induced currents in the vacuum tube walls and the magnet

poles due to the electromagnetic beam fields affect the evolution of the beam distribution.

This effect is referred to as indirect space charge and it influences the coherent motion of the

beam from the dipolar order on. The dipolar coherent oscillation of the beam centroid can

consequently be detuned, entailing that the measured betatron frequency in a BBQ pick-up

yields a tune shifted below the bare machine tune. In this context, one often encounters the

notion of a coherent tune shift, hence omitting the “dipole” connotation. For further details on

indirect space charge, we refer to the textbook by Chao [1993]. Here it may suffice to mention

that appropriate models for the dipolar and quadrupolar influence of indirect space charge

(and beam-wall impedance interactions) via the wake function formalism are included in the

beam dynamics simulation software PyHEADTAIL at CERN, which we introduce in chapter 3.

In this thesis, we concentrate on the direct space charge forces, their modelling and effect

on beams. Direct space charge addresses the interaction of the beam particles with the

electromagnetic fields generated by the beam distribution itself. The dipolar beam moment

does not exhibit any influence from direct space charge since the internal structure of the

beam is integrated out. Only from the quadrupole moment on, the so-called “beam envelope”,

the distribution plays a role and so does direct space charge in affecting coherent motion.

The next sections summarise important concepts for space charge based on the treatment by

R. Baartman [1998], S. Lund [2015], and Reiser [2008].

2.2.1 On the Incoherent Tune Shift

Transverse Space Charge

The KV distribution is of major importance in analytical space charge calculations as it is the

only known transverse equilibrium distribution in a periodic focusing channel (the longitudi-

nal distribution is translation invariant, the beam is coasting). Kapchinsky and Vladimirsky

[1959] worked out the nature of this distribution which is given by

fKV = δ (H⊥−H0) (2.58)

where H⊥ is the transverse Hamiltonian (e.g. the betatron Hamiltonian (2.16) without space

charge yet) and H0 a fixed value thereof which all particles assume due to the Dirac function δ.

For the linear betatron Hamiltonian, (2.58) entails that all particles have the same Hamiltonian

value H0 and hence their oscillation evolves with the same phase advance ψx,y (s). In other

words, all particles exhibit the same betatron tune Qx,y . Now we include the intensity effects
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of the KV beam at particle charge q and constant longitudinal line charge density λ= const.

In general, the electromagnetic fields created by any time dependant charge distribution

ρ(x, y, z; t ) have to satisfy the Maxwell equations,

∇·E = ρ

ε0
(2.59a)

∇×E =−∂B

∂t
(2.59b)

∇·B = 0 (2.59c)

∇×B =µ0j+ 1

c2

∂E

∂t
(2.59d)

In the beam rest frame, the paraxial nature of synchrotron beams (2.2) entails that the magnetic

fields B are negligibly small: the particles move at very slow relative velocities and the electric

Coulomb interaction is by far the dominant effect. We will exploit this electrostatic nature

of the beam self-fields in the rest frame for the space charge modelling in chapter 3. Most

importantly, the transverse electric field can be written in terms of a potential φ=φ(x, y, z; t ),

E⊥ =−∇⊥φ , (2.60)

leading to a conservative space charge force field. The Maxwell equations for this electrostatic

scenario reduce to the Poisson equation

∆φ=− ρ

ε0
(2.61)

with the Laplace operator ∆=∇2 = ∂2/∂x2 +∂2/∂y2 +∂2/∂z2. If we Lorentz transform to the

laboratory frame for the beam moving at a certain kinetic energy

Ekin = (γ−1)mp c2 , (2.62)

the beam becomes a current j = ρβc generating a corresponding transverse magnetic field B.

Using the longitudinal vector potential A = (0,0, Az ) discussed around (2.3), B directly relates

to the beam potential φ via

B =∇×A , (2.63)

Az = β

c
φ . (2.64)

We can extend the betatron Hamiltonian (2.16) for the transverse motion of a particle by

including the beam self-fields as

H⊥ = x ′2

2
+ y ′2

2
+ 1

2
Kx (s)x2 +Kx y (s)x y + 1

2
Ky (s)y2 + q

βγ2p0c
φ(x, y, z; s) (2.65)

where the potential φ is determined by the evolving beam charge distribution ρ(s) via the
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Poisson equation. The notion of self-consistency enters the arena, since the motion of the

particles may change the beam distribution which in turn determines the beam self-fields and

hence the particle motion.

The crucial ingredients to the importance of the KV distribution are, firstly, its equilibrium

nature in a periodic focusing K (s) and, secondly, its linear transverse electromagnetic fields

(within the beam distribution). This allows for fundamental analytic insight into the col-

lective nature of particle beams and has been a gold mine for space charge research since

the pioneering work by Kapchinsky and Vladimirsky [1959]. The transverse potential of the

KV distribution entering in (2.65) is quadratic and thus preserves the harmonic oscillator

nature of the transverse betatron Hamiltonian (2.16) even in the presence of space charge.

Correspondingly, the equations of motion for the transverse particles coordinates x⊥ = (x, y)T ,

d 2x⊥
d s2 +K (s)x⊥ = q

βγ2p0c
E⊥ , (2.66)

remain completely linear within the beam cross-section as E∝(x−〈x〉). The reason why the

KV distribution (2.58) has a quadratic potential and therefore linear self-fields lies in the beam

geometry. At any point s, the transverse spatial projection of this singular hyper-shell phase

space distribution fKV becomes an elliptical disk of uniform density,

ρ(x, y ; s) =


λ

πab
,

(x −〈x〉)2

a2 + (y −〈y〉)2

b2 ≤ 1

0 ,else
(2.67)

with horizontal semi-axis a = a(s) and vertical semi-axis b = b(s). The detailed derivation

of ρ⊥ is straightforward starting from (2.58) by employing (2.65), cf. e.g. S. Lund [2015]. The

particles in the KV distribution all travel at the same betatron amplitude and thus periodically

traverse the transverse plane from one beam edge to the other. The space charge force is linear

across the whole distribution owing to the linear electric and magnetic self-fields E and B

generated by the ellipse, which are easily computed to amount to

EKV = λ

πε0(a +b)

(
x −〈x〉

a
,

y −〈y〉
b

,0

)
(2.68a)

BKV = µ0λβc

π(a +b)

(
− y −〈y〉

b
,

x −〈x〉
a

,0

)
(2.68b)

within the beam edges. The longitudinal fields vanish due to the symmetry ∂/∂z = 0. The

corresponding quadratic potential of the KV distribution solving the Poisson equation yields

φKV =− λ

2πε0

[
(x −〈x〉)2

a(a +b)
+ (y −〈y〉)2

b(a +b)

]
+const . (2.69)

Since all particles exhibit the same Hamiltonian value in the singular KV distribution, we are
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now in the position to compute their betatron tune including the space charge effect. The

linear self-fields (2.68) can be understood to contribute to the externally applied focusing

force K (s) in the equations of motion (2.66). Assume vanishing machine coupling for now,

Kx y (s) = 0. Defining the space charge perveance as

K SC .= qλ

2πε0βγ2p0c
, (2.70)

the single particle equations of motion (2.66) yield for the horizontal plane

d 2x

d s2 +Kx (s)x = 2K SC

a(a +b)
(x −〈x〉) , (2.71)

and an equivalent equation for the vertical plane by exchanging x ↔ y and a ↔ b. We obtain

the beam centroid motion by taking the expectation value 〈·〉 over both sides,

d 2

d s2 〈x〉+Kx (s)〈x〉 = 0 . (2.72)

This reflects the independence of the beam centroid motion from direct space charge, which

we mentioned before when introducing the beam moments: the K SC term vanishes for the

dipolar coherent motion and the restoring force (determining the betatron tune) only comes

from the external fields. We can now subtract (2.72) from (2.71) to finally obtain the incoherent

motion of a particle with respect to the beam centroid:

d 2

d s2

(
x −〈x〉)+[

Kx (s)− 2K SC

a(a +b)

] (
x −〈x〉)= 0 . (2.73)

Therefore, linear transverse space charge forces lead to a defocusing effect as the space charge

restoring force term carries a negative sign. The incoherent betatron tune of the single particles

QSC thus appears shifted by ∆QKV from the bare machine tune. Again, as all particles in the

KV distribution oscillate at the same Hamiltonian value H0, the incoherent space charge tune

shift ∆QKV shifts all particles to the same tune. Having also the same betatron amplitudes, the

particles only differ by their uniformly distributed phases.

If we assume a continuous focusing channel, i.e. Kx (s) = const and Ky (s) = const, it follows

directly from (2.19) that

Kx = 1

β2
x
= Q2

x

R2 (2.74a)

Ky = 1

β2
y
=

Q2
y

R2 (2.74b)

for R = C /(2π) the effective machine radius. (2.74) is also referred to as the smooth ring
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approximation, Qx,y are the bare machine tunes. From (2.73) we then obtain

(
QSC

x

)2 =Q2
x −

2K SCR2

a(a +b)
, (2.75)

where a,b are the equilibrium semi-axes. Neglecting quadratic terms in

∆QKV
x

.=QSC
x −Qx , (2.76)

we find the horizontal incoherent space charge tune shift in the smooth approximation for a

KV distribution to amount to

∆QKV
x =− K SCR2

a(a +b)Qx
(2.77)

(and likewise for the vertical plane).

In the general case where the betatron functions vary around the ring, we can treat the space

charge restoring force term in (2.73) as a distributed quadrupolar gradient error similar to the

natural chromaticity in expression (2.26). The beam sizes may vary around the ring, a = a(s)

and b = b(s), depending on the local focusing K (s). The KV space charge tune shift then

evaluates to the expression

∆QKV
x = 1

4π

∮
d s ∆K βx (s) = K SC

2π

∮
d s

βx (s)

a(s)[a(s)+b(s)]
, (2.78)

which immediately reduces to (2.77) for the smooth approximation (2.74).

We can apply the concept of the incoherent tune shift to a more realistic distribution. The

thermal distribution

f (H⊥) = exp

(
−H⊥

H0

)
(2.79)

describes the transverse planes of beams in the injector chain of the LHC. It reduces to a

Gaussian normal distribution if the space charge term in (2.65) becomes small (i.e. approach-

ing the case of the pure betatron Hamiltonian (2.16)). The electric field of such a Gaussian

distributed beam is non-linear which leads to an amplitude dependency of the tune shift.

Therefore, we encounter an incoherent tune spread among all particles. The largest tune shifts

are encountered for particles at small amplitudes remaining in the centre of the beam because

the potential φ is largest here.

Suppose a transverse Gaussian charge density function

ρ(x, y) = λ

2πσxσy
exp

(
− x2

2σ2
x
− y2

2σ2
y

)
(2.80)

with r.m.s. widths (standard deviations) σx and σy . The electric fields generated by this charge
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distribution (in the laboratory frame) read

Eu = λ

4πε0
u

∞∫
0

d t
exp

(
− x2

2σ2
x+t

− y2

2σ2
y+t

)
(
σ2

u + t
)√(

σ2
x + t

)(
σ2

y + t
) (2.81)

for u = x, y [Wiedemann 2007, equation (18.31)]. The particles at small transverse amplitudes

in the bunch centre mainly see the linear part of (2.81), whose linearisation yields

Eu = λ

4πε0
u

∞∫
0

d t(
σ2

u + t
)√(

σ2
x + t

)(
σ2

y + t
)

︸ ︷︷ ︸
= 2

σx (σx +σy )

+O
(
u3)

= λ

2πε0

u

σu(σx +σy )
+O

(
u3) . (2.82)

Plugging this electric field into the equations of motion (2.66) leads to

d 2

d s2

(
x −〈x〉)+[

Kx (s)− K SC

σu(σx +σy )

] (
x −〈x〉)= 0 . (2.83)

Similarly to (2.78), we can derive the maximum tune shift in the Gaussian distribution from

this linearised space charge restoring force term to be

∆QSC
x = K SC

4π

∮
d s

βx (s)

σx (s)[σx (s)+σy (s)]
. (2.84)

As we have noted in the introductory chapter in the context of figure 1.3, the electric field of a

Gaussian distribution features twice the linear slope in the centre as the r.m.s. equivalent KV

distribution. The latter can be found by computing the r.m.s. width of the respective horizontal

and vertical projection of the KV distribution yielding the relations

a = 2σx , (2.85a)

b = 2σy . (2.85b)

Substituting this into the KV electric field expression (2.68a) we indeed find it to amount to

half of the linearised Gaussian electric field (2.82) for the same σx ,σy . The maximum tune

shift in the Gaussian direct space charge tune spread (indicated throughout by superscript

‘SC’) correspondingly becomes twice as large as the r.m.s. equivalent KV tune shift,

max
{
∆QSC

x,y

}
= 2∆QKV

x,y . (2.86)

So far, we have discussed longitudinally constant line densities, i.e. coasting beams. We can
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extend the notion of the tune spread to bunched beams: for the synchrotrons at CERN the

synchrotron periods are much longer than the betatron periods or, in other words, the time

scale of the longitudinal motion is much slower than the transverse motion. Consequently,

the betatron tune shift depends on the local line density λ=λ(z). Reinserting the definition of

the space charge perveance into (2.84) yields the generalised expression

∆QSC
x,y (z) =− qλ(z)

8π2ε0mp c2β2γ3

∮
d s

βx,y (s)

σx,y (s)
(
σx (s)+σy (s)

) . (2.87)

Longitudinal Space Charge

Longitudinal space charge in a bunch leads to defocusing (focusing) in the longitudinal plane

when the machine is operated below (above) transition energy (2.45). The linear synchrotron

tune (2.54) becomes depressed (increased) by

Q2
S =Q2

S,0 +
3

4z3
m

N q2ηR2g

4πε0βγ2p0c
(2.88)

for a parabolic distribution of half-width zm [Chao 1993, equation (1.47)]. The geometry factor

g is discussed in more detail in section 3.2.1. If we assume a Gaussian instead of a parabolic

distribution and we linearise the space charge force, we obtain an equivalent expression with

a different form factor,

Q2
S =Q2

S,0 +
1p

2πσ3
z

N q2ηR2g

4πε0βγ2p0c
, (2.89)

where σz denotes the r.m.s. bunch length.

2.2.2 Envelope Equations and Coherent Quadrupolar Tune Shift

After the discussion of the incoherent tunes, we now proceed to the transverse coherent

motion of the beam distribution. Suppose a coasting beam with a transverse distribution of

elliptic symmetry,

ρ = ρ (
χ
)

for χ
.= x2

r 2
x
+ y2

r 2
y

, (2.90)

where rx = σx ,ry = σy mark the r.m.s. beam widths in the horizontal and vertical plane,

respectively.
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We investigate the evolution of the second-order moments rx ,ry . According to (2.57), one has

rx =
√〈

x2
〉
⊥−〈x〉2

⊥ , (2.91a)

ry =
√〈

y2
〉
⊥−〈

y
〉2
⊥ (2.91b)

with 〈·〉⊥ the transverse expectation value. Denoting r ′
x = drx /d s, the first derivative of (2.91)

along the design path length s gives

r ′
x =

〈
xx ′〉

⊥−〈x〉⊥
〈

x ′〉
⊥

rx
, (2.92a)

r ′
y =

〈
y y ′〉

⊥−〈
y
〉
⊥

〈
y ′〉

⊥
ry

(2.92b)

and the second derivative correspondingly evaluates to

r ′′
x =−

(〈
xx ′〉

⊥−〈x〉⊥
〈

x ′〉
⊥
)2

r 3
x

+
〈

xx ′′〉
⊥−〈x〉⊥

〈
x ′′〉

⊥+〈
x ′2〉

⊥−〈
x ′〉2

⊥
rx

,

=−
ε2

x,geo

r 3
x

+
〈

xx ′′〉
⊥−〈x〉⊥

〈
x ′′〉

⊥
rx

(2.93a)

where in the second line the statistical (geometrical i.e. non-normalised) r.m.s. emittance

expression (2.29) has been substituted. Likewise, we obtain for the vertical plane

r ′′
y =−

ε2
y,geo

r 3
y

+
〈

y y ′′〉
⊥−〈

y
〉
⊥

〈
y ′′〉

⊥
ry

. (2.93b)

The coherent dipolar motion
〈

x ′′〉
⊥ = d 2 〈x〉⊥ /d s2 and

〈
y ′′〉

⊥ = d 2
〈

y
〉
⊥ /d s2 is independent

of direct space charge as we found in equation (2.72). Substituting (2.72) as well as the single

particle equations of motion (2.66) into (2.93) yields

r ′′
x +Kx rx −

ε2
x,geo

r 3
x

− q

βγ2p0c

〈
xEx (x, y)

〉
⊥

rx
= 0 , (2.94a)

r ′′
y +Ky ry −

ε2
y,geo

r 3
y

− q

βγ2p0c

〈
yEy (x, y)

〉
⊥

rx
= 0 . (2.94b)

In the case of no space charge, i.e. vanishing self-fields Ex,y (x, y) = 0, we recover the equation

of motion (2.11a) for the betatron amplitude function with the identification

wx,y (s) ≡ rx,y (s)
p
εx,y,geo

. (2.95)

The linear beam self-fields of the KV distribution enabled Kapchinsky and Vladimirsky to
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derive a self-consistent set of equations for the beam evolution from (2.94), the so-called enve-

lope equations. The crucial point is that this system of equations is closed and does not lead to

higher than second-order moment terms related to the evolution of the system. As pointed out

in the introduction, the applicability of these KV equations to general monotonically decreas-

ing distributions has been realised first by Gluckstern [1970] (for circular symmetry) and then

by Sacherer [1971] (for general elliptic distributions). However, in the general monotonically

decreasing distribution case the beam self-fields Ex,y need not be (and usually are not) linear.

Consequently, higher than second-order moments may influence the time evolution which

can be absorbed in the now non-conserved r.m.s. emittances εx,y,geo = εx,y,geo(s). The enve-

lope equations involving only second-order r.m.s. moments are hence no longer a closed set

of equations. If the r.m.s. emittances vary sufficiently slowly though, the coherent quadrupolar

envelope modes can still be extracted from (2.94) for a general distribution.

We need to evaluate the expectation values
〈

xEx (x, y)
〉
⊥ and

〈
yEy (x, y)

〉
⊥. This is now where

the elliptic symmetry of the charge distribution (2.90) comes in. For a monotonically decreas-

ing ρ = ρ(χ) we have

dρ

dχ
≤ 0 , χ≥ 0 . (2.96)

Sacherer [ibid.] then proved the relation

〈
xEx (x, y)

〉
⊥ = λ

4πε0

rx

rx + ry
, (2.97a)

〈
yEy (x, y)

〉
⊥ = λ

4πε0

ry

rx + ry
. (2.97b)

Substituting (2.97) into (2.94) then finally leads to the r.m.s. envelope equations

r ′′
x +Kx (s)rx −

ε2
x,geo

r 3
x

− K SC

2(rx + ry )
= 0 , (2.98a)

r ′′
y +Ky (s)ry −

ε2
y,geo

r 3
y

− K SC

2(rx + ry )
= 0 (2.98b)

where we have replaced the space charge perveance K SC = const expression (2.70). The

envelope equations are a coupled set of equations for the evolution of the transverse r.m.s.

beam widths rx,y =σx,y along the design path length s. We derived the envelope equations

in the absence of any lattice coupling, Kx y = 0. In this case, the space charge term provides

the only coupling between the transverse planes. In the presence of lattice coupling, Kx y (s)ry

enters the left hand side of (2.98a) and likewise Kx y (s)rx on the left of (2.98b).

Let us investigate the envelope oscillations rx,y (s) for a smoothly approximated ring (2.74)
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with Kx,y (s) = const. The condition for a stationary or matched distribution reads

r ′′
x,y (s) = 0

(2.98)=⇒ r ′
x,y (s) = 0 , (2.99)

i.e. the matched r.m.s. envelopes rx,m and ry,m simply remain constant under the continuous

focusing. They satisfy the coupled quartic equations

Q2
x

R2 rx,m −
ε2

x,geo

r 3
x,m

− K SC

2(rx,m + ry,m)
= 0 , (2.100a)

Q2
y

R2 ry,m −
ε2

y,geo

r 3
y,m

− K SC

2(rx,m + ry,m)
= 0 (2.100b)

for constant bare betatron tunes Qx,y , given r.m.s. emittances and constant space charge

perveance.

Consider now a small perturbation about these equilibrium envelopes

rx = rx,m +δrx and (2.101a)

ry = ry,m +δry , (2.101b)

where δrx ¿ rx,m and δry ¿ ry,m. Their coupled linearised equations of motion follow from

(2.98) by plugging in (2.100a) while neglecting terms from O
(
δr 2

)
on:

δr ′′
x +

(
3ε2

x,geo

r 4
x,m

+ K SC

2(rx,m + ry,m)2 + Q2
x

R2

)
δrx =− K SC

2(rx,m + ry,m)2 δry , (2.102a)

δr ′′
y +

(
3ε2

y,geo

r 4
y,m

+ K SC

2(rx,m + ry,m)2 +
Q2

y

R2

)
δry =− K SC

2(rx,m + ry,m)2 δrx . (2.102b)

Equations (2.102) can equivalently be expressed in terms of the matrix equation

d 2

d s2

(
δrx

δry

)
=−

(
κx κSC

κSC κy

)
︸ ︷︷ ︸

.=(κ)

·
(
δrx

δry

)
(2.103)

where we have defined the diagonal matrix entries as

κx,y
.=

3ε2
x,y,geo

r 4
x,y,m

+
Q2

x,y

R2 +κSC (2.104)

and the symmetric off-diagonal matrix entries as

κSC
.= K SC

2(rx,m + ry,m)2 . (2.105)
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The geometrical r.m.s. emittances in the diagonal matrix entries can be eliminated by using

the matching condition (2.100a) giving

κx = 4
Q2

x

R2 − 2rx,m +3ry,m

rx,m
κSC , (2.106a)

κy = 4
Q2

y

R2 − 3rx,m +2ry,m

ry,m
κSC . (2.106b)

Now, sufficiently small excursions δrx,y can be described by the coupled harmonic oscillator

differential equation (2.103). We can determine the corresponding two independent eigen-

modes of the coherent quadrupolar oscillation by diagonalising the symmetric matrix (κ). To

this end, we have to solve for the roots κ± of the characteristic polynomial

det

(
κx −κ± κSC

κSC κy −κ±

)
= κ2

±−κ±(κx +κy )+ (κxκy −κ2
SC)

!= 0 . (2.107)

The eigenvalues κ± are related to the coherent quadrupolar tunes Q± by

κ± = Q2
±

R2 . (2.108)

Solving (2.107) for Q± hence yields

Q2
± = R2

2

[
κx +κy ±

√
4κ2

SC + (κy −κx )2
]

(2.109)

and we have Q+ ≥ Q−. For vanishing space charge κSC = 0 we recover that the envelopes

oscillate with twice the bare tune as the diagonal matrix entries reduce to κx = 4Q2
x /R2 and

κy = 4Q2
y /R2. In the finite space charge case κSC > 0, the envelope tunes become depressed by

space charge: reinserting the definitions of the (κ) matrix entries yields the full expression for

the quadrupolar mode tunes,

Q2
± = 2(Q2

x +Q2
y )− K SCR2

(rx,m + ry,m)2

[
1+ 3

4

(
ry,m

rx,m
+ rx,m

ry,m

)
∓
p

1+D2

2

]
, (2.110)

where we have introduced the coupling parameter

D
.= κy −κx

2κSC
= 4

Ky −Kx

K SC
(rx,m + ry,m)2 + 3

2

(
ry,m

rx,m
− rx,m

ry,m

)
. (2.111)

Along with the eigenmode tunes Q± we retrieve an expression for the (unnormalised) eigen-

vectors,

δr± = δrx +
(
D ±

√
1+D2

)
δry . (2.112)

Both are orthogonal to each other, 〈δr+,δr−〉 = 0. In fact, depending on the coupling strength,
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the normalised eigenvectors appear rotated with respect to the horizontal and vertical coordi-

nate axes by(
δr+
δr−

)
=

(
cos(α) −sin(α)

sin(α) cos(α)

)
·
(
δrx

δry

)
. (2.113)

The coupling parameter D determines the angle α of the rotation from the horizontal and

vertical coordinate axes into the eigensystem of the modes via

tan(α) = 1

2κSC

[
κy −κx +

√
4κ2

SC + (κy −κx )2
]

= D +
√

1+D2 .

(2.114)

There are two important limit cases for the quadrupolar modes:

1. negligible coupling |D|→∞ and

2. maximal coupling D = 0.

Negligible Coupling Limit |D|À 1

We can expand the factor
p

1+D2 ≈ |D| in the previous expressions. The two eigenvectors δr±
from (2.112) lie in the horizontal and vertical plane. For D > 0, the vertical plane dominates

the horizontal plane: either the beam sizes are fixed and approximately round and we find

Qy > Qx , or instead the bare machine tunes are fixed at a finite difference and the vertical

beam size needs to be much larger than the horizontal beam size, ry,m > rx,m. The case D > 0

in (2.112) results in δr+ identifying with δry since D+
p

1+D2 ≈ 2D À 1 and likewise δr− with

δrx because D −
p

1+D2 ≈ 0 ¿ 1.

D < 0 entails the opposite case with the horizontal plane dominating the vertical plane, one

encounters the relations δr+ ↔ δrx and δr− ↔ δry . Correspondingly, the phase α between the

eigensystem and the original coordinate system rotates by π/2 from D →−∞ to D →∞.

The approximation
p

1+D2 ≈ |D| also decouples expression (2.110) for the coherent quadrupo-

lar mode tunes. By substituting back the definition of D , we find for D > 0

Q2
+ = 4Q2

y −
K SCR2

(rx,m + ry,m)2

[
1+ 3rx,m

2ry,m

]
, (2.115a)

Q2
− = 4Q2

x −
K SCR2

(rx,m + ry,m)2

[
1+ 3ry,m

2rx,m

]
. (2.115b)

For D < 0, the indices x ↔ y are again exchanged.
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Maximal Coupling Limit D = 0

For the fully coupled case, the eigenmode system is rotated by α = π/4 with respect to the

coordinate system: the normalised eigenvectors amount to

δr+ = δrx +δry

2
, (2.116a)

δr− = δrx −δry

2
. (2.116b)

The corresponding envelope tunes become

Q2
+ = 2(Q2

x +Q2
y )− K SCR2

2(rx,m + ry,m)2

[
1+ 3

2

(
ry,m

rx,m
+ rx,m

ry,m

)]
, (2.117a)

Q2
− = 2(Q2

x +Q2
y )− K SCR2

2(rx,m + ry,m)2

[
3+ 3

2

(
ry,m

rx,m
+ rx,m

ry,m

)]
. (2.117b)

For negligible space charge K SC = 0, the envelope frequencies would be exactly identical.

As soon as we have space charge decoupling, the mode tunes depart with Q− <Q+. In fact,

the symmetric mode entails that both δrx and δry oscillate in phase. Along with this goes a

change in the density which leads to the higher frequency, therefore the symmetric mode is

often called “breathing” mode. The antisymmetric mode consists of δrx and δry oscillating in

anti-phase and is often referred to as the quadrupolar mode, the density of the distribution

remains constant.

For a stationary round beam with equal transverse emittances, the continuous focusing is

necessarily isotropic and we define
rm

.= rx,m ≡ ry,m ,

εgeo
.= εx,geo ≡ εy,geo ,

K
.= Kx ≡ Ky .

(2.118)

The difference between the two oscillation frequencies becomes evident from the restoring

forces in the equations of motion in the eigensystem:

δr ′′
++

(
3ε2

geo

r 4
m

+ K SC

8r 2
m

+K

)
δr+ = 0 −→ breathing mode , (2.119a)

δr ′′
−+

(
3ε2

geo

r 4
m

+ K

)
δr− = 0 −→ quadrupolar mode . (2.119b)
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2.2.3 Relation of Coherent Quadrupolar Modes to Incoherent Tune Shift

It is of interest to relate the incoherent KV space charge depressed tune to the coherent

quadrupolar mode tunes: in section 3.5, we discuss how measuring the coherent envelope os-

cillations with a QPU can provide the not directly measurable incoherent r.m.s. equivalent KV

tune shifts as useful quantities to indicate the space charge strength. The physical observables

are hence

1. the two coherent quadrupolar mode tunes Q±,

2. the bare machine tunes Qx,y , and

3. the ratio ξ between the equilibrium r.m.s. beam sizes,

where we define the beam size ratio as

ξ
.= ry,m

rx,m
. (2.120)

The off-diagonal matrix terms κSC represent the space charge coupling strength independently

of the plane. For convenience, let

Λ
.=−κSCR2

=− K SCR2

2(rx,m + ry,m)2 .
(2.121)

Now, the sum of the envelope mode tunes (2.110) provides an expression removing the cou-

pling parameter term,

Q2
++Q2

− = 4
(
Q2

x +Q2
y

)
− K SCR2

2(rx,m + ry,m)2

[
4+3

(
ry,m

rx,m
+ rx,m

ry,m

)]
. (2.122)

Based on this expression, the space charge quantity Λ can directly be related to the aforemen-

tioned observables via

Λ≡
Q2++Q2−−4(Q2

x +Q2
y )

4+3ξ+3/ξ
. (2.123)

The parameter Λ also appears in the incoherent tune expressions: we use (2.85) to replace the

KV beam edges with the corresponding r.m.s. values a = 2rx,m and b = 2ry,m in the smooth ap-

proximation expression (2.75) (which does not neglect quadratic terms yet) for the incoherent

KV space charge tunes QSC
x,y ,

(
QSC

x

)2 =Q2
x −

K SCR2

2rx,m(rx,m + ry,m)
, (2.124a)

(
QSC

y

)2 =Q2
y −

K SCR2

2ry,m(rx,m + ry,m)
. (2.124b)
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With the definition (2.76) of the incoherent tune shift, we can finally express ∆QKV
x,y in terms of

Λ (i.e. the observables) via the exact relation

∆QKV
x

(
∆QKV

x +2Qx
)= (1+ξ)Λ , (2.125a)

∆QKV
y

(
∆QKV

y +2Qy

)
= (1+1/ξ)Λ . (2.125b)

Neglecting quadratic terms, we recover (2.77) in terms ofΛ:

∆QKV
x =− K SCR2

4rx,m(rx,m + ry,m)Qx

= 1+ξ
2Qx

Λ ,

(2.126a)

∆QKV
y =− K SCR2

4ry,m(rx,m + ry,m)Qy

= 1+1/ξ

2Qy
Λ .

(2.126b)

Consider the limit case of negligible coupling with |D|À 1, say D > 0. From (2.115) it follows

for the vertical plane

Q2
+−4Q2

y︸ ︷︷ ︸
≈(Q+−2Qy )4Qy

=Λ
[

1+ 3rx,m

2ry,m

]

=
(
2+ rx,m

(rx,m + ry,m)

)[(
QSC

y

)2 −Q2
y

]
︸ ︷︷ ︸

≈2∆QKV
y Qy

,
(2.127)

and an equivalent expression with Q− for the horizontal plane. For D < 0, the indices x and y

need to be exchanged.

Assuming a small incoherent KV tune shift and correspondingly small quadrupolar mode shift

with respect to twice the bare tune (the undepressed envelope tune) leads to the expression

∆QKV
y = Q+−2Qy

1
2

(
3− ry,m

rx,m+ry,m

) . (2.128)

This off-coupling result has been quoted e.g. in Chanel [1996] for LEAR experiments at CERN

or in Hofmann, Bar, et al. [1998] for SIS18 experiments at GSI – we discuss further details in

section 3.5.

Last but not least, consider the case of full coupling with D = 0 and a round beam as in (2.118).

The isotropic focusing gives the same bare betatron tunes Q0
.=Qx,y . The incoherent KV tune
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shift ∆QKV =QSC −Q0 is determined from (2.124) as

(
QSC)2 −Q2

0 =−K SCR2

4r 2
m

. (2.129)

From (2.117), the breathing and quadrupolar mode can be linked to ∆QKV via the exact

expressions

Q2
+−4Q2

0︸ ︷︷ ︸
≈(Q+−2Q0)4Q0

=−2
K SCR2

4r 2
m

= 2
[
(QSC)2 −Q2

0

]︸ ︷︷ ︸
≈2∆QKVQ0

,

(2.130a)

Q2
−−4Q2

0︸ ︷︷ ︸
≈(Q−−2Q0)4Q0

=−3
K SCR2

4r 2
m

= 3
[
(QSC)2 −Q2

0

]︸ ︷︷ ︸
≈2∆QKVQ0

.

(2.130b)

Correspondingly, for small ∆QKV and likewise a small envelope mode shift we obtain the

relation of the two modes to the incoherent KV tune shift as

Q+ = 2Q0 −|∆QKV| , (2.131a)

Q− = 2Q0 − 3

2
|∆QKV| . (2.131b)

2.3 Space Charge and Betatron Resonances

Betatron resonances in conjunction with coherent modes have been studied intensely in the

past, and detailed treatments can be found e.g. in R. Baartman [1998], Hofmann, Franchetti,

et al. [2003] and Ng [2006]. Here we briefly outline the qualitative concepts.

In the previous sections, we have derived the coherent dipolar equation of motion (2.72) where

direct space charge did not influence the dipolar tune. This is closely connected to Newton’s

third law stating that for all action there is an equal and opposite reaction – thus, the sum

of the space charge forces of all particles repelling each other via the Coulomb force needs

to vanish. Now, the dipolar motion of the beam centroid can become resonantly excited by

dipole field errors (in the absence of indirect space charge effects) if the bare betatron tune in

either the horizontal or vertical plane satisfies the integer resonance condition

Qdip.coh.
x,y =Qx,y = n for n ∈N . (2.132)

For the next order we have treated the coherent quadrupolar modes in depth, whose frequen-
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cies are indeed depressed by direct space charge through the beam self-fields. These modes

can become resonantly excited by quadrupolar field errors if one of the two envelope tunes

matches an integer:

Q± = n for n ∈N . (2.133)

For vanishing space charge, the quadrupolar modes oscillate at twice the bare machine tunes.

In the presence of gradient errors, resonance therefore occurs at half-integer bare betatron

tunes. In the presence of space charge, the detuning of the quadrupolar modes leads to shifted

resonance conditions with respect to the bare betatron tune.

For a round beam far off the coupling resonance at split betatron tunes, say D À 1 (i.e. Qy >Qx

and δr+ ↔ δry ), (2.128) leads to

Q+ = 2Qy − 5

4
|∆QKV

y | , (2.134a)

Q− = 2Qx − 5

4
|∆QKV

x | . (2.134b)

Consequently, (2.133) can be satisfied for two different resonance conditions in terms of the

bare machine tunes Qx ,Qy :

Qx − 5

8
|∆QKV

x | = n1

2
, (2.135a)

Qy − 5

8
|∆QKV

y | = n2

2
. (2.135b)

The factor two in the denominator comes from the resonance order (“quadrupolar” corre-

sponds to the second order moment) and the two integer numbers n1,n2 ∈N represent the

harmonics for the two (decoupled) quadrupolar modes. Hence, we obtain a half-integer reso-

nance condition for the bare machine tunes Qx,y subtracted by the r.m.s. equivalent KV tune

shifts multiplied by the factor 5/8 coming from the space charge depression of the envelope

modes. Note that these factors change depending on the coupling parameter D . Furthermore,

this resonance condition applies to any monotonically decreasing beam distribution (2.96)

for whom the corresponding r.m.s. equivalent KV tune shifts ∆QKV
x,y are calculated. Expressing

the coherent resonance condition in terms of the incoherent tune shift comes merely from

a notational convenience point of view because the space charge strength of beams is often

characterised by the r.m.s. equivalent ∆QKV
x,y . This does not involve incoherent space charge

dynamics. As a last remark, ∆QKV
x,y can be related to the tune spread of the r.m.s. equivalent

Gaussian beam distribution by a factor two, cf. (2.86).

For a round beam on the coupling resonance (D = 0), i.e. at equal bare machine tunes Q0 =
Qx =Qy , (2.131) provides the resonance condition in terms of Q0 and the incoherent KV space
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charge tune shift ∆QKV via

Q0 − 1

2
|∆QKV| = n1

2
, (2.136a)

Q0 − 3

4
|∆QKV| = n2

2
. (2.136b)

The harmonic n1 ∈N and factor 1/2 refer to the symmetric (breathing) mode resonance and

the harmonic n2 ∈N and factor 3/4 refer to the antisymmetric (quadrupolar) mode resonance.

As we see, the quadrupolar factors indeed change depending on D .

R. Baartman [1998] reviewed exactly this topic and generalised the one- and two-dimensional

coherent resonances for higher orders. In the one-dimensional case, the general space charge

depressed betatron resonance condition reads

m(Q0 +Cmk∆QKV) = n for m,n ∈N , (2.137)

where the matrix Cmk has indices m (coinciding with the resonance order here) for the az-

imuthal and k for the radial mode. For spherical symmetry reasons, odd k only appear with

odd m while even k require even m.

Hofmann [1998] treated the two-dimensional resonance case for general anisotropic beams,

i.e. different transverse emittances and different continuous focusing strengths (i.e. bare tunes)

have been covered including up to octupolar order. For round beams, R. Baartman provided

the corresponding values of Cmk , which we quote in table 2.1. Note our previously derived

results for C11 = 0 from (2.132) and for C22 ∈ {1/2,3/4} from (2.136). Further work by Hofmann,

Franchetti, et al. [2003] with (non-KV) beam simulations revealed that mainly the diagonal

modes with m = k play a role in space charge dynamics of r.m.s. equivalent realistic beam

distributions.

Table 2.1 – Coherent mode coefficients for the incoherent KV tune shift appearing in the
two-dimensional space charge depressed betatron resonance condition (2.137) [R. Baartman
1998, table 2].

dipolar quadrupolar sextupolar octupolar
m = 1 2 3 4

k = 1 0
2 1/2, 3/4
3 3/4, 5/4 3/4, 11/12
4 7/8, 5/4 13/16, 7/8, 31/32
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The circular accelerators at CERN produce beams of various intensities. The number of

protons per bunch ranges from O
(
109

)
for the LHC probe and pilot beams to up to O

(
1012

)
for the fixed target beams. With higher intensities per bunch, the “collective effects” play an

increasingly important role in the beam dynamics. Detailed simulation models become crucial

to quantitatively assess the impact of such multi-particle interactions [Métral, Argyropoulos,

et al. 2016]. Relevant effects originate from the beam self-fields (direct space charge), induced

wall currents (impedances), beam-beam lensing for colliding beams, as well as electron clouds.

Mitigation of their harmful impact may proceed through countermeasures such as enhancing

Landau damping by exploiting the detuning with amplitude from octupole magnets, using

active damper feedback systems or electron lenses etc. Such concepts are explored, established

and understood in wide parameter scans with the aid of simulation codes.

Instabilities triggered by collective effects and resonances can take some time in the circular

accelerators to evolve, which reflects in simulations by the need of covering several thousands

or even hundreds of thousands of ring revolutions. Especially the self-consistent treatment of

direct space charge as a continuous phenomenon requires a fine resolution of the machine into

many small segments over which the effect is integrated: the particles interact with the beam

self-fields everywhere around the ring while the local field strength depends on the transverse

beam size. At the same time, the strong focusing in synchrotrons as well as dispersion effects

continuously change the beam size as figure 3.1 illustrates for a high-brightness beam example

in the SPS.

3.1 N -body Simulations and Macro-particle Models

Particle beams can be treated as an evolving N -body system. The system of 6N ordinary

differential equations describing the particle motion is readily solved by numerical integra-

tion over discrete time steps. Modelling the beams with the real number of particles while

simulating over many turns (where each turn may well have to be resolved into hundreds

or thousands of integration steps) often becomes computationally prohibitive. In order to
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Figure 3.1 – Transverse beam sizes around the SPS ring (using the “Q20” optics, cf. chapter 4)
for a low-emittance beam. The SPS ring has been split into 1200 nodes to sufficiently resolve
the beam size for space charge simulations.

make long-term simulation studies feasible, one employs so-called macro-particle models by

representing the N real particles by Nm.p. macro-particles. Each macro-particle stands for a

group of N /Nm.p. real particles and correspondingly carries a larger charge q ·N /Nm.p. and

mass mp ·N /Nm.p.. The motion of these macro-particles in the synchrotron may be described

by a split Hamiltonian

H =Htracking +H interaction . (3.1)

The tracking part Htracking describes the single-particle motion due to the applied external

electromagnetic fields, while H interaction covers the multi-particle interactions. This allows to

construct simulation codes which advance the macro-particles around the ring by alternately

solving the single-particle and multi-particle dynamics.

Let
{

f , g
}

denote the Poisson bracket

{
f , g

} .=
3∑

i=1

(
∂ f

∂qi

∂g

∂pi
− ∂ f

∂pi

∂g

∂qi

)
(3.2)

for two smooth functions f , g , the generalised coordinates qi and their respective canonically

conjugate momenta pi . The Lie operator

:H :
.= {H , ·} (3.3)

then expresses the time evolution of a Hamiltonian system,

d

d s
= ∂

∂s
+ {·,H } = ∂

∂s
− :H : . (3.4)

Consequently, we can write the Hamiltonian equations of motion for the phase space coordi-
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nates ζ= (qi , pi )i=1..3 of the macro-particles as

dζ

d s
= {ζ,H } =− :H :ζ , (3.5)

which is formally solved by the Lie map

ζ(s0 +∆s) = e−∆s :H :ζ(s0) . (3.6)

To lowest order in the Baker-Campbell-Hausdorff operator splitting, the phase space coordi-

nates ζ of the macro-particles can be pushed forward over a distance ∆s by

ζ(s0 +∆s) = e−∆s :H interaction: e−∆s :H tracking: ζ(s0) . (3.7)

The splitting of the original Lie map into two subsequent Lie maps corresponds to the afore-

mentioned alternating integration of single-particle and multi-particle dynamics.

A major project of this Ph.D. thesis comprises the contribution to the development and es-

tablishment of a 6D macro-particle simulation code for synchrotrons named PyHEADTAIL

with focus on the implementation of various space charge models. The software and its appli-

cations have been presented in papers and conferences [Li et al. 2016; Métral, Argyropoulos,

et al. 2016; Oeftiger 2015; Oeftiger and Hegglin 2016].

Each macro-particle of a PyHEADTAIL beam is described by the 6D set of coordinates

ζ= (x, x ′, y, y ′, z,δ) , (3.8)

where x denotes the horizontal offset from the reference orbit, y the vertical offset, x ′ =
px /p0 and y ′ = py /p0 the corresponding transverse normalised momenta for p0 = γmpβc the

total beam momentum (px and py are the conjugate momenta to x and y , respectively), z

denotes the longitudinal offset from the synchronous particle in the laboratory frame and

δ = (pz − p0)/p0 the relative momentum deviation. In the case of beam acceleration, p0

slowly changes which leads to adiabatic damping of the transverse phase space. PyHEADTAIL

correspondingly shrinks the transverse momenta x ′, y ′ to conserve the underlying symplectic

nature of the integration of motion.

In the transverse plane, PyHEADTAIL models the single-particle motion e−∆s :H tracking: by means

of the transverse betatron matrix (with expression (2.12) for the horizontal and vertical plane as

blocks along the diagonal of a 6×6 unit matrix), which represents the optics of the accelerator

expressed in terms of the Twiss parameters. In order to take into account non-linear single-

particle detuning effects such as chromaticity and detuning with amplitude (introduced e.g. by

octupole fields), we adjust the phase advance ψx,y (s) =ψx,y (x, y,δ; s) for each macro-particle

(the corresponding change in each macro-particle’s momentum deviation to conserve the

symplectic nature of the integration of motion is neglected as it is only a tiny longitudinal

effect). For a given tracking step over an unperturbed phase advance ∆ψx,y , the detuned
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phase advance hence consists of

ψx,y (x, y,δ; s +∆s) =ψx,y (s)+∆ψx,y +∆ψx,y,chroma(δ)+∆ψx,y,oct(x, y) . (3.9)

Denote the normalised chromaticity of order i by

(
ξx,y

)
i =

Q(i )
x,y

Qx,y
. (3.10)

In the case of up to nth order chromaticity, the detuning is then implemented as

∆ψchroma(δ) =
n∑

i=1

ξi∆ψ

i !
δi , (3.11)

thus distributing the chromatic effect proportionally to the phase advance between the inter-

action points. The octupolar detuning with amplitude is distributed over the ring in the same

way. The local optics functions (Twiss parameters)
(
αx,y ,βx,y ,γx,y

)
determine the “action” (i.e.

half the single-particle emittance (2.18)) of a macro-particle,

Jx = 1

2

(
γx x2 +2αx x x ′+βx x ′2) and (3.12a)

Jy = 1

2

(
γy y2 +2αy y y ′+βy y ′2) . (3.12b)

Denoting the relative octupolar detuning strengths (the anharmonicities) as
(
ax,x , ax,y = ay,x , ay,y

)
,

the detuning with amplitude amounts to(
∆ψx,oct

∆ψy,oct

)
=

(
ax,x ax,y

ax,y ay,y

)(
Jx∆ψx

Jy∆ψy

)
. (3.13)

Chromaticity and octupolar detuning with amplitude are the most significant off-momentum

and non-linear single-particle effects contributing to the tune spread.

In the longitudinal plane, the motion can be treated either linearly or with sinusoidal kicks

modelling the passage of (possibly multi-harmonic) RF cavities according to (2.48). Most of

the collective effect models in PyHEADTAIL including space charge are based on “beam slices”

which represent longitudinally binned subsets of the macro-particle distribution. The particle

density per slice is determined by nearest-grid-point (NGP) interpolation (i.e. lowest order).

3.2 PyHEADTAIL Space Charge Models

The self-fields of particle beams superpose the electromagnetic fields applied by magnets and

RF cavities in synchrotrons. The corresponding space charge effects lead to defocusing in

the transverse plane and focusing (defocusing) in the longitudinal plane for operation above

(below) transition energy. For non-linear beam distributions, space charge results in a tune
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spread which makes it an important factor e.g. when investigating betatron resonances or the

influence of Landau damping on instabilities.

In the following we present the implemented space charge models, viz.

1. a line density derivative model for the longitudinal plane,

2. a semi-analytical Bassetti-Erskine model (based on the assumption of a two-dimensional

Gaussian normal distribution) for the transverse plane (iteratively for each slice),

3. a so-called “2.5D” model based on a PIC algorithm which self-consistently solves the

electromagnetic forces of the transverse distributions for each slice separately (thus

accounting for varying longitudinal distributions such as in bunched beams), as well as

4. a 3D PIC model solving the full particle distribution to obtain the electromagnetic forces

in all three planes.

3.2.1 Longitudinal Model

When the longitudinal electric beam field is much weaker than the RF focusing (which is

usually the case at CERN’s synchrotrons), the beam is said to be “emittance-dominated”. In

terms of the envelope equations (2.98) – which can equivalently be formulated in 1D for the

longitudinal plane –, the emittance term ε2/r 3 is larger than the space charge term K SC/r . As

a consequence, the longitudinal beam profile of a matched (i.e. stationary) bunch distribution

is primarily determined by the RF bucket shape and the amount to which it is filled by the

particles. Longitudinal space charge mainly affects the synchrotron tunes of the particles and

does not significantly contribute to the beam profile. For such emittance-dominated beams,

the longitudinal electric field depends on the local line density λ(z).

Beams in CERN’s circular accelerators typically exhibit very long bunch lengths in comparison

to the vacuum tube radius rp . For a perfectly conducting vacuum tube, the electric field

lines enter the wall perpendicularly. In other words, the induced image currents compress

the free space electric field lines. For an ellipsoidal bunch with uniform distribution having

transverse radius rb and longitudinal semi-axis zm , this results in a non-linear suppression

of the otherwise linear electric field along the bunch. Figure 3.2 sketches the corresponding

bending of the field lines in the vacuum tube depending on how far the wall is located from

the local beam edge.

We base the longitudinal space charge model of PyHEADTAIL on the extensive theoretical

analysis in Reiser [2008, chapter 5]. Conceptually, the space charge forces are computed by

describing the actual distribution with a linear equivalent field which includes the image

effects in terms of an averaged geometry factor. Furthermore, the local electric field at a given

bunch slice is derived from the local line density derivative, which encodes the information

of how many particles are pushing from the slices towards the head compared to the slices

towards the tail of the bunch for a given location in z.
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Figure 3.2 – The electric field lines of an ellipsoidal bunch in a perfectly conducting cylindrical
vacuum tube enter the wall perpendicularly [Reiser 2008, figure 5.13].

We start our calculation in the beam frame, where we can neglect the relative motion of the

particles and therefore the magnetic fields. Afterwards we Lorentz boost to the laboratory

frame to relate to quantities such as λ which are expressed in laboratory coordinates. The

electrostatic potential φ of the beam self-field in the beam frame consists of the free space

potential, φfree, as well as the image contribution from the perfectly conducting boundary

conditions, φim,

φ=φfree +φim +φ0 , (3.14)

where the constant φ0 can be chosen such as to have vanishing potential φ(rp , z) = 0 at the

boundary. The potential φ has to satisfy the Poisson equation

∆φ=− ρ

ε0
. (2.61)

In order to derive the said linear equivalent field expression, we will start from a uniform

distribution giving rise to such a linear electric field. Consider the aforementioned transversely

rotationally symmetric ellipsoidal bunch. The charge over the ellipsoid volume 4πr 2
b zm/3 is

uniformly distributed, hence the density ρ is constant reading

ρ(r, z) =
ρ0 = qN

4πr 2
b zm /3

, r < rb and z < zm

0 , else
. (3.15)

Its longitudinal projection along the ellipsoidal bunch, i.e. the corresponding line charge

density, is of parabolic form amounting to

λ(z) = 3

4

qN

zm

(
1− z2

z2
m

)
. (3.16)
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The solution to equation (2.61) then depends on the beam aspect ratio,

χ
.=

√√√√1−
r 2

b

z2
m

. (3.17)

The free space solution inside the bunch splits into the parabolic radial and longitudinal parts

[Reiser 2008, equation (5.350b)],

φfree(r, z) =− ρ0

4ε0

[(
1− r 2

b

2z2
m

g0

)
r 2 + r 2

b

z2
m

g0 z2

]
. (3.18)

Here, g0 = g0(χ) denotes the free space geometry factor accounting for the bunch shape of the

ellipsoid, it is defined by

g0(χ)
.= 2

χ2

(
1

2χ
ln

(
1+χ
1−χ

)
−1

)
. (3.19)

We are now in the position to express the linear longitudinal free space electric field of the

ellipsoid (in the beam frame) in terms of the geometry factor and the derivative of the parabolic

line density as

E beam
z (z) =−∂φfree(r, z)

∂z
= g0

4πε0

[
3qN

4zm

2z

zm

]
︸ ︷︷ ︸

=− dλ
d z

(3.20)

=− g0

4πε0

dλ(z)

d z
. (3.21)

By Lorentz boosting to the laboratory frame, we pick up a γ−2 factor from zm 7→ γzm (in the

line charge density denominator) and the longitudinal derivative d/d z 7→ γ−1d/d z. Thus, the

longitudinal electric field (3.20) transforms to

Ez (z) =− g0

4πε0γ2

dλ(z)

d z
. (3.22)

This expression for the 3D ellipsoid may now serve as the equivalent electric field when gener-

alising (i.) to include the perfect conducting boundary conditions via φim and (ii.) to general

bunch profiles. By averaging over the bunch distribution one can approximate this general

case with an equivalent field. In particular, this model identifies the mean value of the real

electric field 〈zE real
z (z)〉z (which includes the non-linear image effects) with the corresponding

analytical expression for the parabolic distribution with the generalised geometry factor g ,

which then absorbs the image field contributions.

The careful analysis by Reiser [ibid.] compared self-consistent numerical simulations with

ellipsoidal bunches for various χ and rp /rb ratios. The conclusion qualitatively distinguishes

between three regions: region 1 with zm . rp , region 2 with rp ≤ zm ≤ 3rp and region 3 with
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3rp < zm . The latter is the relevant one for the CERN synchrotrons with the main result

being that the geometry factor g becomes independent of the aspect ratio χ and can be

approximated by [Reiser 2008, equation (5.365)]

g (z = 0) = 2ln

(
rp

rb

)
, (3.23a)

g ≈ 0.67+2ln

(
rp

rb

)
. (3.23b)

The ratio between the beam radius and the vacuum tube radius determines how much the

geometry factor would vary along the bunch (compare e.g. the 0.67 offset from the averaged

geometry factor to the expression for the centre of the bunch). As a further remark, Reiser

[ibid., chapter 6] also discusses the case of two parallel conducting plates with distance 2rp ,

for which the logarithmic term in the geometry factor becomes

2ln

(
rp

rb

)
7→ 2ln

(
4rp

πrb

)
. (3.24)

As an interesting side note, Hancock, Lindroos, and Koscielniak [2000] have implicitly deter-

mined the g -factor to a value around 2 via longitudinal phase space tomography measure-

ments including space charge effects in CERN’s PS Booster machine at very low energies.

In PyHEADTAIL, we have implemented this so-called λ′(z) model for general beam distribu-

tions. The space charge forces in the longitudinal plane are readily computed by plugging in

the general geometry factor (3.23b) as well as the actual λ(z) (calculated from the accumulated

macro-particle numbers per slice) into the equivalent field expression (3.22),

Fz (z) ≡ d pz

d t
(z) = qE equiv

z (z) =−q
g

4πε0γ2

dλ(z)

d z
. (3.25)

Consequently, integrating Fz (z) over a finite ∆s gives the longitudinal kick

∆δ= ∆pz

p0
= Fz (z)

p0

∆s

βc

=− qg

4πε0β2γ3mp c2

dλ(z)

d z
∆s .

(3.26)

In order to validate the longitudinal model, we follow the linear synchrotron motion of particles

in the bucket centre during numerical simulations of varying intensities. The simulations

have been carried out for the PS Booster at extraction energy Ekin = 1.4GeV (which is below

transition) always starting from the same Gaussian phase space distributions with a very small

r.m.s. longitudinal emittance of εz = 0.3eVs. We used 1×106 macro-particles and 400 slices

and we evaluate the simulation for 100 synchrotron periods. The Fourier spectrum yields the

actual synchrotron frequency of the particles which is changes with the intensity due to space

charge effects. Below transition, longitudinal space charge acts against the RF phase focusing

and hence depresses the synchrotron frequency. Figure 3.3 shows the decrease of the linear
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synchrotron tune with intensity.

As the intensity increases, the bunch additionally becomes mismatched because the RF bucket

(to which it is matched) gets squeezed when the phase focusing is cancelled by the beam fields

below transition. Therefore, the distribution oscillates with a quadrupolar mode resulting

in an oscillating bunch length σz . The theoretical prediction from equation (2.89) takes into

account the actual average bunch length and is plotted in blue in figure 3.3. The corresponding

average bunch lengths are shown in the lower panel.
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Figure 3.3 – Depression of the linear synchrotron tune QS,0 with stronger space charge as the
intensity increases. The lower plot shows the corresponding average r.m.s. bunch length σz

along with the standard deviation of the quadrupolar oscillation.

3.2.2 Transverse Semi-analytic Gaussian Model

In the beam rest frame, a two-dimensional Gaussian charge density function (2.80) generates

the electric fields

Eu = λ

4πε0
u

∞∫
0

d t
exp

(
− x2

2σ2
x+t

− y2

2σ2
y+t

)
(
σ2

u + t
)√(

σ2
x + t

)(
σ2

y + t
) (2.81)

for u = x, y . Solving this integral numerically for many macro-particle positions (x, y) is

computationally very expensive. Bassetti and Erskine [1980] proposed a substitution for this

integral in the context of beam-beam interaction simulations in particle colliders , which
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allows to express the electric fields in terms of the complex-valued Faddeeva function w(x+i y),

Ey + i Ex = λ

2ε0

√
2π(σ2

x −σ2
y )w

 x + i y√
2(σ2

x −σ2
y )

−exp

(
− x2

2σ2
x
− y2

2σ2
y

)
w

 x
σy

σx
+ i y σx

σy√
2(σ2

x −σ2
y )




(3.27)

given σx >σy (otherwise exchange x ↔ y). Numerical evaluation of the beam electric fields

is much more rapid using this expression, which is often referred to simply as the “Bassetti-

Erskine” formula. The Faddeeva function is defined for a complex number z as

w(z)
.= exp

(−z2)[1+ 2ip
π

∫ z

0
d t exp

(
t 2)] . (3.28)

Several efficient implementations of algorithms calculating the Faddeeva function have been

reviewed [Oeftiger, Aviral, et al. 2016]. On this basis, we have implemented a Bassetti-Erskine

space charge model for the transverse plane in PyHEADTAIL. The beam widths σx and σy

are evaluated slice-wise to compute the space charge forces along the bunch for each slice

separately. When σx ≈ σy , the denominators in (3.27) diverge and numerical accuracy be-

comes affected. Therefore, we evaluate the round beam formula when the beam widths are

sufficiently close,

Er (r ) = λ

2πε0

1−exp
(
− r 2

2σ2
r

)
r

. (3.29)

All electric fields so far have been expressed in the beam frame. In order to apply them to the

coordinates in PyHEADTAIL, we need to Lorentz boost the fields to the laboratory frame. All

in all, the space charge forces pick up a factor γ−2 as in the longitudinal case before. The line

charge density in the laboratory frame becomes λ 7→λ/γ which compensates the γ factor in

the transverse electric field transforming to Eu 7→ γEu . At the same time, the Lorentz boost

generates an azimuthal magnetic field contribution to the electric field. In laboratory frame

quantities, the transverse magnetic field components read

Bx =−β
c

Ey , (3.30a)

By = β

c
Ex , (3.30b)

Bz = 0 . (3.30c)
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Their contribution to the Lorentz force partly compensates the transverse electric field:

Fx = q(Ex −βcBy ) = q(1−β2)Ex = q
Ex

γ2 , (3.31a)

Fy = q(Ey +βcBx ) = q(1−β2)Ey = q
Ey

γ2 . (3.31b)

Finally, the transverse space charge forces integrated over a finite ∆s yield the kicks

∆u′ = ∆pu

p0
= Fu(x, y)

p0

∆s

βc

= q

p0

Eu(x, y)

γ2

∆s

βc

(3.32)

with the Bassetti-Erskine electric field expression (3.27) (or the round beam expression (3.29)

in case of σx ≈σy ).

3.2.3 Particle-in-cell Model

In order to account for general (not necessarily Gaussian normal) macro-particle distributions

when calculating the beam fields, we have to resolve the actual distribution: PIC algorithms

model space charge self-consistently [Hockney and Eastwood 1988]. In order to compute

the kicks, the macro-particle distribution is first interpolated to nodes of a regular mesh

(particle-to-mesh or “P2M” step), then the charge distribution on the mesh is solved for the

potential and consequently the force (solve step), and finally the force is interpolated back

to the particles (mesh-to-particles or “M2P” step). Figure 3.4 explains the principle of the

PIC algorithm for a 2D transverse particle distribution on a slice. A separate library has been

developed named PyPIC to encapsulate the various PIC algorithm implementations.

In synchrotrons, the relative momenta between the particles are usually much smaller than p0.

This can be exploited when solving the Maxwell equations by Lorentz boosting to the beam

rest frame, where we neglect the relative particle motion and correspondingly only have to

deal with an electrostatic problem. Before the P2M step, we Lorentz boost from the co-moving

laboratory frame (x, y, z)lab to the beam rest frame

(x̃, ỹ , z̃)beam = (x, y,γz)lab . (3.33)

Correspondingly, the bunch becomes much longer, the mesh is then constructed in the beam

frame. In PyPIC we have implemented a linear spatial cloud-in-cell (CIC) interpolation, i.e.

the shape function of the macro-particles is a constant Heaviside step function over the

diameter of a cell. In principle, higher order shape functions as discussed in Hockney and

Eastwood [ibid., section 5-3-4] result in better error behaviour of the particle-in-cell algorithm:

unphysical energy increase of the particles (also called grid heating) due to the finite mesh

size and non-symplectic integration of motion can lead to artificial emittance growth with

an impact on the long-term predictability of the simulation. Hockney and Eastwood find
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Figure 3.4 – Principle of particle-in-cell algorithm for a 2.5D slice-by-slice example.
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higher-order interpolation functions to significantly reduce the grid heating effect for a given

mesh size.

With the resulting mesh charge density ρ, we are ready to solve the discrete version of the 2D

or 3D Poisson equation,

∆φ=− ρ

ε0
, (2.61)

on the mesh for the mesh potential φ.

To this end, we implemented several Poisson solvers in both 2.5D (i.e. slice-by-slice 2D trans-

verse solving) and full 3D variants. The solvers cover finite difference (FD) approaches with

direct matrix solving via QR or LU decomposition (with Dirichlet or arbitrary boundary con-

ditions) and Green’s function methods (with free space or rectangular boundary conditions)

exploiting the Fast Fourier Transform (FFT) algorithm.

The FD implementations construct a sparse Poisson matrix A with a first-order nearest-

neighbour stencil. In case of the LU decomposition A = LU , the sparse lower and upper

triangle matrices L,U are then precomputed at set-up. At each solve step, the linear matrix

equation LUφ = −ρ/ε0 is solved given the respective vector ρ containing the mesh charge

density of all nodes. This approach is extremely efficient on the CPU in conjunction with the

KLU algorithm [Davis and Palamadai Natarajan 2010] if the Poisson matrix remains constant

over many solve steps [Iadarola et al. 2015]. Therefore, e.g. matrix element indices for the

boundary conditions should not change due to a differently shaped boundary, otherwise

the LU decomposition needs to be recomputed which is computationally expensive. The

QR decomposition is slower but numerically more stable than the LU decomposition (cf.

e.g. Geist and Romine [1988]), hence it may serve as a reference to cross-check the results.

Finite difference equations always require boundary conditions which can be advantageous

if indirect space charge effects from the vacuum tube need to be taken into account. If the

transverse beam sizes are rather small compared to the vacuum tube, the mesh can become

prohibitively large though. In this case, the following method may be more appropriate.

Another approach to solve equation (2.61) is to use the free space Green’s functions G in D=2

dimensions (for x = (x̃, ỹ)beam),

φ(x) = 1

4πε0

∫
d 2x̂ G (x− x̂)ρ (x̂) (3.34a)

with

G (x− x̂) =−1

2
ln

(|x− x̂|2) , (3.34b)

resp. in D=3 dimensions (for x = (x̃, ỹ , z̃)beam),

φ(x) = 1

8πε0

∫
d 3x̂ G (x− x̂)ρ (x̂) (3.34c)
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with

G (x− x̂) = 1√
|x− x̂|2

. (3.34d)

We apply Hockney’s trick where the domain of the Green’s function is doubled by cyclical

expansion in each dimension [Hockney and Eastwood 1988]. The explicit expressions are

obtained by mirroring the Green’s function while the mesh charge density ρ vanishes across

the extension, cf. e.g. Qiang et al. [2006, equations (7-10)]. The hence achieved periodicity over

the whole new domain allows to make use of the computationally very effective FFT algorithm

for the convolution (3.34). The potential in the expanded region of the domain will be wrong

after the convolution but as it is irrelevant we can discard it.

In principle, the Green’s function needs to be evaluated on a square (cuboid) mesh with equal

distances in all directions. In the transverse plane, aspect ratios may be large due to the

betatron function ratio and additional dispersion effects. To the least in the 3D case, the

aspect ratio of the transverse with respect to the longitudinal plane will certainly be large

and thus require many mesh points to cover the whole distribution – which may become

computationally heavy. Therefore, we make use of the integrated Green’s functions (IGF) Ĝ .

IGF conceptually include the aspect ratio into the discrete Green’s function by integrating

over each cell assuming ρ to be constant across the cell. This approximation has to be kept in

mind when choosing the mesh size. Let hx,y,z denote the mesh sizes in horizontal, vertical

and longitudinal direction, respectively, and Nx,y,z the corresponding number of mesh cells

per dimension. For the (i , j )-indexed mesh cell centred at
(
x̃i , ỹ j

)
, the open boundary D = 2

effective potential can be written

φ
(
x̃i , ỹ j

)= hx hy

2πε0

2Nx∑
i ′=1

2Ny∑
j ′=1

Ĝ(x̃i − x̃i ′ , ỹ j − ỹ j ′)ρ(x̃i ′ , ỹ j ′) , (3.35)

where the IGF is computed via

Ĝ(x̃i − x̃i ′ , ỹ j − ỹ j ′) =
x̃i ′+hx /2∫

x̃i ′−hx /2

d x

ỹ j ′+hy /2∫
ỹ j ′−hy /2

d y G(x̃i −x, ỹ j − y) . (3.36)

Note that the discrete convolution runs over twice the number of mesh cells in each direction

as required for the cyclic domain expansion. The integration can be carried out analytically

with the indefinite integral expression∫
d y

∫
d x ln

(
x2 + y2)=−3x y+x2 arctan

(
y/x

)+y2 arctan
(
x/y

)+x y ln
(
x2 + y2) , (3.37)

cf. Qiang, Furman, and Ryne [2004, equations (56-58)].
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Equivalently, the D = 3 effective potential

φ
(
x̃i , ỹ j , z̃k

)= hx hy hz

4πε0

2Nx∑
i ′=1

2Ny∑
j ′=1

2Nz∑
k ′=1

Ĝ(x̃i − x̃i ′ , ỹ j − ỹ j ′ , z̃k − z̃k ′)ρ(x̃i ′ , ỹ j ′ , z̃k ′) (3.38)

has the corresponding IGF

Ĝ(x̃i − x̃i ′ , ỹ j − ỹ j ′ , z̃k − z̃k ′) =
x̃i ′+hx /2∫

x̃i ′−hx /2

d x

ỹ j ′+hy /2∫
ỹ j ′−hy /2

d y

z̃k′+hz /2∫
z̃k′−hz /2

d z G(x̃i −x, ỹ j − y, z̃k −z) . (3.39)

The three-dimensional Ĝ can again be expressed in closed form, cf. Qiang et al. [2007, equation

(2)].

The Fourier transform of the IGF, FĜ , is computed at set-up time and stored until the mesh is

changed. At each solve step, FĜ is multiplied by the Fourier transformed mesh charge density

ρ and the result inversely Fourier transformed to yield the potential,

φ=F−1[(FĜ) · (Fρ)
]

. (3.40)

The FFT convolution approach is much more efficient at a complexity of O (n logn) than

computing the convolution integral in real space with O (n2), where n denotes the total number

of mesh nodes. Using this method with the FFTW implementation on the CPU [Frigo and

Johnson 2005] takes less than twice as long as the KLU direct solving approach mentioned

before [Iadarola et al. 2015].

After the potential φ has been determined on the mesh, the electric mesh fields Ẽ in the beam

frame are computed as

Ẽ =−∇φ (3.41)

via a numerical first-order finite difference gradient implementation. Finally, the electric fields

are interpolated back to the macro-particles (M2P) and Lorentz boosted back to the laboratory

frame,

(Ex ,Ey ,Ez )lab = (
γẼx ,γẼy , Ẽz

)
beam . (3.42)

The Lorentz forces for each macro-particle include the magnetic fields arising when trans-

forming to the laboratory frame,

(Bx ,By ,Bz )lab = (−βEy /c,βEx /c,0
)

lab (3.43)

=⇒ (Fx ,Fy ,Fz )lab = q

(
Ẽx

γ
,

Ẽy

γ
, Ẽz

)
beam

. (3.44)

A necessary condition for total charge and momentum conservation is to use identical inter-
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polation functions and order at both the P2M as well as the M2P step [Hockney and Eastwood

1988, section 5-3-3]. As a side note, the usual straightforward interpolation functions can

be the source of noise and grid heating effects in the traditional PIC approach. Recently,

symplectic algorithms have been derived to solve these issues [Qin et al. 2015], which can be

interesting for long-term simulations over many turns since the symplectic nature implies a

finite bound on the energy error.

Figure 3.5 shows the PIC computed electric field of a coasting beam with a KV distribution

in the transverse plane for the SPS. For λ = 5.1C/m and beam edges at rx = 2.5mm and

ry = 1.6mm, the maximal electric field at the beam edge analytically gives

Ex = λ

πε0

1

rx + ry
= 15.2kV/m , (3.45)

which matches the result from the PIC algorithm in the 3D graph.
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Figure 3.5 – Horizontal electric field of a KV beam in the SPS.

3.3 GPU High-performance Computing

PyHEADTAIL has been made available for GPU high-performance computing. The library

PyCUDA provides an interface for GPU memory stored arrays that adopts the API of the

standard Python library for scientific computing, NumPy, hence making large portions of the

code easily applicable to both NumPy arrays and GPUArrays [Klöckner et al. 2012]. To make

the GPU usage in PyHEADTAIL as transparent and flexible as possible for GPU users, Hegglin

[2016] developed a context management system to switch between GPU and CPU contexts.

Algorithms for the GPU need to make use of the pronounced parallel hardware structures

and therefore often differ from serial CPU algorithms. The context managers switch between

implemented algorithms e.g. for the bunch distribution statistics. For the GPU implementa-
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tions it is therefore of crucial importance to have access to the underlying CUDA [Nickolls

et al. 2008] API from Python which is fully provided by PyCUDA. Implementing and calling

custom CUDA kernels is flexible and straight forward from the Python top layer. Besides the

NumPy array API and the CUDA access, the third important ingredient to PyHEADTAIL on the

GPU is the incorporation of effective GPU computing libraries such as cuFFT [NVIDIA 2016a],

cuSOLVER [NVIDIA 2016b], cuSPARSE [NVIDIA 2016c] and Thrust [N. Bell and J. Hoberock

2011]. We achieve this partly via the Python binding library scikit-cuda [Givon 2016] and partly

via self-implemented interfaces using ctypes.

Single-particle physics and hence the tracking modules of PyHEADTAIL profit tremendously

from parallelisation. Since the particle motion can be integrated independently, the speed-up

scales almost linearly with the available number of computing cores. The study reported in

Oeftiger [2016] achieves O (100) speed-up for longitudinal tracking parallelised on the GPU (an

NVIDIA Tesla C2075 in this case, cf. table 3.2). This is not necessarily the case for multi-particle

interaction which may depend on exchanging information between the computing cores.

Such algorithms then rely on the available memory bandwidth of the respective hardware

accelerator. The speed-up of parallelising the mesh-particle conversion steps of the PIC

algorithm, for example, is affected by the memory latency and specially tailored parallelisation

techniques become important.

For the PyHEADTAIL space charge suite we have developed a GPU version of PyPIC. The

performance bottlenecks appear very differently during the aforementioned three particle-in-

cell steps P2M, solve and M2P when comparing runtime profiles between the CPU and GPU

versions. Figure 3.6 shows the fraction of time spent on both architectures during each step

for quadratically increasing transverse mesh sizes given a fixed number of macro-particles.

Comparing the GPU cuFFT 3D Fourier transform performance to the CPU FFTW on a mesh

of size (16,32,64) gives a speed-up of up to S = 35.8, comparing to the standard NumPy FFT

extension even reaches S = 65.5. We used an NVIDIA K40m GPU (specifications in table 3.2)

and a single 2.3 GHz Intel Xeon E5-2630 (v1) CPU core (specifications in table 3.1 for this

comparison. This explains why the solve step with the free space FFT-based Green’s function

Poisson solver does not have such a significant impact on the overall timing during the PIC

algorithm on the GPU, while it essentially marks the bottleneck on the CPU.

Effectively, the particle deposition on the mesh is the most performance critical part in the

GPU PIC algorithm. We have implemented an atomic deposition algorithm, in which a CUDA

thread for each particle is launched which locks the memory location of the respective mesh

node charge from access by other threads, reads the memory value, adds to it and then stores

the updated value. With this approach, we observed a rather slow performance for large

macro-particle numbers as memory bank conflicts and thread stalls can happen for both

the software-emulated 64-bit and the hardware-accelerated 32-bit atomicAdd variants. This

finding is especially pronounced in the 3D case where each particle updates eight surrounding

mesh nodes (instead of four in the 2D case). The problem decreased when using less macro-

particles for a given mesh size – however, to achieve a good resolution for the electric fields, at
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(a) CPU implementation. (b) GPU implementation.

Figure 3.6 – Timing proportions between the P2M, solve and M2P step for the FFT-based 2.5D
Poisson solver vs. number of mesh nodes per transverse side [Oeftiger and Hegglin 2016]. The
number of macro-particles is fixed to 5×105 and only one slice has been used (for multiple
slices the average timing for the GPU solve step reduces further due to concurrent solving of
several slices).

least 10 macro-particles per cell are required [Hockney and Eastwood 1988].

To address this issue, we implemented a sorted deposition particle-in-cell algorithm [Ahnert,

Demidov, and Mulansky 2014]. In this approach, the macro-particle coordinate arrays are first

sorted by their cell IDs, for which we used the Thrust library with its sort_by_key functions.

Subsequently, a thread is launched for each cell which loops through the particles within

this cell to construct guard cell charge densities. In a third step, a kernel merges the four

(2D) resp. eight (3D) guard meshes to the final mesh charge density ρ array. We achieved a

speed-up of S = 3.5 for the mesh size (64,64,32) and 1×106 macro-particles when comparing

the sorted deposition to the double precision atomicAdd deposition (both on the GPU). In

addition, the M2P step profits from the sorted arrays since global GPU memory is accessed

in a coalesced manner: the kernel call on unsorted arrays takes 25% longer than on sorted

arrays. Further approaches to address the memory bank conflicts (such as using L1 caching)

have been investigated e.g. for SYNERGIA by Lu and Amundson [2014] and for ELEGANT by

Pogorelov, Amyx, and Messmer [2011] and Pogorelov, Amyx, Balasalle, et al. [2012].

For the 2.5D case, the transverse Poisson equations can be solved for all slices in parallel.

Since the cuFFT calls for each slice work with small arrays compared to the GPU memory

size, the cuFFT batch-solving works very effectively. All in all, we achieved overall PIC speed-

ups of up to S = 13.2 compared to the scalar CPU. Figure 3.7 shows how the GPU usage

becomes increasingly beneficial for larger mesh sizes at a fixed number of 5×105 macro-

particles. Also increasing the number of macro-particles scales less than linearly for the

relevant parameter range as opposed to the CPU. These results allow the GPU accelerated

space charge simulations to access much higher resolutions and increase the validity of

simulations (also over longer time scales for larger mesh sizes and higher macro-particle
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numbers).

A typical numerical scenario for the 2.5D model would be to integrate the motion of 1×106

macro-particles on a mesh of 20 slices and 128×128 transverse nodes. Our fastest CPU version

(with the KLU algorithm) takes 152 ms to compute the space charge interaction over the whole

bunch. For the GPU, the same numerical parameters take 110 ms. However, the beneficial

scaling on the GPU allows to increase the transverse mesh size fourfold to 256×256 and use

twice the number of macro-particles at the expense of 134 ms for the entire space charge

interaction. This is still less than the original scalar CPU timing, which would (in the best case)

linearly increase for the eightfold higher resolution.

In the 3D case, the solve step completely dominates the P2M and M2P steps on the CPU.

Simulations for circular accelerators which supposedly cover thousands of revolutions and

more become very costly. Here, the GPU approach becomes most valuable because the solve

step takes less than a third of the total process. The additional FFT computation along the

longitudinal direction adds on the 10% level to the overall GPU timing – on the CPU, instead,

the timing increases by more than an order of magnitude. Therefore, the GPU acceleration

renders the self-consistent 3D space charge model cost-effective and hence makes elaborate

long-term studies possible.

(a) Comparing various architectures. (b) NVIDIA K40m GPU vs. single Intel Xeon E5-
2630 CPU.

Figure 3.7 – Overall 2.5D PIC speed-up achieved (for a single slice) vs. number of mesh nodes
per transverse dimension [Oeftiger and Hegglin 2016].
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CPU 2× Intel Xeon E5-2630 (v1)

CPU cores 2×6

RAM 256 GB DDR3

CPU clock rate 2.30 GHz

CPU L3 cache 15 MB

instruction set Intel AVX

performance (32bit floats) 0.1 TFLOPS

Table 3.1 – Relevant CPU machine specifications.

NVIDIA GPU model Tesla C2075 Tesla K20m Tesla K40m

GPU DDR5 RAM 5.3 GB 5.1 GB 12.3 GB

GPU clock rate 1.15 GHz 0.7 GHz 0.75 GHz

CUDA cores 448 2496 2880

CUDA computing capability 2.0 3.5 3.5

performance (32bit floats) 1.0 TFLOPS 3.5 TFLOPS 4.3 TFLOPS

Table 3.2 – Relevant GPU machine specifications.

3.4 Comparison Between Space Charge Models

The transverse semi-analytic model assumes Gaussian distributions in both the horizontal

and the vertical plane. If the actual distribution deviates from a Gaussian, equation (3.27)

only represents an approximation. This needs to be kept in mind especially in the presence

of dispersion: even if the betatron distributions are of Gaussian nature, the momentum

distribution may deviate from a Gaussian. Consequently, its contribution to the transverse

profiles renders the whole profile non-Gaussian.

Figure 3.8 depicts an N = 2×1011 SPS bunch with a horizontal normalised emittance of

εx = 0.84mmmrad and a very large longitudinal r.m.s. emittance of εz = 0.42eVs. Since the

RF bucket acceptance amounts to 0.68 eVs, the matched longitudinal thermal phase space

distribution is deformed compared to a bi-Gaussian due to the RF bucket non-linearities.

Given a dispersion of Dx = 7.96m, this non-Gaussian momentum distribution reflects in

the evidently non-Gaussian horizontal beam profile plotted in blue in figure 3.8a. The r.m.s.

equivalent Gaussian distribution is plotted in red as a comparison. Now, the latter gives rise to

the corresponding electric field of the Bassetti-Erskine model space charge model which is

plotted in green in figure 3.8b and which is used to compute the space charge force for the

(blue) macro-particle distribution. Figure 3.8b also shows the real horizontal electric field

of the central slice of the macro-particle distribution calculated with the 2.5D PIC model

(depicted in orange) and the 3D PIC model (depicted in blue). Firstly, both 2.5D and 3D

computed fields agree very closely, numerically they differ on the fifth significant figure –

this means that the relativistic approximation (on which the 2.5D model is based) is indeed
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well satisfied for SPS bunches of lengths in the same order of magnitude. Secondly, the PIC

computed fields clearly show their maximum at an approximately 20% larger horizontal

position compared to the Bassetti-Erskine based (Gaussian) field peak. This also leads to a

different slope in the linear field part around the bunch centre. An interesting consequence

resulting from this fact is the larger maximum incoherent betatron space charge tune shift in

the Gaussian (green curve) case compared to the realistic PIC case (strongest space charge

depression happens for particles in the core, which hence experience the linear part of Ex

while their tune shift ∆QSC
x scales with the constant slope α of this linear Ex ≈αx).
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(a) Beam profile and Gaussian r.m.s. equivalent for central beam slice (with 1×106 macro-particles
distributed over 32 slices).
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(b) Corresponding horizontal electric field in the central slice from the PIC and the (Gaussian) Bassetti-
Erskine model.

Figure 3.8 – Large εz entail non-Gaussian momentum distributions which affect the horizontal
distribution via dispersion.

In order to compare the longitudinal λ′(z) from the first section to the longitudinal component

of the 3D PIC model, we refer to the same SPS beam at injection energy with γ= 27.72. Figure

3.9 shows the longitudinal kicks obtained from the λ′(z) model for a circular vacuum tube

(for which the geometry factor amounts to g = 5.25, compare this to g0 = 6.36 in free space).
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The Gaussian beam has been divided into 32 slices which is few for the NGP interpolation,

correspondingly the λ′(z) model kicks appear step-like. In order not to violate momentum

conservation, the interpolation order needs to be the identical for the initial binning of the

particles into slices (in order to calculate the line density and its derivative based on the slices)

and for the final application of the calculated space charge force to the particles [Hockney

and Eastwood 1988, section 5-3-3]. Hence, if we use lowest-order NGP interpolation for the

slice model, we should apply the same principle and use the calculated kick per slice for all

particles over the whole slice without applying higher-order interpolation. One often uses

large numbers (hundreds to thousands) of slices in longitudinal simulations which minimises

the discrete step distance between slices.
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Figure 3.9 – Longitudinal space charge kicks vs. position employing the λ′(z) model for 32
slices of an SPS beam at injection (assuming an rp = 5cm round vacuum tube boundary).

The 3D PIC model also calculates the longitudinal space charge forces for the distribution along

the bunch. For open boundary conditions (i.e. free space), figure 3.10 shows the longitudinal

kicks of a 3D Gaussian distributed macro-particle distribution. The longitudinal mesh here

comprises 32 nodes. We can compare the result to the longitudinal 1D model from section

3.2.1, where we also used 32 slices for the kicks depicted in figure 3.9. The first-order cloud-

in-cell (CIC) scheme we implemented for our PIC interpolation function makes the kicks

much smoother across the bunch as compared to the zero-order NGP interpolation from the

PyHEADTAIL slicing model, which made the λ′(z) model kicks appear step-like. What is more,

the λ′(z) model of figure 3.9 includes the indirect space charge suppression of Ez from the

non-linear interaction with the vacuum tube. This effect is not included in the open boundary

3D PIC model, hence the space charge kicks are larger in figure 3.10. Finally, the 3D model

resolves the proper longitudinal field for varying transverse amplitudes, while the 1D model

averages over the transverse distribution leading to the constant term of 0.67 (instead of the

often cited axial value of 1 in the literature for zero transverse offset in the rigid ellipsoid) in

the generalised geometry factor expression (3.23b). The varying longitudinal field at different

transverse amplitudes leads to a spread of the longitudinal kicks in the 3D case around the

averaged value used in the 1D model.
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Figure 3.10 – Longitudinal space charge kicks vs. position employing the 3D PIC model for 32
longitudinal mesh nodes along the same SPS beam from figure 3.9.

3.5 Quadrupolar Pick-Ups and Envelope Simulations

The collective nature of a distribution of particles in a beam comprises coherent modes which

can be observed in the moments of the beam distribution. Direct space charge influences

the coherent mode frequency from the quadrupolar order on: in the transverse plane, the

defocusing nature of space charge results in a frequency lowering. Therefore, we can make use

of this information contained in the quadrupolar coherent mode which can be observed via

the second (quadrupolar) moment of the beam to determine the space charge strength. Take

a set-up of four electrodes azimuthally regularly arranged in π/2 distances as illustrated in

figure 3.11. The transverse quadrupolar beam moment can be measured by summing the two

horizontal electrode signals L (for left) and R (for right) as well as the two vertical signals T

(for top) and B (for bottom) and then subtracting the two planes as in (L+R)− (T +B). If the

beam centroid is offset from the reference orbit, the beam performs dipolar coherent motion

and the dipolar beam moment also adds to the final signal:

PQPU ∝〈x2〉−〈y2〉 =σ2
x −σ2

y +〈x〉2 −〈y〉2 . (3.46)

(In fact, the dipolar contribution to the signal can be evaluated and removed as L−R gives the

horizontal beam position 〈x〉 and, likewise, T −B the vertical beam position 〈y〉.)

The oscillations of the r.m.s. beam envelopes σx,y can thus be recorded by this Quadrupolar

Pick-up (QPU) set-up as to extract the quadrupolar mode frequency from a spectral analysis

of its signal PQPU. For bunched beams, longitudinal motion can result in synchrotron side-

bands in the frequency spectrum if there is non-vanishing dispersion at the location of the

QPU. It is to be emphasised that the frequency signal of the QPU relies on an envelope

mismatch which can be either given by the (typically rapidly decaying) quadrupolar injection

oscillations originating from an injection mismatch of the beam or via excitation by means of

a quadrupolar kicker magnet.

The QPU method is non-destructive to the beam which makes it an intriguing method for

the parasitic determination of the transverse emittances. It is important to note that the
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Figure 3.11 – Layout of the QPU set-up with the four electrodes T (top), B (bottom), L (left)
and R (right) to measure the quadrupolar coherent beam modes [Singh et al. 2014, modified
version of figure 1]. The beam is sketched in red at a centroid offset 〈x〉,〈y〉.

measurement of the statistical quadrupolar moment of the beam distribution strictly relates

to the statistical r.m.s. emittance, no further information on the beam shape (such as tails

etc.) can be extracted. Since we are interested in assessing space charge impact to min-

imise emittance growth, we actually care for the r.m.s. emittance in any case (for the sake of

Sacherer’s r.m.s. equivalence principle). The emittance determination via the quadrupolar

beam moment can avoid suffering from the (possibly large) systematic errors on the local

optics parameters, which is inherent to other beam emittance determination methods such as

wire scanning. By using at least two QPUs at two different locations, one can determine the

two transverse emittances as well as the local Twiss parameters from the time evolution of

PQPU: the quadrupolar beam moment (depending on the r.m.s. beam sizes) can be directly

related to the r.m.s. emittances via σ2
x = βxεx /(βγ) or, in the presence of dispersion, via ex-

pression (2.35). This time-domain technique has been further developed in the Ph.D. thesis of

Jansson [2001]. The work included an advanced design of a magnetic quadrupolar pick-up

using four wire loops to measure the radial magnetic component of the beam instead of the

four electrodes, two prototypes of which have successfully been operated at the PS. The advan-

tage of the magnetic pick-up design lies in the absence of the monopole contribution to the

signal PQPU as opposed to electric pick-ups where the mere beam intensity (as the zero-order

monopole beam moment) gives the largest signal contribution, which consequently needs

to be subtracted from the time domain signal in order to extract the quadrupolar moment

information. The motivation behind this method focused on identifying emittance growth

from injection mismatch from the optics parameters.

In the presence of considerable space charge now, we can instead proceed via the frequency

domain. The quadrupolar (envelope) mode frequencies Q± are shifted downwards from twice
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the bare betatron tunes due to space charge defocusing. As we derived in the theory chapter,

they relate to the incoherent KV space charge tune shift via expression (2.110).

The idea of measuring space charge impact via QPU set-ups has been mentioned already quite

early in the history of space charge research by Hardt [1966] in the context of the derivation of

the coherent resonance condition for the space charge shifted betatron resonances. In the

1990s, first experimental studies at CERN and GSI have investigated the QPU concept for space

charge related issues. In both cases, quadrupolar kicker magnets have been used to excite

the beams and measure the quadrupolar beam transfer functions. For the LEAR experiment,

Chanel [1996] used the off-resonance equation (2.128). Also during the experiment at the

heavy-ion synchrotron SIS-18 experiment at GSI, the betatron machine tunes have been

sufficiently far apart for decoupled envelope modes [Hofmann, Bar, et al. 1998].

In order to apply this concept to CERN’s PS and SPS, we have to take into account the proximity

of their working points to the coupling difference resonance (the fourth-order 2Qx −2Qy = n

Montague resonance). The PS is in fact operated in this regime (presently around Qx ≈ 6.22

and Qy ≈ 6.23) to maximise the coupling between the two planes by exploiting the space

charge coupling in conjunction with powering the skew quadrupoles in order to maximally

suppress dangerous head-tail beam instabilities [Métral, Rumolo, et al. 2007]. Also the SPS

working point exhibits fractional tunes of qx ≈ 0.13 and qy ≈ 0.18 (and equal integer tunes).

Consequently, we need to employ the general envelope mode formula (2.110).

The model on which these envelope mode formulae are based assumes coasting beams, a

uniform transverse KV distribution, smooth ring approximation (i.e. continuous focusing

around the machine) and no off-momentum effects such as dispersion and chromaticity. We

quantitatively discuss the behaviour of the envelope mode tunes for the SPS and the PS cases

in the following paragraphs on the basis of numerical values.

Figures 3.12 and 3.13 illustrate the SPS situation for realistic beam parameters. The transverse

normalised r.m.s. emittances amount to εx,y = 1.25mmmrad. In figure 3.12, the constant

beam line charge density is equivalent to N = 1.2×1011 over a hypothetical total bunch length

of 4σz = 0.92m, while the vertical betatron tune Qy is scanned in the vicinity of the fixed

horizontal betatron tune Qx = 20.13. The graph 3.12a demonstrates the mode behaviour close

to the fully coupled case of the round beam. At tunes above Qy > 20.16 or below Qy < 20.10, the

mode frequency essentially approaches the dashed asymptotic off-resonance approximation

(2.115). At Qx =Qy = 20.13 we encounter the fully coupled case, where the mode frequencies

coincide with the on-resonance expression (2.117).

Figure 3.12b then depicts the approaching of the full coupling. For betatron tunes Qy ¿Qx

towards the left side of both plots, the eigenvectors of the envelope oscillation given by

expression (2.112) lie in the horizontal and vertical plane as they are completely decoupled.

The upper mode (the Q+ tune in green) oscillates in the horizontal direction and the lower

mode (the Q− tune in blue) in the vertical direction. With respect to this convention, we

define the rotation angle of the eigenmodes to approach zero value. The rotation angle’s
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arctangent scaling with the tune is plotted in turquoise in figure 3.12b. At full coupling the

eigenmodes are rotated by 45° and then towards Qy ÀQx the horizontal and vertical plane

identification with the two modes exactly swaps with respect to Qy ¿Qx , correspondingly the

angle approaches 90°. The coupling parameter D from expression (2.111) vanishes at Qx =Qy

for the round beam. At D =±1 we are halfway rotated from the full coupling to the decoupled

case with a rotation angle of 22.5° resp. 67.5°. Finally, we see that at |D| > 2 we approach the

asymptotic off-resonance case directly corresponding to the initially mentioned tune regions

above Qy > 20.16 and below Qy < 20.10. In this region, it is safe to use the off-resonance

approximation (2.115) while below |D| < 2 one should use the general expression (2.110).

This reasoning applies in general for |D|À 1 =⇒ off-resonance while from the order of D on

towards 0 one requires the general expression.

In figure 3.13, we fix the working point at Qx = 20.13 and Qy = 20.145. Then we scan the

intensity N with respect to the same 4σz = 0.92m interval as before. In figure 3.13a we start

on the left from zero space charge at twice the bare machine tunes. Initially, the tunes are far

from coupling as the incoherent space charge tune shift is negligibly small compared to the

betatron tune split. Consequently, the modes follow the off-resonance asymptotes plotted in

dashed lines of green and blue colour. Towards high intensities, the envelope modes converge

towards the symmetric and antisymmetric on-resonance modes plotted in dashed orange

lines. At an intensity of around N = 1.25×1011, we observe the largest distance of the actual

envelope tunes from the intersecting asymptotes. Figure 3.13b demonstrates that the coupling

parameter becomes D = 1 at this distinctive intensity – this is a general feature of the analytic

expressions. We see how D approaches zero value for high intensities while the mode tunes

approach the orange on-resonance asymptotes, while on the other side D diverges to infinity

when space charge vanishes (i.e. the space charge perveance in the denominator of D in

(2.111) becomes zero).

Figures 3.14 and 3.15 show the analogous situation for realistic beam parameters in the PS

machine. The constant line charge density in figure 3.14 corresponds to an intensity of

N = 1.6×1011 for a fixed reference longitudinal interval of 4σz = 49.4m equivalent to a 180 ns

total bunch length. The normalised transverse r.m.s. emittances amount to 2.5 mmmrad.

The horizontal tune is fixed at Qx = 6.22 while the vertical tune varies around Qx . For the

line density scan (represented by the intensity with regard to the same fixed 4σz reference

interval) presented in figure 3.15, we fix the working point at Qx = 6.22 and Qy = 6.23. This

time, the distinctive D = 1 coupling strength is reached at N = 0.7×1012. This broad coupling

region around the equal-tune region goes hand in hand with the previously mentioned oper-

ational strategy of maximally coupling the beams in the transverse plane to avoid head-tail

instabilities.

This analysis of envelope modes is based on uniform KV beams. According to the r.m.s. equiv-

alence principle, we expect the same modes for any elliptically symmetric beam distribution

with a monotonically decreasing density at the same r.m.s. beam width. In particular, the

discussion applies to the Gaussian-type transverse distributions in the real machine. The
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Figure 3.12 – Envelope modes during a vertical tune scan at fixed Qx = 20.13 for a coast-
ing SPS beam with intensity N = 1.2×1011 and normalised transverse emittances εx,y =
1.25mmmrad.
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Figure 3.13 – Envelope modes during an intensity scan at fixed Qx = 20.13 and Qy = 20.145 for
a coasting SPS beam with normalised transverse emittances εx,y = 1.25mmmrad.
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Figure 3.14 – Envelope modes during a vertical tune scan at fixed Qx = 6.22 for a coasting PS
beam with intensity N = 1.6×1012 and normalised transverse emittances εx,y = 2.5mmmrad.
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Figure 3.15 – Envelope modes during an intensity scan at fixed Qx = 6.22 and Qy = 6.23 for a
coasting PS beam with normalised transverse emittances εx,y = 2.5mmmrad.
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quadrupolar coherent modes should therefore be observable in the frequency spectrum of

PQPU at the above envelope tunes. The goal is then to extract the KV space charge tune shifts

from the two envelope modes via expression (2.125) – or rather, in conjunction with the beam

current transformer (BCT) yielding the beam intensity, to extract the transverse beam size

ratio (and hence the emittances).

3.5.1 PyHEADTAIL Simulations of Envelope Oscillations

We will now check these relations between the envelope mode tunes Q±, the (r.m.s. equivalent)

KV space charge tune shift ∆QKV, and the relevant beam parameters (the line charge density

λ = N /(4σz ) and the normalised transverse emittances εx,y ) with the aid of PyHEADTAIL

space charge simulations for transverse macro-particle distributions of uniform KV nature

and also as a cross-check the r.m.s. equivalent Gaussian distribution. The simulations are

set up equivalently to the theoretical assumptions, i.e. switching off synchrotron motion, no

non-linear effects in the transverse plane (besides possibly space charge itself) and applying

continuous focusing at constant betatron functions βx =βy ≈ 16m (with no dispersion) using

the corresponding values of the PS machine. We model the machine to be entirely decoupled.

In fact, due to the smooth approximation, the beta functions are directly determined by the

respective betatron tune via

βx,y = R

Qx,y
(3.47)

where R = 100m denotes the effective PS radius. We employ the 2.5D PIC space charge model

for one beam slice containing all the macro-particles, which resembles the coasting beam

situation from the theory. Consequently, we self-consistently solve the transverse beam fields

permitting the evolution of the coherent modes. We use 1×106 macro-particles on a fixed

transverse x − y grid of 128×128 mesh nodes. The macro-particle distributions are initiated

with transverse normalised emittances of εx,y = 2.5mm. The matched beam sizes are then

determined from the non-linear matching condition of the envelope equations by finding roots

to the coupled quartic functions (2.100a). The initial noise in the macro-particle distributions

due to the random number generation process provides enough “mismatch” in order to

observe the envelope oscillations in σx,y – no further quadrupolar mismatch is required. The

intensities values will again refer to the reference bunch length interval of 4σz = 49.4m, i.e. N

determines the line charge density λ and hence the space charge perveance K SC. We use a

prime number of nsegments = 211 kick nodes unevenly distributed around the circumference

to avoid numerical artefacts which are equivalent to low-order structure resonances due to

“lattice symmetries” from the distribution of space charge interaction points in the continuous

focusing of the smoothly approximated ring (cf. e.g. Kesting and Franchetti [2015]).

Figure 3.16 presents the simulation details for a KV macro-particle distribution for the working

point Qx = 6.22 and Qy = 6.23 with a “bunch” intensity of N = 1.2×1012. The matched

transverse beam sizes amount to 2σx = 8.41mm and 2σy = 8.40mm, hence the beam is

81



Chapter 3. Modelling of Space Charge

round (which is expected from quasi-isotropic focusing and equal emittances). At these beam

parameters, the KV space charge tune shift gives ∆QKV = 0.022. Correspondingly, the coupling

strength yields D = 1.84 indicating a fair distance to the coupling resonance. Figure 3.16a

shows the oscillating transverse beam widths (evaluated at each kick node). The relevant part

of their spectrum is plotted in figure 3.16b, extracted via a FFT over 256 turns. We see two

peaks in each transverse plane, one of which has a much larger amplitude than the other. This

corresponds to the asymptotic decoupled case where the Q− mode oscillates purely along the

horizontal direction and the Q+ mode along the vertical direction. For |D|À 1, the small peaks

would vanish entirely while here they effectively show the small but non-vanishing coupling

between the planes.
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Figure 3.16 – Envelope oscillations for a KV distribution with tune shift ∆QKV = 0.022 at
transverse betatron tunes Qx = 6.22 and Qy = 6.23. With the approximately round beam of
2σx ≈ 2σy ≈ 8.4mm, the coupling strength amounts to D = 1.84.

The same KV distributed macro-particles are presented in figure 3.17 for vanishing coupling at

equal betatron tunes Qx =Qy = 6.22. The completely isotropic focusing with βx ≡βy entails

equal transverse matched beam sizes for the equal emittances (for Qy = 6.23 the matched

beam sizes were slightly different). Correspondingly, we observe the envelopes to oscillate

about the same equilibrium value 2σx = 2σy = 8.41mm. The FFT spectrum in figure 3.17b

shows the two quadrupolar mode peaks of the r.m.s. beam sizes exactly at the theoretically

predicted coherent mode tunes Q±. Since the transverse planes are fully coupled, the spectra

show identical mode amplitudes in both planes. In fact, we observe the symmetric breathing

mode Q+ to dominate over the antisymmetric quadrupole mode Q−. This can be traced to

the initial conditions of the statistical noise of the macro-particle distribution: the envelope

oscillations are plotted in figure 3.17c for the initial turn. We see that bothσx andσy oscillate in

phase which means the symmetric breathing mode has been launched as an initial condition.

As a cross-check we extract the incoherent tunes with a SUSSIX analysis [Bartolini and Schmidt

1998] from the recorded particle motions and we observe all frequencies to be located exactly
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at the space charge shifted KV betatron tune.
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Figure 3.17 – Envelope oscillations for a KV distribution with tune shift ∆QKV = 0.022 at
transverse betatron tunes Qx = Qy = 6.22. The round beam of size 2σx = 2σy = 8.41mm is
hence subject to full coupling at D = 0.

We have run this initial KV macro-particle distribution with the same random generator

seed for various vertical bare machine tunes Qy between 6.20...6.24. At Qy = 6.22 we cross

the coupling resonance as we have round beams εx = εy and we keep the horizontal bare

tune fixed at Qx = 6.22 (this was precisely the case depicted in figure 3.17). In figure 3.18a

we present the two envelope tunes extracted from the spectrum of each of the simulations

(by using SUSSIX). The theoretical two envelope modes are calculated using the expression

(2.110) with the average of the envelope equilibrium values a,b over the tune scan (these

equilibrium values vary a bit due to the vertical betatron function scaling with the vertical

tune, βy = R/Qy ). The space charge perveances K SC remain constant during the tune scan,
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the situation is equivalent to figure 3.14.
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Figure 3.18 – Simulation results showing envelope modes during a vertical tune scan at fixed
Qx = 6.22 for a coasting PS beam with intensity N = 1.2×1012 and normalised transverse
emittances εx,y = 2.5mmmrad.

Next, we show the ratio of the two envelope mode amplitudes in figure 3.18b, which we deter-

mined by the respective Fourier coefficients. We had pointed out the peak ratio between the

modes Q+ and Q− (respectively extracted from the largest peaks in the σx ,σy spectra), for the

two separately shown spectra on-resonance (figure 3.17b) and towards off-resonance (figure

3.16b for coupling parameter D ≈ 2). For D = 0, the Q+ oscillation corresponds to the sym-

metric in-phase breathing mode whose peak is seven times higher than the anti-symmetric

anti-phase quadrupolar mode’s peak – equally in both the σx and σy spectrum. Remind

that we start from the same initial macro-particle distribution (with the random generated

generalised coordinates and momenta arrays merely scaled to have a = 2σx,random-generator
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and b = 2σy,random-generator solve the matching conditions (2.100a)) for all simulations: conse-

quently, we always have the same initial conditions of the horizontal and vertical excursions

δrx ≈ δry ≈ 0.01mm (where δrx = 2σx |turn=0 −a and likewise δry = 2σy |turn=0 −b). At D = 0,

the two transverse planes are fully coupled and this initial condition therefore launches the

breathing mode. In contrast, |D|À 1 entails that the horizontal and vertical plane decouple

and the envelope modes oscillate along x and y separately. For rx = ry , we therefore expect

equal footing for the Q± peak amplitudes, or in other words, the ratio between the Fourier

coefficients is expected to approach unity as in figure 3.18b (towards the red line). In fact, the

curve is slightly skew since the initial conditions are not exactly symmetric (rx and ry actually

differ on the order of 10% and the initial derivatives of σx,y are not exactly vanishing, cf. figure

3.17c). Figure 3.18c shows the coupling parameter D for the various simulations scanning the

vertical betatron tune Qy .

Finally, we compare to a more realistic transverse Gaussian distribution. The results for an off-

resonance case are illustrated in figure 3.19 for Qx = 6.22 and Qy = 6.23. The beam exhibits half

the space charge perveance as the discussed KV case before since we have set N = 0.6×1012.

Correspondingly, the Gaussian tune spread should theoretically amount to∆QSC,spread = 0.022

while the r.m.s. equivalent KV tune shift yields ∆QKV = ∆QSC,spread/2 = 0.011 according to

the halved space charge perveance. Since the electric field of the Gaussian normal macro-

particle distribution leads to non-linear space charge forces, we can now observe fluctuating

amplitudes of the envelope oscillations in figure 3.19a. The FFT spectrum in figure 3.19b

is not as clean as in the KV case any more (during the analysed 512 turns). Still, the two

quadrupolar mode peaks are identifiable and they are located exactly at the frequencies

of the r.m.s. equivalent KV distribution, as expected from theory in accordance with the

r.m.s. equivalence principle. From figure 3.19e we see that the incoherent tune spread of the

particles indeed reaches to the theoretically calculated ∆QSC,spread. We have indicated the

r.m.s. equivalent KV tune shift as a turquoise star, which features the same coherent space

charge depressed modes as this Gaussian beam. As a last cross-check of our PIC space charge

model, we have a look at the beam centroid motion which comes from an initial offset due to

the noise originating from the randomly generated macro-particle distribution. The first two

turns are plotted in figure 3.19f. We note that the beam centroid motion remains unaffected by

all the direct space charge dynamics as expected. The first moment of the beam distribution

(i.e. the mean value) averages out the beam self-fields. Consequently, the dipolar coherent

beam motion does not feel the non-linear electric field of the Gaussian distribution and is

subject only to the linear continuous focusing. Its amplitude and frequency (being equal to

the betatron tunes) remain constant corresponding to perfect harmonic oscillatory motion.

(In reality, the dipolar coherent motion would be affected by indirect space charge effects from

the induced currents in the vacuum tube walls. We have not taken this effect into account in

our model here.)

These simulations set the grounds for the experimental observation of the envelope modes

with a QPU in the PS (and in the SPS if a corresponding QPU arrangement can be set up which

is currently under preparation). Further simulations may be extended to include synchrotron
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Figure 3.19 – Envelope oscillations for a Gaussian distribution with r.m.s. equivalent KV
tune shift ∆QKV = 0.011 at transverse betatron tunes Qx = 6.22 and Qy = 6.23. With the
approximately round beam of 2σx ≈ 2σy ≈ 8.4mm, the coupling strength amounts to D = 3.66.
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motion and off-momentum effects to study these influences within a scenario closer to the

real machine situation. A similar numerical experiment set-up determining the space charge

depressed quadrupolar mode tunes has been used by R. A. Baartman, D’yachkov, and F. W.

Jones [1999] in order to validate their simulation space charge model.
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The SPS is the last accelerator in the LHC injector chain. In the nominal LHC beam scenario

with 25 ns spacing between subsequent bunches, the SPS receives four injections from the

upstream PS. Each of these injected batches consists of 72 bunches such that the SPS accu-

mulates a train of 288 bunches before the beam is accelerated and finally extracted into the

downstream LHC.

The PS requires three basic periods of 1.2 s each to prepare these 72 bunches. Consequently,

the total SPS injection plateau needs to cover 9 basic periods, i.e. 3×3×1.2s = 10.8s before

acceleration, as figure 4.1 depicts. During this time, the already injected bunches can suffer

from various collective effects.

Figure 4.1 – The SPS cycle for LHC-type 25 ns beams [Bartosik 2013].

The nominal SPS optics operates at the working point (Qx ,Qy ) = (26.13,26.18), often referred

to as the “Q26 optics”. Studies with high-intensity LHC single bunches revealed severe per-

formance limitations owing to transverse mode coupling instabilities [Salvant 2010]. An

improved version of the SPS optics has been established to overcome this intensity limitation,
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the “low transition energy optics” or simply the “Q20 optics” [Bartosik 2013]. A major change

of this improved optics model are the lower integer tunes with the operational working point

becoming (Qx ,Qy ) = (20.13,20.18). Being the default operational configuration since 2012

[Papaphilippou et al. 2013], the Q20 optics is the starting point for further studies aiming to

improve the performance of high brightness LHC beams for future operation. Presently, the

SPS provides the LHC with 25 ns beams at an intensity of N ≈ 1.2×1011 p/b and transverse

normalised emittances of εx,y ≈ 2.6mmmrad.

In view of the HL-LHC project, the beam intensity at SPS extraction shall be increased by

almost a factor two to N = 2.3×1011 p/b while slightly smaller normalised transverse emit-

tances of εx,y = 2.1mmmrad are required [Arduini et al. 2014]. To reach these parameters, the

LIU project assigns to the SPS an emittance growth budget of 10% along with a beam loss

budget of 10% (RLIUP report by Bartosik, Argyropoulos, et al. [2014]), cf. table 1.1.

The increase in intensity causes space charge to become a possible threat. Considering an

r.m.s. bunch length of σt = 0.75ns and an r.m.s. momentum deviation of σδ = 1.5×10−3, the

Gaussian direct space charge tune spreads of the future high brightness beams amount to

∆QSC
x,y = (−0.11,−0.2) according to expression (2.87). This estimation assumes the same pro-

duction scheme in the PS as in present operation to obtain the same longitudinal parameters

as today at SPS injection. The fractional tunes of the working point (Qx ,Qy ) = (20.13,20.18)

are quite low and are observed to result in a strong impact of the integer resonance, which can

lead to emittance growth as the bunch centre becomes resonantly excited by magnetic field

errors.

In order to focus on how space charge affects the high brightness beams during the long

injection plateau, the influence from other multi-bunch collective effects such as electron

cloud interaction needs to be suppressed during a dedicated study. This can be achieved by

studying single bunch beams. A first investigation of the working point environment around

the Q20 tunes [ibid.] led to the conclusion that beams with a Gaussian tune spread of up

to |∆QSC
y | = 0.21 can be accepted by the SPS by optimising the working point. The study

considered working points below the regular vertical fourth-order resonance 4Qy = 81.

Following the preliminary exploration, a systematic tune scan covering a large area of the tune

diagram around the present operational working point has been carried out in the course

of this thesis. The goal is to identify the optimal SPS working point region in terms of space

charge given the constraints of the HL-LHC beam parameters while using the Q20 optics

configuration. The transverse emittance growth and the beam losses are measured for each

working point repeatedly for many shots. In a second step, a possible working point candidate

is chosen from the optimal region and investigated under varying space charge conditions. The

aim is to understand the beam behaviour for different intensities and transverse emittances

when fixing either the brightness or the emittances while varying the other. The results of this

extended study have been published [Bartosik, Oeftiger, Schmidt, et al. 2016].

Finally, we examine the interaction with a purposely excited resonance both from an exper-
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imental and simulation perspective. The fourth-order 4Qx = 81 resonance is driven with a

single octupole magnet that is strongly powered. Comparing the behaviour between low and

high intensity beams when moving the horizontal tune across the resonance quantitatively

unfolds the involved space charge dynamics. This scenario then allows for benchmarking with

the simulation space charge models.

Throughout this chapter, the indicated transverse tunes (Qx ,Qy ) refer to the coherent dipolar

tunes measured with the base-band tune measurement system (the BBQ). In the experiments,

we adjusted the quadrupole magnets until the BBQ FFT spectrum displayed the coherent

tunes as indicated. Zannini [2013] established an extensive impedance model for the SPS. In

fact, the SPS impedance gives rise to a considerable intensity dependent coherent detuning

in the vertical plane as figure 4.2 illustrates. The horizontal plane on the other hand remains

unaffected [ibid., figure 4.8]. The impedance model relates the coherent dipolar tunes given

throughout this chapter to the bare machine working point. At N = 2×1011, for example, the

bare vertical machine tune lies about 0.03 above the measured coherent tune.

Figure 4.2 – Vertical coherent dipolar tune shift vs. bunch intensity with a measurement
uncertainty of O (10−4) (Bartosik, Iadarola, et al. [2014, figure 1], cf. also Zannini [2013, figure
4.6]).

4.1 Tune Diagram for High-Brightness Beams

For the systematic tune scan, we use a dedicated machine development (MD) SPS cycle and

measure the beam conditions at the beginning of the injection plateau (labelled ‘in’) and

again 3 s later (labelled ‘out’). This time span corresponds to about 130000 turns. The relevant

experiment parameters have been listed in table 4.1. The transverse tunes are adjusted before

91



Chapter 4. Measurements: SPS Studies

the beam is injected and remain constant for each shot. The bunches prepared by the PS

have smaller transverse emittances than required for the HL-LHC project but the intensity

is also slightly lower. Correspondingly, the reached Gaussian space charge tune spread of

∆QSC
x,y = (−0.10,−0.18) is close to the situation for future beams. Hence, the experiment

conditions are expected to give good predictions in terms of the space charge behaviour for

the HL-LHC beams.

The bunch length has been extracted from the wall current monitor measurement after

filamentation (i.e. when the quadrupolar injection oscillations have ceased). The r.m.s. mo-

mentum deviation σδ has been calculated from the RF parameters and the measured r.m.s.

bunch length σt by assuming Hamiltonian equivalence in expression (2.50), i.e. assuming a

longitudinally matched beam while neglecting intensity effects.

Table 4.1 – Experiment parameters in the SPS for the systematic tune scan.

parameter name symbol value

PS extracted intensity N (2.0±0.1)×1011 p/b

PS extracted horizontal normalised emittance εx 0.84 mmmrad±10%

PS extracted vertical normalised emittance εy 1.1 mmmrad±10%

r.m.s. bunch length σt (0.836±0.008)ns

r.m.s. momentum deviation σδ (1.76±0.02)×10−3

total energy Etot 26GeV

measured chromaticity (Q ′
x ,Q ′

y ) (7.5,3.5)

scanned horizontal tunes Qx 20.12...20.30

scanned vertical tunes Qy 20.16...20.44

Gaussian space charge tune spread ∆QSC
x,y (−0.10,−0.18)

r.m.s. equivalent KV tune shift ∆QKV
x,y (−0.05,−0.09)

RF voltage fundamental VRF 4.5 kV

synchrotron period Q−1
S 66 turns

fundamental harmonic h 4620

SPS circumference C 2π ·1100m

transition energy γtr 18.02

The linear wire scanners BWS.51731.H_LIN and BWS.52171.V_LIN are used to record the

horizontal and vertical beam profiles, respectively. Due to hardware limitations, only one

wire scanner can be used at a time. Therefore we are forced to measure each transverse plane

separately over several shots and evaluate each working point statistically. We chose to repeat

each plane measurement five times and hence record ten shots per working point.

Figure 4.3 illustrates the measurements and evaluations made for each working point. The

beam intensity N is recorded along the cycle with the beam current transformer (BCT): the
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4.1. Tune Diagram for High-Brightness Beams

plot in the top left shows the variation in N over the ten shots. The beam loss is determined by

averaging the BCT curve within the shaded green regions resulting in Nin (between 100 ms

and 200 ms) and Nout (between 3000 ms and 3100 ms). We hence evaluate

beam loss
.= Nin −Nout

Nin
. (4.1)

The loss plot in the lower left indicates a linear dependency with intensity. The overall beam

loss of a working point is evaluated by extrapolating the ten beam loss measurements to a

reference intensity of Nref = 2×1011, which is indicated by the green lines.
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Figure 4.3 – Example evaluation for the coherent dipolar tunes Qx = 20.20, Qy = 20.30: mea-
sured intensity from BCT curves and extracted normalised emittances from wire scanner
profiles.

The horizontal and vertical beam profiles at the ‘in’ and ‘out’ references are plotted in the top

centre and top right graph, respectively, along with their Gaussian fits: blue represents the ‘in’

and red the ‘out’ profiles. The transverse emittances are extracted from each beam profile by

assuming Gaussian distributed beams. The residuals of the Gaussian fits to almost all profiles

are sufficiently small to justify the Gaussian distribution assumption. In the horizontal plane,

equation (2.35) is employed to determine the emittance taking into account the dispersion of

about Dx ≈−0.5m at the location of BWS.51731.H_LIN. Since we vary the transverse tunes, the

betatron and dispersion functions change slightly for a fixed location such as the wire scanners.

Comparing the measured horizontal emittance in the PS and the SPS for the same beam reveals

a clear tune dependency. Therefore, the SPS MAD-X optics model has been evaluated for
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Chapter 4. Measurements: SPS Studies

each of the scanned tunes to determine the correct dispersion function at BWS.51731.H_LIN
[Bartosik, Oeftiger, Schmidt, et al. 2016]. After this correction, the measured horizontal

emittances did match between PS extraction and SPS injection. The emittance blow-up has

been defined as the emittance growth between ‘in’ and ‘out’ measurements,

emittance blow-up
.= εout −εin

εin
. (4.2)

The overall transverse normalised emittances (and blow-up) for each working point have then

been determined by averaging the respective five measurements.

Figure 4.4 summarises the beam loss and emittance blow-up for the tested tune diagram

region. The black cross markers indicate the measured points. The tune diagram also contains

the resonance lines up to fourth order, where the solid lines indicate regular and the dashed

lines skew resonances. We observe that the relative beam losses and the transverse emittance

blow-up complement each other in certain regions. The regions in blue are preferred while

red indicates a critical region.

We identify two regions with enhanced losses:

(20.25,20.25): up to 5% losses within the 3 s would linearly scale to 18% losses for the whole

injection plateau. This can be traced to the concurrence of several coherent

resonance conditions, mainly the two octupole resonances 4Qx = 81 and

4Qy = 81 as well as the Montague coupling resonance 2Qx −2Qy = 0.

(20.33,20.33): we have not extended our measurements beyond Qx = 20.30 but the measure-

ments in the vicinity of this working point already indicate the overlapping

sextupole resonances. We observe up to 7% beam loss.

Remarkably, the horizontal quarter-integer resonance 4Qx = 81 prints a clear trace over the

whole scanned region in contrast to the absence of the vertical counterpart. Note that we have

not measured directly on top of the respective resonant tunes. The third-order resonance

Qx +2Qy = 61 also appears through the loss pattern along the resonant tunes, the more other

resonances overlap with it the stronger.

On the other hand, losses of less than 1% are obtained in the remaining part of the tested

area in the tune diagram. The BCT curves show linearly decreasing intensities. This allows

to extrapolate to the 10.8 s injection plateau for the LHC-type cycles, for which these losses

would remain within 4%.

The transverse emittance blow-up shows a negative value around the lossy region (20.25,20.25)

where the beam profiles are decimated due to the strong loss. As soon as the tunes approach

the integer resonances in each transverse plane we observe blow-up. This is indeed separately

the case for each respective plane, the blow-up shows up vertically only when approaching

Qy = 20 and likewise in the horizontal case when approaching Qx = 20. In general, the

transverse emittance also grows when having passed the fourth-order 4Qx = 81 resonance
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Figure 4.4 – Tune diagrams with the scanned region and resonance lines up to 4th order.
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and moving towards the regular third-order 3Qx = 61 resonance. This feature will be analysed

in more detail in section 4.3 when purposely exciting the fourth-order resonance.

Overall, the transverse emittance blow-up is quite small given that a good part of it might

come from the wire scanner as the wire traverses the beam. This contribution is foreseen to

be analysed in future studies.

In summary, taking into account both the loss and the emittance blow-up perspective, the

region around the coherent dipolar tunes (20.22,20.30) looks most interesting. Beam loss

remains below 1% and the transverse emittance blow-up is bounded by 4%. Figure 4.5 shows

the resulting beam brightness, which is defined by

brightness
.= N

(εx +εy )/2
. (4.3)

This definition of the beam brightness is motivated by its proportionality to the incoherent

tune shift (cf. e.g. the maximum Gaussian tune spread extent (2.87)) as a measure of space

charge strength.
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Figure 4.5 – Tune diagram with the brightness shown for the scanned region and resonance
lines up to 4th order.
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4.2. Beam Loss Analysis for Optimal Working Point Region

4.2 Beam Loss Analysis for Optimal Working Point Region

We have identified an optimal tune region in the lower left quadrant for integer tunes of 20

using beams with a fixed intensity and transverse emittances. In the following two experiments,

we explore how the beam losses depend on the transverse beam size and on the space charge

strength. In each experiment, we keep one of the two parameters fixed while varying the other

in order to isolate the nature and reason of the beam losses.

4.2.1 Constant Brightness

In order to analyse the beam loss behaviour for a range of emittances, we operate at the

coherent tunes (Qx ,Qy ) = (20.22,20.31) (at N = 2×1011) and try to keep the brightness and

therefore the space charge tune spread constant by varying N and εx,y by the same amounts.

The space charge dynamics should hence remain unchanged as we scan the transverse beam

size. Consequently the variation of beam losses is expected to solely come from the varying

transverse beam size. As we scan the betatron beam sizes over a factor 2, we reach transverse

emittances of 2.5 mmmrad. The corresponding beam brightness during our experiment

amounts to half the brightness achieved during the large tune scan in the previous section.

The PS Booster provides the SPS with beams through the PS. The characteristics of the arriving

beams in the SPS are already largely determined at the PS Booster. To be precise, the intensity

of the resulting single bunch beams is given by two influences: firstly, the amount of turns

injected from the LINAC2 during the multi-turn injection into the PS Booster, and secondly,

the longitudinal acceptance bottle neck in conjunction with controlled longitudinal blow-up.

In contrast to the latter, the former also influences the transverse emittances as the transverse

beam size directly depends on the corresponding LINAC2 pulse length. For multi-bunch

beams, this has been studied in detail under the conclusion that the PS Booster extracted εx,y

depend linearly on the number of injected turns [Rumolo, Bartosik, et al. 2014, figure 1].

We make use of this mechanism and scan the SPS transverse emittances by varying the

number of injected turns. Figure 4.6a shows the obtained horizontal and vertical normalised

emittances versus the intensity for our single-bunch beam. The empirical quadratic fits show a

slight non-linear behaviour in the inclination of the emittance curves. The brightness has been

determined from the inverse slope of the transverse emittance fit and is plotted in figure 4.6b.

As we can see, the brightness remains shortly below 1×1017 p/b/(mrad). The curve exhibits a

drop at low intensities where figure 4.6a reveals much less inclination of the emittance curve.

In fact, we inject less than one turn from the LINAC2 beam for these low intensities – hence

the transverse normalised emittances of the LINAC2 beam itself define a lower boundary

of εi n & 0.5mmmrad. The brightness curve also shows a descent at the high intensity end

tracing back to a non-linear emittance blow-up.

Finally, the loss pattern as the main result is presented in figure 4.6c. For this plot, the intensity

curves of each shot have been fit linearly to extract the relative beam loss. The transverse
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emittance figures for each shot on the abscissa have been computed via the emittance fits

from figure 4.6a with the corresponding 1σ confidence values. Above εi n > 0.75mmmrad, the

relative beam loss increases linearly with the initial transverse emittance, i.e. the beam size,

at a slope of (2.26±0.15) %/(mmmrad). Extrapolating the linear fit, we would find vanishing

beam loss around εi n = (0.37±0.12)mmmrad.

For comparison: the conditions of the large tune scan experiment from the previous sec-

tion provided beams of εx,y ≈ 1mmmrad (cf. the detailed measurements for (Qx ,Qy ) =
(20.20,20.30) in figure 4.3). The losses we measured here thus confirm the value of 1% from

the previous experiment.

A striking feature of the loss pattern is the observed strong beam loss below an initial nor-

malised transverse emittance of εi n < 0.75mmmrad. As pointed out at the outset of this

chapter, the coherent vertical tune shift due to the beam-coupling impedance in the SPS

results in a linearly decreasing coherent Qy as the intensity N increases [Bartosik, Iadarola,

et al. 2014]. Since we did not adjust the programmed bare vertical machine tune during the

intensity scan (which is the usual procedure for default machine operation), the coherent

tune indeed varies as the base-band tune measurements in figure 4.6d illustrate. Here, the

coherent centroid motion (measured without additionally exciting the beam) has been Fourier

transformed to obtain the coherent tune. The extrapolated machine tune at N = 0 lies around

Qy ≈ 20.345. In the various plots of figure 4.6, the shaded orange region indicates where

the losses start. Interestingly, this coincides with where the coherent vertical tune crosses

the third-order 3Qy = 61 resonance at N = 0.65×1011 corresponding to the emittance of

εi n = 0.75mmmrad.

At the same time, the Gaussian space charge tune spread in figure 4.6f drops considerably

within the orange region due to the lower achieved brightness. The values of ∆QSC have been

computed from the empirical quadratic emittance fits and the r.m.s. bunch lengths in figure

4.6e. The latter have been determined by fitting the rising flanks of the longitudinal profiles

after the longitudinal quadrupolar injection oscillations have damped. We only fit the rising

flanks of the profile because the longitudinal bunch shape signal becomes asymmetric due to

the transfer function of the signal chain.

The 1σ confidence bands in figure 4.6f take into account statistic uncertainties in σz and σδ.

Due to the lower space charge tune spread at low intensities, the halo particles at large trans-

verse amplitudes (which experience the lowest incoherent tune shift) oscillate much closer

to the bare machine tune compared to the same transverse amplitudes at high intensities.

Considering only direct space charge, the incoherent resonance condition of the 3Qy = 61

resonance (at these large transverse amplitudes) is hence satisfied for a larger part of the beam

at low intensities than at high intensities. This may account for the observed strong beam loss.

Future work to clarify the influence of the coherent dipolar tune might include an experiment

with varying vertical machine tunes such that the 3Qy = 61 resonance is crossed at different

beam intensities. Comparing the resulting loss pattern between two beam variants with once
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Figure 4.6 – Intensity scan for constant brightness at the N = 2×1011 reference coherent
dipolar tunes (Qx ,Qy ) ≈ (20.22,20.31).
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a low and once a high (ideally constant) space charge tune spread should unveil the respective

contribution to the losses by direct space charge and impedance effects.

4.2.2 Constant Emittance

After having analysed the loss behaviour for constant space charge dynamics (for εi n >
0.75mmmrad), we turn the situation around by keeping the transverse emittances constant

while varying the intensity. In this way the brightness is changed in a controlled manner and

we investigate to what extent the changing space charge conditions influence the beam losses

for a fixed transverse beam size. For this purpose, we cannot modify the PS Booster multi-turn

injection as we did before, otherwise the transverse emittances would change. Instead, we

make use of a longitudinal acceptance bottleneck: by varying the controlled longitudinal

emittance blow-up the beam gets scraped to different extents and we tailor the beam intensity

without modifying the transverse beam size.

Figure 4.7a depicts the achieved transverse emittances during the intensity scan. At high

intensities we observe a slight emittance increase, otherwise εi n
x,y remain nearly constant. The

space charge tune spread correspondingly scales directly with the intensity, cf. figure 4.7b.

This plot includes 1σ confidence bands considering uncertainties in σz and σδ and is based

on the empirical cubic fit to the measured emittances.

During this experiment, we continuously adjusted the SPS quadrupole currents to keep the

coherent vertical tune around Qy ≈ 20.30 as shown in figure 4.7d.

This time, the relative beam losses remain well below 2%. An increased scattering on the

low intensity side is observed, while the main region within 0.8×1011 < N < 1.8×1011 re-

mains remarkably constant below the 0.5% level. It should be noted that the beam current

transformer has a limited resolution for measuring the beam intensity (and hence the losses).

When approaching very low intensities, the measurement becomes dominated by this finite

resolution to which the observed increased scattering of the data points below N < 0.8×1011

can be attributed.

On the other hand, the measurements featuring larger losses above N > 1.8×1011 correspond

to one fixed machine tune setting, namely the group of points in figure 4.7d with the largest

intensities. Extrapolating to N = 0 yields a machine tune of Qy ≈ 20.34 for this group, i.e. above

the 3Qy = 61 resonance. The measurement group next to it extrapolates to a machine tune of

Qy ≈ 20.33 and already belongs to the low loss region. These findings point to an influence of

the third-order resonance on the beam loss pattern.

However, in comparison to the previous experiment, the Gaussian tune spreads in figure

4.7b around the high intensities reach much further up to |∆QSC
y | ≤ 0.22. Therefore, only the

largest transverse amplitudes (with the particles at the lowest incoherent space charge tune

shifts) satisfy the incoherent 3Qy = 61 resonance condition to excite particles and result in the

observed beam loss.
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The mere direct space charge argument fails to explain the increasing tendency of the losses

with the intensity though. We would rather expect the opposite behaviour of a decreasing

loss tendency because at larger intensities, ∆QSC reaches higher and therefore fewer particles

at large transverse amplitudes should be excited and lost. Instead, in line with the findings

of the previous experiment, the observed increase of the transverse beam size at these high

intensities could account for the increasing loss slope, analogously to figure 4.6.

To sum up, the absence of loss dependency on the intensity for the constant emittances up to

N < 1.8×1011 again indicates that the transverse beam size influences the amount of beam

loss.

4.3 Exciting the 4Qx = 81 Resonance

For high-intensity beams in the SPS, the fourth-order 4Qx = 81 resonance seems to play a

major role besides the third-order Qx +2Qy = 61 resonance, as the beam loss measurements

from the static tune scan in section 4.1 brought forth in figure 4.4a. Furthermore, the transverse

emittance blow-up in figure 4.4b revealed a vertical line of significant emittance growth around

Qx = 20.28 in parallel to the 4Qx = 81 resonance line. The goal of the following experiment

is to understand the influence from direct space charge on these observations, specifically

its interaction with the octupolar 4Qx = 81 resonance in the vicinity of the proposed optimal

betatron tune region around Qx = 20.22 and Qy = 20.30.

Figure 4.8 presents three horizontal sections at Qy = (20.30,20.32,20.34) from the static tune

scan to highlight the aforementioned features of the quarter-integer resonance. The relative

beam loss rises around the 4Qx = 81 line for all three vertical tunes. On a side note, the

higher two tunes show the large loss around the previously discussed third-order resonance

loss hotspot towards 3Qx = 61. In figure 4.8 we observe the significant emittance growth

consistently peaking at Qx = 20.28 for all three curves. In the wire scanner profiles we find

excessive tail development for the working points (20.28,20.30), (20.28,20.32) and (20.28,20.34)

which is not evidently observed for the horizontally adjacent working points. These tails in

fact obscure the values of the r.m.s. emittances which are determined via Gaussian fits to the

profiles. We will analyse this in more detail in the following. As a last comment on the static

tune scan results, we observe the r.m.s. emittance growth at Qx = 20.28 in both the horizontal

and the vertical plane – the vertical tune varying between 20.30 ≤Qy ≤ 20.34 does not have a

significant effect on this observation.

In order to quantitatively analyse the influence of space charge on the interaction with the

fourth-order resonance, one can increase the strength of the resonance driving term by

powering a single octupole magnet which acts like a localised octupolar field error. The SPS is

equipped with strong non-linear extraction magnets which are not used in present standard

operation. To drive the fourth-order resonance we use the 0.74 m long LOE.10402 extraction
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Figure 4.7 – Intensity scan for constant emittance keeping the coherent dipolar tunes fixated
around (Qx ,Qy ) ≈ (20.22,20.30).
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Figure 4.8 – Extracted beam loss and emittance growth from the static tune scan in figures 4.4a
and 4.4b.

octupole at a strength of

k3
.= 1

|Bρ|
d 3By

d x3 = 25m−4 . (4.4)

The extraction octupole is powered before injection and the current is kept constant during

the cycle. The betatron functions for the Q20 optics at the location of LOE.10402 amount to

βx = 98.8m andβy = 34.0m, i.e.βx Àβy . With the same set-up as in the previous experiments

on the SPS injection plateau, we measure the relative beam loss and transverse emittance

growth over 3 s. By fixing the vertical coherent dipolar tune and scanning the horizontal one

across the 4Qx = 81 resonance, the incoherent resonance condition is satisfied for varying

transverse amplitudes across the beam. Compare to the simulation experiment by R. Baartman

[1998] which we addressed in the introductory chapter 1: instead of varying the intensity N

we scan Qx which leads to an equivalent picture. Notabene, Baartman’s simulation varies the

intensity dynamically while we statically fix a tune during a set of shots and only then proceed

to the next working point.

In fact, for each tested working point, we record three shots per transverse plane, i.e. we have

in total six measurements per tune. In order to assess the impact of space charge, we carry

out the horizontal tune scan for a high-intensity (N ≈ 2.05×1011) as well as a low-intensity

(N ≈ 0.42×1011) single-bunch beam variant. Both are produced to have approximately the

same transverse beam emittances. However, the different preparation of the beam variants

accidentally resulted in larger longitudinal emittances in the high-intensity case: we measured

significantly longer bunches and, thus, computed larger values of the momentum spreads

assuming again longitudinally matched beams after decease of the quadrupolar injection

oscillations. The high-intensity single bunch reached an estimated vertical Gaussian space
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charge tune spread of |∆QSC
y | = 0.158 which is three times larger than for the low-intensity

single bunch. The experimental parameters which differ from the tune scan experiment (cf.

table 4.1) are listed in table 4.2.

Table 4.2 – Experimental parameters in the SPS for the driven fourth-order resonance 4Qx = 81.

parameter name symbol low N beam value high N beam value

fixed vertical tune Qy 20.31

scanned horizontal tune Qx 20.16...20.30

PS extracted intensity N (0.42±0.02)×1011 (2.05±0.10)×1011

initial horizontal
εx (0.94±0.06) mmmrad (0.84±0.05) mmmrad

normalised core emittance

initial vertical
εy (0.85±0.06) mmmrad (1.06±0.04) mmmrad

normalised core emittance

r.m.s. bunch length σt (0.70±0.04) ns (0.93±0.01) ns

r.m.s. momentum deviation δrms (1.48±0.07)×10−3 (1.94±0.02)×10−3

Gaussian space charge
∆QSC

x,y (−0.027,−0.052) (−0.085,−0.158)
tune spread

r.m.s. equivalent KV
∆QKV

x,y (−0.014,−0.026) (−0.043,−0.079)
tune shift

From these prepared beam variants we can compute at which bare machine tune the envelope

mode responds to the octupolar resonance. With the r.m.s. equivalent KV tune shift of the high-

intensity beam given by ∆QKV
x =−0.043 and the low-intensity beam by ∆QKV

x =−0.014, we can

evaluate the coherent resonance condition (2.137) for the octupolar resonance. The octupolar

mode of a 2D isotropic beam (which sufficiently approximates our situation) features three

eigenfrequencies [Hofmann 1998]. The matrix coefficient Cmk for the betatron resonance with

m = k = 4 can hence take a value out of C44 ∈ {13/16,7/8,31/32}, cf. table 2.1. The resonance

condition theoretically predicts the KV beam to resonate at

Qx = 81

4
+C44∆QKV

x ≈
20.261..20.264 , low N

20.285..20.292 , high N
. (4.5)

With Sacherer’s argument of the r.m.s. equivalence of beams with respect to their space charge

dynamics, we therefore expect the r.m.s. emittance blow-up of our beams to peak at these

tunes.

During the evaluation of the wire scanner measurements, we found enhanced tails in the

beam profiles deviating from a Gaussian distribution. In the low-intensity beams, these tails

occurred systematically and without any dependence on the horizontal tune. We extract the

normalised emittance in the vertical plane by the following approach: first we fit the whole

profile with a Gaussian function to obtain the (−1.8σ,1.8σ) interval. Then we restrict a second
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Gaussian fit to this bunch core interval to extract the core size σy . From this we can readily

determine the normalised vertical “core emittance” via εy =σ2
y /βy with the betatron function

βy = 60.56m at the vertical wire scanner BWS.52171.V_LIN. In the horizontal plane, we follow

the same approach while additionally taking into account the non-zero dispersion, i.e. we

employ equation (2.35) with βx = 32.55m and Dx ≈−0.5m (the exact values depend on the

adapted optics model where Dx changes slightly with the horizontal tune, as explained in

section 4.1) for BWS.51731.H_LIN. The r.m.s. bunch length is extracted by a Gaussian fit to the

longitudinal profile and, likewise as in section 4.1, the r.m.s. momentum spread is calculated

assuming a longitudinally matched beam (the longitudinal quadrupolar injection oscillations

have damped at the point of measurement). As the core region of the beam profile consistently

exhibits a Gaussian shape (the residual of the fit vanishes for the core region), the Gaussian

assumption for the longitudinal and horizontal plane required to use σx (extracted from a

Gaussian fit) in equation (2.35) is justified.

For the low-intensity beams, the core beam sizes are indeed consistently 5%− 6% lower

compared to the “general fit” beam sizes based on the full range Gaussian fits. This is the

case for both ‘in’ and ‘out’ measurements. We therefore exclude any influence of space charge

in the SPS as the origin of these tails – they likely arise during the beam preparation further

upstream. The high-intensity beams, on the other hand, exhibit clean Gaussian profiles at

the ‘in’ reference. Once the horizontal tune crosses the fourth-order resonance Qx = 20.25,

we observe the development of clear tails in the ‘out’ beam profiles in both transverse planes.

Figure 4.9 illustrates the Qx dependency of these tails for the relevant horizontal tunes around

the 4Qx = 81 resonance. The three measured beam profiles per tune are plotted on top of each

other: note the remarkable reproducibility of the profiles, specifically the tails.

In figures 4.9a and 4.9b we plot the respective core fits in orange and the wire scanner data in

blue. All curves are normalised to unity amplitude. The amount of particles in the halos above

the core fits increases from Qx = 20.25 to its maximum at Qx = 20.27 after which it declines

again. This feature becomes even more apparent in the residual graphs 4.10a and 4.10b, where

we plot the measured data points subtracted by the core fit. First of, we note that the Gaussian

assumption for the core shape is justified as the residuals vanish until the tails depart. Now

for the tails, we observe the maximal area under the residual curve where the tails deviate

from the orange Gaussian core fit at the beam profile of Qx = 20.27. Compare this tune with

the rise in the r.m.s. emittance blow-up running vertically in parallel to the quarter-integer

resonance at around Qx = 20.28 (we scanned in 0.02 steps) in the static tune scan experiment,

as explained at the outset of this section.

Another feature of the tails is the point at which they depart from the Gaussian core fit, the

halo threshold. In both the horizontal and the vertical plane, the outer reach of the tails is

maximal around Qx = 20.26...20.27. At the same time, the halo threshold moves closer to the

centre-of-gravity of the bunch with increasing tune. In figures 4.9a and 4.9b we have added

the trace of the Qx = 20.24 beam profile as a dashed red line for each tune. This allows to see

that the core remains more or less unaffected by this amplitude dependant emittance growth
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(b) Vertical beam profiles for various horizontal tunes

Figure 4.9 – Beam profiles with clear tails that deviate from the Gaussian core fits.
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(a) Horizontal residuals for above Gaussian core fits
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(b) Vertical residuals for above Gaussian core fits

Figure 4.10 – Residuals of the beam profiles from figure 4.9 quantifying the deviation of the
tails from the Gaussian core fits.
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until Qx = 20.27 from where also the core is blown up: the orange fits here exceed the dashed

red Qx = 20.24 line and only return to it at Qx = 20.30 in the horizontal plane.

If the transverse planes were entirely decoupled, we would expect the 4Qx = 81 resonance to

primarily show an effect in the horizontal plane. We have βx ≈ 2.9βy at the extraction octupole

which results in a much stronger horizontal driving term for the fourth-order resonance: the

stop-band width of the octupole resonance scales with(
∆Q(4)

stop

)
x,y

∝β2
x,y (4.6)

[Wiedemann 2007, equation (13.67)] indicating an eightfold stronger excitation in the horizon-

tal plane compared to the vertical plane.

However, we did not correct any coupling in the machine for the low-intensity bunch. What is

more, direct space charge introduces a coupling between the planes depending on the space

charge perveance. Note that the scanned working points are located in the vicinity of the space

charge driven Montague coupling resonance 2Qx −2Qy = 0 – in fact slightly above, as figure

4.11 indicates. For illustrative purposes, the incoherent space charge tune spreads have been

sketched for both beam variants, with the orange one corresponding to the high-intensity

and the turquoise one to the low-intensity beam. The mechanism of the Montague difference

resonance leads to an exchange of the transverse emittances [Montague 1968]. Therefore,

the horizontal emittance growth may be transferred to the vertical plane and consequently

the tails can be observed in both planes although the powered octupole mainly drives the

horizontal plane.

We can examine this hypothesis by comparing the emittance growth between the strong

space charge, high-intensity beam variant and the minimal space charge, low-intensity beam

variant. Given that the coupling from direct space charge dominates the lattice coupling, the

latter beam should be much less coupled and consequently show the effect of the fourth-

order resonance much more in the horizontal than in the vertical plane. In addition, the

space charge tune spread is three times smaller which makes the relative tune distance to the

Montague resonance large enough not to be affected.

We first evaluate the reference measurement set using the low-intensity beam with the extrac-

tion octupole switched off. Figure 4.12a shows the mean values and standard deviation of the

respective three horizontal core (solid lines) and general (dashed lines) emittances for each of

the scanned horizontal tunes. Both emittance measures reveal no significant dependency on

either the tune or the time between the ‘in’ and ‘out’ references. Also the relative beam losses in

figure 4.12b are consistently below the 2% line and appear independent of the horizontal tune.

The previously mentioned tails of the low-intensity beams lead to the systematic constant

difference between the core and the general emittances.
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Figure 4.11 – Tune diagram with the scanned coherent dipolar tunes and resonance lines up
to 4th order, the high-intensity (orange) and low-intensity (turquoise) incoherent tune foot
prints have been sketched.
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(b) Relative beam losses vs. horizontal tune

Figure 4.12 – Horizontal tune scan for low-intensity beam without the extraction octupole.
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The results of powering LOE.10402 are plotted in figure 4.13. Switching on the extraction

octupole immediately leads to beam losses far above the 2% line. Besides the obvious peak

around the 4Qx = 81 resonance in figure 4.13c, we identify another peak at lower tunes. The

tune diagram in figure 4.11 indicates the crossing of the fourth order 2Qx +2Qy = 81 resonance

at Qx = 20.19 along our measurement set. This resonance is also driven by the octupolar field

error but appears weaker because the large horizontal and the small vertical beta function

enter in equal amounts in contrast to the 4Qx = 81 resonance.
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(b) Vertical emittance from core and general Gaus-
sian fit vs. horizontal tune
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(c) Relative beam losses vs. horizontal tune
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Figure 4.13 – Horizontal tune scan for low-intensity beam with the extraction octupole pow-
ered.

The vertical emittances in figure 4.13b remain approximately constant up to a slightly positive

slope in both ‘in’ and ‘out’ measurements at the upper end of the scanned tunes. In contrast,

the horizontal emittances (figure 4.13a) are clearly affected by the 4Qx = 81 resonance. The

observed beam losses can be attributed to losing particles in the horizontal plane, where

the beam profiles shrink by up to 15% as plotted in figure 4.13d. At the same time, we do

not observe significant emittance growth above the quarter-integer resonance, if at all at

Qx = 20.27 where the error bar excludes zero blow-up. Again, it is noteworthy that the core

emittances and the general fit emittances show a consistent difference of about 10%−12%

with the only exception at the horizontal ‘out’ beam profile for Qx = 20.26: here, we find an

indication of a more populated halo with a 18%−20% larger general emittance compared

to the core value (remind that Qx = 20.26 is the theoretically predicted value where the r.m.s.
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equivalent KV beam satisfies the space charge depressed resonance condition for the low-

intensity beam). As a last remark, the rising horizontal emittance towards small horizontal

tunes points to the influence from the integer resonance Qx = 20.

Now let us turn our attention to the high-intensity beam results presented in figure 4.14. The

relative beam loss in figure 4.14c shows a similar peak around Qx = 20.25 compared to 4.13c.

However, the 2Qx +2Qy = 81 shows no influence on the loss pattern. Another difference to

the low-intensity beams marks the loss increase towards Qx = 20.30. This feature has already

been noticed during the systematic tune scan in section 4.1, figure 4.4a exhibits the discussed

hotspot around (Qx ,Qy ) = (20.33,20.33). The extracted loss curve in figure 4.8a at the outset

of this section shows these losses to amount to 6− 7% at Qx = 20.30, while including the

octupolar resonance excitation here they slightly rise to 10−11%. This is far less then the more

than fivefold increase of the losses at Qx = 20.25 when driving the octupolar resonance, hence

these losses indeed seem independent of the octupole and might rather be attributable to

the vicinity of the sextupolar resonance crossing. We conclude from their absence in figure

4.13c (or at least the order of magnitude difference in the losses since there is a slight rising

tendency at Qx = 20.30 as well) that these losses are intensity related.
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(b) Vertical emittance from core and general Gaus-
sian fit vs. horizontal tune
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(d) Transversely averaged core emittance blow-up
vs. horizontal tune

Figure 4.14 – Horizontal tune scan for high-intensity beam with the extraction octupole
powered.

Figures 4.14a and 4.14b depict the horizontal and vertical emittances, respectively. This

time, the general Gaussian fit coincides with the core fit in both transverse planes below the
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quarter-integer resonance or, in other words, there are no significant beam halos. Starting

from Qx ≥ 20.25, the tails grow as already discussed during the preceding analysis of figure

4.9. Clearly, these tails are attributable to resonance interaction: the ‘in’ measurements show

no tails as opposed to the ‘out’ measurements, where the general emittances (dashed curves)

are much larger compared to the core emittances (solid curves). The peak is reached around

Qx = 20.28 which is confirmed by the transverse core emittance blow-up plotted in figure

4.14d with a significant emittance growth of 12%. Recall that Qx = 20.28 also marks the tune

where the halo threshold moves closest to the beam centre. The blow-up deviates from zero

in a statistically significant manner from Qx ≥ 20.27 confirming the finding from the profile

analysis. The peak around Qx = 20.28 approximately matches the theoretical prediction from

(4.5). Furthermore, it is situated in the same location as originally observed in the static tune

scan. In order to compare the amplitude of the emittance growth, it is to be mentioned that the

r.m.s. emittance blow-up peak in figure 4.8b reduces to a value of 6−8% for the corresponding

core emittance. This halving of the emittance growth comparing general to core emittance is

also observed in the excited case (cf. the turquoise solid core line and the (twice as far from

the red ‘in’ line located) turquoise dashed line in figures 4.14a and 4.14b). It means that half of

the r.m.s. emittance growth is attributable to particles getting excited to transverse amplitudes

outside of the 1.8σ radius core region. We conclude that the emittance growth peak along

Qx = 20.28 in parallel to the 4Qx = 81 resonance line is indeed correlated with the octupolar

resonance.

All in all, we indeed see a qualitative difference in the transverse coupling between the low-

intensity and the high-intensity beam variants. The observations support the hypothesis stated

at the outset that the latter beam variant is affected by emittance exchange from the Montague

resonance as opposed to the former. We emphasize the measured tune dependency of the

halo threshold whose “moving inward” behaviour fits the incoherent resonance condition

being met at decreasing transverse amplitudes in the Gaussian beam towards the centre when

increasing Qx . In general, we conclude that the r.m.s. emittance growth that we noticed in

the systematic tune scan from the first section indeed originates from the interaction with

the fourth-order resonance: (1.) it is absent for the low-intensity beam without powering the

extraction octupole, (2.) it strongly increases for high-intensity beams when the extraction

magnet is switched on as compared to when it is off, and (3.) the observed high-intensity

beam tails at Qx = 20.28 stated at the outset of the section strongly increase with the additional

excitation of the octupole resonance.

Furthermore, space charge is a necessary ingredient to excite the resonance as well as to shift

the betatron resonance condition to the higher value, as the comparison between the low

and high intensity beam variants shows. In particular, the development of tails depends on

intensity: in the low-intensity case, the tails at Qx = 20.26 only occur with the driving octupole;

the high-intensity beam in contrast always develops tails at Qx = 20.28 and the excitation

only enhances the tails. Hence, space charge also excites the fourth-order resonance. In this

context, we remark that it remains an open issue to be clarified for the SPS, why only the

horizontal quarter-integer resonance affects beam quality while the vertical one shows no
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visible effect in the systematic tune scan from section 4.1, since both 4Qy = 81 and 4Qx = 81

are regular resonances which are in principle expected to appear on an equal footing.

To understand the location of the r.m.s. emittance growth peak, it is important to use the r.m.s.

equivalent KV tune shift in the coherent resonance condition (4.5). This confirms the r.m.s.

equivalence of beams established by Sacherer [1971], as the coherent modes of the equivalent

KV beam dictate the collective space charge dynamics (in the core) of the Gaussian beam

(cf. the discussion by R. Baartman [1998]). It should be added that the theoretical prediction

assumes coasting beams while the experiment involves bunched beams. Uesugi et al. [1999]

have analysed the 3D envelope equations to address how synchrotron motion influences

the prediction for space charge shifted betatron resonances. They conclude that envelope

oscillation frequencies (and therefore the Cmk factor in (2.137)) in a bunched beam do not

differ much from a coasting beam.

Besides the r.m.s. growth associated with the coherent resonance response of the beam,

we have observed a five-fold increase of the beam loss at Qx = 20.25 due to powering the

octupole. This can be explained by the shrinking of the dynamic aperture due to the strong

octupolar non-linearity. The analysis of beam losses due to excitation of halo particles requires

the framework of the incoherent space charge dynamics. Previous pioneering work in this

direction has been carried out by Franchetti et al. [2003] at CERN’s PS in a similar experimental

set-up. The authors explain the beam losses with resonance island trapping and detrapping

in conjunction with synchrotron motion, which ultimately results in halo particles leaving

the dynamic aperture and consequently getting lost at the physical machine aperture at some

point. The experimental conditions in the PS are equivalent to the SPS with respect to the

necessary parameters to their loss mechanism. The synchrotron motion is orders of magnitude

slower than betatron motion allowing for a certain period of resonance island trapping. It

is to be mentioned that the (linear) synchrotron period in the SPS of Q−1
S,0 ≈ 66turns is more

than an order of magnitude faster as compared to the PS injection plateau. Nonetheless, the

betatron tune gives a transverse period of Q−
x,y 1 ≈ 1/20turns, i.e. Q−

x,y 1 ¿Q−1
S,0. Therefore the

proposed loss mechanism applies to our experiment.

To be more specific, Franchetti et al. propose that particles at large synchrotron amplitudes

undergo large betatron tune modulation due to the varying transverse beam self-fields as

they traverse the beam between the sparsely populated longitudinal extremities through the

dense core. The incoherent tune may hence periodically satisfy the resonance condition.

Consequently, this particle gets trapped repeatedly on the resonance islands during a certain

period until it reaches a different local line density due to synchrotron motion. During

this process the transverse amplitude can slowly increase. Eventually, the particle is lost at

the physical machine aperture after exiting the dynamic aperture due to the machine non-

linearities (foremost from the strongly powered single octupole magnet). The relevance of

large synchrotron and large betatron amplitude particles for the loss mechanism has been

confirmed by the findings of Machida [2014] during the analysis of the vertical fourth-order

structure resonance in the PS, as we mentioned in the introductory chapter.
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4.4 Space Charge Simulations with PyHEADTAIL

The previous experiment provides measurement data with clear features distinguishing low

from high intensity beams. We will analyse the driven octupolar resonance results with the

aid of the developed space charge tools in our collective effects software PyHEADTAIL. In

the simulation model, we take into account the TWISS lattice functions from the MAD-X

optics model for the SPS Q20 optics including the horizontal dispersion. Further, we include

first-order chromaticity as well as octupolar detuning with amplitude. The goal is to reproduce

the previous results in terms of emittance growth and the generation of tails in the otherwise

Gaussian distribution due to the resonant excitation of particles.

The non-linear single-particle model for the SPS has been established from measurements

[Bartosik, Oeftiger, Schenk, et al. 2016]: the tune variation with momentum offset yields the

non-linear chromaticity and the tune variation with transverse amplitude gives the octupolar

detuning with amplitude. Second and higher-order chromaticity is observed to contribute

to the detuning in the relevant δ momentum range at an order of magnitude below the first

order, which is why we only take into account the linear chromaticity in the simulations.

Right before the experiment of the fourth-order resonance excitation while using the same

super-cycle in the SPS, we scanned the beam momentum (via a radial offset) around the

reference p0 with transversely small low-intensity beams. From the corresponding base-band

tune measurements, the chromaticity has been determined to the values (Q ′
x ,Q ′

y ) = (7.5,3.5).

In order to extract the “natural” machine anharmonicities from the detuning with amplitude

measurements, two different octupole current configurations are analysed per plane as indi-

cated in figure 4.15. The vacuum tubes around the SPS mostly feature much smaller vertical

apertures compared to the horizontal plane. Thus, the accessible vertical amplitude (action

Jy ) range is smaller which requires stronger octupole currents to see a significant effect over

the scanned Jy . From the linear measurement fits with their respective octupole settings for

the focusing LOF family and the defocusing LOD family, we obtain that an LOD strength of

k3,LOD = 0.5 and vanishing LOF strength would correct the octupolar detuning with amplitude.

Therefore, we deduce an equivalent natural machine octupole component amounting to

k3,LOD = −0.5 and k3,LOF = 0. The corresponding anharmonicity values (anat
x,x , anat

x,y , anat
y,y ) are

listed in table 4.3, which summarises all relevant simulation parameters in addition to the

measurement values from table 4.2.

In order to estimate the anharmonicities inflicted by the powered single extraction octupole

LOE.10402 at a strength of k3 = 25m−4, we run simulations with a regular grid of particles

uniformly spaced in their transverse action. This set-up has to exclude chromaticity, the

natural machine octupole detuning, dispersion as well as synchrotron motion in order to

single out the effect from the LOE.10402 on the particles’ betatron frequencies. The simulation
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Figure 4.15 – Measurement of octupolar detuning with amplitude in the SPS, the upper plot
shows the change of vertical tune versus twice the vertical action (the transverse amplitude
in units of single particle emittance) for two configurations for the LOD and LOF octupole
families [Bartosik, Oeftiger, Schenk, et al. 2016, figure 3a], the lower plot shows the same for the
horizontal plane with two other configurations. The dots indicate measurements with their
linear fits given by the solid lines. (The dashed lines refer to the MAD-X model predictions.)

models the effect from the L = 0.74m long LOE.10402 as a thin octupole kick,

∆x ′ =−k3L

3!

(
x3 −3x y2) and (4.7)

∆y ′ =−k3L

3!

(
y3 −3x2 y

)
, (4.8)

at the location of the real LOE.10402 within the linear Twiss lattice used for tracking in Py-

HEADTAIL. The non-linear octupolar kick actually limits the dynamic aperture in the oth-

erwise linear simulations in the sense that transverse phase space gets divided into bound

and unbound areas. In the unbound area, the amplitude of a particle’s trajectory is in prin-

ciple unlimited and its motion exhibits deterministic chaos. In fact, chaotic motion occurs

already around the separatrices between these areas. The dynamic aperture describes the

effective limit before the motion of the particles becomes chaotic when arbitrarily close initial

conditions lead to exponentially diverging phase space trajectories.

We want to extract the linear frequency in the bound area around the origin within the dynamic

aperture. Therefore, we follow the motion of the particles arranged in the regular grid during
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Table 4.3 – Simulation parameters for driven octupole resonance.

parameter name symbol value

chromaticity (Q ′
x ,Q ′

y ) (7.5,3.5)

natural anharmonicities

anat
x,x −72

anat
x,y 410

anat
y,y −580

anharmonicities from LOE

aLOE
x,x 1700

aLOE
x,y −1200

aLOE
y,y 220

macro-particles Nmp 1×106

number of segments
nsegments 1200

(space charge kick nodes)

r.m.s. bunch length σt 0.77 ns

r.m.s. momentum spread δrms 1.45×10−3

Gaussian space charge
∆QSC

x,y (−0.12,−0.19)
tune spread

r.m.s. equivalent KV
∆QKV

x,y (−0.06,−0.1)
tune shift

128 turns and obtain their frequencies with a SUSSIX analysis [Bartolini and Schmidt 1998].

The linear slope of the extracted betatron tune depending on the transverse amplitude yields

the respective anharmonicity,

ax,x = ∂Qx

∂(2Jx )
, ax,y = ∂Qx

∂(2Jy )
, ay,x = ∂Qy

∂(2Jx )
, ay,y =

∂Qy

∂(2Jy )
. (4.9)

If we run at Qx = 20.24, we observe a quite small dynamic aperture due to the proximity to the

4Qx = 81 resonance which is excited by the octupole driving term. This can be observed in

the extracted frequencies which are plotted in figure 4.16, where the red curves deviate from

the linear slope above 2Jx . For ax,x in graph 4.16a the particles clearly become trapped in

the fourth-order resonance around 3Jx , this is where the non-linearity of the octupole kick

dominates the mere linear detuning effect: the dynamic aperture becomes very small. By

running the simulations at Qx = 20.13 – i.e. far from the resonant Qx = 20.25 –, we get a nearly

perfect linear behaviour within our scanned region. The effective LOE.10402 anharmonicities

extracted from these slopes are added to table 4.3. The coupling anharmonicities ax,y and ay,x

are equal up to 1% deviation. In general, the quite large LOE.10402 strength of k3 = 25m−4 has

a strong impact on the overall octupole component of the machine, as the anharmonicities

show directly: the contribution from the extraction octupole is more than an order of mag-

nitude larger than the natural machine octupole component, in particular in the horizontal

plane.
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Figure 4.16 – Detuning with amplitude for localised thin octupole kick for two different working
points Qx = 20.24 (in red) and Qx = 20.13 (in blue) with fixed Qy = 20.31.

By looking at the Poincaré section for some particles of various horizontal amplitudes at the

bare machine tune of Qx = 20.24 from the frequency scan simulation, we can observe the

deformation of the single particle phase space due to the extraction octupole in the vicinity of

the horizontal fourth-order 4Qx = 81 resonance. Figure 4.17 shows the horizontal phase space

for particles of three different regions:

1. the blue traces belong to the particles at low horizontal amplitudes 2Jx < 2mmmrad

which are in the linear detuning region, cf. figure 4.16a;

2. the red traces belong to particles close to the inner separatrix where the detuning

behaves non-linear with the amplitude, the individual particle tunes are drawn towards

the resonant tune Qx = 20.25 between 2mmmrad. 2Jx . 3mmmrad; and finally

3. the black traces belong to particles outside the inner separatrix which are essentially

caught by the four islands generated by the fourth-order resonance.

In fact, the peak in figures 4.16a and 4.16d corresponds to the amplitude of the inner separatrix

outside of which the particles in the scanned range are captured within the four resonance

islands, jumping clock-wise from one to the next. For horizontal amplitudes further outside

one would observe unbound motion and in between more small stable islands – more detailed

information can be find in textbooks treating single particle beam dynamics, e.g. in Forest

[1998].
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Figure 4.17 – Poincaré section for horizontal phase space (x, x ′) plotting particles of various
amplitudes Jx during 128 turns at the horizontal wire scanner location. The extraction oc-
tupole LOE.10402 imprints with resonant islands on the phase space at a bare machine tune
of Qx = 20.24.

We observed the beta beating (envelope oscillations due to single-particle effects) caused

by the LOE.10402 to remain below 0.5% for both the smooth approximation (with constant

betatron functions at βx,y = 54.6m) and the full SPS Twiss lattice. Therefore we neglect this

influence on the linear lattice for our analysis and we always refer to the unperturbed optics

functions.

In our PyHEADTAIL simulation we include non-linear synchrotron motion. The beam macro-

particle distribution is initialised as a thermal equilibrium inside the RF bucket. We use the

correspondingly largest possible longitudinal emittance equivalent to a σt = 0.77ns r.m.s.

bunch length.

First we run simulations without space charge but including all single-particle effects, i.e.

chromaticity, octupolar detuning with amplitude (using the natural machine anharmonicities

anat
x,x , anat

x,y , anat
y,y ), non-linear synchrotron motion and the non-linear thin octupole kick while

employing the linear Twiss lattice. Figure 4.18 depicts the transverse r.m.s. emittance evolution

during the 3 s machine time (equivalent to 130000 turns). They essentially remain constant

for the horizontal tunes Qx = 20.24...20.30 (up to very few small spikes when single particles

exit the dynamic aperture and increase the r.m.s. emittance until they get lost at the simulated

aperture). We find the chromaticity in the model to be a crucial ingredient to the observed

beam stability as it provides enough detuning in order to move particles off the resonance such

that there is no continuous excitation. If we switch off chromaticity the horizontal emittance

immediately grows for Qx = 20.25. If we instead increase the LOE.10402 strength, the size of

the resonance stop-band grows. Consequently, one can trap particles long enough on the

resonance: from twice the experiment k3 value on we indeed see the horizontal emittances

growing at the resonant bare tune Qx = 20.25. Comparing the observed beam stability for
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vanishing intensity in the PyHEADTAIL simulations to the experimentally observed resonance

reaction of the low intensity beams (cf. figure 4.13) suggests a notable influence from space

charge on the resonance dynamics even at these low intensities.

Figure 4.18 – Evolution of the transverse r.m.s. emittances for various horizontal tunes during
3 s at the SPS injection plateau, the PyHEADTAIL simulation includes chromaticity, octupolar
detuning with amplitude and the strong octupolar kick at k3 = 25m−4 for beams with vanishing
intensity.

After this short discussion of the single particle dynamics contained in our model with the

non-linear octupole, we will now turn our attention to the multi-particle effects: we include

direct space charge via the Bassetti-Erskine model which does not feature the noise inherent to

the PIC model. The beam widths for the semi-analytic formula are continuously updated from

the statistical beam standard deviations at each of the nsegment = 1200 space charge nodes

per turn. We use 1×106 macro-particles to resolve the beam along 32 slices in order to obtain

solid statistics for the beam quantities such as the statistical r.m.s. emittance. We do not take

into account indirect wall effects from image currents due to beam impedances. Moreover, we

choose the working points according to the measured coherent tunes from the experiment

and hence fix a vertical bare tune of Qy = 20.31 while scanning along Qx = 20.24...20.30 in

steps of 0.01.

We simulate the high-intensity beam variant during 10000 turns. Direct space charge for

these high brightness beams entails a quite large tune spread which dominates over the

octupolar and chromatic tune spreads. Evaluating expression (2.87) predicts a Gaussian tune

spread of ∆QSC
x,y = (−0.12,−0.19). Compare this to an r.m.s. chromatic detuning of Q ′

x,yδrms =
(0.011,0.005) or likewise the even smaller octupolar detuning with amplitude of the order

of aLOE
x,x εx /(βγ) ≈ 1.5×10−4. The incoherent tune spread of the simulated Gaussian beams

is depicted in figure 4.19. The tunes of each particle have been determined by switching

off synchrotron motion (giving a “momentary” image of the incoherent tune footprint). A

SUSSIX analysis then readily provides the particle frequencies from the transverse oscillations

during a window of 128 turns. We see that the actual incoherent tune spread reaches about

3/4 from the theoretically predicted value, possibly because of the non-Gaussian horizontal

beam distribution (we discussed this non-Gaussian effect in detail in section 3.4: the large

εz leads to a non-Gaussian momentum distribution within the non-linear RF bucket which
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distorts the horizontal profile due to dispersion). Using the computed r.m.s. equivalent KV

tune shift of ∆QKV
x,y = −0.06, we obtain a prediction for the r.m.s. emittance growth peak at

Qx = 20.25+C44 ×0.06 ≈ 20.30.

Since the RF bucket is very full at the maximum longitudinal emittance for the thermal distri-

bution, we have a certain amount of particles travelling at the largest synchrotron amplitudes

at a very low synchrotron tune (compared to the rather rapid linear synchrotron period of

Q−1
S,0 = 66turns) due to the strong tune depression from the non-linear RF bucket close to the

separatrix. These are also the particles that are found towards the top right end of the tune

spread when they are approaching the unstable fix points at the ends of the RF bucket, where

the low line charge density entails correspondingly weak local beam self-fields and hence low

tune shift.
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Figure 4.19 – Momentary incoherent tune footprint of the initial Gaussian beam with all
included single-particle effects and direct space charge. The bare tunes, the maximally space
charge shifted tune from the Gaussian formula and the corresponding r.m.s. equivalent KV
tune (shifted by half the Gaussian spread) are indicated as stars.

The halo is made up of particles travelling also at large transverse amplitude in addition to

large synchrotron amplitudes. These halo particles experience the least incoherent betatron

tune depression from space charge. We observe that they reach very close to the bare machine

tune in the tune footprint. According to the core-halo model, the halo particles experience

the beam core as an external source of electromagnetic fields and therefore their stability

depends on whether they satisfy the incoherent resonance condition (with the C44 factor

multiplied to the incoherent KV tune shift) for the fourth-order 4Qx = 81 resonance, in analogy

to expression (4.5). As the halo particles’ incoherent tunes are situated so close to the bare

tune, we consequently expect them to become resonantly excited to very large transverse

amplitudes (and eventually lost at the aperture) around bare tunes of Qx = 20.25. Therefore,

the tune spread reaching so close to the bare tune can account for the losses in the experiment

from figure 4.14c, similarly to what we previously discussed based on the PS experiment results
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[Franchetti et al. 2003].

We record the r.m.s. emittance growth over 10000 turns: the final transverse emittance growths

are plotted in figure 4.20. During the experiment in the previous section, we measured the

emittance growth over 3 s and therefore ≈ 13× more turns. The absolute values of the resulting

emittance growths are therefore not to be compared, nonetheless, we can draw conclusions

from the location of the peak when comparing to figure 4.14d. The transverse emittance

exchange owing to the Montague coupling resonance dynamics leads to an enhancement of

the horizontal emittance growth due to the octupole resonance excitation effect. The green

diamond marked curve shows a strong horizontal emittance growth. On the other hand, the

orange star marked curve shows a slight emittance decline in the vertical plane during the

10000 turns – however, it is to be noted that the vertical emittance remained larger than the

horizontal emittance within this simulation window. Overall, we observe the peak of the

transversely averaged r.m.s. emittance growth to be located around Qx = 20.28 to 20.29 which

is 0.015 lower the theoretical prediction while the curve overall matches the experimental

observation.
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Figure 4.20 – Transverse emittance growth after 10000 turns.

Let us now turn our attention to the generated tails in the distribution. We recorded the

beam profiles during the simulation at the Twiss lattice start where the optics parameters

read βx = 104mrad, αx = −1.87rad, Dx = 7.96m, βy = 32.3mrad, αy = 0.626rad. We aver-

age the betatron profiles during 200 turns and fit them with a Gaussian function within the

(−1.8σ,1.8σ) region in analogy to the measurement procedure. The horizontal betatron profile

is obtained by subtracting the dispersive contribution for each particle via xβ = x−Dxδ before

calculating the histogram for the beam profile. The residuals of the Gaussian fits (i.e. the

profile subtracted by the fit) after 3500 turns and after 10000 turns are shown in figure 4.21 for

both transverse planes in order to single out the tails and the depopulation of the core.

The magnitude of the tails after these simulation times is on the one-percent level as opposed

to the measurement values in figure 4.10 where we observe tails of up to 10% of the Gaussian

fit amplitude. At 3500 turns, we observe more dominant tails in the horizontal plane from

Qx ≥ 20.27 to higher tunes (figure 4.21a) while the vertical plane shows the tails mostly below

Qx ≤ 20.27 (figure 4.21b). Moreover, the residual shapes around the centre in the vertical plane
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(a) Horizontal normalised residual for the betatron
part after 3500 turns.
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(b) Vertical normalised residual after 3500 turns.
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(c) Horizontal normalised residual for the betatron
part after 10000 turns.

8 6 4 2 0 2 4 6 8
y [mm]

0

2

4

6

8

10

n
o
rm

a
lis

e
d
 r

e
si

d
u
a
l 
[%

]

20.26

20.27

20.28

20.29

20.3

Q
x
 o

f 
p
ro

fi
le

s

(d) Vertical normalised residual after 10000 turns.

Figure 4.21 – Residuals of the transverse beam profiles via subtraction of the Gaussian fits
show the created tails. The red stars indicate the Gaussian 1σ widths.

above Qx ≥ 20.26 show a dip, i.e. a relative decline of the local density with respect to the

flanks at 1σ (cf. the red star indications) in comparison to the Gaussian reference. This feature

persists until 10000 turns as can be seen in figure 4.21d for the profiles above Qx ≥ 20.27.

In general, we note that the horizontal profiles consequently depopulate around the 1σ value

indicated by the red stars compared to the Gaussian reference while the initial macro-particle

distribution was exactly Gaussian distributed (up to numerical noise). The particles move

out to higher horizontal amplitudes and generate tails. In contrast, the vertical profiles show

increased densities around 1σ for Qx ≥ 20.27 – the higher the tune the more pronounced the

effect – while this feature inverts towards the other end below Qx ≤ 20.26 and the 1σ amplitude

also depopulates (here there are also prominent tails which are absent at higher horizontal

tunes).

In the measurement, the profiles around the centre would have enough time until the 3 s

‘out’ wire scan to thermalise to a Gaussian equilibrium distribution around the core and we
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are only left with the pronounced tails. In the resonantly excited horizontal plane, we have

found the tails in the experimental beam profiles to reach farthest at Qx = 20.26 and the

highest deviation from the Gaussian reference at Qx = 20.27, after which the halo threshold

moved back inside the beam (cf. figure 4.10a). In comparison, the simulation results at

10000 turns (figure 4.21c) exhibit the farthest tail reach at Qx = 20.28 and the highest deviation

at Qx = 20.29. At Qx = 20.30 the halo threshold moves back towards the core.

Longer simulation studies could provide evidence whether the bunch core will thermalise to a

Gaussian equilibrium. Also the imprinting of the horizontal tails on the vertical plane which

we observed in the experiment might take longer than the simulated 10000 turns.

To summarise, we observe the qualitative generation of tails in the simulation but the smaller

duration as compared to the experiment does not allow yet to make a concluding quantitative

comparison between beam profiles in the experiment and the simulation. The simulations

show the same r.m.s. behaviour in the averaged transverse emittance growth as in the experi-

ment and both are consistent with the coherent resonance condition of the r.m.s. equivalent

KV beam.
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5 Mitigation: Hollow Bunches

The electric self-fields of a particle beam become stronger with higher intensity (i.e. the total

charge) and denser spatial concentration. At the same time, both variables are usually sought

to be maximised for the final application of the beam. For a transversely Gaussian distributed

bunch of particles, the effect of the self-fields is quantified by the space charge tune spread:

∆QSC
x,y (z) =− q

8π2ε0mp c2

λ(z)

β2γ3

∮
d s

βx,y (s)

σx,y (s)
(
σx (s)+σy (s)

) . (2.87)

From the formula above we can deduce that:

(i.) space charge scales with the inverse energy (βγ2)−1, hence the most critical cycle time

for an accelerator is around the injection,

(ii.) a decrease of the peak line charge density λmax leads to a smaller tune spread extent,

and

(iii.) a broader momentum distribution leads to larger horizontal beam sizes and hence a

smaller tune spread extent (increasing δrms correspondingly translates to larger σx =√
βxεx /(βγ)+D2

xδ
2
rms, cf. equation (2.35)).

We suppose given constraints on the normalised emittance (i.e. transverse beam size), inten-

sity and bunch length: a common strategy to mitigate space charge impact is to reshape the

longitudinal distribution of the usually quasi-parabolic / Gaussian bunches. The common

approach to reshape the bunch is to adiabatically add a second RF harmonic during the critical

cycle times. The relative phase of the higher harmonic with respect to the fundamental can

be adjusted such as to reduce, or even cancel, the phase focusing at the centre of the bucket.

This results in a lower peak line density and a longer bunch as illustrated in figure 5.1a. In this

“bunch lengthening” mode the bucket separatrix becomes wider around the bucket ends and

flatter in the bucket centre, which results in both a larger bucket area (longitudinal acceptance)

and flatter iso-Hamiltonian contours at the bucket centre (and therefore bunch distributions

with depressed line densities). Correspondingly, the strongest transverse electric fields in

125



Chapter 5. Mitigation: Hollow Bunches

vicinity of the dense bunch centre decrease and the space charge tune spread shrinks: the

beam becomes less prone to resonances and stop-bands located near the nominal working

point in the tune diagram.

Using higher harmonics to mitigate space charge requires additional RF systems or multiple

broad band modules that can be efficiently tuned on the required higher frequencies. Besides,

double-harmonic shaped bunches may need to be transferred between subsequent accelera-

tors (e.g. from the CERN PS Booster to the PS). This however requires a precise alignment of

the relative phase between RF harmonics of both the sending and the receiving machine to

avoid longitudinal mismatch (in the case of bunch-lengthening mode for second harmonics).

An alternative to reshaping the longitudinal profile indirectly via a modified Hamiltonian is

to alter the phase space distribution directly. This consideration leads us to the concept of

“hollow bunches”.
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(a) Double-harmonic bucket in bunch length-
ening mode (i.e. 180° relative phase and Vh=2 =
Vh=1/2) populated with a matched distribution
(note the quasi-Gaussian distribution in the mo-
mentum projection).
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(b) Single-harmonic bucket at the same funda-
mental RF voltage populated with a hollow distri-
bution. The spatial projection is flat equivalent
to the second harmonic case, but additionally
also the momentum projection becomes flat.

Figure 5.1 – Longitudinal phase space (z,δ) is presented in a tomography-typical layout. The
lower left shows the momentum δ versus the coordinate z, the separatrix in red encloses the RF
bucket. The density of the particle distribution is given by the colour scale in the upper right
corner, yellow to red to black depicts increasing density. In addition, the equi-Hamiltonian
contours indicate the particle trajectories. The upper plot shows the spatial projection and
the plot to the right the momentum projection.

A bi-Gaussian longitudinal phase space distribution (i.e. a multivariate Gaussian normal

distribution in both the momentum δ = (p −p0)/p0 and the spatial coordinate z) exhibits

the largest density at its centre. In contrast, a hollow distribution features the highest phase

space density at a non-zero synchrotron amplitude, making it look like a ring, cf. figure 5.1b.

Consequently, the spatial projection is much flatter compared to the Gaussian counterpart.

Tuning correctly the ring thickness versus the depletion of the core, the longitudinal profile

can be made flat without line density peaks at the bunch ends. An additional advantage of
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hollow distributions over double-harmonic reshaping is the broader momentum distribution,

cf. figure 5.1.

A hollow bunch can in principle be transferred between machines with the usual single

harmonic RF synchronisation. With its intrinsic flattened profile geometry, such a beam is

expected to accommodate for more intensity at fixed transverse normalised emittances and

bunch length due to its better transverse space charge behaviour.

5.1 Creation Variants

Numerous methods to create hollow distributions have been proposed and experimentally

tested over the past decades, to name some significant approaches in the literature:

1979: second-harmonic debunching in the Linac [Delahaye et al. 1980]

1979, 1999: deposition of empty buckets into a debunched beam and subsequent adiabatic

RF capture of the coasting hollow beam [Delahaye et al. 1980; Lindroos et al.

2000],

1993: excitation of a parametric dipolar resonance via phase modulation [Cappi, Garoby,

et al. 1993; Huang et al. 1993; Lee 2004],

2001: insertion of empty phase space into the bunch centre via second harmonic RF

gymnastics [Carli 2001],

2001: inversion of phase space contours turning the centre of a Gaussian bunch outward

via second harmonic RF gymnastics [Carli 2001; Carli and Chanel 2002], and

2004: RF phase jump of 90° [Wei et al. 2005].

In the framework of the LIU project, the LHC will have to be provided with beams having dou-

ble intensity N but approximately the same transverse emittances εx,y compared to present

operation (LIU Technical Design Report, Damerau et al. [2014]). The increase of the PS injec-

tion energy from Ekin = 1.4GeV to 2 GeV envisaged in the baseline of the LIU programme is

aimed at relaxing the expected space charge impact, as the tune spread (2.87) shrinks with

∆Qx,y ∝ 1/(βγ2) (one βγ factor is absorbed by the geometric emittances due to adiabatic

damping).

Hollow bunches have the potential to provide an additional tool against space charge to reach

the required goals. The present study has been tailored to the characteristics of LHC beams.

The idea is to create hollow bunches in the PS Booster and subsequently transfer them into

the PS to overcome the brightness limits given by the affordable emittance blow-up (cf. table

1.1) during the PS injection plateau.

Among the techniques for the creation of hollow bunches listed above, only three options have

been retained and investigated in numerical simulations: the insertion of empty phase space,

the inversion of a Gaussian bunch, and the parametric dipolar resonance. The starting point in
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our simulation study is a stationary thermal (i.e. time-independent exponential) distribution

in the PS Booster RF bucket at extraction energy. The results are presented in the following

subsection.

5.1.1 Longitudinal Simulations with PyHEADTAIL

The PS Booster parameters used for this study are displayed in table 5.1. As a starting point,

the three schemes have been analysed under non-accelerating conditions. In fact, most of the

aforementioned experimental efforts to create hollow bunches have been carried out keeping

the beam at constant energy.

Table 5.1 – Beam parameters in the PS Booster for the hollow bunch creation simulation
studies.

kinetic energy Ekin 1.4GeV

initial longitudinal emittance εnorm
z 1.3eVs

initial bunch length BL
.= 4σz

βc
180ns

fundamental harmonic h 1

RF h = 1 voltage Vrf 8kV

synchroton period (at 1.4 GeV) Q−1
S 3924turns

PS Booster circumference C 2π ·25m

transition energy γtr 4.05
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Insertion of Empty Phase Space

Figure 5.2a shows the programmed evolution of the parameters of the two main PS Booster RF

systems (h = 1 and h = 2), i.e. voltage and phase of the h = 1 system (V1,φ1) as well as of the

h = 2 system (V2,φ2). These functions were originally proposed by Carli [2001]. Schematically,

the second harmonic is exploited to open a second empty bucket, wrap the core of the bunch

around it and finally combine it with the first bucket. Figure 5.3 depicts the corresponding

intermediate states.
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Figure 5.2 – Insertion of empty phase space into the longitudinal distribution.

This method creates a thin ring in phase space which leads to peaks towards the ends of the

profile projection. The thickness is not easily controllable in order to create a more even,

flat-topped profile. Moreover, the success of the hollow bunch creation proved extremely

sensitive to RF parameter deviations in the experiments conducted by Carli [ibid.].

Inversion of Phase Space Distribution

In the same paper, the author proposes less complex RF parameter functions (figure 5.4a)

which essentially achieve a redistribution of phase space contours. Figure 5.5 illustrates

how the dense Gaussian bunch core is exchanged with the sparsely populated exterior part,

essentially turning the bunch distribution inside out. Varying the initial longitudinal emittance

between εz,rms = 0.5eVs and 1.2 eVs revealed that the resulting bunch length BL of this scheme

is independent of εz .
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Figure 5.3 – Longitudinal phase space (z,δ) during the RF gymnastics depicted in figure 5.2a.
Starting from a Gaussian distribution, an empty second-harmonic bucket is adiabatically
opened and recombined with the other full bucket during a controlled blow-up. The simula-
tion includes longitudinal space charge effects.
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Figure 5.4 – Inversion of the longitudinal phase space distribution.

Dipolar Parametric Resonance

The previous two strategies rely on the use of a double harmonic RF system. The following

approach turns out to be quite flexible and works for a single harmonic system. In 1993 the

idea emerged to deliberately drive the bunch onto a parametric resonance [Cappi, Garoby,

et al. 1993]. To this end the phase loop feedback system is used, which aligns the RF reference

phase φrf with the centre-of-gravity of the bunch. The dipole mode of the longitudinal para-

metric resonance is excited by phase modulation [Lee 2004]. Doing so, the central particles

can be excited to higher synchrotron amplitudes during only a few synchrotron periods TS

and consequently the bunch core depletes. We modulate the phase loop offset around the

synchronous phase ϕs :

φrf(t ) =ϕs + φ̂drive sin(ωdrivet ) . (5.1)

To excite the beam, the driving frequency ωdrive needs to satisfy the resonance condition

mωdrive ' nωS , (5.2)

where ωS denotes the angular synchrotron frequency. The integer numbers m and n charac-

terise the m : n parametric resonance. The m = 1, n = 1 resonance proves most useful for our

purposes – higher harmonic resonances deplete the bunch centre less as they produce two or

more filaments pointing outwards from the core (instead of just one). Figure 5.6 illustrates

such a measured phase space distribution resulting from driving the 1 : 2 resonance.

In fact, in order to optimally hollow out the Gaussian distribution one needs to excite at a

slightly lower frequency than the linear synchrotron frequency ωS,0 in the centre, ωdrive .
0.95ωS,0. This corresponds to the frequency at a synchrotron amplitude equivalent to a third
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Figure 5.5 – Longitudinal phase space (z,δ) during the RF gymnastics depicted in figure 5.4a.
The dense centre of the Gaussian is exchanged with the sparse exterior. The simulation
includes longitudinal space charge effects.
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Figure 5.6 – Longitudinal phase space (φ,∆E ) via phase space tomography measured in the PS
Booster (with φ=−hz/R and ∆E = δp0c/β to relate to the variables used in the simulations).
The distribution resulted from a 1 : 2 dipolar parametric resonance which has been excited
during seven synchrotron periods. The corresponding two filaments spiralling outwards from
the core are clearly visible.

of the separatrix value.

Figure 5.7 shows the effect for a small ratio of the longitudinal emittance to the bucket ac-

ceptance (1.3 eVs to 7.3 eVs): the whole bunch is hit by the resonance. All particles initially

move within the bucket centre in the linear regime at ωS,0 and are driven to much higher

synchrotron amplitudes.

The azimuthal angular spread in phase space directly follows from the synchrotron frequency

spread due to the non-linearities of the sinusoidal bucket: particles on inner contours close to

the bucket centre move at higher synchrotron frequencies and rapidly leave the particles on

the outer contours behind. The modulation duration determines the azimuthal span to which

the excited particles surround the depleted bucket centre. The optimal duration distributing

the particles as evenly as possible depends on both the excitation amplitude φ̂drive and the

ratio between longitudinal emittance and bucket acceptance.

After this short excitation period the distribution needs to be smoothed: either by filamenta-

tion or, to speed up the process, by high-frequency phase modulation.
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(e) 2.3×104 turns equivalent to 13.0 ms
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(g) 3.2×104 turns equivalent to 18.4 ms

0

8

16

[1
0

12
p
/
m

]

−1
00 −5

0 0 50 10
0

z [m]

−6

−4

−2

0

2

4

6

δ
[1

0
−

3
]

0

20

40

[1
0

9
p
/m

]

0 20 40

[1013 p]

(h) 3.5×104 turns equivalent to 20.2 ms

Figure 5.7 – Longitudinal phase space (z,δ) during the RF phase modulation. The excitation
of a longitudinal dipolar parametric resonance at φ̂drive = 18° is shown for a duration of nine
synchrotron periods. The simulation includes longitudinal space charge effects.
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5.1.2 Hollow Bunches on the Ramp

In principle, the idea is to add the depletion process involving minimal changes to the op-

erational LHC beam cycles. In the usual PS Booster cycle for LHC beams, the pulse coming

from LINAC2 is injected over a certain number of turns while the PS Booster dipole magnetic

B-field is ramped (cf. figure 5.8). The RF frequency is kept constant during this process and the

beam slowly spirals horizontally inwards [Hancock 2016]. When the injection process is ended,

the radial position of the beam is fixed by the fixed RF frequency, which now has to catch

up with the canonical revolution frequency programme determined by the dipolar B-field.

From this point on the beam momentum ṗ = eρḂ increases as typical for a synchrotron with

radial feedback. This acceleration ramp continues until extraction energy, which is currently

at Ekin = 1.4GeV. The time derivative of the dipolar magnetic field strength rises up to a

maximum of Ḃ = 2.27T/s.
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Figure 5.8 – Kinetic energy along the PS Booster cycle [Hanke 2013].

As emphasized before, the first two hollow bunch creation schemes, namely the insertion of

empty phase space as well as the inversion of the phase space distribution, rely on the double

harmonic RF systems. Adapting the described necessary voltage and RF phase programmes

to the acceleration ramp would require detailed fine-tuning. Tailoring the resulting hollow

bunches to varying requirements regarding e.g. longitudinal emittance involves non-trivial

adaptations of the RF gymnastics for each setting.

The excitation of the 1 : 1 dipolar parametric resonance appears more straightforward regard-

ing these concerns. Therefore we decided to study this scheme as a simple add-on during

acceleration. Simulations indeed proved the scheme to work fine on the ramp. This means,

one can apply this hollow bunch creation scheme in a flexible way to the existing LHC beam

cycle in the PS Booster without modifying the magnetic ramp – which all previous efforts to

experimentally create hollow distributions did.

There are only two adaptations necessary: on the one hand, the driving frequency ωdrive

needs to be adapted to the decrease of the synchrotron frequency ωS,0 ∝
√

cos(ϕs). On the
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other hand, we change to a single harmonic bucket during the excitation by switching off

the double harmonic RF systems. Present operation uses them for bunch shaping during the

entire acceleration ramp.

5.1.3 Longitudinal Space Charge Effects

We have conducted intensity scans up to N = 6.4×1012 for all three hollow bunch creation

schemes to analyse the impact of longitudinal space charge on the mechanism.

For the two double harmonic based schemes, the depletion of the bunch does not significantly

depend on the intensity. The bunch profiles feature local spikes during the creation process.

As the PS Booster operates below transition, longitudinal space charge acts in a defocusing

manner and these spikes dilute slightly. This results in wider rings in the final hollow product.

In the (academic) case above transition, however, space charge focuses these spikes, which

are especially pronounced in the ‘insertion of phase space’ strategy. Consequently, we see

microwave instabilities developing at higher intensities.

The parametric resonance mechanism, however, depends on the beam intensity. For a con-

stant driving amplitude φ̂drive, the obtained depletion decreases with increasing N . To analyse

this, we excite the resonance very weakly at a driving amplitude of φ̂drive = 0.025σz /R ≈ 0.7°.

Without space charge, the bunch needs about 25 synchrotron periods to spread around the

bucket centre. Figure 5.9 illustrates the influence from longitudinal space charge: for increas-

ing N the core resists to spread azimuthally. The lower amplitude particles appear to follow

their orbits at the same frequency as the outer higher amplitude particles. This means that the

frequency spread due to the non-linear sinusoidal bucket is counteracted by the local space

charge forces.
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z

(a) N = 0.16×1012

δ

z

(b) N = 0.64×1012

δ

z
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δ

z
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Figure 5.9 – Longitudinal phase space (z,δ) for different intensities N after 25TS of excitation at
a very weak driving amplitude of φ̂drive ≈ 0.7°. The simulation shows for increasing intensities
how the bunch core ceases to decohere during the resonant centroid motion. Longitudinal
space charge prevents the azimuthal spreading and hence works against the hollowing mecha-
nism. The numeric experiment is conducted at 2 GeV, the future PS Booster extraction energy
where space charge is expected to play a minor role compared to lower energies.

The linearised space charge force for a longitudinally Gaussian beam profile,

Q2
S =Q2

S,0 +
1p

2πσ3
z

N r0ηR2g

β2γ3 , (2.89)
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shows the synchrotron tune depression below transition as η< 0. To compare this space charge

tune depression with the effect from the non-linear bucket, we ran longitudinal simulations

during 100 synchrotron periods in the PS Booster (η< 0) for various intensities. All simulation

runs start from the same initial Gaussian distribution with σz = 15m r.m.s. bunch length. We

fix particles at synchrotron amplitudes across the whole bunch and extract their synchrotron

tune by Fourier transforming their longitudinal motion. These values are plotted in figure

5.10 versus the respective initial synchrotron amplitudes, which are expressed as the maximal

spatial amplitude zmax of the particle’s trajectory.
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Figure 5.10 – The ratio of actual synchrotron frequency QS to linear synchrotron frequency
QS,0 versus the synchrotron amplitude expressed as zmax (in maximal coordinate amplitude
units). The influence of longitudinal space charge from the Gaussian bunch with σz = 15m
bunch length below transition adds to the synchrotron tune depression due to the non-linear
bucket.

At zmax = 0 one can directly observe the tune depression given by equation (2.89). Then, for

larger synchrotron amplitudes towards the bucket separatrix, the non-linear sinusoidal bucket

additionally reduces the linearised synchrotron tune.

Without space charge for N = 0, one obtains a certain tune spread across the bunch comparing

the bucket centre zmax = 0 to the bunch ends at zmax = 2σz = 30m. This effect becomes even

more pronounced if one would move the bunch centre to non-zero z. The closer we shift

the bunch centre towards the separatrix, the larger the synchrotron tune spreads across the

bunch. This is precisely the mechanism that leads to the angular spreading of the bunch in

longitudinal phase space during the parametric resonance depletion procedure.

Now, adding the space charge effect, figure 5.10 reveals that at larger intensities N the tune

spread across the bunch diminishes (compare again between zmax = 0 and zmax = 30m). For

N = 4.5×1012, the Gaussian bunch imprints a nearly constant plateau onto the parabolically

decreasing N = 0 synchrotron tune curve: space charge makes the bunch resist phase focusing.

(At yet larger intensities or smaller σz the tune around the origin would even turn into a

local dip.) This effect is known as suppression of decoherence by space charge [Rumolo,

Boine-Frankenheim, et al. 2003].
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Chapter 5. Mitigation: Hollow Bunches

In the same way, the bunch deforms the violet synchrotron frequency curve when the bunch

centre is moved to larger z > 0. This leads to a reduction of the synchrotron tune spread across

the bunch core. Consequently, the core does not spread out azimuthally in longitudinal phase

space after it has been excited to non-zero zmax by the dipolar parametric resonance, which

explains the previously mentioned findings presented in figure 5.9.

The analysis in terms of frequency spread also provides a possible remedy: the absolute tune

spread ∆QS per ∆z due to the bucket non-linearities (i.e. the derivative of the magenta curve

in figure 5.10) evidently increases towards the separatrix. Therefore, exciting the particles to

higher synchrotron amplitudes by means of a larger driving amplitude φ̂drive may restore a

sufficient synchrotron tune spread across the bunch in order to surround the bucket centre

with particles.

Large-scale parameter scans for the driving frequency ωdrive, the excitation duration Texcitation,

the driving amplitude φ̂drive and the bunch intensity N simulated for various PS Booster cycle

times (which correspondingly influence the bucket size, the beam momentum and the impact

strength of longitudinal space charge) revealed optimal regions for the experimental produc-

tion of hollow bunches in the PS Booster. The modulation duration determines the azimuthal

span to which the excited particles surround the depleted bucket centre. The optimal duration

distributing the particles as evenly as possible depends in descending importance on the

excitation amplitude φ̂drive, the ratio between longitudinal emittance and bucket acceptance,

and the beam intensity. Good values lie between Texcitation = 4TS ...7TS .

5.2 Implementation in the Proton Synchrotron Booster

In order to apply the phase modulation concept to the real machine, one needs to make use of

the RF phase feedback systems in the PS Booster. The situation is a bit more involved than

in the simulation model, as there are competing RF feedback systems: the radial position of

the beam is steered via the “radial loop” controlling the RF frequency while the beam phase is

regulated via the “phase loop”. Both beam variables are therefore interlinked and modulating

the RF phase will necessary involve both loops. Already during normal operation (without

any “exotic” attempts to drive resonances) the gains for the two systems need to be carefully

balanced to achieve the wanted behaviour in both beam variables.

As the whole low-level RF (LLRF) system has been digitised recently, the phase loop reference

phase was initially controlled via a fixed register value. Our first attempts to drive the paramet-

ric longitudinal resonance hence operated with the radial loop [Oeftiger, Bartosik, A. J. Findlay,

et al. 2016]. The resonant motion was indeed observed but, since the resistance of the phase

loop could not be sufficiently suppressed, the resonance appeared to be severely damped.

This approach produced rather disturbed hollow distributions and was therefore not followed

up.

Instead, the reference phase steering has been set up to directly exploit the phase loop in place
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5.2. Implementation in the Proton Synchrotron Booster

of the radial loop. Experiments with varying bucket acceptances – by choosing different cycle

times the bucket size changes due to acceleration – and initial longitudinal beam emittances

lead to determining the optimal excitation time: we established a reliable procedure to create

hollow bunches on the acceleration ramp via driving the parametric resonance at Ekin =
0.71GeV which is reached at cycle time C575. Figure 5.11 exhibits the longitudinal phase space

distribution at relevant cycle times until injection into the Proton Synchrotron. Appendix A

explains the details of the process in terms of the low-level RF parameters.

We start exciting the parametric resonance from a parabolic distribution, cf. figure 5.11a.

At this point, the bunch has been blown up to a matched emittance of εz,100% ≈ 1.1eVs.

The separatrix indicates the accelerating single-harmonic bucket featuring an acceptance of

1.8eVs.

Figure 5.11b depicts the long filament into which the bunch has been turned during the six

synchrotron periods long excitation. The lower plot in the right panel shows phase space

density averaged over an iso-Hamiltonian orbit around the stable fixed point (at the origin)

versus synchrotron amplitude, with the latter represented by the intercept of that orbit on the

negative energy half-axis. The upper plot then plots the cumulated particle density versus

synchrotron amplitude, correspondingly represented on the upper energy half-axis. At the

separatrix we find an accumulated 100% of the distribution. Both graphs clearly demonstrate

the central depletion of the distribution: below, the local density vanishes towards zero energy

corresponding to the yellow hole in the left phase space graph. Above, the cumulated density

remains at zero until the filament begins.

After smoothing by means of a controlled longitudinal blow-up we finally obtain a matched

hollow distribution, as illustrated in figure 5.11c, 5 ms before extraction to the PS. During the

smoothing, the bunch centre has intentionally been slightly refilled with particles, which thus

flattens the longitudinal projection and prevents spikes at both ends of the bunch profile. The

lower right graph shows the correspondingly increased central density, which is approximately

two thirds of the maximum density within the ring.

Driving frequency scans for the parametric resonance revealed a broad and sharply defined

resonance window. The beam turned out to be correctly excited for frequencies in the range

649Hz ≤ fdrive ≤ 734Hz .

At the same time, the beam features a synchrotron frequency of fS,0 = 775Hz at C575 when the

excitation begins, which decreases to fS,0 = 730Hz at C590 (after seven synchrotron periods of

excitation). The limits of this resonance window are sharply defined on the level of 1 Hz, as

figure 5.12 clearly indicates.

Careful adjustments of the phase loop feedback systems allowed to minimise the non-linear

interaction of the beam with the damping mechanisms during the resonance driving period.

For a too strong gain, the phase loop continuously realigns the phase of the main C02 cavities
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(b) PS Booster cycle time C591, directly after
the excitation
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(c) PS Booster cycle time C800 (5 ms to extrac-
tion)
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(d) PS cycle time C171, directly after injection.

Figure 5.11 – Longitudinal phase space (φ,∆E) and projections (cf. text) at different stages
during the hollow bunch creation process in the PS Booster. The density (colour) scales differ
across the plots.

with the beam. This counteracts the excitation and leads to severely perturbed distributions.

On the other hand, too weak gains lead to beam loss as the RF systems detach from the beam

signal reference. Observing the beam centre-of-gravity signal during the excitation enabled us

to find a phase loop gain which achieves a clean 90° delay of the resonating beam phase in

response to the sinusoidal phase modulation. Also the amplitude of the beam phase signal

shows whether the beam gets damped by the phase loop. We exploited this to minimise the

damping impact which corresponds much closer to the simulation model.

Figure 5.13 shows the match between simulated and measured phase space distribution for

the same parameters at the same time after the excitation. This match was not achieved when

the impact of the feedback systems significantly damped the resonance, as the major part

of the distribution would not blow up while peripheral particles appeared violently shaken

around the bucket in the tomographically reconstructed phase space measurements.

The beam distributions created with the established process proved to be reliably depleted:

repetitive tomography [Hancock, Lindroos, and Koscielniak 2000] measurements on many

consecutive pulses (each directly after the excitation) consistently provided the same phase

space distribution.
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Figure 5.12 – Longitudinal phase space (φ,∆E ) at cycle time C590 after the dipolar parametric
resonance at various driving frequencies ωdrive. The beam response to the excitation reveals a
sharply defined driving frequency window between 649 Hz and 734 Hz.

(a) PyHEADTAIL with longitudinal space charge, the lon-
gitudinal coordinate z relates to the phase via z =−φR.

(b) PS Booster measurement for the same
time.

Figure 5.13 – Simulation and measurement in the PS Booster agreed quite well, as these
snapshots taken at the same time after the excitation show, given the same parameters for both
set-ups. PyHEADTAIL simulations including longitudinal space charge facilitated the machine
implementation process by enhancing the understanding of the dynamics (as continuous
observation of the phase space is possible) for a given set of parameters.
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During these reproducibility assessments, we observed high-frequency modifications in

the filaments, cf. figure 5.14. Varying the injected turns in the PS Booster revealed a clear

dependency on the beam intensity which is a hint to an evolving instability at around 40 MHz.

While these dynamics did not influence the resulting hollow bunches in any obvious way, it

nevertheless showed that exotic distributions such as ours may provide an interesting tool to

visualise and analyse such high-frequency influences.

(a) Longitudinal waterfall plot showing empty
phase space droplets interspersing the oscillat-
ing distribution during the excitation.

(b) Phase space tomography clearly reproduces
the empty droplets which occur at a high fre-
quency of roughly 40 MHz.

Figure 5.14 – During the driven oscillation, the phase space distribution is sensitive to high-
frequency influences seen with high intensity bunches.

5.3 Behaviour in the Proton Synchrotron

Transverse space charge simulations in the PS over 2000 turns provide the incoherent particle

tune footprint of the hollow distribution (generated in the PS Booster simulations). The flat

profile of a hollow bunch reduces the extension of the tune spread: the usual wide tune spread

from Gaussian profiles is strongly compressed as the line charge density in the front and the

tail of the bunch becomes closer to the level of the bunch centre, cf. figure 5.15. This entails

that most particles feature an incoherent tune around the same value. The remaining spread

comes from the transverse Gaussian nature of the beam as well as the longitudinal flanks (the

profile is not perfectly rectangular).

5.3.1 Bunch Splitting for Hollow Bunches

The 72 bunch production scheme in the PS is mainly used for LHC type beams [Damerau

2011]. To reach large intensities, two subsequent batches spaced by one basic cycle of 1.2 s are

injected into the PS. For the first batch, all four PS Booster rings provide one bunch each, then

the second batch arrives with two more bunches. The six bunches are received by the PS at
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switch off the two canonical blow-ups which would otherwise disrupt the hollow distributions.

Figure 5.17a shows the evolution of the line density as the flat bunch is split into three. Indeed,

tomographic reconstruction of the phase space after the splitting reveals the lasting hollowness

of the central bunchlet. The outer bunchlets remain flat (flatter than for the usual Gaussian

distributions). The ratio of depletion between the outer and central bunch might depend on

the thickness of the initial phase space ring: a hollow bunch with a deep dip in the profile

might leave a hollow trace in the outer bunches as well – instead, our ring is quite thick as it is

tailored to a flat projection.

(a) Mountain diagram from C1830 to C1890, each contour
represents a longitudinal profile with a step of 185 turns. The
horizontal axis is plotted in time units t =−βcz.

(b) First (left) triplet bunch.

(c) Second (central) triplet bunch.

(d) Last (right) triplet bunch.

Figure 5.17 – Triple splitting process in the PS for a hollow distribution. The central bunch
remains slightly hollow while the outer bunches become flat, as the longitudinal phase space
plots on the right illustrate.

After the acceleration ramp at the extraction plateau, the RF fundamental is twice increased

by a factor 2 – the so-called “double splitting” to produce 6×3×2×2 = 72bunches, going from

h = 21 to h = 42 and then to h = 84. Garoby and Hancock [1994] already reported the double

splitting to work for hollow distributions: the longitudinal distribution remains intact at a

longitudinal blow-up of less than 10%.
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5.4 Space Charge Mitigation in the Proton Synchrotron

To assess the impact of direct space charge during the PS injection plateau, we measure

transverse emittance blow-up and beam loss under various space charge conditions. The

goal is to compare space charge effects between hollow bunches and the usual parabolic

bunches. Typical examples of each beam type are shown in figures 5.18a and 5.18b. Since

hollow distributions are tailored to reduce the maximum line charge density, one expects a

better behaviour under strong space charge conditions. The parabolic LHC type bunches have

been further blown up than to the usual εz,100% = 1.3eVs (corresponding to a bunch length of

BL = 180ns) in order to match the hollow bunch length.

Two different experiments have been conducted to examine possible improvements when

deploying hollow bunches:

1. scanning the bunch length:

by compressing the bunch, the maximal line density increases entailing stronger space

charge forces. Our strategy is to compare the emittance blow-up between the two

longitudinal distributions for a given parameter set of bunch length, transverse emit-

tance and intensity. The space charge detuning (2.87) combines these parameters in a

well-defined quantity. The formula assumes a Gaussian distribution in the longitudinal

plane, which allows to study the question: “Do hollow bunches lead to less emittance

blow-up for a given bunch length, transverse emittance and intensity?”

2. decreasing the vertical tune:

when approaching the integer tune Qy = 6 starting from below the octupole resonance

4Qy = 25, the space charge depressed beam will start to resonate and blow up the

transverse emittance. The goal is to compare the resonance dynamics between the two

beam types. In contrast to the previous scenario where the RF voltage varies, the bunch

length and also the synchrotron tune remain constant here. We investigate: “Do the

hollow bunches behave better (in terms of emittance blow-up and beam loss) than the

parabolic bunches at a given tune distance from the integer resonance?”

These results have partly been reported in Oeftiger, Bartosik, A. Findlay, et al. [2016] and

presented in Oeftiger, Hancock, and Rumolo [2016].
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5.4.1 Experimental Set-up

The properties of a single injected bunch are measured directly after the first injection from

the PS Booster and directly before the second injection takes place. The first four bunches

from the PS Booster are injected into the PS at cycle time C170. Correspondingly, the first

emittance measurement (labelled ‘in’) is set to C185. These 15 ms allow injection oscillations

to be damped as well as the adjustment of certain RF settings (such as the total RF voltage for

the bunch length scan). After a basic cycle period of 1.2 s, a second batch would be transferred

from the PS Booster. The second emittance measurement (labelled ‘out’) is hence taken

at C1350, 20 ms before the second injection. Interferences from the transfer preparation

systems (e.g. the PS Booster–PS synchronisation loop) can be avoided. The beam and machine

parameters are listed in table 5.2.

Table 5.2 – The relevant Proton Synchrotron machine and beam parameters.

parameter symbol value

long. 100% emittance hollow εz,100% 1.43±0.15eVs

long. 100% emittance parabolic εz,100% 1.47±0.11eVs

PS Booster extracted horizontal r.m.s. emittance εx ≈ 2.23mmmrad

PS Booster extracted vertical r.m.s. emittance εy ≈ 2.12mmmrad

injection plateau energy Ekin 1.4 GeV

synchrotron period (V = 25kV) Q−1
S 725 turns

fundamental harmonic (flat-bottom) h 7

PS circumference C 2π ·100m

transition energy γt 6.09

At both reference times, the three-dimensional spatial beam distribution is reconstructed

along with the longitudinal momentum distribution. At two different locations in the ring,

flying wires scan the horizontal and vertical bunch profile. A wall current monitor records the

longitudinal beam profile repeatedly over many turns equivalent to half a synchrotron period.

The momentum distribution can thus be reconstructed via offline phase space tomography

[Hancock, Lindroos, McIntosh, et al. 1999]. In order to ensure a valid comparison between the

‘in’ and ‘out’ references, any shots featuring a longitudinal r.m.s. emittance variation of more

than 5% are disregarded. Most measurements feature a stable longitudinal r.m.s. emittance

though.
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Chapter 5. Mitigation: Hollow Bunches

5.4.2 Transverse Emittance Determination

Vertical Plane

In order to determine the transverse emittances from wire scans, one needs to account for the

shape of the profile. Especially in the vertical plane the beam is affected by the onset of the

vertical integer resonance. The vertical profile therefore exhibits pronounced tails: especially

at early cycle times a halo emerges as shown in figure 5.19a. If one simply fits the whole profile

p(y) with a Gaussian function g (y) via a least squares algorithm, the standard deviation of

g (y) will under-represent the tails (see the green curve labelled “general fit” in the figure).

The residual of this general fit, g (y)− p(y), is depicted in figure 5.20. Given the standard

deviation σpre and the mean value y0 of the general fit, we see a systematic negative deviation

from about 1.8σpre on outwards. This feature is present for almost all vertical wire scans.

We conclude that the Gaussian fit does not represent the tails. Consequently, we define a

“core region” of the bunch within −1.8σpre < y − y0 < 1.8σpre and establish two alternative

approaches to determine the transverse emittance.

The ‘core emittance’ refers to fitting only the core region with a Gaussian function and ex-

tracting the vertical emittance from the standard deviation σy,core. To this end, we determine

the core region for each wire scan via a first ‘general’ fit over the whole profile to obtain the

estimated σpre. The measurement set roughly agrees with the Gaussian within the previously

defined core region. A subsequent second Gaussian fit constrained to the core domain then

yields the core emittance

εy,core =σ2
y,coreβγ/βy , (5.3)

with βy denoting the vertical beta function at the wire scanner location.

Alternatively, the ‘r.m.s. emittance’ εy,rms refers to evaluating the statistical standard deviation

of the entire measured profile p(y) within a radius of σpre < 4,

σ2
y,rms =

4σpre∫
−4σpre

d y (y − y0)2p(y) =⇒ εy,rms =σ2
y,rmsβγ/βy . (5.4)

This approach takes into account the tails in an r.m.s. equivalent manner as opposed to the

core emittance approach.

The two approaches lead to significantly larger r.m.s. emittances with up to 30% difference to

the core emittance. The ratios between the two at both reference cycle times are listed in table

5.3.
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(a) PS wire scan at C185. The distribution shape deviates from a Gaussian profile on the tails due to
space charge dynamics: the onset of the vertical integer resonance drove particles from the core to the
tails. The core itself (within ∼ 1.8σ) remains more or less Gaussian, as the orange fit shows. The dashed
red line shows a separate Gaussian fit to the tails (within 1.8 <σ< 4). The corresponding offset is not
reflected in the Gaussian fit to the whole profile shown in green (which essentially matches the orange
core fit).
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(b) PS wire scan at C1350. The distribution is much broader as the core has blown up significantly. Note
that the profile resembles a Gaussian shape much more than at C185, the halo fit approaches the core
fit.

Figure 5.19 – Typical vertical beam profiles from wire scans at the beginning and end of the
1.2 s long Proton Synchrotron injection plateau.

Table 5.3 – Significantly different results for core and r.m.s. emittance evaluation in the vertical
plane. The data for the hollow and parabolic longitudinal distributions are taken from the
bunch length scan.

εrms/εcore C185 C1350

parabolic 1.236±0.024 1.148±0.035
hollow 1.294±0.042 1.215±0.059
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Figure 5.20 – The residual of the general Gaussian fit to the wire scan of figure 5.19a (i.e. the
difference between the blue and the green curve). This plot defines the core and the halo
regions.

Horizontal Plane

In the horizontal plane, one also needs to account for the dispersive contribution to the beam

profile. The horizontal position of a particle is given by a sum of two independent random

variables,

x = xβ+xdisp with xdisp = Dxδ , (2.23)

where xβ denotes the betatron motion and Dx the dispersion function at the wire scanner

location. The corresponding horizontal distribution p(x), i.e. the measured wire scanner pro-

file, is hence expressed as a convolution of the betatron distribution fβ(x) with the dispersive

distribution fdisp(x) = fδ(x/Dx )/|Dx |:

p(x) =
∞∫

−∞
d x ′ fβ(x −x ′) fdisp(x ′) . (2.33)

In order to extract the horizontal beam emittance, we are interested in determining the

standard deviation of the betatron part xβ of the profile. The standard approach is to fit the

profile with a Gaussian distribution with least-squares regression analysis. Consequently,

the fit standard deviation σx is used with the r.m.s. momentum deviation δrms (obtained via

longitudinal phase space tomography) in the emittance expression (2.35). For the present case

this approach is no longer valid, especially in the hollow configuration where the momentum

distribution differs from a Gaussian normal distribution by construction. Therefore, the

resulting profile is not Gaussian normal and the extracted σx does not represent the r.m.s.

value of the horizontal distribution. We shall get much more accurate results for the horizontal

emittance by manual convolution.

For each horizontal wire scan an instantaneous momentum profile fδ has been reconstructed
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5.4. Space Charge Mitigation in the Proton Synchrotron

with the aid of tomography. A wire scan takes up to a synchrotron period for traversing the

up to 4 cm wide beam at a wire speed of 15 m/s. The recorded horizontal profile therefore

consists of a convolution of the pure betatron distribution with the momentum distribution

during its temporal evolution over the whole synchrotron period.

Now, some shots (especially at C185 which is 15 ms after injection) exhibit slightly non-

stationary momentum distributions such as the blue curve in figure 5.21. This can be traced

e.g. to quadrupolar longitudinal mismatch, the impact of the synchronisation loop (espe-

cially for the hollow distributions) and recombination kicker rise time overlaps with the beam

pulse. Consequently, the momentum distribution will oscillate during the wire scan which in

principle results in changing dispersion contributions for each point of the measured profile.

As an approximation, we replace the measured momentum distribution by a stationary esti-

mate, which we then use for the further convolution processing. In longitudinal action-angle

variables, we integrate out the angle for each synchrotron amplitude. Mapping this syn-

chrotron amplitude projection back into momentum space yields a good stationary estimate

for the filamented equivalent momentum distribution, as figure 5.21 depicts.
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Figure 5.21 – A non-stationary momentum distribution (bound to filament) and its filamented
estimate by means of integrating out the angle along the synchrotron amplitude and mapping
back onto longitudinal momentum space.

The contributions to the measured wire scanner profile from the betatron motion fβ and from

the dispersion fdisp are of the same magnitude.

Various approaches to deconvolve p(x) with the measured fdisp to obtain fβ have been fol-

lowed. Polynomial division (via SciPy’s signal.deconvolve) did not lead to useful results as

it requires fdisp to be of smaller extent than p(x). The division of the Fourier transforms of p(x)

and fdisp turned out to be heavily affected by high frequency noise in the profile. Gaussian fits
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Chapter 5. Mitigation: Hollow Bunches

to the corresponding Fourier spectrum featured large uncertainties.

The finally adopted approach assumes xβ to be Gaussian distributed and leads to reasonable

results. Instead of deconvolving, we reverse-engineer p(x) by convolving fdisp with a Gaussian

profile of some estimated standard deviation σxβ . As both are normalised to integrate to unity

and convolutions are translation invariant, the amplitude and mean value of the Gaussian

function are fixed. The only remaining free variable is hence the standard deviationσxβ . A least

squares algorithm is employed to find the optimal σxβ by comparing the convolution result to

the actual wire scanner measurement data p(x). Figure 5.22 shows the various distributions

for a hollow case (and hence rectangular-like momentum distribution).
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Figure 5.22 – The convolution output of the measured dispersive distribution (consisting of the
stationary momentum distribution projection multiplied by the dispersion Dx at the location
of the wire scanner) with a Gaussian function as an estimate for the betatron distribution re-
constructs the measured horizontal wire scanner profile data. The variable betatron standard
deviation σxβ can then be determined by least-squares-fitting the convolution to the wire
scan.

This approach serves for more accurate emittance estimates taking into account the present

longitudinal beam geometries and may well be a suitable algorithm for future space charge

studies on the CERN low-energy rings. Table 5.4 summarises the overestimation of up to 35%

by using the usual formula for the emittance that assumes a Gaussian momentum distribution.

In the horizontal case, the pronounced tails found in the vertical plane are less significant but

they still contribute to the factor.

5.4.3 Bunch Length Scan

The PS Booster cycles to produce the longitudinally quasi-Gaussian and hollow bunches are set

up such that the longitudinal matched (“100%”) emittances and therefore the compared bunch

lengths are the same. Indeed, the recorded shots had a ratio of εhollow
z,100%/εparabolic

z,100% = 0.992±0.182.

Correspondingly, the geometry of hollow bunches makes their longitudinal r.m.s. emittance

consistently larger at a ratio of εhollow
z,rms /εparabolic

z,rms = 1.085 ± 0.052. The hollow phase space
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5.4. Space Charge Mitigation in the Proton Synchrotron

Table 5.4 – The usual dispersive emittance εusual-Gauss formula (2.35) for the Gaussian fit
extracted σx (assuming perfectly Gaussian profiles) strongly overestimates the horizontal
emittance: the present momentum distributions are broader than a perfect longitudinal bi-
Gaussian distribution. Consequently, when their contribution is removed, a smaller betatron
residual should remain. Also a weakly pronounced halo (similarly to table 5.3) contributes
∼ 10% to these numbers. The εconvolution emittance results from the convolution and least-
squares fitting algorithm. The data for the hollow and parabolic longitudinal distributions are
taken from the bunch length scan.

εusual-Gauss/εconvolution C185 C1350

parabolic 1.303±0.061 1.248±0.062
hollow 1.348±0.067 1.280±0.074

distributions in our experiment could potentially be further optimised at creation time in the

PS Booster in order to achieve higher r.m.s. emittances at a given matched emittance – this

would further improve the presently reported results below.

During the experiment, the bunch length has been scanned over the full available range

of 140 to 210 ns. The upper bound is determined by the recombination kicker rise time

window. The bunch has been compressed during the initial window of 15 ms by ramping up

the total RF voltage from 25 kV to higher values up until the maximally achievable 80 kV. The

latter determines the lower bound for the bunch length (for our fixed longitudinal matched

emittance).

Adiabatic bunch compression depends on the increase of the RF voltage: the initial bunch

length can be decreased by

BL,final =
(

VRF,initial

VRF,final

) 1
4

BL,initial (5.5)

[Garoby 2011]. Correspondingly, a transferred initial bunch length of BL = 200ns can be

reduced to 150 ns by ramping up to the maximum RF voltage. However, due to the fluctuating

shot-to-shot efficiency of the controlled longitudinal blow-up, the bunch lengths transferred

to the PS varied roughly between 190 ns and 210 ns, allowing us to cover a global range of total

bunch lengths between 130 ns and 210 ns when applying adiabatic bunch shortening. Table

5.5 lists some further specific parameters besides table 5.2.

Table 5.5 – Relevant experiment beam parameters for the bunch length scan.

parameter value

hollow N (1.66 ± 0.05)×1012

parabolic N (1.84 ± 0.03)×1012

Qx ,Qy (6.23,6.22)
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Figure 5.23 – Intensity normalised peak line charge density versus total bunch length. Hyper-
bolic fits λmax ∝ 1/BL with their 1σ confidence bands yield a significant factor of 0.9 between
hollow and parabolic bunches at a given bunch length.

Evaluating the reached ratios of peak line density to bunch length of the hollow and parabolic

distributions, figure 5.23 shows a 10% depression of the maximal line density for hollow

distributions as compared to parabolic ones for any given bunch length. A theoretically

ideal rectangular profile of 4σz bunch length would yield a
p

2π/4 ≈ 0.63 depression factor

compared to a perfect Gaussian. Both extremal cases are plotted in figure 5.23 for comparison.

It shows that our parabolic bunches resemble the ideal Gaussian case with their ratio of peak

line density to bunch length. The flattened profile of the hollow bunches, however, shows

room to improve towards an ideal rectangular profile (which by itself is impossible to achieve

in a single-harmonic RF bucket).

Beam losses are small, they lie below the 2% level until C1350 and do not show any significant

dependency on the space charge detuning. This coincides with the findings of Wasef et

al. [2013] during a similar experimental set-up: losses in this tune region only start when

increasing the vertical coherent tune from Qy = 6.245 to Qy = 6.255 as the beam hits the

4Qy = 25 octupole resonance. The coherent tune in our experiment lies slightly lower around

Qy = 6.22 for N = 1.7×1012.

To address the outstanding question whether hollow bunches lead to less emittance blow-up

for a given intensity N , bunch length BL and transverse emittance εx,y , we choose to evaluate

∆Qmax
x,y assuming a 6D Gaussian distributed beam in equation (2.87). Hence we apply the

emittance relation (2.35) as well as using the Gaussian peak line density λmax = N /(
p

2πσz )

where we set σz = BL/4.

Figure 5.24 shows how hollow bunches provide statistically significantly lower vertical emit-

tances for the same unified reference tune shift ∆Qmax
x,y . The real tune shift of the hollow

bunches is a factor 0.88 lower due to their reduced λmax and the larger σx . In contrast, the

parabolic bunches are rather well represented by the Gaussian approach (factor 0.97 lower
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real tune shift).
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Figure 5.24 – Final core emittances versus Gaussian reference space charge detuning (based
on assuming a 6D Gaussian distributed bunch). A quadratic fit is superimposed with its 1σ
confidence band.

5.4.4 Vertical Tune Scan

The PS essentially offers two knobs to control the machine tune at injection energy: the low

energy quadrupole magnets (LEQ) and the pole face windings (PFW) along with the figure-

of-eight loop. In general, small currents in the PFW especially in the narrow windings add to

the non-linear behaviour of the PS and drive betatron resonances, as analysed in detail by

Huschauer [2012]. It has been shown that the width of the stop-band is effectively increased

as well as the strength of the resonance driving.

The 10 A maximum current of the linear LEQ allowed us to decrease the vertical tune from

the nominal value of Qy = 6.22 until Qy = 6.11, while steadily keeping the horizontal tune at

Qx = 6.23. Below this value, we made use of the PFW while keeping the figure-of-eight loop

fixed (calculating the needed settings with the 4CM matrix approach [Freyermuth et al. 2010])

to further decrease the vertical tune until Qy = 6.07. Further experimental parameters besides

table 5.2 are listed in table 5.6.

Table 5.6 – Relevant experiment beam parameters for the vertical tune scan.

parameter value

hollow N (1.66 ± 0.06)×1012

parabolic N (1.84 ± 0.04)×1012

VRF 25 kV

For both beam types, we injected the bunch into the PS on the respective vertical tune and

keep the tune settings fixed until the end of the injection plateau. The coherent transverse

beam tunes are measured with the short pick-up of the Base Band Tune system [Gasior and R.

Jones 2005]. Figure 5.25 shows that the first 15 ms from injection until the C185 measurement
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are sufficient to already considerably blow up the transverse core emittances below Qy < 6.20.
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(a) Core emittances at cycle time C185.
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Figure 5.25 – Measured transverse core emittances versus the vertical tune. The green line
shows the PS Booster emittance measured for a parabolic bunch at extraction using expression
(2.35).

The measured emittance curve increases its slope below Qy = 6.11 which may be a straight-

forward indicator of the additionally used PFW. This feature is more visible in the measure-

ments at C1350 in figure 5.25b. At the same time, the loss patterns of both beam types in figure

5.26 show a decrease as soon as the PFW are used. For the emittance calculation, we assumed

constant βx,y at the wire scanner locations. In reality, βx,y change with the corresponding

tune settings. Since the LEQ and the PFW are situated at different locations in the ring, re-

spectively, they also have a different influence on the local beta functions when changing the

tune. Varying beta functions can then lead to losses at different positions and with different

magnitude as well as to overestimated emittances.

Another possible influence might come from the increased non-linear behaviour of the ma-

chine when using only the LEQ because the PFW are then forced to vanishing currents (which

156



5.4. Space Charge Mitigation in the Proton Synchrotron

in the case of the narrow windings is problematic as previously mentioned). These two aspects

can result in the behaviour observed in the emittance and loss plots at Qy = 6.11.
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Figure 5.26 – Beam loss for hollow and parabolic bunches versus the vertical tune.

The received intensity in the PS differs by 10% between the two beam types, which approx-

imately matches the difference between the two emittance curves exhibited in figure 5.25.

Also the beam loss is equivalent in both cases. Therefore, our data do not allow to identify a

significant difference between the two beam types when approaching the integer tune in the

vertical plane.
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6 Conclusion

The goals of this Ph.D. project comprise firstly the development of a self-consistent numerical

simulation tool to model space charge dynamics in CERN’s low-energy machines, secondly

measurements of space charge effects at the accelerators to benchmark the developed models

as well as understand the present limits, and thirdly the investigation of mitigation techniques

to counteract the impact of space charge where it leads to beam quality degradation. Through-

out the course of this thesis, the space charge issues with high brightness beams in the Large

Hadron Collider (LHC) injector chain are analysed with the aid of the implemented space

charge models in our collective effects simulation software, PyHEADTAIL. The future beams

in the context of the High Luminosity LHC (HL-LHC) upgrade project are foreseen to feature

twice the number of particles per bunch and exhibit slightly lower transverse normalised

emittances compared to present operation. To enable the injectors to provide this increased

intensity per transverse emittance (beam brightness), two identified bottlenecks in terms of

strong space charge impact during the Proton Synchrotron (PS) and Super Proton Synchrotron

(SPS) injection plateau need to be alleviated. In the framework of the mitigation approaches

examined in this thesis, we have established reliable production of a novel Proton Synchrotron

Booster (PS Booster) beam type with a hollow longitudinal phase space distribution. We

quantitatively assessed the relaxation of space charge constraints in the PS by using these

flattened bunches in order to extract beams of higher brightness. An extensive investigation of

the downstream SPS space charge situation during the long injection plateau paves the way

for the future high brightness beams. We have identified an optimal working point region,

where the produced beams are minimally affected by emittance growth and beam losses

hence complying with the tight LHC Injectors Upgrade (LIU) requirements. Major efforts also

went into accelerating PyHEADTAIL on Graphics Processing Unit (GPU) architectures. The

space charge suite has greatly benefitted from this, in particular, GPU acceleration has made

beam dynamics studies with full 3D particle-in-cell (PIC) models feasible.

In the following, we go through the detailed results of this Ph.D. thesis and discuss the implica-

tions for CERN’s circular accelerators and possible future studies.
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6.1 PyHEADTAIL and its Space Charge Suite

The GPU acceleration of PyHEADTAIL is a crucial ingredient to long-term space charge

simulations with the PIC 3D model running more than O (1000turns). The 3D model allows

treatment of the circular low-energy machines at CERN without neglecting the longitudinal

correlation of the space charge forces along slices of the beam. Many tools used at CERN

to model space charge in ring accelerators (such as PyORBIT or MAD-X with space charge)

employ 2D or at best 2.5D (transverse slice-by-slice) approximations. In this case only the

transverse plane is solved for the space charge forces (which are possibly weighted with the

local longitudinal line charge density for the 2.5D slice model) while the shape of the beam

self-fields are assumed to be independent of the longitudinal distribution. Consequently, the

real space charge forces can be wrongly estimated for beam velocities considerably lower than

c, i.e. β< 1. The developed 3D model is readily applicable for in-depth simulation studies in

particular for the PS Booster or CERN’s Low Energy Ion Ring (LEIR), where recent experimental

studies have identified severe space charge impact to limit machine performance [Bartosik,

Hancock, et al. 2016].

The high performance computing version of the 2.5D PIC model in PyHEADTAIL also profits

from the GPU acceleration, as the longitudinal beam slices can be solved in parallel. The

computational complexity of the employed GPU algorithms often scales less rapidly than on a

scalar CPU for many numerical parameters (such as the number of macro-particles) which is

beneficial for exploring the parameter space during resolution and convergence studies. The

better scaling behaviour can become very interesting for upcoming studies of the interplay of

collective effects, among them being the influence of space charge on beam-electron-cloud

interaction in the arcs of the LHC at injection energy.

The employed combination of macro-particle and PIC simulation techniques originates from

plasma physics, where it is widely employed to study collective modes and plasma instabilities

e.g. for fusion reactors. Analogous models are used for N -body simulations in astrophysics and

cosmology, where e.g. the creation of solar winds or even the structure formation of galaxies

and galaxy clusters in the universe are investigated.

Simulations with PyHEADTAIL’s space charge suite have been extensively compared with

analytic formulae (as in the case of the Quadrupolar Pick-up (QPU)) and measurements (as in

the SPS high brightness studies).

6.2 Quadrupolar Pick-Ups to Measure Space Charge

QPU set-ups provide a means to measure the incoherent Kapchinskij-Vladimirskij (KV) tune

shift of a beam as a quantity to estimate the space charge impact. This approach provides a

promising alternative to measuring the brightness using the wire scanners (for the transverse

emittances) in conjunction with the beam current transformer (for the intensity). It would be

advantageous to determine the emittances directly from the space charge tune shift, as this
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avoids using the optics model of the machine which is known to introduce large uncertainties

on the emittance values e.g. when using the wire scanners (the uncertainty is on the order of

the allocated emittance growth budget for the LHC operation). For space charge purposes, the

envelope mode measurement method appears more natural than the beam profile measure-

ment via wire scanners. The observables (the envelope mode frequencies) are closely related

to space charge dynamics on which they are to give quantitative information.

The theory for the quadrupolar coherent modes has been worked out in section 2.2 taking

into account the regime of the CERN machines which mostly operate at nearly equal tunes

close to the coupling resonance. For certain relevant beam intensities, beam sizes and tunes,

the coupling strength D ≈ 1 lies somewhere between the two often employed approximations

in either the far off-coupling or the fully coupled case. This has to be accounted for when

relating the envelope mode frequencies to beam parameters. Simulations based on the PIC

space charge model in section 3.5 showed the space charge depressed coherent modes and

confirmed the derived theoretical relation to the incoherent KV tune shift.

Experiments to be done in the near future with a quadrupolar pick-up in the PS will reveal to

what extent the bunching of the beam play a role in the brightness determination. Sacherer’s

treatment of the space charge depressed envelope modes [Sacherer 1971] includes a 3D

derivation for bunched beams, which has been followed up by Uesugi et al. [1999]. The

extended theoretical model may provide further insight into this matter.

6.3 Hollow Bunches for the PS Injection Plateau

For sufficiently high brightnesses, beams residing at constant energy at the PS injection

plateau suffer from r.m.s. emittance growth. The frequency of the collective motion of the

beam core is strongly depressed by space charge, consequently the integer resonance excites

the particles in the beam core to higher transverse amplitudes. The synchrotron motion in the

longitudinal plane plays an important role in this process – in this spirit the peak line charge

density determines the maximal electromagnetic fields. Consequently, the bunch core tune

depression by space charge can be reduced by modifying the longitudinal bunch profile as to

decrease the peak line charge density. This strategy offers to accommodate more particles per

bunch for a given transverse emittance.

We have set up a reliable process in the PS Booster to reduce the peak line charge density

by shaping the longitudinal phase space distribution into a ring. The excitation of a dipolar

parametric resonance in the longitudinal plane results in the depletion of the radio frequency

(RF) bucket core, where the usual parabolic or Gaussian bunch distributions feature the

highest phase space density of particles. This approach to create such longitudinally hollow

phase space distributions (or simply hollow bunches) in the PS Booster involves minimal

changes to the presently operational LHC beam cycle (cf. appendix A) which is a considerable

advantage of the developed method in comparison to other mechanisms. Accepting hollow

bunches in the PS does not require any additional adaptation of the PS cycle nor further
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synchronisation measures between the machines.

The flattened longitudinal projection of the hollow bunches indeed relaxes the space charge

impact on the PS injection plateau: for a given bunch length (which is usually sought to be

maximised within the 205 ns window of the recombination kicker rise time in the PS Booster),

intensity and emittance, the hollow bunches were subject to significantly less emittance blow-

up than the usual parabolic bunches in the region of the operational machine tunes. We

emphasize that, in comparison to the usual strategy to flatten the line charge density by using

a second-harmonic RF system in anti-phase (i.e. bunch lengthening mode), hollow phase

space distributions also feature a wider momentum spread. The correspondingly increased

dispersive contribution leads to larger horizontal beam sizes hence providing an additional

factor suppressing space charge. We conclude that hollow bunches are a viable tool to extract

higher beam brightness from the PS to comply with the LIU parameters.

The triple splitting process in the PS is required to provide three bunchlets of approximately

the same intensity per bunchlet. We found this to apply also to hollow parent bunches –

the resulting inner bunchlet even persists to have a ring-like phase space distribution while

the outer bunchlets are simply flat with a large patch of constant phase space density in the

centre. Nevertheless, any controlled longitudinal blow-up procedure inserted before the triple

splitting would considerably distort the original hollow distribution and restore a parabolic-

type distribution which would then result in the usual triple splitting with equal phase space

distributions. Converting the hollow bunches back to parabolic ones does not pose a problem

as the hollow bunches are mainly required for the injection plateau itself (at the end of which

the triple splitting takes place).

6.4 High Brightness Beams in the SPS

Building on a preliminary SPS working point study below the quarter-integer resonance

Qy < 20.25 [Bartosik, Argyropoulos, et al. 2014], we have carried out a systematic static tune

scan with high brightness beams across the lower left tune diagram half-integer quadrant. The

extensive study revealed two relevant resonances, the third-order Qx+2Qy = 61 and the fourth-

order 4Qx = 81. As opposed to the PS, the regular vertical quarter-integer resonance does not

degrade the beam quality, which entails the accessibility of working points above Qy > 20.25.

We have identified an optimal working point region around (Qx ,Qy ) = (20.22,20.30) for high

brightness beams. Here, the beam loss is bounded by 1% while the emittance growth remains

below 4% over the 3 s constant injection energy plateau. These figures appear in line with the

allocated LIU budgets from table 1.1. We conclude that the working point optimisation based

on the Q20 optics alleviates the impact of space charge and, therefore, any related bottleneck

issue at the SPS.

Our detailed analysis of the beam losses within this optimal working point region revealed a

clear scaling with the transverse beam size. Keeping the same transverse emittances while vary-

ing the beam brightness and hence the space charge tune shift did not lead to a considerable
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effect on the beam loss. Thus, we exclude any impact of the vertical quarter-integer resonance

on the high brightness beams. During this study, the third-order resonance 3Qy = 61 has been

observed to produce losses at low intensities while it does not appear at high intensities in

the systematic tune scan (cf. figure 4.4a). The losses coincide with the coherent vertical tune

crossing Qy = 20.3 while at the same time the incoherent tune spread also shrinks in this low

intensity area. We propose an incoherent loss mechanism where the halo particles being

shifted to higher tunes (for lower intensities as compared to higher intensities) interact with

the third-order resonance. Future studies could include an experiment with several sets of

intensity scans for different fixed vertical bare machine tunes around Qy = 20.3. The coherent

dipolar tune would then cross the resonance at different intensities for the different bare tunes.

This experimental set-up should uncover the dependency on the coherent dipolar tune as well

as the incoherent tune spread. The respective loss patterns should then allow to distinguish

the influence of impedance effects from direct space charge.

Finally, we investigated the identified fourth-order 4Qx = 81 resonance by powering a single

strong octupole magnet which acts like an octupolar error contributing with a significant reso-

nance driving term. The set-up follows a similar experiment carried out for the PS [Franchetti

et al. 2003] where the incoherent nature of the losses and halo population due to octupole

resonance islands has been shown. In the SPS we observe the same phenomenon with a tune

dependent generation of tails in the beam distribution. The halo threshold – defined by the

location where the enriched tails deviate from the Gaussian core fit – moves outwards from

the centre as the bare machine tune approaches the resonance from above. The collective

response of the beam core to the resonance exhibits the maximal r.m.s. emittance growth at

the tune where the r.m.s. equivalent KV distribution satisfies the octupolar mode resonance

condition in accordance with the predictions from Sacherer’s theory on the r.m.s. equivalence

of beams. These findings coincide with the picture of the halo-core model which we discussed

in the introductory chapter by reference to the work of R. Baartman [1998] who reviewed space

charge dynamics when interacting with betatron resonances.

6.5 Ready for the High Luminosity LHC Era

The present thesis project has contributed to the understanding and mitigation of space

charge aspects in view of the LIU requirements. The mitigation strategies developed in the

framework of this Ph.D. thesis have the potential to alleviate the brightness limitations at

CERN’s PS and SPS in conjunction with all the other elaborate machine upgrades taking place

to reach the future HL-LHC beam parameters. We are eagerly looking forward to what bright

future and exciting discoveries these bright beams will bring for the LHC experiments in the

HL-LHC era.
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Chapter 6. Conclusion

Figure 6.1 – The globe of science and innovation at CERN celebrating the year of light [Brice
2015].
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A Setting Up Hollow Bunches in the
Proton Synchrotron Booster

This appendix explains the procedure leading to a reproducible production of hollow bunches

in the PS Booster. As discussed in chapter 5, the approach relies on exciting a 1 : 1 dipolar

parametric resonance during the PS Booster acceleration ramp. The following paragraphs aim

to provide the interested reader with the concrete implementation details.

The set-up is based on the LHC1A cycle providing the first batch to the PS (which leads to 48

out of the 72 bunches at PS extraction) for the 25 ns scheme [Damerau 2011]. The goal was to

robustly produce hollow bunches with a minimalistic set of changes to the canonical settings

in order to ease possible operational implementation in the future. The creation procedure has

been tested in ring 3, which is located at the same height as the PS ring so that any unwanted

effect from spurious vertical dispersion in the PS can be ruled out in the experiments.

The parametric resonance is excited at cycle time C575. The starting point is a typical bunch

blown up to a matched 100% emittance of about 1.1eVs. This blow-up happens during a

50 ms window from C500 on, it marks the last intentional longitudinal modification during

the conventional LHC1A cycle. At C575, the bunch has been accelerated to a kinetic energy of

about Ekin = 0.714GHz (cf. the magnetic cycle in figure 5.8).

Usually, the second harmonic system is kept on almost until extraction to the PS. Instead, we

essentially switch off the C04 second harmonic RF system by ramping it down to the minimal

voltage of 0.5 kV between C550 and C575: therefore, we practically have a single-harmonic

bucket available to work with at the start of the excitation, cf. figure A.1.

The acceptance of this bucket is about 1.8 eVs at C575. Figure A.2 shows how scans revealed

an optimal angular distribution of the particles for a excitation duration of 6 synchrotron

periods. The lower right plot shows the synchrotron amplitude projection for each phase

space distribution. For 5 synchrotron periods, the plot increases monotonically towards the

centre (the vertical centre of the surrounding box), the bunch is not yet sufficiently depleted. 7

synchrotron periods excitation duration show more density at lower synchrotron amplitudes

than 6 synchrotron periods, i.e. the bunch tends again to occupy the bucket centre.
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Appendix A. Setting Up Hollow Bunches in the Proton Synchrotron Booster
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(a) The fundamental RF system C02 features the same settings at 8 kV as for the canonical cycle.

300 400 500 600 700 800
ctime [ms]

0

2

4

6

8

v
o
lt

a
g

e
 [

k
V

] inj@C275 extr@C805

LHC1A

hollow

C04 voltage programme (PSB)

(b) The second harmonic RF system C04 is adiabatically ramped down after the blow-up at C550 during
a 20 ms window.

Figure A.1 – Ramping down the second harmonic RF voltage yields a quasi-single-harmonic at
C575 at the beginning of the excitation.
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(a) 5 synchrotron periods

(2× higher phase loop gain lead
to smaller matched emittance)

(b) 6 synchrotron periods (c) 7 synchrotron periods

Figure A.2 – While the parametric resonance depletes the bunch centre, the outer particles
move slower than the inner particles due to the synchrotron frequency spread (coming mainly
from the bucket non-linearities). Scanning the excitation duration yields 6 synchrotron
periods as the optimal value. Below, the bunch is not yet sufficiently depleted, while above,
the inner particles overtake the outer particles and the distribution collapses again.

This behaviour comes from the fact that the phase loop feedback system plays a significant

role the longer the excitation takes. The feedback gain hence needs to be carefully adjusted.

If it is too strong, the phase loop non-linearly compensates for the phase modulation and

strongly affects the resulting distribution in a destructive manner. On the contrary, if the

phase loop gain is too low, the RF systems couple too weakly to the beam phase to align their

reference phase, which results in severe beam losses. Figure A.3 shows the adjustments made

for hollow bunches. Three relevant phases have been optimised:

1. During the (few ms lasting) excitation after C575 the gain needs to be low to allow for a

large blow-up of the emittance during the resonance. (E.g. in figure A.2a, the phase loop

gain was twice as high as in the other two samples, correspondingly the blow-up effect

of the resonance is suppressed due to the feedback system.)

2. Directly after the excitation, the phase loop gain needs to be relatively high to tightly

fix the beam’s centre of gravity, otherwise the distribution continues to slightly oscillate

within the bucket and widens the well-defined steep flanks.

3. During the synchronisation to the PS RF systems after C760, the revolution frequency

and the beam phase are readjusted. The latter process disrupts the hollow distribution

and fills in the depleted centre if both the phase loop and the synchronisation loop gains

are too high.

The shaken distribution needs to be smoothed after the resonance. Two subsequent 50 ms

long high-frequency phase modulation blow-ups are employed at C600 and C700 (figure A.4a).

The C16 RF system is used for this purpose operating on the ninth harmonic. A particle is then
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Appendix A. Setting Up Hollow Bunches in the Proton Synchrotron Booster
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(a) 6 synchrotron periods of phase modulation.
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(b) The carefully adjusted phase loop gain function.

Figure A.3 – Settings for the phase loop offset showing the phase modulation which creates
the hollow bunches and the adapted phase loop gain function.
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exposed to a total RF voltage function

V (t ) =Vh=1 sin(φ)+Vh=9 sin
(
9φ+θ1 + ψ̂sin(ωHF t +θ2)︸ ︷︷ ︸

high frequency phase modulation

)
, (A.1)

depending on the phase φ with which it arrives at the main RF cavity. Due to software

restrictions, the modulation amplitude is fixed during a cycle and therefore determined by the

setting of the first blow-up, ψ̂= 120°.

The high-frequency phase modulation blow-up is a parametrically resonant process (equiva-

lent to the 1:1 resonance we exploit for the hollowing). The resonate condition determines

which particle synchrotron amplitudes are excited to gain energy; it not only depends on

the modulation frequency but also on the angle offset θ1 of the modulation [Cappi, Shaposh-

nikova, and Garoby 1992]. At the time of the experiment, the PS Booster did not trivially allow a

determination of the relative phase between the C16 and the C02 RF systems. This essentially

left us to empirically optimise the blow-up frequencies to work on the relevant phase space

contours. The baseline for the modulation frequency is set to ωHF = 0.91ωS,0 directly after

the excitation, which aims to hit the synchrotron amplitude of the ring to blow it up to larger

emittances as well as to smooth it. The last blow-up operates at ωHF = 0.93ωS,0 aiming to

flatten the slightly convex density profile by filling the central hole with particles from the

inner part of the ring.

This procedure provided a reasonably stable mechanism to create stationary (i.e. filamented)

hollow phase space distributions and transfer them to the PS.
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Appendix A. Setting Up Hollow Bunches in the Proton Synchrotron Booster
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(a) The first blow-up at C500 produces the εz,100% ≈ 1.1eVs bunch. The second one at C600 smooths the
irregular non-stationary distribution after the excitation. Finally, the third blow-up at C700 redistributes
particles to the bunch centre to flatten the longitudinal bunch profile.

300 400 500 600 700 800
ctime [ms]

400

600

800

1000

1200

1400

1600

1800

fr
e
q

u
e
n

c
y
 [

H
z]

inj@C275 extr@C805

LHC1A

hollow

C16 frequency programme (PSB)

(b) The frequency baseline for the high-frequency phase modulation. The first (canonical) blow-up
runs at the linear synchrotron frequency, the second at 0.91ωS,0 and the third at 0.93ωS,0.

Figure A.4 – High-frequency phase modulation with the C16 cavities provides longitudinal
blow-up.
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