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. mbret A refined two-point mode

» First fully turbulent SOL simulations self-consistently coupled to a kinetic neutral model implemented in _ , , simple model
GBS Two-point models describe the relation between target 27 ,
- | | o o (HFS limiter) and upstream (LFS mid-plane) T.. They are - e 4
» Neutral kinetic equation with Krook operators for ionization, recombination and charge-exchange. derived from 1-D models along B and widely used 18l , 7
» Two fluid drift-reduced Braginskii equations are solved for the plasma. experimentally. = . , /
» Development of a more refined two-point model in very good agreement with GBS £16 . /
iy . . . . Simplest two-point model for 7. in the limited SOL is % . /
» Initial study of gas puff imaging with fluctuating neutrals. . Sl 4l /
s L&y /7
» The details of the model in [C. Wersal and P. Ricci, 2015 Nucl. Fusion 55 123014]. Vi (EF Te) — Xe0V| (TS/ZVH Te) = S0 = Z [ong=5 10% non,
/ #ng=25-10"
VHFZVH(HVH) = Sp 1.27 // n@j?:igz,nonn
A model for neutral atoms in the SOL with V) Tew = 0, Qt = el Tet, e & 5, X0 = 3/2Mkg), b’ 2o =5 100 B =3
and constant S and Sp. 1 1.5 2
Kinetic equation with Krook operators Tea/Teq (GBS)
O O fn A refined two-point model is derived from the
- e = —pifa — — f 1 refined model
ot Vx| Mzl vexin (nn ) T vrect D] drift-reduced Braginskii equations 2 . ,
5 /
Viz = Neliz = Ne(Veoiz(Ve)), vex = Nifex = Ni{Vreloex(Vrel))s  Vrec = Nelrec = Ne(Veorec(Ve)) Vi (EF Te) — Xe0 V| (Tf/sz Te) — v Vy(nle) 18! 7 a
S = SqQ — Mviy(Te) Ez F) ’ “
Boundary conditions: particle conservation, i.e. 216" ‘
ou y part val | VHF = VH(nVH) = Sp+ nnViZ(Te) = , ’
fn(Xp, V) = (1 — arefi)M out(Xb) Xin(Xbs V) + refilfn(Xp, V — 2Vp) + fi(Xp, V — 2Yp)] (2) with v Teu = 0 and the assumptions %1.4~ , ’
with oyt the ion and neutral particle outflow, « . the reflection coefficient, vy the velocity ~ v| is linear from —cs to Cs 2 Alen=5 10" non,
perpendicular to the wall. The distribution function of absorbed and re-emitted particles is R , 7% Jeny=5-107
\ 2 e - Cg = \/Teﬁ Tit~ /2Tey YR e
Xin(Xp, V) = Eﬁcos(e) exp (ﬁ) (3)| » Cosine-shaped Sy and Sp, v 4 * no =5-107, B, = 30]
b b > Ny Is decaying exponentially from limiter with A, 1 1.5 2
with 6 the angle between v and vector normal to the surface, and wall temperature Ty,. » Third input parameter, S,,, the total ionization source Tew/Ter (GBS)

[C. Wersal, P. Ricci, and J. Loizu, 2016 submitted to PPCF]

Two assumptions: meutral losses < Tturbulence @Nd Amfp, neutrals << L||,p|asma-

The method of characteristics
The formal solution of Eq. (1) is

b | S(X',v 1
fn(xL,v):/O X, )+5(ri—rLb)fn(x’Lb,v) exp —Z/() Veii(X] )dr'| |dr, (4)

Vi

» Simulation with SOL and edge
=/ f S(X, V) — VCX(x)nn(x)q)i(xv V) T VreC(x)fi(x7 V) > Gas puff from LFS

v g eff(x)/ = Vig(X) /+ vex(X) » Small constant main wall recycling

r=[x - x| -y = 2-10"8cm=3, Ty = 20eV, qo = 3.87, p=! = 500,
ag = 200ps, ps ~ 1Tmm, R/cs ~ 10us

» S, = mnr,(Te) is approximately proportional to light
emission

An integral equation for neutral density is obtained by integrating Eq. (4) over v.

(1) = [ a0k v) = [ (K, (K, ) Komsp(X X, A + i reo(X.) + i s(X.1)  (5)

Kp%p(xj_a X/J_) — /O

> 1

_ 1 rj_ -
oL v e |~ [ ren(x]ar | av. ©)
L i -

Kp—p only depends on plasma quantities. Equation (5) and boundary conditions are spatially
discretized, leading to a linear system of equations

[ n ] _ [Kp—>p Kb%p] . [ I ] n [ M rec ] (7)
rout Kp—>b Kb—>b rout rout,rec + rout,i

S . . :
which is solved with standard methods. nn is used to compute £, and its moments using Eq. (4). Iasma and neutral dehS'ty show anti-correlation

= 0.5 | | |
The GBS code | /’f’ S “N. Y . ) o .

o N — {1 ) E
GBS is a 3D, flux-driven, global turbulence code in limited geometry. 0 (1) 0 5 o
GBS solves the two fluid drift-reduced Braginskii equations [Ricci et al., PPCF 2012], k2 > k||2, . . _ o
d/dt < wgy ‘
on 1 2 _ o4 04 02 0 02 04
a - §[¢a n] + @ [C(pe) - enC(gb)] - vH(m/l\e) + Dn(n) + Sh + Mz — Ni/rec (8) 05 | | 0.5 ' dnn/<nn> ' '
o 1 . . B*_ . 2B oy L
5t =~ B8 = VIS + Vi + = C(P) + Da(@) — e (9)
aVH 1 e . e T 1.71 200 ¢
ate = Bl Vel = VieViVie + oymel HGVW B m:nv“n B menv” Te + Dy (Ve) (10) . . .
n. ” Evaluating S;, without neutral density 100!
oy Wen + 2042)(Vin = Ve) fluctuations leads to relative errors of up to
oV 1 1 n 0/ ; ol N 0ol
az‘"l = — 5o, vl = ViV v - VP Dy, (v)i) + F”(yiz + vex) (Vi — Vi) (11)| 20 % in the emission rate.
0T, 1 AT, [T, 7 2T, [0.71_ . Si; = Mnry,(Te) -100 |
— = — — T, —C(Te) — - 12
o = gl Tl = VieV) Te+ 32 [ ~C(n) + 5C(Te) eC(¢)] + 35 [ o VI ”VIVIe] (12) Siz(ny) = (Mn)Nriz(Te) 200
n 2 4 n 2 )
+D1(Te) + Dr(Te) + S7, + ;”Viz [—gEiz — Te + MeVje (Ve - §Vn)] - F”Venme§vue(vnn ~ Vle) . .
ot 1 4T, T, 5 2T [1_ . -200 0 200
=~ glo =iV Ti+ 35 [C( Te) + —-C(n) = 3C(T) - eC((b)] + 3, [gvlh - an,-] (13) R = fo
1
+Dr(Ti) + DHTi(Ti) + St + %(Viz + Vex) [Tn — T+ §(VHn _ Vi)2]
Vig=w, p.=ps/R, Vif =by-Vf, &=w+7ViT, p=n(Te+rT)
» A set of fluid boundary conditions applicable at the magnetic pre-sheath entrance where the magnetic | | | 1.57 TS —HFS
field lines intersect the limiter is used [Loizu et al., PoP 2012] Repeat a HFS gas puff simulation without ). (o). (T —only (S,)
| neutral fluctuations T
Some af:hlevem.ents of GBS (.see also .http://sr?c.epfl.ch/rese.arch_.theory_plasma_edge): . (left) Average ny, v, and T, 1+
» SOL width scaling as a function of dimensionless/engineering plasma parameters (S, = (mp)nr.,) S Ry MV
» Origin and nature of intrinsic toroidal plasma rotation — no significant differences 05 0.5¢
» Non-linear turbulent regimes in the SOL » (right) Average S;, = (n,nr.,) and
» Mechanism regulating the equilibrium electrostatic potential neglect other neutral-plasma terms
— large differences 0 | | | | 0 | | | |
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