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In brief

I First fully turbulent SOL simulations self-consistently coupled to a kinetic neutral model implemented in
GBS.

I Neutral kinetic equation with Krook operators for ionization, recombination and charge-exchange.
I Two fluid drift-reduced Braginskii equations are solved for the plasma.
I Development of a more refined two-point model in very good agreement with GBS
I Initial study of gas puff imaging with fluctuating neutrals.
I The details of the model in [C. Wersal and P. Ricci, 2015 Nucl. Fusion 55 123014].

A model for neutral atoms in the SOL

Kinetic equation with Krook operators
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νiz = neriz = ne〈veσiz(ve)〉, νcx = nircx = ni〈vrelσcx(vrel)〉, νrec = nerrec = ne〈veσrec(ve)〉

Boundary conditions: particle conservation, i.e.

fn(xb,v) = (1− αrefl)Γout(xb)χin(xb,v) + αrefl[fn(xb,v− 2vp) + fi(xb,v− 2vp)] (2)

with Γout the ion and neutral particle outflow, αrefl the reflection coefficient, vp the velocity
perpendicular to the wall. The distribution function of absorbed and re-emitted particles is
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with θ the angle between v and vector normal to the surface, and wall temperature Tb.

Two assumptions: τneutral losses < τturbulence and λmfp, neutrals� L‖,plasma.

The method of characteristics
The formal solution of Eq. (1) is
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S(x,v) = νcx(x)nn(x)Φi(x,v) + νrec(x)fi(x,v)

νeff(x) = νiz(x) + νcx(x)

r ′ = |x− x′|

An integral equation for neutral density is obtained by integrating Eq. (4) over v.
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Kp→p only depends on plasma quantities. Equation (5) and boundary conditions are spatially
discretized, leading to a linear system of equations[
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which is solved with standard methods. nn is used to compute fn and its moments using Eq. (4).

The GBS code

GBS is a 3D, flux-driven, global turbulence code in limited geometry.
GBS solves the two fluid drift-reduced Braginskii equations [Ricci et al., PPCF 2012], k2
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I A set of fluid boundary conditions applicable at the magnetic pre-sheath entrance where the magnetic
field lines intersect the limiter is used [Loizu et al., PoP 2012]

Some achievements of GBS (see also http://spc.epfl.ch/research_theory_plasma_edge):
I SOL width scaling as a function of dimensionless/engineering plasma parameters
I Origin and nature of intrinsic toroidal plasma rotation
I Non-linear turbulent regimes in the SOL
I Mechanism regulating the equilibrium electrostatic potential

A refined two-point model

Two-point models describe the relation between target
(HFS limiter) and upstream (LFS mid-plane) Te. They are
derived from 1-D models along B and widely used
experimentally.

Simplest two-point model for Te in the limited SOL is
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A refined two-point model is derived from the
drift-reduced Braginskii equations
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with ∇‖Te,u = 0 and the assumptions
I v‖ is linear from −cs to cs
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Te,t + Ti ,t ≈
√

2Te,t

I Cosine-shaped SQ and Sn
I nn is decaying exponentially from limiter with λmfp
I Third input parameter, Siz, the total ionization source
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[C. Wersal, P. Ricci, and J. Loizu, 2016 submitted to PPCF ]

Neutral fluctuations and gas puff imaging

I Simulation with SOL and edge
I Gas puff from LFS
I Small constant main wall recycling
I n0 = 2 · 1013cm−3, T0 = 20eV, q0 = 3.87, ρ−1

? = 500,
a0 = 200ρs, ρs ≈ 1mm, R/cs ≈ 10µs

I Siz = nnnriz(Te) is approximately proportional to light
emission

Core

Edge

SOL

Limiter

Plasma and neutral density show anti-correlation

Evaluating Siz without neutral density
fluctuations leads to relative errors of up to
50% in the emission rate.

Siz = nnnriz(Te)

Siz〈nn〉 = 〈nn〉nriz(Te)

Towards a simpler neutral model

Repeat a HFS gas puff simulation without
neutral fluctuations
I (left) Average nn, vn, and Tn

(Siz = 〈nn〉nriz)
→ no significant differences

I (right) Average Siz = 〈nnnriz〉 and
neglect other neutral-plasma terms
→ large differences
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