
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Dr M. Rajman, président du jury
Prof. P. Fua, Prof. V. Lepetit, directeurs de thèse

Prof. S. Mallat, rapporteur
Dr G. Malandain, rapporteur
Prof. M. Unser, rapporteur

Multiscale Centerline Extraction Based on Regression and 
Projection onto the Set of Elongated Structures

THÈSE NO 7241 (2016)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 2 DÉCEMBRE 2016

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE VISION PAR ORDINATEUR

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2016

PAR

Amos SIRONI





Abstract

Automatically extracting linear structures from images is a fundamental low-level vision

problem with numerous applications in different domains. Centerline detection and radial

estimation are the first crucial steps in most Computer Vision pipelines aiming to reconstruct

linear structures.

Existing techniques rely either on hand-crafted filters, designed to respond to ideal profiles

of the linear structure, or on classification-based approaches, which automatically learn to

detect centerline points from data.

Hand-crafted methods are the most accurate when the content of the image fulfills the

ideal model they rely on. However, they lose accuracy in the presence of noise or when the

linear structures are irregular and deviate from the ideal case.

Machine learning techniques can alleviate this problem. However, they are mainly based

on a classification framework. In this thesis, we show that classification is not the best

formalism to solve the centerline detection problem. In fact, since the appearance of a

centerline point is very similar to the points immediately next to it, the output of a classifier

trained to detect centerlines presents low localization accuracy and double responses on

the body of the linear structure.

To solve this problem, we propose a regression-based formulation for centerline detection.

We rely on the distance transform of the centerlines to automatically learn a function whose

local maxima correspond to centerline points. The output of our method can be used to

directly estimate the location of the centerline, by a simple Non-Maximum Suppression

operation, or it can be used as input to a tracing pipeline to reconstruct the graph of the

linear structure. In both cases, our method gives more accurate results than state-of-the-art

techniques on challenging 2D and 3D datasets.

Our method relies on features extracted by means of convolutional filters. In order to

process large amount of data efficiently, we introduce a general filter bank approximation

scheme. In particular, we show that a generic filter bank can be approximated by a linear

combination of a smaller set of separable filters. Thanks to this method, we can greatly

reduce the computation time of the convolutions, without loss of accuracy. Our approach

is general, and we demonstrate its effectiveness by applying it to different Computer Vision

problems, such as linear structure detection and image classification with Convolutional

Neural Networks.



We further improve our regression-based method for centerline detection by taking advantage

of contextual image information. We adopt a multiscale iterative regression approach to

efficiently include a large image context in our algorithm. Compared to previous approaches,

we use context both in the spatial domain and in the radial one. In this way, our method is

also able to return an accurate estimation of the radii of the linear structures. The idea of

using regression can also be beneficial for solving other related Computer Vision problems.

For example, we show an improvement compared to previous works when applying it to

boundary and membrane detection.

Finally, we focus on the particular geometric properties of the linear structures. We observe

that most methods for detecting them treat each pixel independently and do not model

the strong relation that exists between neighboring pixels. As a consequence, their output

is geometrically inconsistent. In this thesis, we address this problem by considering the

projection of the score map returned by our regressor onto the set of all geometrically

admissible ground truth images. We propose an efficient patch-wise approximation scheme

to compute the projection. Moreover, we provide conditions under which the projection

is exact. We demonstrate the advantage of our method by applying it to four different

problems.

Keywords: Centerline Detection, Linear Structure Reconstruction, Multiscale Detec-

tion, Radius Estimation, Distance Transform, Regression, Iterative Regression, Boundary

Detection, Separable Convolution, Tensor Decomposition, Membrane Detection, Nearest

Neighbor Projection, Junction Detection.



Résumé

Extraire automatiquement des structures linéaires dans des images est un problème fonda-

mental pour de nombreux systèmes de vision, avec des applications dans différents domaines.

La détection des lignes médianes et l’estimation du rayon en sont les premières étapes,

cruciales pour le succès du reste de l’extraction.

Les techniques existantes reposent soit sur des filtres prédéfinis, conçus pour répondre à un

profil idéal de la structure linéaire, ou sur des approches de classification qui apprennent

automatiquement à détecter les points de la ligne médiane à partir d’exemples annotés

manuellement.

Les méthodes aux critères prédéfinis sont les plus précises quand le contenu de l’image

correspond au modèle idéal sur lequel elles reposent. Toutefois, elles perdent leur précision

en présence de bruit ou lorsque les structures linéaires sont irrégulières et s’éloignent du

cas idéal.

Les techniques d’apprentissage automatique peuvent atténuer ce problème. Cependant,

elles sont principalement fondées sur des méthodes de classification. Dans cette thèse,

nous montrons que la classification n’est pas la meilleure manière d’affronter le problème

de détection des lignes médianes. En effet, comme l’apparence d’un point sur la ligne

médiane est très similaire à celle des points immédiatement voisins, le classificateur, exercé

à détecter les lignes médianes, ne parvient pas à les localiser précisément et donne souvent

des réponses multiples pour une même ligne.

Pour résoudre ce problème, nous proposons une méthode fondée sur la régression pour

détecter la ligne médiane. En utilisant la transformée de distances des lignes médianes,

notre méthode apprend une fonction dont les maxima locaux correspondent aux points de la

ligne médiane. La réponse de notre algorithme peut être utilisée pour estimer directement la

position de la ligne médiane, par une simple opération de suppression des non-maxima, ou

encore comme point d’entrée dans une pipeline de délinéation pour reconstituer le schéma

de la structure linéaire. Dans les deux cas, notre méthode donne de meilleurs résultats que

les techniques de l’état de l’art sur des bases de données complexes en 2D et en 3D.

Notre méthode repose sur des descripteurs extraits avec des filtres convolutionnels. Afin de

traiter un grand nombre de données efficacement, nous introduisons un procédé général

d’approximation d’un ensemble de filtres. En particulier, nous montrons que, quel que

soit l’ensemble de filtres, une combinaison linéaire d’un ensemble plus petit de filtres

séparables en donne une très bonne approximation. Grâce à cette méthode, on peut



réduire considérablement le temps de calcul des convolutions, sans perte de précision. Notre

approche est générale et nous montrons son efficacité en l’appliquant à différents problèmes

de vision par ordinateur, notamment la détection de structures linéaires mais aussi la

classification d’images avec des réseaux de neurones profonds.

Nous améliorons encore notre méthode de détection de la ligne médiane par régression, en

exploitant le contexte de l’image. Nous adoptons une approche de régression itérative à

plusieurs échelles pour réussir à inclure un grand contexte d’images dans notre algorithme.

A la différence des approches précédentes, nous utilisons le contexte à la fois dans le domaine

spatial et radial. De cette manière, notre méthode est également capable de fournir une

estimation précise des rayons des structures linéaires. Notre idée d’employer la régression

peut aussi être utile pour résoudre d’autres problèmes similaires de vision par ordinateur.

Par exemple, nous montrons une amélioration par rapport aux travaux précédents quand

nous l’appliquons à la détection des contours et des membranes.

Pour finir, nous nous concentrons sur les propriétés géométriques particulières des structures

linéaires. Nous observons que la plupart des méthodes de détection traitent chaque pixel

indépendamment et ne modélisent pas la forte relation qui existe entre pixels voisins. En

conséquence, leur résultat peut être incohérent d’un point de vue géométrique. Dans cette

thèse, nous traitons ce problème en prenant en compte la projection de l’image obtenue avec

notre régresseur sur l’ensemble de toutes les images-témoin servant à la vérification, qui

sont géométriquement admissibles. Nous proposons un procédé d’approximation efficient

grâce à une décomposition en mosaïque pour réaliser la projection rapidement. De plus,

nous établissons aussi des conditions dans lesquelles la projection est exacte. Nous montrons

l’avantage de notre méthode en l’appliquant à quatre problèmes différents.

Mots clefs : Détection de la ligne médiane, Reconstruction de structures linéaires, Détec-

tion multiscalaire, Estimation du rayon, Transformée de distances, Régression, Régression

itérative, Détection de contours, Convolution séparable, Décomposition de tenseurs, Détec-

tion des membranes, Projection du voisin le plus proche, Détection des points de jonction.
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CHAPTER 1

Introduction

For many tasks in scene analysis, there may not exist general solutions inde-

pendent of purpose or intended application. However, for the task of linear

delineation, one can easily find image subsets for which a panel of human

observers would be almost unanimous in their interpretation without having to

agree on the explicit criteria underlying their decision; our goal is to produce a

computer system that can perform the delineation task at close to human levels

for at least these more obvious cases, especially where semantic knowledge is

not required.

In this way M.A. Fischler and H.C. Wolf begin their 1983 “A General Approach to

Machine Perception of Linear Structure in Imaged Data” [65]. 33 years later, these sentences

are still relevant and help us to understand the fundamental nature of the linear delineation

problem.

Automated linear delineation in images was one of the first problems addressed by

Computer Vision scientists [166, 159, 63, 64]. This is in part due to the large number of

applications of such a system (Sec. 1.1), but also because of the inherent ability of the

human visual system to recognize linear structures without the need of “explicit criteria”,

and despite the huge variability that such structures show in images (Fig. 1.1)

Its basic nature makes linear delineation a very interesting but also challenging problem

and, even though huge progress has been made in the field of Computer Vision and of

linear delineation in particular, a “computer system that can perform the delineation task

1



CHAPTER 1. INTRODUCTION

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Linear structures are extremely common in natural and man made systems.
Their aspect can vary remarkably depending on the nature of the structure or of the
acquisition technique. Nevertheless, a human observer can easily detect them, with high
consistency among different observers. (a) Minimum intensity projection of a brightfield
image stack containing dendrites; (b) Retinal fundus image showing blood vessels (source:
DRIVE dataset [185]); (c) RGB photograph of a fungal mycelium (source: flickr.com/
photos/bushman_k/6177594429); (d) Cracking in asphalt pavement (source: en.wikipedia.
org/wiki/File:Asphalt_deterioration.jpg); (e) Aerial image of a New York neighborhood;
(f) Satellite image of the Martial Nanedi Valles (source: ESA, original image at sci.esa.int/
mars-express/39161-nanedi-valles-valley-system/). This image, as most of the images in
this thesis, is best viewed in color.

2



1.1. THE CENTERLINE DETECTION PROBLEM: DEFINITION, APPLICATIONS
AND CHALLENGES

at close to human levels” still does not exist. In this thesis we set ourselves the same goals

as the authors of [65] and we focus more specifically on the Centerline Detection task.

We present a novel way to look at the centerline detection problem, by reformulating

it as a regression problem. Our approach is significantly more accurate and general than

previous methods for the same task. Moreover, we show that using the centerlines detected

with our method as input to complete delineation algorithms increases the final performance.

Before entering into the details of the method, which will be described in the next

chapters, we first define our problem and describe the main challenges and some applications

of a linear delineation system, in next section. Then, in Sec. 1.2, we list the main

contributions of the thesis and outline its content in Sec. 1.3.

1.1 The Centerline Detection Problem: Definition, Ap-

plications and Challenges

Linear structures, also referred to as curvilinear structures or "line-like" structures, are

extremely common in physical, biological and artificial systems. They can be rivers in

satellite images, axons and dendrites in the brain, road networks or cracks in buildings.

As a consequence their study is required in many fields, such as neuroscience, biology and

cartography.

In addition, in the last decades, the capabilities and the efficiency of image acquisition

systems, such as electronic microscopy, high-resolution cameras, etc., have considerably

increased, making it possible to collect a very large amount of data for the study of linear

structures. However, because no reliable fully-automated system for the extraction of

curvilinear structure is available, the exploitation of such data is still limited by the time

consuming and tedious task of manual annotation.

In order to build a reliable and fully automated linear delineation system, we start by

defining our problem. We again rely on [65] and adopt their definition:

We define linear delineation as the task of generating a set of lists of points,

for a given 2-D image, such that the points in each list fall sequentially along

what any reasonable human observer would describe as clearly visible "line-like"

structure in the image.

We extend this definition, by considering not only 2D images, but general n-dimensional
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CHAPTER 1. INTRODUCTION

images, such as 3D biomedical image stacks or 4D spatiotemporal sequences. Moreover, the

list of points generated by the computer system should correspond to the center (also called

skeleton or ridge) of the linear structure, we will refer to it as the centerline. Finally, to

each point in the list should be associated the value corresponding to the width (also called

radius or scale) of the linear structure in that point. We will refer to as scale-space the

(n+ 1)-dimensional space, where the first n dimensions are spatial coordinates, indicating

physical points in the image, and the last dimension is the radial coordinate, indicating the

value of the radius of the linear structure.

From the definition of [65], we see that linear delineation is a low level ability of the

visual system: “any reasonable human observer” is used in the definition to intuitively

denote a linear structure. This shows how basic the concept of linear structures for a

human observer is, and as a consequence, how difficult it is to find a more formal definition.

In fact, a general definition of a linear structure should account for all the possible sources

of variability present in images. This variability can be due to the real aspect of the

linear structure, or to artifacts, such as structured and unstructured noise, occlusions,

discontinuities, irregular widths, etc.

For this reason, in this thesis, we will rely on the “reasonable human observer”, rather

than on a mathematical model, to discriminate linear structures and to evaluate the

performance of a computer system. More precisely, we formulate centerline detection as a

Machine Learning problem. A set of images containing linear structures will be labeled

by human observers and used to train the system. Another set of images, also annotated

by human observers, will be used to test the performance of the system by comparing the

points it detects as centerlines, against the points labeled by the human observers. We will

refer to the labeled images as manual annotations or ground truth.

The main applications we will consider in this thesis are the segmentation of biomedical

data and the detection of roads in aerial images. However, our method is general and can

be applied to any other image containing linear structures. Moreover, as we will show, it

can also be applied to related problems, provided that training data is available, such as

boundary and edge detection. In the following, we discuss in more detail some applications

and use them to illustrate relevant challenges associated to the linear structure detection

problem.
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1.1. THE CENTERLINE DETECTION PROBLEM: DEFINITION, APPLICATIONS
AND CHALLENGES

1.1.1 Neurite Tracing: The Data Size Challenge

Modeling the brain is one of the main challenges of this century [155]. Advances in this

field could lead to the discovery of better treatments or of a cure for neurodegenerative

diseases. Computer Science algorithms could be inspired by the functioning of biological

neural networks to create systems with similar or better performance than animals brain.

More broadly, understanding the principles and the functioning behind the human brain

would be a major advance for human knowledge, with important consequences both from

the scientific, but also philosophical and ethical point of view.

Because of these, and many other reasons, big efforts have been made by the scientific

community to better understand the brain [109, 132, 101, 119, 84, 36, 6, 133, 59]. A big part

of the research in this field is dedicated to the study of the morphology and connectivity of

neurons. This research relies on the acquisition and annotation of large amount of data

from samples, with the intention to extract meaningful statistics from them.

Amazing imaging techniques [47, 142, 124, 87] have been developed to produce better

and better quality images of the brain, under different aspects, at different scales and with

greater and greater resolution. Considering the number of neuroscientific articles published

every year and the amount of data generated per study [199], we can estimate that several

terabytes of raw data are generated every year with these techniques.

One of the main obstacles today is represented by the time needed by human experts

to accurately annotate the objects contained in the data. This step is necessary in order to

extract relevant quantitative information from them.

A linear structure delineation algorithm would be of great help to automatically extract

neurons, dendrites and axons from images or image stacks representing sections of the brain.

Thus, to relieve neuroscientists from the tedious and time consuming task of manually

annotating such data, and allowing them to mainly focus on the analytical and theoretical

part of the research.

A delineation system of this kind should be robust enough to deal with the complex

shapes that different neurons have and that the different imaging techniques show. Moreover,

given the amount of data to be processed, efficiency is a fundamental requirement for a

delineation algorithm to be of practical use in this field.

In this thesis, we will develop an accurate and general algorithm for linear structure

extraction, by always keeping in mind the importance of fast computation. For example,

in Chap. 4, we exploit separable convolution to speed up the extraction of features from
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n-dimensional images. In Chap. 6, we propose an efficient approximation techniques for

the projection of images into the set of elongated structures. We will show that in this way

we can obtain a considerable speed up over standard methods, with better accuracy.

1.1.2 Blood Vessel Reconstruction: Localization Accuracy

The reconstruction and analysis of blood vessels is required in many applications, such as

computer assisted intervention or in the diagnosis of vascular diseases [203, 134, 217, 99, 4, 7].

For these applications, an accurate localization of the centerline and of the width of the

blood vessels is of crucial importance for the correct analysis of the image and to help the

medical doctor to take the most appropriate measures for the patient.

Low resolution, artifacts and different sources of noise can compromise the accuracy

of standard detection techniques. Also, Machine Learning algorithms based on pixel

classification suffer from low localization accuracy because of the similar aspect of a

centerline pixel and pixels immediately next to it.

In this thesis, we reformulate centerline detection as a regression problem (Chap. 3). In

this way, we enforce the output of our method to have well localized maxima corresponding

to the centerline pixels. Thanks to our approach, we obtain results that are more accurate

than classification and hand-crafted methods.

1.1.3 Road Detection: The Importance of Context

Another class of images where linear structures often appear is represented by aerial and

satellite images. Roads, rivers, fields boundaries are some examples of linear structures

present in such images. The automatic detection of these objects can be useful in numerous

domains, from autonomous navigation to agriculture and environment monitoring [41, 79,

112, 208, 205]

One of the applications we focus on in this thesis is road centerline detection. The

great diversity of aspects of roads and of objects in the background makes it hard to find a

general road detector based only on local cues.

Studying the road detection problem, we realize how important it is to consider large

portions of the image in order to be able to discriminate roads and non-roads pixels. In

fact, many background objects, such as roof tops, have similar local appearance to roads.

Moreover, occlusions, due to trees or cars, commonly occur.
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(a) (b)

Figure 1.2: Cellular membranes in 2D slices of EM stacks appear as linear structures.
Extracting the membranes from the images is a beneficial preprocessing step to correctly
segment the different cells in the stack. In this kind of applications, preserving the topology
of the membranes is more important than accurate localization or width estimation. (a)
Sections from a serial section Transmission Electron Microscopy (ssTEM) dataset of the
Drosophila first instar larva ventral nerve cord. (b) Human labeling of image (a), black
pixels corresponds to membranes pixels. Source: ISBI dataset [35].

As a consequence, a global approach, or at least a large context, should be considered

in order to reconstruct road networks reliably.

In this thesis, we propose a scale-space context-aware method for linear structures

detection (Chap. 5). We show the advantage of using this context-based approach to obtain

more robust and consistent detections of the centerlines and estimations of their radii.

1.1.4 Membrane Detection: Junctions and Topological Relevant

Features

Membranes in 3D Election Microscope (EM) stacks appear as linear structures when

considering 2D sections of the stack (Fig. 1.2). Detecting the membranes in these images is

one of the fundamental prerequisites for correctly segment the volume in disjoint regions,

each corresponding to a separate cell or organelle in the biological sample [38, 126, 12].

Many medical and biological studies rely on such segmentations [97, 98, 187, 33].

In this kind of applications, it is not accurate localization and accurate width estimation

that matters the most, but rather the correct reconstruction of the connections of the

linear structure or the correct separation of the different regions [95, 12]. In other words,

the reconstruction returned by the computer system should have the same topology of the

objects of interest, and small localization displacements are tolerated.
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In such situation, some characteristic features of linear structure networks, such as

junctions, branching points and crossings, become of great importance for the correct

interpretation of the connectivity. Although rare events in the image, these topological

relevant points are very important parts of line networks. Failing to correctly detect them

can change the connectivity of the network and therefore generate a reconstruction that,

even if close to the real structure on the pixel level, is completely wrong from the topological

point of view.

Model-based methods [67, 113] often fail to robustly detect such points because their

appearance deviate from the ideal model of the linear structure they rely on. Machine

Learning methods [76, 204] are also less accurate on these points because of the sparsity of

these objects in images and therefore their relative rare occurrence in the training set.

In order to accurately detect junctions and obtain more consistent results from the

topological point of view, in this thesis, we refine the output score of a linear structure

detector by projecting it onto the set of all possible linear structures ground truth images

(Chap. 6). We will show that this projection can be approximated by a nearest neighbor

projection of image patches, allowing us to efficiently obtain a solution.

1.2 Contributions

In this thesis, we consider the linear structure detection problem and, in order to tackle

the challenges described in the previous section, we propose a general algorithm for

automatically extracting the centerline and estimating the radius of the linear structures.

Previous approaches rely either on an ideal model of the linear structures or on binary

classification techniques. Model-based approaches depend on filters designed to respond to

locally cylindrical structures [67, 171, 110, 139, 114, 210], optimized for specific profiles [93].

They are accurate when the structures of interest in the image follow the ideal model

they rely on. However, they lose accuracy in presence of noise, occlusions, irregular cross

section, non-uniform intensity or other artifacts. In practice, it is difficult to define a model

general enough to include all possible sources of variability that linear structures can have

in images, without having to specify and tune a large number of parameters.

Machine learning-based approaches, although requiring manually annotated data for

the training stage, can overcome the limitation of model-based ones. They mainly rely on

a binary classification frameworks [169, 76, 23]. However, as we will show in Chap. 3, they

show low localization accuracy when applied to centerline detection. This is because it is
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hard for the classifier to distinguish points on the centerline itself from those immediately

next to it. Moreover, these approaches usually only focus on detecting the centerlines and

do not provide an estimation of the radii.

In this thesis, we show that these problems can be solved by reformulating centerline

detection and radius estimation in terms of a regression problem. More precisely, we train

several regressors to return distances to the closest centerline in scale-space, each regressor

being trained for a specific scale. In this way, performing Non-Maximum Suppression

on their output yields both centerline locations and corresponding radii. We will show

that, on very irregular structures, it outperforms the powerful Optimally Oriented Flux

(OOF) approach with and without the anti-symmetry term [113, 114], which is widely

acknowledged as one of the best among those relying on hand-designed filters; a very recent

extension of it [194] designed to improve its performance on irregular structures; and a

similarly recent classification-based method [23].

In order to extract features from the images used as input to the regressor, we consider

a convolutional filter learning approach [163]. We show how standard tensor decomposition

techniques can be used to learn n-dimensional filter banks that are adapted for the linear

detection problem. Moreover, we introduce a general filter bank approximation scheme and

show that large filter banks can be approximated accurately by a smaller set of separable

filters. Thanks to this approach we can speed up the feature extraction step considerably.

Moreover, we introduce an additional refinement, inspired by the Auto-Context algo-

rithm [193], which was originally proposed for image segmentation. We extend this method

to a multiscale framework, considering both spatial and radial contextual information.

More precisely, we use the output of the original regressors as features to a layer of new

ones. By iterating this process, we can progressively correct earlier mistakes by exploiting

contextual information across a widening portion of the image. In particular, this helps

eliminate false detections on the background, to fill gaps in the linear structures and to

obtain more accurate radii estimation.

Even though this approach is significantly more accurate than previous work, it es-

sentially classifies individual pixels or voxels and does not explicitly model the strong

relationship that exists between neighboring pixels. As a result, isolated erroneous re-

sponses, discontinuities, and topological errors are still present in the resulting score maps,

in particular close to junctions. To overcome these limitations, we show that we can induce

global spatial consistency on the regressor score map by systematically replacing pixel

neighborhoods by their nearest neighbors in a set of ground truth training patches. This

is in the spirit of algorithms for image denoising and inpainting that search for nearest
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neighbors within the image itself [44, 43, 128]. It is also closely related to structured

learning approaches [74, 54]. By contrast, in our method we compute distances in terms of

the ground truth and score image patches and we will show that this approach is more

accurate than previous work, especially near junctions. Furthermore, assuming that the set

of all admissible ground truth images is well represented by the set of training patches, we

formally show that our method is equivalent to projecting the score map onto the set of all

admissible ground truth maps.

We will also evaluate the ability of our method to trace the linear structures. In

particular, we will demonstrate that feeding our output as input to a complete tracing

algorithm [196] increases final performance.

Finally, the idea of using regression instead of classification is generic and can be applied

to other problems. For example, in contour detection, due to low resolution, blurring,

and other image artifacts, the exact boundary location is often hard to find. Training a

classifier to separate boundary points from others typically produce multiple responses on

the boundaries and poor localization accuracy. We will show that applying our approach

to detect boundaries in natural images avoid these problems.

In summary, these are the main contributions of this thesis:

• We reformulate centerline detection as a regression problem. In particular, starting

from the distance transform of the centerline, we define a function whose local maxima

correspond to centerline pixels. Then, by training a regressor to predict this function

from a given image, we can extract centerlines and corresponding radii by a simple

Non-Maximum Suppression operation. This method is discussed in Chap. 3.

• To accelerate the convolutional feature extraction step, we develop a general technique

to approximating an arbitrary filter bank as a linear combination of a smaller set of

separable filters. Our method relies on tensor decomposition techniques and allows us

to process large n-dimensional images with no significant significant loss in accuracy

(Chap. 4).

• We show and exploit the importance of contextual information for the linear structure

detection problem by introducing a scale-space context-aware approach for centerline

detection and radial estimation (Chap. 5).

• Finally, we propose an efficient approximation method for projecting score maps onto

the set of the ground truth images of elongated structures. We provide conditions

for optimality of the projection and, by applying it to linear structure detection, we

obtain more geometrically consistent results. This method is presented in Chap. 6.
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1.3 Thesis Outline

The rest of the thesis is organized as follows: In Chap. 2, we discuss related work on

centerline detection, linear structure segmentation and boundary detection. In particular,

we propose a taxonomy for characterizing this class of methods. In Chap. 3, we formalize

multiscale centerline detection as a regression problem. We also introduce the datasets

and the evaluation metrics used in our experiments. The separable filter approximation

framework, used for feature extraction, is described in Chap. 4. In Chap. 5, we describe

our context-aware method and apply it in conjunction with a tracing algorithm to show the

utility of an accurate centerline detection algorithm for a complete linear structure tracing

pipeline. In Chap. 6, we describe how the particular structure of the set of elongated

structures can be exploited to approximate image projections efficiently. We give sufficient

conditions for the optimality of the projection. We apply this method to improve the

results of our regression-based method, in particular close to junctions. Finally, to prove

the generality of our approach, we apply it to boundary detection in natural images and

3D image stacks, showing an improvement also in this situation. We conclude the thesis

with Chap. 7 by discussing possible further improvements and future work.
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CHAPTER 2

Related Work

In this chapter, we review previous work about the centerline detection problem. We

also discuss techniques designed for boundary detection in natural images and membrane

detection in biomedical image stacks, which relate to our work. We start by describing the

general characteristics of these methods and then describe in detail the ones most relevant

to our work.

Centerline and boundary detection methods take an image as input and share the

common goal of producing as output another image, called score map or score image, in

which pixel values represent the likelihood that a centerline point or a boundary point lies

at that pixel. Once the score map is computed, centerlines or boundaries can be directly

extracted from the score map by a Non-Maximum Suppression (NMS) operation, followed

by thresholding [157, 37]. Otherwise, in the case of centerline detection, the score map

can be used as input to a tracing algorithm [5, 18, 214, 206, 19, 195] to obtain a graphical

representation of the linear structure. In the case of membranes and boundaries, instead,

the score map can be fed to a watershed or more advanced segmentation algorithm [72, 11].

In general, centerline and boundary detection algorithms are composed of two main

steps: 1. A feature extraction step, which creates a representation of the image where
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CHAPTER 2. RELATED WORK

Figure 2.1: Our taxonomy of centerline and boundary detection pipelines. We divide the
pipelines in two main steps: the feature extraction step and the scoring step. We distinguish
between local, context-aware and global methods; between methods with hand-crafted or
learned features or scoring function; and between pixel-wise, patch-wise and image-wise
methods. See text for a detailed description.

the structures of interest can be easily discriminated from other structures present in the

image; 2. A scoring step, in which, by taking advantage of the representation created by

the feature extraction step, the structures of interest are enhanced and the background

suppressed. These two steps can characterize specific algorithms in the following ways

(Fig. 2.1):

1. Feature Extraction Step. Hand-Crafted vs. Learned Features. For each pixel in

the input image, a set of features is extracted from a local neighborhood of the pixel

(e.g. by convolution with a filter bank). Depending on the algorithm, the features

can be hand-crafted, as for [67], learned, as for [23], or a combination of both, as

in [162]. Hand-crafted features are based on an ideal profile of the linear structure

or of the boundary and work best when the assumptions they rely on are satisfied.

Learned features are general, in the sense that they do not make specific assumptions

on the shape of the linear structure, but require training data and often need to be

recomputed for every dataset.

Local vs. Context-Aware Features. The size of the local neighborhood used to compute

the features can vary from few pixels, as for early operators [56, 34] or be very large,

as in the case of methods exploiting contextual information [38, 176]. In the limiting

case, it can even coincide with the whole image [211, 165]. Using a small size has the

advantage of being computationally efficient, but context-aware or global approaches

can solve ambiguities that are not possible to discriminate only with local information.

However, they have larger computational cost or rely on approximations to make

computation feasible.

Deep vs. Shallow Features. In Deep Learning methods, descriptors are computed by
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repeating iteratively simple feature operators. In this way, general functions can

be represented using less parameters compared to a shallow architecture. This is

the case of Convolutional Neural Networks (CNNs) [116], where convolutions and

non-linearities are stacked in consecutive layers. Deep architectures generally work

better than shallow ones for high level vision tasks [111, 125, 85], but require huge

amount of training data in order to generalize well.

2. Scoring Step. Hand-Crafted vs. Learned Score. Once the features are computed,

they are combined in a specific way to obtain the score map. In the case of hand-

crafted methods, the score function is either designed by hand, as in [67], where

the eigenvalues of the Hessian matrix are weighted using a specific combination of

exponential functions, or deduced mathematically to fulfill some optimality criteria,

as in [34, 93, 113].

By contrast, in the case of Machine Learning based approaches [76, 216, 10, 160, 54],

the scoring function is automatically learned. For example, in [160] Sparse Code

Gradients are combined using a linear SVM to classify boundary pixels. Learning

the function allows to automatically select the most relevant features for a given task

and dataset. However, in opposition to hand-crafted functions, their results are not

easy to interpret.

Pixel-Wise vs. Patch-Wise Score. The score map is often computed for each pixel

independently, as for pixel-wise classifiers [76, 160] and hand-crafted methods [67, 113].

This approach has the advantage of being computational efficient. However, it does

not take advantage of the strong correlation that exists between nearby pixels. Other

approaches instead directly predict the shape of the linear structure, or of the

boundary, for an entire patch around a pixel. By averaging the patches on their

overlapping areas, these methods obtain more consistent results [74, 54, 81]. In

the limiting case, the whole image, or very large portions of it, can be directly

predicted [211, 165].

Finally, steps 1 and 2 can be repeated iteratively, as in cascade of classifiers or Auto-Context

based approaches [193, 176] to obtain more accurate results at every iteration (Fig. 2.1).

In the following we discuss some of these methods more in details. We divide centerline

detection methods into two main categories, those that use hand-designed filters and those

that learn them from training data. We review them in Sec. 2.1 and Sec. 2.2 respectively.

We discuss work on boundary and membrane detection in Sec. 2.3.
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2.1 Hand-Crafted Filters for Centerline Detection

Most of hand-crafted methods for centerline detection are based on the specification of a

local descriptor designed to have a strong response when computed on line-like structures.

Taking advantage of the symmetries of the problem, the local descriptor can be designed

to be rotation invariant [67, 113, 194], or represented by a template that can be scaled

and rotated[93]. In this case, by applying the template at different scales and orientations,

one can obtain information about the radius and the angle of the line structure. Other

approaches also parametrize curvature information in the descriptor [15, 131].

One of the simplest hand-crafted methods is given by [65]. In this work, only Gaussian

smoothing is applied to the image. The result is interpreted as an approximated distance

transform, where (bright) linear structures correspond to the peaks of the distance. Then,

NMS is directly applied to the smoothed image. If the image corresponded to an exact

distance transform of the centerlines, then this approach would output the exact centerline

points. In Chap. 3, we build on this idea and try to predict the distance transform of the

centerlines directly form the image data.

More recent Hand-Crafted filters for centerline detection can be divided into two main

categories. The first one is made of Hessian-based approaches [67, 171, 110, 169, 139, 66,

51, 143]. They combine the eigenvalues of the Hessian to estimate the probability that

a pixel or voxel lies on a centerline. They rely on the fact that, when computed on an

elongated structure with an ideal Gaussian intensity profile, one of the eigenvalues will have

much smaller absolute value than the others. The main drawback of these approaches is

that the required amount of Gaussian blur to compute the Hessian may result in confusion

between adjacent structures, especially when they are thick. Also, the radial estimation of

these approaches is not accurate, especially for large scales [57].

This has led to the development of a second class of methods based on Optimally

Oriented Flux (OOF) [113]. They rely on the second order derivatives of an n-dimensional

ball and are less sensitive to the presence of adjacent structures. Moreover, the radius of

the ball provides a reliable estimate of the tubular structure scale. Remaining difficulties,

however, are that OOF can also respond strongly to edges as opposed to centerlines and

that its performance degrades when the structures become very irregular. A number of

schemes have been proposed to solve the first problem [2, 184, 152, 114, 210]. For example,

in [114], an Oriented Flux Antisymmetric (OFA) term was added and has proved effective.

There has been less work on improving OOF’s performance on truly irregular structures,

except for the very recent approach of [194] that attempts to maximize the image gradient

flux along multiple radii in different directions instead of only one as in [113].
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The method proposed in [219] can be seen as a mixture of these two classes. Hessian

computation implicitly assumes an ellipsoidal model whereas in [219] the ellipsoid is

explicitly fitted to the data. Because this is harder to do than fitting OOF balls, it is

achieved by a learning a regression model from image data to ellipse parameters.

2.2 Learning Filters for Centerline Detection

Even if care is taken to add computational machinery to handle irregular structures [169,

194], the performance of hand-designed filters tends to suffer in severe cases such as the

one depicted by Fig. 3.1. This is mostly because it is very difficult to explicitly model the

great diversity of artifacts that may be present.

Some works therefore aim at segmenting linear structures in biomedical images [76, 216,

162, 23] or aerial ones [145, 207] by applying classification to label the pixels or voxels as

belonging to the structure of interest or to the background. However, this is a problem

simpler than the one we consider. It is not accurate to find the actual centerlines and radii

from the segmentation even with post-processing operations. In particular, there is no

guarantee that the classifier responses will be maximal at the centers of the structures. By

contrast, if we can recover the centerlines and the corresponding thickness of the linear

structures, it is straightforward to generate a segmentation from this data. This is therefore

the approach we adopt in the thesis.

Other techniques, such as [90, 204, 218, 29], aim at extracting the centerlines, but still

rely on binary classification to distinguish the image locations on centerlines from the rest.

[218, 29] use Haar wavelets in conjunction with boosted trees to detect the centerlines of

tubular structures at different scales. [90] uses spectral-structural features instead and

SVMs to find road centerlines. In [204] co-occurrence features and the AdaBoost algorithm

are used to detect the spinal column centerline.

These methods exhibit limited localization accuracy because points near the centerlines

can easily be also classified as centerline points due to their similar appearance. As we

will show, our approach based on regression rather than classification is more adapted

to the problem at hand. Moreover, most of these machine learning based approaches do

not consider the problem of radial estimation. Our approach instead returns a scale-space

tubularity score, similar to that of hand-crafted methods [113, 194], designed to have a

maximal response at centerline points along the spatial and radial dimensions.

Machine Learning based approaches rely on a feature extraction step, which facilitates
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the classification of the pixels in the image. Several kind of features have been used

in combination with different classifiers. For example, the same hand-crafted features

discussed in Sec. 2.1 can be used to train a Machine Learning system. Other popular

choices are Haar wavelets, Gabor filters or steerable filters [68, 93, 76].

Automatic feature learning is another way to select features. It has long been an impor-

tant area in Machine Learning and Computer Vision. Neural Networks [116], Restricted

Boltzmann Machines [88], Auto-Encoders [24], Linear Discriminant Analysis (LDA) [27],

and many other techniques have been used to learn features in either supervised or un-

supervised ways. Among supervised feature learning techniques, Convolutional Neural

Networks are the most commonly used in Computer Vision today, and they are discussed

below. In [23] instead, a boosted tree based approach is used in combination with an LDA

in order to find the filters giving the best separation of the data of a given node in the tree.

Among unsupervised methods, creating an overcomplete dictionary of features—sparse

combinations of which can be used to represent images—has emerged as a powerful tool for

many different purposes [40, 104, 209, 58, 128] and linear structure segmentation [164, 162]

in particular.

However, for most such approaches, run-time feature extraction can be very time-

consuming because it involves convolving the image with many non-separable non-sparse

filters. In this work we will use an unsupervised convolutional filter learning approach to

learn an expressive filter bank, thus taking advantage of the large quantity of unlabeled

training data of the biomedical domain. Then, we will approximate this filter bank with a

smaller set of separable filters, thus greatly reduce computational complexity.

Even if powerful features in combination with pixel-wise methods can produce remarkable

results, they do not explicitly model the strong relationship that exists between neighboring

pixels. As a consequence, discontinuities and inconsistencies may occur in their output.

To overcome these limitation contextual information [193] or structured prediction based

approaches [107] can be exploited to obtain more consistent results. For example, the

authors of [80], inspired by [121], use a latent tree model to classify filament fragments in

biomedical images. In this thesis, we propose a novel and efficient patch-wise prediction

method which approximates the projection of a pixel-wise score map onto the set of linear

structures ground truth images.

Finally, in the last years Deep Convolutional Networks [116] have become very popular

thanks to their impressive results on many benchmark datasets [39, 38, 111, 165] and they

have been recently applied to the problem of vessel segmentation in retinal images [71, 120].

They do not require a specific set of features, but directly learn them from the training
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data. Moreover, thanks to their particular architecture, they can consider large portion of

the image in input and exploit contextual information. Typically, a Deep Convolutional

Network is trained using back-propagation to minimize the classification error.

However, because of the huge number of parameters to be optimized, Deep Networks

require extremely large amounts of labeled training data and computational power to reach

state-of-the-art performance. When the input image is too large or only limited amounts of

training data are available, which is the typical situation in the biomedical domain, their

applicability and performance are reduced.

By optimizing the features in an unsupervised way and by adopting an iterative

prediction approach, our method is easier to train. Moreover, it can efficiently process

large input volumes.

Structured and contextual information, as well as Convolutional Neural Networks, has

also been applied to detect boundaries in natural and medical images. We discuss these

approaches in the next section.

2.3 Boundary and Membranes Detection

Edge detection is one of the most widely studied problem in Computer Vision. Boundary

detection methods can be divided in the same two classes as for centerline detection.

Early attempts at solving it belong to the first one and are based on filters designed to

respond to specific image intensity profiles [135]. The resulting algorithms [34, 50, 154, 149]

are still in wide usage. However, attention has recently shifted to classification based

methods [10, 52, 160, 127, 121, 53, 176], which have produced significant improvements.

More specifically, in [10] gradients on different image channels are fed to a logistic

regression classifier to predict contours in natural images. In [160], SVMs are trained to

predict contours from features computed using sparse coding. In [52], a boosting algorithm

is used to predict the probability of a boundary.

Deep Convolutional Networks have also been applied to the boundary and membrane

detection problem. Some of them try to classify local patches to predict whether the

central pixel of the patch lies on a boundary point or not [38, 177, 26, 91]. However, their

performance is comparable to shallower architectures [54], probably because of the small

size of the training set they rely on for training [92, 10] and because of the local nature

of these approaches. In fact, a large field of view is necessary to correctly interpret the

content of the image and discriminate object boundaries.
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In order to improve performance of local classification based approaches, cascades of

classifiers [62, 86, 189, 100, 175, 176, 193] have been used by several authors. Typically,

in such frameworks, one or more classifiers are applied sequentially to the input signal to

capture more contextual information and improve classification rate at each iteration. In

these architectures, each layer is trained with a set of features extracted from the output

score map of the previous layer, the first layer score map being the raw image. The training

is easier than Deep Learning models since each classifier is treated separately. For example

the approach of [176] relies on a cascade of classifiers at different resolutions to predict a

boundary map. It is related to our approach in the sense that we also use cascades but,

as for centerline detection, we will show that we outperform it because regression is more

appropriate than classification in this context.

However, none of these methods explicitly model the relationship between nearby

pixels. In particular, the response of Convolutional Neural Networks [116] can be spatially

inconsistent because they typically treat every pixel location independently, thus relying

only on the fact that neighboring patches share pixels to enforce consistency. This problem

can be mitigated by applying post processing operations, such as median filtering, or by

averaging the output of several models, trained independently [38].

Patch-wise prediction methods [121, 53, 74, 54, 81] are an efficient way to overcome

these problems. For example, the method of [54] relies on structured learning, resulting in

an accurate and extremely efficient edge detector. It is inspired by the work of [107, 108]

where the structured random forest framework is introduced for image labeling purposes,

predicting for every pixel an image patch, instead of single pixel probabilities. However, it

is specific to the particular kind of classifier used for learning and is difficult to generalize.

Recently, Nearest Neighbors search in the space of local descriptors obtained with

a Convolutional Neural Network was used for boundary detection purposes [74]. Given

an image patch, the algorithm computes a corresponding descriptor and then looks for

the Nearest Neighbor in a dictionary built from the training set. While effective, this

approach strongly depends on the specific dictionary learned by the network. Therefore,

when it fails, it is difficult to understand why. By contrast, in this thesis we propose an

efficient patch-wise projection method based on Nearest Neighbors search in the space of

the final output, rather than of intermediate image features. We will show empirically that

this approach works better than previous patch-wise methods, especially near junctions.

Moreover, unlike other approaches, we provide optimality conditions, under which our

method returns solutions with the same geometrical properties of the ground truth images,

thus giving insights and indications on how to improve the results.
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Membrane detection approaches in biomedical image stacks are based on the same

principles of boundary detection methods for natural images. Membranes are the 3D

equivalent of contours in image stacks. They are important for 3D volume segmentation,

especially in a biomedical context [201, 9, 72]. Early approaches to detecting them relied on

hand-crafted filters optimized to respond to ideal sheet-like structures. In [172, 146, 137, 141]

for example, the eigenvalues of the Hessian matrix are combined to obtain a score value that

is maximal for voxels lying on a 2D surface. Similarly, the eigenvalues of the Oriented Flux

matrix [113] can be combined to obtain a score that is less sensitive to adjacent structures.

These hand-crafted methods have the same limitations described in the case of centerline

detection.

More recent approaches have focused on machine learning techniques. For example,

a Convolutional Neural Network and a hierarchical segmentation framework combining

Random Forest classifier and watersheds are used in [96] and [8] respectively to segment

neural membranes. Even though both of these methods produce excellent results, they are

designed for tissue samples prepared with an extra-cellular die that highlights cell membranes

while suppressing the intracellular structures, thus making the task comparatively easy.

The approach of [175] was also applied segmenting membranes in Electron Microscope

images. It was improved in [176], where, thanks to a hierarchical architecture, they obtain

lower pixel error than Deep Convolutional Networks on the ISBI 2012 Challenge [92].

Finally, very recent techniques, based on a Fully Convolutional architecture [125],

overcome the limitation of local methods by considering as input to the network, not only

local patches, but the whole image [211]. They have the double advantage of considering

global contextual information and to output a segmentation mask for the whole image,

making the final segmentation more consistent. In [211] the 16 layers VGG architecture [178],

pre-trained on the ImageNet [45] dataset, was modified and fine-tuned on the BSDS500

dataset [10] in order to output boundary score maps. The semantic information encoded

in the network and the large field of view make this approach the state-of-the-art for

boundary detection. However, since they rely on binary classification they suffer of the

thick boundary problem.

A similar idea is used in [165] to classify membrane pixels in 2D slices of Electron

Microscopy data. In this case, data augmentation is used during training to avoid overfit-

ting. This approach outperform previous techniques, based on CNN classification of local

patches [38] both in accuracy and run time efficiency.

These techniques could be potentially combined with the regression based approach

introduced in this thesis and extended to operate also on 3D volumes in order to obtain
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an even more accurate centerline detector. A limiting factor, however, are the memory

capabilities of modern graphical processors (GPUs), needed to train and run these large

models. As a consequence, it is not possible to train them, unless by considering small 3D

input volumes, thus losing the advantage of using a deep architecture and global contextual

information.
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CHAPTER 3

Multiscale Centerline Detection by Learning a
Scale-Space Distance Transform

In this chapter, we formalize the centerline detection problem and propose a regression-

based approach to accurately extract centerlines and radii from images. As stated in the

previous chapter, most existing techniques rely on filters designed to respond to locally

cylindrical structures [67, 171, 110, 139, 114, 210], optimized for specific profiles [93], or

learnt [169, 76, 23]. They compute a scale-dependent measure that, ideally, should be

maximal at the centerline of linear structures when computed at the right scale.

Among these approaches, the learning-based ones tend to outperform the hand-designed

ones when the linear structures become very irregular and deviate from the idealized models

on which their design is based. Some works only aim at segmenting the linear structures

from the background [23], and it is not clear how to reliably extract the centerlines from

the segmentation. Others focus on the centerlines, but they typically rely on classification

and this results in poor localization accuracy. As shown in Fig. 3.1, this is because it is

hard for the classifier to distinguish points on the centerline itself from those immediately

next to it.

In this chapter, we show that this problem can be solved by reformulating centerline

detection and radius estimation in terms of a regression problem. More precisely, we train

several regressors to return distances to the closest centerline in scale-space, each regressor

being trained for a specific scale. In this way, performing Non-Maximum Suppression on

their output yields both centerline locations and corresponding radii. We will show that,

on very irregular structures, it outperforms the powerful OOF approach with and without
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(a) (b) (c) (d)
MDOF [194] Regression Classification Regression

Figure 3.1: Detecting dendrites in a 3D brightfield image stack. Top row: Minimal
intensity projection with two enlarged details. Middle row: Comparison of the responses
of our method against a recent model based approach [194] and a classification based
one [23]. Bottom row: Centerlines detected after performing Non-Maximum Suppres-
sion on the response images. (a) Model-based methods have troubles modeling highly
irregular structures. (c) Classification-based approaches respond on the whole body of
the tubular structure and do not guarantee maximal response at the centerline. (b,d)
Our regression-based method combines robustness against image artifacts and accurate
centerline localization. In the last two rows, images have been inverted for visualization
purposes.
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anti-symmetry term [113, 114], which is widely acknowledged as one of the best among

those relying on hand-designed filters, as well as a recent extension of it [194] designed to

improve its performance on irregular structures, and a similarly recent classification-based

method [23].

The chapter is organized as follows: In Sec. 3.1 we formalize centerline detection as

a Machine Learning problem using a standard classification-based formulation. Then, in

Sec. 3.2 we introduce our regression-based approach, showing how a modified distance

transform of the centerline can be used to learn a function to achieve more accurate

localization. We first introduce our algorithm in the case of single scale detection. Then,

in Sec. 3.3, we consider the multiscale case. In Sec. 3.4, we describe the features used to

train our model. Finally, in Sec. 3.6, we show empirically the superiority of our approach

by evaluating it on several 2D and 3D biomedical and natural images datasets, both for

centerline detection and radial estimation.

Part of the content of this chapter has been previously published in [179].

3.1 Centerline Detection as a Classification Problem

In this section we formalize the centerline detection problem as a Supervised Learning

problem. First, we introduce the commonly used classification-based formulation. Then,

we argue why classification is not the best formalism for this problem and, in the next

section, we show how this limitations can be overcome by rewriting centerline detection as

a regression problem.

Let I(x), be an n-dimensional image containing curvilinear structures of various radii,

where x ∈ R
n are the pixel coordinates. Let YI(x) be the binary image, of the same size of

I, corresponding to the centerline pixels, that is, YI is such that YI(x) = 1 if pixel x is on

a centerline and YI(x) = 0 otherwise. We will refer to YI as the binary ground truth or the

manual annotation of I.1 In the remainder, unless there are ambiguities, we will simply

write Y for YI .

A classification-based approach to finding the centerlines involves learning a function y(·)
mapping I to YI . Following our taxonomy of Chap. 2, in this section we consider y(·) to be

a local pixel-wise classifier, i.e. y(·) predicts the class of each pixel x independently, starting

from a feature vector f(x, I) ∈ R
J computed from a neighborhood of size s surrounding

1We assume here that the location of the centerline is well defined and that there exists a unique YI(x)
for every I. We will discuss in Sec. 3.6.2 how to account for uncertainty in the location of the centerlines
and in Sec. 5.6 on how to deal with multiple manual annotations.
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pixel x in image I. More precisely, the ideal classifier y is given by

y(f(x, I)) =

⎧⎨
⎩

1 if x is on a centerline,

0 otherwise,
(3.1)

The function y(·) is typically approximated by minimizing a loss L over a set of training

samples. Given a set of training images {Ik}Kk=1 and the corresponding binary ground truth

images {Yk}Kk=1, y(·) is approximated by a function ψ∗(·), obtained by minimizing the loss

L over training samples {fi, �i}Qi=1, with features fi = f(xi, Ii) and labels �i = Yi(xi):

ψ∗ = argmin
ψ∈H

L({fi, �i}i;ψ), (3.2)

where H is a space of functions where the minimization is carried out.

Usually, to make the optimization easier, the loss L is taken to be a sum over the

samples: L =
∑
i L(fi, �i;ψ). In the case of probabilistic interpretation of the loss, this is

equivalent to assuming the samples to be independent and identically distributed [82].

The choice of L and H depends on the particular algorithm considered. For example in

Linear Support Vector Machines [42], L is the Hinge Loss and H the space of real-valued

linear functions on R
J . In the AdaBoost algorithm [69], instead, L is the Exponential Loss

and H is given by a linear combination of decision stumps.

As discussed above, learning directly the function y(·) is hard because points on the

centerline itself, for which y(·) should return 1, and their immediate neighbors, for which

it should return 0, look very similar (Fig. 3.1). One way to solve this is to train y(·) to

return 1 for all points within a given distance from the centerline. However, in practice,

even if y(·) is allowed to return floating point values between zero and one, using for

instance an SVM-style classifier, there is no guarantee that its value will be maximal

at the centerline itself. This makes finding its accurate location, for example by using

Non-Maximum Suppression, problematic.

Ideally, a way to overcome this limitation would be to constraint the output of the

classifier to have local maxima corresponding to centerline locations. For example, we

could use a structured learning approach, such as SSVM [192], to learn a function y(·)
ranking the training samples so that y(f(xi, Ii)) < y(f(xj , Ij)) if and only if the distance

of xi to a centerline point in image Ii is larger than the distance of xj to a centerline point

in Ij . This approach has the advantage that we do not need to specify a function to learn,

instead, it only imposes the centerline points to be local maxima.
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Table 3.1: Main mathematical notations used in Chap. 3.

Notation Meaning
I(x) Input image (resp. volume) at pixel (resp. voxel) x
f(x, I) Feature vector computed on image I, at pixel x
YI(x) Binary ground truth image of the centerlines in I
C Set of centerline pixels for a given image
y(f(x, I)) Ideal pixel-wise classifier: y(f(x, I)) = 1 iff x ∈ C
DC(x) Euclidean distance transform of the set C at pixel x
dC(x) Ideal regressor response. Exponential scaling of DC
ϕ(f(x, I)) Actual regressor response
y(·; r),DC(·; r), dC(·; r), ϕr As above, but for centerlines corresponding to tubular

structures of radius r

However, learning a function using this ranking formulation is difficult in practice.

In fact the associated optimization problem is extremely large to solve and involves a

number of constraints that is quadratic in the number of pixels. To solve this issue and

make optimization easier, in the next section we consider a fixed function satisfying the

constraints we want and then we try to learn it.

More precisely, our solution is to learn instead y(·) as a regressor whose values decrease

monotonically as the distance of point x to the centerline increases. Then, as required, the

local maxima of this function coincide with the centerline and, as shown in Fig. 3.2, we can

rely on simple Non-Maximum Suppression to localize them. We will show in Sec. 3.6 that

this solution is significantly more robust than both classification-based and hand-crafted

methods.

Moreover, many automated and semi-automated tracing algorithms [25, 148, 197] rely

on the extraction of local maxima from a tubularity measure as an initial step. Our

method is designed to return a score with a well defined maximum along the centerlines

and therefore it can be used as input to improve the accuracy of these methods. We

demonstrate the advantage of using our method in this context in Chap. 5.

In the next section, we describe our method for structures whose scale is assumed to be

known a priori. We then relax this constraint to handle structures of arbitrary scale in

Sec. 3.3. The main notations used in this chapter are summarized in Table 3.1.

3.2 Centerline Detection as a Regression Problem

Let us momentarily assume that the linear structures have a known radius r. Let C = {x :

Y (x) = 1} be the set of centerline points and DC the corresponding Euclidean distance
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(a) (b) (c) (d) (e) (f)
Image I Centerlines C Distance DC Function dC Function ϕ NMS Image

Figure 3.2: Learning a regressor for centerline detection. (a) Raw image; (b) Ground truth
centerlines; (c) The distance transform to the centerline is used to discriminate points close
to it; (d) The function we want to learn is maximal at the centerlines and it is thresholded
to a constant value when the local window used to compute features does not contain
any centerline points; (e) The function learned with our method; (f) Centerline detected
after Non-Maximum Suppression (NMS) on function ϕ. In images from (b) to (f), white
indicates lower values.

transform [166], that is, DC(x) is the metric distance from location x to the closest location

in C:

DC(x) = min
x′∈C

‖x− x′‖2, (3.3)

where ‖ · ‖2 is the standard Euclidean norm: ‖x‖2 =
√∑n

i=1 x
2
i . We assume here, as

in [166], that C is non-empty. Image 3.2(c) shows the distance transform for a simple

centerline image.

Our goal is to learn a function that is maximal for x on the centerline and whose value

decreases monotonically as x moves away of it. The function dC(x) = −DC(x) has this

property, see Fig. 3.3. In theory, given training data, we could learn a regressor that takes

f(x, I) as input and returns −DC(x) as output. However, in practice, we learn a different

function for the two following reasons.

First, because our feature vectors f(x, I) are computed using local neighborhoods of

size s, a regressor could only learn it for points that are close enough to the centerlines for

their neighborhood to be affected by it. For this reason, it makes sense to threshold dC

when DC is greater than a given value dM , which is a function of the neighborhood size s.

This yields the modified function

dC(x) =

⎧⎨
⎩

1− DC(x)
dM

if DC(x) < dM

0 otherwise,
(3.4)

which takes values between 0 and 1, see Fig. 3.3. In our implementation, we set dM = s/2,

which means that dC is uniformly 0 for points whose corresponding neighborhood does not

overlap the centerline.

Second, a regressor trained to associate to a feature vector f(x, I) the value of dC(x)

can only do so approximately. As a result, there is no guarantee that its maximum is
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Figure 3.3: The function dC in the case of x ∈ R. If a centerline point is located in C, the
function we want to learn is obtained from the distance transform DC , after thresholding
and scaling. The vertical axis has been scaled for visualization purposes.

exactly on the centerline. To increase robustness to noise, we have therefore found it

effective to train our regressor to reproduce a distance function2 whose extremum is better

defined. In our actual implementation, we take it to be

dC(x) =

⎧⎨
⎩

e
a(1−DC (x)

dM
) − 1 if DC(x) < dM

0 otherwise,
(3.5)

where a > 0 is a constant that controls the exponential decrease rate of dC close to the

centerline, see Fig. 3.3. In all our experiments, we set a = 6.

The regression method we use to learn function dC is the GradientBoost algorithm [82].

It can be viewed as a generalization of the AdaBoost algorithm and it can efficiently

approximate very complex functions.

Given training samples {(fi, di)}i, where fi = f(xi, Ii) ∈ R
J is the feature vector

corresponding to a point xi in image Ii and di = dC(xi), GradientBoost approximates

dC(·) by a function of the form

ϕ(f(x, I)) =
T∑
t=1

αtht(f(x, I)) , (3.6)

where ht : RJ → R are weak learners and αt ∈ R are weights. The function ϕ is built

iteratively, selecting one weak learner and its weight at each iteration, to minimize a loss

function L of the form L =
∑
i L(di, ϕ(fi)). In our experiments we consider L(·) to be the

2Formally, function dC of Eq. (3.5) is not a distance. However, with an abuse of terminology, we will
refer to it as a distance transform in the rest of the manuscript.
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squared loss function L(di, ϕ(fi)) = 1
2 (di − ϕ(fi))

2. We also experimented with the l1 loss

and Huber loss functions and the results proved to be very similar.

Alg. 1 shows the pseudo-code of the GradientBoost algorithm in the case of a generic

loss function. In the case of squared loss L, the residuals rti of Step 4, are equal to

rti = di − ϕt−1(fi), while the weights αt can be computed in closed form as

αt =

∑
i ht(fi)

(
di − ϕt−1(fi)

)
∑
i (ht(fi))

2 . (3.7)

As usually done with GradientBoost, we use regression trees as weak learners ht since they

achieve state-of-the-art performance in many applications [82]. The regression trees are

learned one split as a time, as in [82].

Unless otherwise stated, in all our experiments we used T = 250 trees of depth 2.

Fig. 3.2 shows the output of the learned function for a sample image. For simplicity,

unless there are ambiguities, we will write ϕ(x) instead of ϕ(f(x, I)) and ht(x) instead of

ht(f(x, I)). Moreover, we will refer to the image obtained by applying the regressor ϕ to

every pixel of an image I as the score map or score image corresponding to I.

Algorithm 1 GradientBoost Training
1: Input: Training Set {(fi, di)}i, Number of Iterations T

2: Set ϕ0 = 0

3: for t = 1 to T do

4: Let rti = −∂L(di,φ)
∂φ

∣∣∣
φ=ϕt−1(fi)

5: Find weak learner

ht(·) = argmin
h(·)

∑
i

(
h(fi)− rti

)2

6: Find weight αt

αt = argmin
α

∑
i

L
(
di, ϕ

t−1(fi) + αht(fi)
)

7: Let ϕt(·) = ϕt−1(·) + αtht(·)
8: end for

9: Return ϕ(·) = ϕT (·)

In next section we describe how radial information can be encoded in the score map,

and how the radius of the linear structures can also be learned from a modified multiscale

distance transform.
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3.3 Multiscale Centerline Detection

In the previous section, we focused on structures of known radius. In general, however,

structures of many different radii are present in the same image and we would like to

estimate the scale of every centerline point (Fig. 3.4(a)).

To generalize our approach to this multiscale situation we assume that at every centerline

point is associated a scale value r = rx > 0. In the case of ideal tubular structures, the

cross section of the linear structure is a circle, therefore the radius r is simply defined as the

radius of the cross section. In case of ellipsoidal or irregular cross section, many possible

definitions of radius are possible, for example the radius can be defined as the radius of

the smallest circle containing the cross section. Our method does not make any particular

assumption on how the radius is defined, as we rely on manual annotations to determine its

value, independently on how it was computed. Provided that the manual radial annotation

is consistent across images, this makes our approach more general and more robust than

hand-crafted methods, which depend on a specific model of the tubular structures.

Given centerline points and corresponding radii, we consider the scale-space binary

ground truth, Y (x; r) where Y (x; r) = 1 if and only if x is a centerline point with associated

radius equal to r, and 0 otherwise.

Now the set of centerline points C is the set of (x; r) (n + 1)-dimensional vectors of

centerline points and corresponding radii. We redefine the function dC of Eq. (3.5) as

dC(x; r) =

⎧⎨
⎩

e
a·(1−DC (x;r)

dM
) − 1 if DC(x; r) < dM ,

0 otherwise,
(3.8)

where DC(x; r) is the scale-space distance transform of C:

D2
C(x; r) = min

(x′,r′)∈C
‖x− x′‖22 + w(r − r′)2 , (3.9)

where w > 0 is used to weight the scale component differently from the space component.

In practice w depends on the image resolution and the range of scales. In Sec. 3.6 we

discuss the choice of w.

If we consider the maximum projection of dC(x; r) along the radial component, we

obtain a function of x, whose local maxima are the centerline points for all the values of

r. Therefore, if we train a regressor to output the values of dC , the problem of multiscale

centerline detection is reduced to the problem of finding local maxima in the projected

image, see Fig. 3.4. Moreover, function dC(x; r) is defined so that points in C are local
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Figure 3.4: Multiscale centerline detection. (a) Input image containing linear structures at
different scales. We want to learn a function with local maxima at centerline points along
the spatial and radial axes. (b, top): Values of dC for the smaller radius r1, (b, bottom):
values for the larger radius r2. (c) The learned multiscale approximation {ϕri}i for r1 and
r2. (d) The centerlines and the radii are detected with Non-maximum Suppression in the
scale-space. (e) Ground truth centerlines. The radial values are color-coded.

maxima of dC not only along the spatial dimensions, but also along the radial component,

as shown in Fig. 3.4(b). Therefore, we can easily find the scale corresponding to a centerline

point as the one that gives the maximal value for that point, Fig. 3.4(d).

We now want to learn a regressor that returns the values of this new dC function. The

simplest way would be to discretize the range of possible scales r into a finite set of scales

and to use the fixed-radius method of Sec. 3.2 to learn one regressor ϕr for each scale in

this set. This approach, however, decreases the number of training samples available to

train each regressor, which in our experience severely impairs performance.

An alternative approach is to rely on scale-space theory [123] to train a single regressor

ϕr0 for radius r0. By properly scaling and normalizing the convolutional filters used to

compute the feature vectors fr
0

(x, I), we can use ϕr0 to find the centerlines for all the

other radii. The advantage of this approach is that we can exploit all training samples to

train ϕr0 by rescaling them to have a radius equal to r0. However, this assumes that the

aspect of tubular structures is scale invariant. When this is not the case, the results are less

accurate, especially for large differences between the actual radius of the structure and r0.

We therefore adopt a hybrid approach. We learn a set of regressors {ϕri}Ri=1 for a small

set of regularly sampled radii. We then apply the scale-space approach for intermediate

radii and use the closest ri to the scale we want to predict. In Sec. 3.6 we discuss how

these radii are selected.
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As in the single-scale case, we build the functions ϕri using GradientBoost. In next

section, we describe the set of features we use to train the GradientBoost algorithm. More

details about the computation of the multiscale features are given in Sec. 3.4.1.

3.4 Efficient Features for Centerline Detection

As discussed in Chap. 2, there are many possible ways to compute the feature vectors

f(x, I) of Eq. (3.1). In order to select the most appropriate set of features for our problem,

we consider two main factors: first, the kind of data we want to process; and second, the

learning algorithm the features will be fed to.

From these consideration, we deduce the following properties that our features should

satisfy:

• The features must be expressive enough to discriminate linear structures with irregular

and diverse appearance, from other similar background structures, both in 2D and

3D images.

• Since we use the GradientBoost algorithm for learning, we should use a large and

diverse pool of features. In fact, Boosting algorithms have the best performance when

they can choose, at each iteration, the optimal feature for splitting the regression

trees, among a large set of candidates.

• The features extraction step must be efficient enough to process large datasets of 2D

and 3D images.

In summary, we need a large number of expressive features that can be computed efficiently.

Previous work [162] has shown that learning a set of convolutional filters via sparse

coding techniques can produce expressive features that perform well on linear structures.

The number of such features is a parameter of the method, therefore, it can be, in theory,

arbitrary large. This gives us the first two properties we wanted, namely expressive features

and a large number of them. In order to also make features extraction computational

efficient, we consider a separable filter approximation scheme. Thanks to this algorithm,

we can approximate large filter banks with a smaller set of separable filters, thus greatly

reducing computational time, with small or no loss in performance. In the rest of this

section we briefly describe how the feature vector is computed. We will discuss in detail

how the filter banks are learned in Chap. 4.
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Formally, the features f(x, I) we consider in our method are of the form

f(x, I) = [(f1 ∗ I)(x), . . . , (fJ ∗ I)(x)]� , (3.10)

where the fj ’s are convolutional filters learned with an unsupervised learning algorithm,

as in [162]. This method is described in Sec. 4.2. In the case of 2D images, in all our

experiments, we used J = 121 filters. In the case of 3D volumes, the number of possible

orientations of the tubular structures is significantly larger and therefore more filters should

be used. We found it most effective to learn first a filter bank of J = 121 filters and then

extend it by rotating the learned filters at different orientations, 14 in practice.

To speed up the convolutions required to compute the descriptor, we approximate the

fj ’s by decomposing them as a linear combination of separable filters. This approach is

described in detail Sec. 4.3, it involves learning a set of filters {sk}Kk=1, with K < J , such

that:

fj =
K∑
k=1

wkj s
k . (3.11)

In this way, the convolutions (fj ∗ I)(x) can be written as

(fj ∗ I)(x) =
K∑
k=1

wkj (s
k ∗ I)(x) , (3.12)

where the convolutions sk ∗ I are now computed with separable filters. Moreover, the filters

sk are shared among all the non-separable ones and only the coefficients wkj ’s depend on

the specific filter fj . As we will show in Chap. 4, this greatly reduce the computational cost,

compared to Eq. (3.10), even compared to using the Fast Fourier Transform to compute

the convolutions. In our experiments we use K = 49 in the 2D case and K = 80 in the 3D

case.

In the 2D case, thanks to the separable filters approximation we can divide the computa-

tional time by about half. However, it is in the 3D case that the computational reduction is

fundamental. In fact, using J = 121× 14 filters for feature extraction would be impractical

without considering separable filters. For example, let us consider the time needed to

compute the convolution of an image stack of size 768×1436×77, such as those used in our

experiments of Sec. 3.6, with a filter of size 21× 21× 21. This convolution requires about

231.6 seconds when computed in the spatial domain3. Multiplying this time by the number

of filters J , we see that the total time for computing the features would be too large. When

using the Fast Fourier Transform (FFT) for computing the convolutions, the time drops

to 9.6 seconds. However, by using our separable filter approximation scheme, the time

3The times are esimated using a multi-thread MATLAB implementation.
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can be further reduced to 3.4 seconds for each separable convolution. Considering the

linear combination we have a total of 4.5 seconds per feature map. Moreover, computing

the convolution using FFT requires additional memory usage, since the FFT is computed

using the size of the input image stack. By contrast, in Sec. 3.5 we describe how we can

take advantage of the characteristics of the GradientBoost algorithm and of our separable

approximation scheme to avoid explicitly computing all the J features at once, thus avoiding

memory issues.

More details about the filter learning schemes used in our experiments are given in

Chap. 4. In the next section, we discuss in details the computation of multiscale features.

3.4.1 Multiscale Features

In the previous section, we have described how the feature vector is computed by convolu-

tions with a bank of filters learned form training images. The features are used as input by

the regressors of Sec. 3.3 to approximate the distance function of the centerlines.

As described in Sec. 3.3, we train a different regressor for every scale in a set {ri}Ri=1.

If we suppose that the images used in Eq. (4.1) to learn the filters contain linear structures

at every scale ri, then, the learned filters will be expressive enough to discriminate the

linear structures we want to detect and the corresponding scales.

For this reason, we do not learn a separate filter bank for each regressor ϕri , but instead

we use always the same filter bank for every ri.

Once the regressors at scale ri have been trained, for every i, we can approximate the

response of the regressors at a generic scale r by using scale-space theory. More precisely,

given a scale ri0 for which a regressor ϕri0 is known, the response of the regressor ϕr at

pixel x in image I, can be approximated by

ϕr(x) ≈ ϕri0 (f(x, σ
ri0
r

(I))), (3.13)

where σ ri0
r

(I) is image I rescaled by the factor ri0/r.

In practice, for a given r, we chose the corresponding r0 to be the closest scale to r in

{ri}i, that is

ri0 = argmin
i=1,...,R

|r − ri|. (3.14)

In this way we limit the artifacts due to re-sampling and to the fact that the linear structure

appearance, for large difference of scales, is not scale invariant.
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Using Eq. (3.13) is efficient when ri0 < r, that is when image I is down-sampled. In the

opposite case, convolving an up-sampled image can become excessively costly, in particular

for large 3-dimensional volumes.

To avoid this situation, we notice that, since the features f(x, I) are given by convolutions

with linear filters fj , computing the convolution with the scaled image is equivalent, up to

a scaling factor, to computing the convolution between the original image and the rescaled

filter: (
fj ∗ σ ri0

r

(I)
)
(x) ≈ γri0 ,r

(
σ r

ri0

(fj) ∗ I
)
(x). (3.15)

The constant γri0 ,r is equal to the ratio between the area of the original filter and the area

of the rescaled filter. More precisely, if fj is a n-dimensional filter with size d1 × . . .× dn

and σ r
ri0

(fj) is the rescaled filter with size d1 r
ri0

× . . .× dn
r
ri0

, we have

γri0 ,r =
d1 · . . . · dn

d1
r
ri0

· . . . · dn r
ri0

=
(ri0
r

)n
. (3.16)

Thanks to this remark, we can efficiently compute the features also for scales r < ri0 .

3.5 Implementation Details

In this Section we give some implementation details about the code and the algorithms

used in our experiments. The code was mainly implemented in MATLAB and partly in

C++ and it is available at the following webpage: http://cvlab.epfl.ch/software/

centerline-detection.

Computation of the Distance Transform In order to train our regression-based

approach we need to compute the Euclidean distance transform of a binary (n + 1)-

dimensional image, as indicated in Eq. (3.9). For this computation we use the algorithm

proposed in [138], which is designed to compute the exact Euclidean distance transform for

binary images of arbitrary dimensions.

The algorithm runs in linear time and we used the implementation given in the ITK

filter itkSignedMaurerDistanceMapImageFilter. This function also allows the user to

specify the spacing of the image, which is particularly useful for 3D biomedical data, where

the spacing along the z-axis is usually different than the spacing along the xy dimensions.

Moreover, we also used this option when computing the scale-space distance transform of

Eq. (3.9) in order to set the parameter w. In fact, weighting the radial component of the

multiscale distance transform by a factor w is equivalent to using a spacing equal to
√
w
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along the radial dimension of the scale-space binary ground truth.

Since, we are only interested in the thresholded distance transform, its computation

could be optimized even further. However, we did not find necessary to do this in our case

since the ITK function was fast enough and the distance transform needed to be computed

only once for each train image.

Instead, in order to save memory usage, we used a sparse representation of the ground

truth images. In fact, since linear structures occupy only a small fraction of the pixels

(or voxels) in the image, after computing the thresholded distance transform, most of the

pixels (or voxels) in the ground truth are zeros.

Sampling For classification problems where the probability of appearance of one class is

much lower than the other classes, it is common to train the classification algorithm by

sampling the same amount of training data for every class and then re-weight the output

of the final classifier to take into account the bias introduced by the sampling.

This problem is particularly relevant for the centerline classification problem, where

positive samples are really sparse in the image or in the 3D volume, compared to negative

ones.

In the case of a generic regression problem, there is no notion of positive and negative

samples. However, in our case, we can divide the samples in two classes: those that lie

completely on the background, far from any centerline point, and those that are close to a

centerline point. For the first kind of points, the value of our regression ground truth dC is

zero, while for the second kind, is greater than zero.

Therefore, similarly to what is done for binary classification approaches, we found it

effective to train our regressors by sampling half of the training samples form location close

to the centerlines and half from locations far from centerline points.

Moreover, in order to train a multiscale regressor at scale ri, we also consider training

samples with scales r such that |r − ri| < tol, where tol depends on the set of training

scales. In practice, we rescale samples corresponding to scale r by a factor ri/r, in order to

map them to the scale ri, we want to train the regressor for. In this way, we can exploit

more training data for every scale. Similarly, to further augment the training, we randomly

rotate the training samples lying close to a centerline.

Gradient Boost In order to train the GradientBoost regressors of Sec. 3.2 efficiently,

we consider the following techniques. First, at every boosting iteration only half of the
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training samples are used to learn the regression tree at that iteration. In addition, we also

randomly sample the features used to learn a split in the tree, by using always 500 features

at most. This approach is known as Stochastic GradientBoost [70].

Moreover, to make learning more robust, we use the shrinkage regularization technique,

which is known to improve the model generalization ability [82]. It amounts at multiplying

the weights αt at Step 7 of Alg. 1 by a constant η < 1. We use shrinkage factor equal to

0.1 in all our experiments.

The GradientBoost implementation we used in our experiments is the one of https:

//sites.google.com/site/carlosbecker/resources.

Computing Features The convolutional features are learned separately for every dataset

used in the experiments. Then, each filter bank is approximated with separable filters as

described in Sec. 3.4. We used the code available at the webpage http://cvlab.epfl.ch/

software/filter-learning.

In the case of 3D datasets, pre-computing all the non-separable features at once, would

require too much memory. However, thanks to the Stochastic GradientBoost formulation

we do not need to explicitly compute all of them. In our implementation, we only pre-

compute the convolution with the separable filters. Then, at each boosting iteration, we

linearly combine them to produce the random subset of features considered at that iteration.

Although this implies that some features are recomputed several times, it makes it possible

to explore a much larger pool of features, without having memory issues.

Non-Maximum Suppression Applying our method to an n-dimensional image, yields

an (n + 1)-dimensional one, with n spatial dimensions and one scale dimension. Our

method is designed to respond maximally at the centerlines in scale-space. To find these

local maxima, we first compute a n-dimensional image by keeping for each location the

maximum along the radii, and saving the radius corresponding to the maximum. We

then perform a Canny-like Non-Maximum Suppression by keeping only the locations that

correspond to a local maximum along a line perpendicular to the local orientation, and

within a neighborhood of width defined by the radius. We estimate the orientation using

the eigenvectors of the OOF matrix [113], which we found more robust than the Hessian.

Results from this Non-Maximum Suppression step are shown in Fig. 3.5.
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3.6 Experimental Evaluation

In this section, we first introduce the datasets and the parameters used to test our centerline

detection method. Then, we describe our evaluation methodology and we discuss our

results.

3.6.1 Datasets and Parameters

Our method depends on few parameters, namely: the radial weight w in Eq (3.9); the size

s of the filters used to extract the features; the range of sampled scales and the number of

trained regressors.

The range of scales sampled for the different datasets is automatically determined

from the ground truth data and was always sampled uniformly. We optimized the other

parameters by a cross validation procedure on small volumes. We found experimentally

that the radial weight w should be larger for images containing thin structures and smaller

for larger scales. We tested our method on the 2D road images and 3D biological image

stacks depicted by Fig. 3.5. More specifically we used the following datasets:

• Aerial: Aerial images of road networks. We used a training set composed of 7 images

and used 7 others for testing. We sampled 10 scales ranging from 5 to 14. We trained

4 regressors at scales 6, 8, 11 and 13 and learned filters of size s = 21. We set w to 1.

• Brightfield: A dataset of 3D image stacks acquired by brightfield microscopy from

biocityne-dyed rat brains. We used 3 images for training and 2 for testing. We sample

12 scales corresponding to radii from 1 to 12 microns. We trained 2 regressors at

scales 2 and 8. We learned filters of size s = 21 and used w = 1.

• VC6: Three dimensional brightfield micrographs of biocytin-labeled cat primary

visual cortex layer 6 taken from the DIADEM challenge data [13]. We used 3 images

for training and 2 for testing. We sampled 6 scales from 1 to 6, trained 3 regressors

at scales 1, 3, and 5. We used w = 7 and s = 11.

• Vivo2P: Three dimensional in vivo two-photon images of a rat brain, capturing the

evolution of neurons in the neocortex. We used 2 images for training and 3 sequences

of 3 images for testing. We sampled 3 scales, 0.6, 0.7, and 0.8 microns. We trained

one regressor at scale 0.7, using w = 1 and s = 21.

The Aerial dataset is challenging because of the similar aspects of roads and other

background objects and because of the occlusions of the roads due to cars or trees. The
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(a) (b) (c) (d)

Figure 3.5: Centerline Detection Results. (a) Aerial image. (b) Brightfield image stack.
(c) VC6 image stack. (d) Vivo2P volume. In each case, we show from top to bottom the
original image, the maximum projection along the radial component of our regressor’s
output, centerlines detected by thresholding after Non-Maximum Suppression, and ground
truth centerlines. In the last three rows, values have been inverted for visualization purposes
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Brightfield and VC6 datasets main difficulties are due to the irregular shape of the dendrites

and the structured noise caused by the staining process. The Vivo2P dataset instead shows

a low signal-to-noise ratio and presents some very faint linear structures that were not

annotated by the human experts.

For training, we randomly sampled 100 000 image locations within the distance dM to

the centerline and other 100 000 from points further than dM to the centerline. During the

boosting iterations half of the samples were randomly used to learn the weak learner.

For the Aerial dataset the average size of the test images is 5.87 ·105 pixels with standard

deviation 2.28 ·105. For the Brightfield dataset the images are composed of (8.58±0.12) ·107
voxels, for the VC6 dataset of (2.65± 1.52) · 107 and for Vivo2P of (2.41± 0.87) · 106 voxels.

The running time in our MATLAB implementation is of several hours for training and

from few minutes to few hours for testing.

3.6.2 Evaluation

We compare our approach against three of the most powerful model-based methods for

centerline detection. Optimally Oriented Flux (OOF) [113], Oriented Flux with Oriented

Flux Antisymmetry [114] (OOF+OFA), and Multidirectional Oriented Flux [194] (MDOF).

Moreover, to prove the importance of our regression approach compared to Classification,

we also train a GradientBoost classifier to segment the centerlines from the rest of the

images, thus emulating the approach of [23]. We use the same features and the same

parameters used for regression. The only difference is that for Classification training is

done using the binary ground truth and the exponential loss.

For evaluation we consider Precision-Recall (PR) curves analysis [136]. As usually

done to evaluate methods extracting one-pixel-wide curves [136, 145, 194], we introduce a

tolerance factor ρ to compute the curves. More precisely, a predicted centerline point is

considered a true positive if it is at most ρ distant from a ground truth centerline point.

We generate PR curves for all the methods for different value of ρ. The results are shown

in Fig. 3.8 and show that our approach clearly outperforms the others on all datasets.

We also evaluate the accuracy of the radii we estimate. Again we follow the same

evaluation methodology of [194]. We start by thresholding the image after Non-Maximum

Suppression at different values. Then, for each point in the thresholded image, we construct

a sphere using the corresponding estimated radius. In this way we obtain for every threshold

value a full segmentation of the tubular structures, which we can compare to the ground

truth. Fig. 3.7 shows some examples of segmentations obtained in this way.
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(a) (b) (c) (d) (e) (f)
Ground OOF OOF+OFA MDOF Classification Our
Truth Approach

Figure 3.6: Centerline detection on Aerial images. Top row: Raw image and responses
returned by the different methods. Bottom row: Ground truth and extracted centerlines.
In the bottom row, values have been inverted for visualization purposes.

Since the ground truth data itself can be inaccurate, we introduce also in this case a

tolerance factor δ, and eliminate from comparison points that are closer than δ r from the

surface of a ground truth tube of radius r.

Fig. 3.9 shows the Precision-Recall results for different values of δ. In this case also,

our method outperforms all the others for all the relevant ranges of precision and recall.

Qualitative results are shown in Fig. 3.5 and Fig. 3.7.

We observe the biggest improvement for the Aerial dataset. There, model-based methods

do worst because they respond strongly to bright polygonal objects such as houses, as can

be seen in Fig. 3.6. Learning-based methods can be taught to discount them, and in this

case, Classification does better than hand-crafted methods, but still not as well as our

approach.

On the Brightfield and VC6 datasets, our approach still does best, but Classification

does worst, especially in Brightfield case, due to the presence of very wide branches. As

shown in Fig. 3.1, in such cases, the maximum response is not necessarily on the centerline

and Non-Maximum Suppression behaves badly. Our regression-based approach avoids this

problem. As observed in [194], the antisymmetric term introduced by OFA degrades the

results with respect to OOF for very irregular structures. However, with and without it,

OOF is more sensitive than our algorithm to strong artifacts and image noise, which are hard

to ignore for hand-crafted methods. Only for the segmentation results on the Brightfield

dataset and for very high recall values, does the precision of our approach significantly

degrade. This is due to the sensitivity of our method to thin and faint structures. It is

needed to detect the smallest branches but, inevitably, makes it also respond, albeit weakly,

to noise. Moreover, in this range of recall values, the centerline localization accuracy of the

other methods becomes very low, making their results essentially meaningless.
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(a) (b) (c) (d) (e) (f)
Ground Truth OOF OOF+OFA MDOF Classification Our Approach

Figure 3.7: Centerline detection and Segmentation on a test image of the VC6 dataset
for the different methods. First row: Original image and maximum projection along the
radial dimension of the multiscale score map; Second row: Ground truth centerlines and
centerlines detected by applying Non-Maximum Suppression to the score maps; Third
row: Maximum intensity projection along the z-axis of the segmentation ground truth
and the segmentations obtained with the different methods. The results and ground truth
images have been inverted for visualization purposes.
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Aerial Brightfield VC6 Vivo2P
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(a) Centerline precision-recall curves for ρ = 1.
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(b) Centerline precision-recall curves for ρ = 2.0.
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(c) Centerline precision-recall curves for ρ = 3.
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(d) Centerline precision-recall curves for ρ = 4.
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(d) Centerline precision-recall curves for ρ = 5.

Figure 3.8: Precision-Recall curves of for centerline detection for different tolerance values.
Our method outperforms the others on all the datasets we considered.
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3.6. EXPERIMENTAL EVALUATION

Aerial Brightfield VC6 Vivo2P
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(a) Segmentation Precision-Recall for δ = 0.1.
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(b) Segmentation Precision-Recall for δ = 0.2.
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(c) Segmentation Precision-Recall for δ = 0.3.
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(d) Segmentation Precision-Recall for δ = 0.4.
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(e) Segmentation Precision-Recall for δ = 0.5.

Figure 3.9: Precision-Recall curves of for segmentation for different tolerance values. Our
method outperforms the others on all the datasets we considered. Legend in Fig. 3.8(a).
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CHAPTER 3. MULTISCALE CENTERLINE DETECTION BY LEARNING A
SCALE-SPACE DISTANCE TRANSFORM

Conclusion

In this chapter we have introduced an efficient regression-based approach to centerline

detection, which we showed to outperform both methods based on hand-designed filters

and classification-based approaches.

Our approach is very general and applicable to other linear structure detection tasks

when training data is available. For example, given a training set of natural images and

the contours of the objects present in the images, our framework is able to learn to detect

such contours in new images as was done in [10]. We consider this application in Chap. 5.

However, the approach presented in this chapter only relies on local features. Therefore,

it can not solve ambiguous situations that need information beyond the size of the local

filters in order to be correctly discriminated. This is particularly relevant for applications

such as detecting object boundaries in natural images, or for detecting linear structures

with severe occlusions.

In Chap. 5 we will extend our method and make it context-aware. By including image

contextual information, we can further improve the results presented in this chapter and

also obtain more accurate results for boundary detection, compared to previous work.

Moreover, we show the advantage of using our method also when used in conjunction with

a tracing algorithm.

Before introducing our context-aware method, in Chap. 4 we will describe in detail the

filter learning scheme used in our feature extraction step of Sec. 3.4. In particular, we will

introduce a separable filter learning approach that can be used to speed up the computation

of convolutions with filter banks. We will prove the effectiveness of this approach by using

it on different Computer Vision tasks and prove its superiority to previous methods.
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CHAPTER 4

Learning Separable Filters

In the previous chapter, we have described a regression-based approach for centerline

detection. Following the taxonomy of Chap. 2, this method is composed of a feature

extraction step and a scoring step. The scoring step was described in detail in Chap. 3, and

it is based on the idea of learning a set of regressors in order to approximate a multiscale

distance transform. Thanks to this formalism, we obtain more accurate results compared

to hand-crafted and classification-based methods.

In this chapter, we focus on the feature extraction step. As mentioned in Sec. 3.4,

we rely on an unsupervised learning scheme [162] in order to automatically learn a set of

filters from training data. Then, we obtain the features used as input to the regressor by

convolving the filters with an input image.

Since computing convolutions between a large number of filters and an n-dimensional

image can become computationally prohibitive, we will introduce in this chapter an

approximation scheme based on separable filters. We show that, by expressing a full rank

filter bank as linear combination of separable ones, we can reduce computational time

considerably, with no significant loss in performance.

This idea was first introduced in [163], where the separable filters are learned by

minimizing an objective function that includes low-rank constraints. This approach delivers

the desired run-time accuracy and efficiency but at a high-computational cost during the

learning phase. Moreover, the low-rank constraints, being soft constraints, do not guarantee

that the resulting filters are of rank one. In this situation, separability can be imposed
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CHAPTER 4. LEARNING SEPARABLE FILTERS

after the optimization by truncating the singular values of the filters. Here, we propose a

new approach based on Tensor Decomposition. Our experiments show that this second

approach converges faster during learning and it is more accurate.

The rest of the chapter is organized as follows. In Sec. 4.1, we review previous work on

separable filter learning. In Sec. 4.2, we briefly introduce the convolutional filter learning

approach used to derive the filter banks we used for feature extraction in Chap. 3. In

Sec. 4.3, we describe how a generic filter bank can be accurately approximated by a linear

combination of separable ones. To show the advantage of the separable approximation, in

Sec. 4.4 we discuss computational complexity and in Sec. 4.5 we apply it to two different

Computer Vision tasks, to show its generality and efficiency. We conclude in Sec. 4.5.3, by

comparing our Tensor Decomposition approach with the one of [163].

Part of the content of this chapter has been previously published in peer-reviewer

conferences and journals [163, 181].

4.1 Related Work on Separable Filter Learning

Automatic feature learning has long been an important area in Machine Learning and

Computer Vision. Many techniques have been used to learn features in either supervised or

unsupervised ways [116, 88, 24, 27]. Sparse dictionary learning techniques has emerged as

a powerful tool for object recognition [40, 104, 209] and image denoising [58, 128], among

others.

However, for most such approaches, run-time feature extraction can be very time-

consuming because it involves convolving the image with many non-separable non-sparse

filters. It was proposed several years ago to split convolution operations into convergent

sums of matrix-valued stages [190]. This principle was exploited in [153] to avoid coarse

discretization of the scale and orientation spaces, yielding steerable separable 2D edge-

detection kernels. This approach is powerful but restricted to kernels that are decomposable

in the suggested manner, which precludes the potentially arbitrary ones that can be found

in a learned dictionary or a hand-crafted ones to suit particular needs.

After more than a decade in which the separability property has been either taken for

granted or neglected, there is evidence of renewed interest [130, 156]. The scope of these

papers is, however, limited in that they are restricted to specific frameworks, while our

approach is completely generic, since it can be applied to any filter bank. Nonetheless,

they prove a growing need for fast feature extraction methods.
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4.2. LEARNING CENTERLINE FEATURES

Among other recent feature-learning publications, very few have revisited the problem

of run-time computational efficiency. The majority of those advocate exploiting the parallel

capabilities of modern hardware [60, 144].

An interesting recent attempt at reducing computational complexity is [167], which

involves learning a filter bank by composing a few atoms from an handcrafted separable

dictionary. Our approach is in the same spirit, but it is more general as we also learn the

atoms as well. As shown in the results section, this results in a smaller number of separable

filters that are tuned for the task at hand.

In [83], separable dictionaries are learned through a classical sparse coding approach, not

in a convolution-based one. The authors show that by using separable items as compared

to unstructured ones, it is possible to deal with larger images. However, the dimensions

of the images used as input to their method are smaller than those typically handled by

convolutional sparse coding approaches. Moreover, it has been shown in [163] that directly

learning separable filters yields worse results than those of their unstructured counterpart.

Here, we overcome this limitation by introducing separability at a later stage of the

learning process. We first learn a set of non-separable filters and then approximate them

as linear combinations of a small set of separable ones, which are specific for the particular

application.

Finally, the authors of [30] propose a way to reduce the time it takes to learn non-

separable filters. This makes their approach complementary to ours, as their method can be

incorporated into our pipeline when we learn the set of non-separable filters, as described

in the next section.

4.2 Learning Centerline Features

Most dictionary learning algorithms operate on image patches [150, 128, 40], but convo-

lutional approaches [104, 118, 213, 161] have been introduced as a more natural way to

process arbitrarily-sized images. In our work, we consider the convolutional extension of

Olshausen and Field’s objective function proposed in [161].

Formally, J filters {fj}1≤j≤J are computed as

argmin
{fj},{mj

i}

∑
i

⎛
⎜⎝
∥∥∥∥∥∥
Ii −

J∑
j=1

fj ∗mj
i

∥∥∥∥∥∥

2

2

+ λ1

J∑
j=1

∥∥∥mj
i

∥∥∥
1

⎞
⎟⎠ , (4.1)
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CHAPTER 4. LEARNING SEPARABLE FILTERS

(a) (b) (c)

Figure 4.1: Filter banks learned on the Aerial Dataset of Sec. 3.6.1. (a) Example image from
the dataset. (b) Full-rank filters learned using the convolutional sparse coding approach
of Eq. (4.1). (c) Separable filters approximating the filter bank in (b), learned by solving
Eq. (4.6).

where, Ii is an input image, {mj
i}1≤j≤J is the set of feature maps extracted during learning

and λ1 is a regularization parameter. The �1 norm ‖·‖1 is used to impose sparsity on the

entries of the feature maps.

A standard way to solve Eq. (4.1) is to alternatively optimize over the mj
i representations

and the fj filters. Stochastic gradient descent is used for the latter, while the former is

achieved by first taking a step in the direction opposite to the �2-penalized term gradient and

then applying the soft-thresholding operation on the mj
i s. Soft-thresholding is the proximal

operator for the �1 penalty term [14]; its expression is proxλ(x) = sgn(x)max(|x| − λ, 0).

Proximal operators allow to extend gradient descent techniques to some non-smooth

problems.

Fig. 4.1(b) shows filters learned on a set of Aerial images. As we can see, some of the

the filters are well localized in the frequency domain, responding to oriented features at a

particular scale. While other filters are more specialized for the particular dataset, like for

example those composed of two parallel lines, which are tuned to have a strong response

when convolved with the the bright road lines.

The filters learned by solving Eq. (4.1) are used to extract the features used in Chap. 3,

as indicated in Eq. (3.10). To speed up the convolutions required to compute this descriptor,

we rely on an approximation technique, which decomposes the filters {fj}Jj=1 as linear

combinations of a set of separable filters. This approach is described in the following section.
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4.3. LEARNING SEPARABLE FILTERS

4.3 Learning Separable Filters

While the convolutional formulation of Eq. (4.1) achieves state-of-the-art results [164],

the required run-time convolutions are costly because the resulting filters are not sepa-

rable. Quantitatively, if I ∈ R
N and fj ∈ R

d1×d2 , extracting the feature maps requires

O (N · d1 · d2) multiplications. By contrast, if the filters were separable, the computational

cost would drop to a more manageable O (N · (d1 + d2)). This cost reduction becomes even

more desirable in biomedical applications that require processing large 3D image stacks.

We therefore rely on an approximation scheme which makes our filters separable

without compromising their descriptive power. This approach takes advantage of the fact

that arbitrary filters of rank K can be expressed as linear combinations of K separable

filters [153]. The solution we propose is general as it can be applied to any filter bank, and

not only to filters learned with Eq. (4.1).

We can formulate our problem as finding a decomposition of the filters fj ’s of the form

fj =
K∑
k=1

wkj s
k , (4.2)

where the filter sk’s are separable. The filters sk’s are shared among all the non-separable

ones and only the coefficients wkj ’s depend on j. In this way, convolving the image with all

the fj ’s at run-time amounts to convolving it with the separable sk filters and then linearly

combining the results, without any further convolutions.

Separable Filters by Minimizing the Nuclear Norm

In [163] it was first proposed to obtain such decomposition by solving the optimization

problem

argmin
{sk},{wj

k}

∑
j

∥∥∥∥∥fj −
K∑
k=1

wkj s
k

∥∥∥∥∥
2

2

+ λ∗
K∑
k=1

∥∥sk∥∥∗ , (4.3)

where, the first term in the equation ensures that the separable approximation is close to

the original filters, while the second term enforces the filters sk’s to have low rank. In the

2D case, ‖ · ‖∗ is the nuclear norm, which is the sum of its singular values and is a convex

relaxation of the rank [61]. Computing it involves a Singular Value Decomposition (SVD)

of the filters sk’s.

In the n-dimensional case, the optimization is similar to the 2D case, but instead of

the SVD, the Canonical Polyadic Decomposition (CPD) [106] of the n-dimensional filter
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CHAPTER 4. LEARNING SEPARABLE FILTERS

sk is considered. We define the CPD in more detail below when we introduce a Tensor

Decomposition approach for learning separable filters.

The method of Eq. (4.3) produces a small set of separable filters that approximate the

original ones. However, it requires introducing an additional regularization parameter λ∗

that can be difficult to tune. Moreover, its convergence rate is slow, especially when trying

to approximate high-rank filters. Finally, it does not guarantee that the filters sk’s have

rank one at the end of the optimization and often hard thresholding needs to be applied on

the singular values of the sk’s filters after convergence.

For these reasons, we introduce an alternative approach to finding the separable filters

sk’s and weights wkj ’s of Eq. (4.2), which relies on Tensor Decomposition. In Sec. 4.5.3, we

show that this method is easier to optimize, it is more accurate and has less parameters.

Separable Filters by Tensor Decomposition

Low rank Tensor Decomposition techniques have been used in many Computer Vision

applications [105], [21], [20], [173] to obtain speed up for various applications. In this

section, we show how Tensor Decomposition can be used in a general framework to obtain

the decomposition of Eq. (4.2) for an arbitrary filter bank, thus speeding up convolutions.

We first describe the method for 2D filters, then we show how to generalize it to filters

of arbitrary dimension. We start by stacking the J filters fj ∈ R
d1×d2 into a 3D tensor

F ∈ R
d1×d2×J , where the j-th slice of F corresponds to the filter fj , as shown in Fig. 4.2.

Writing the slices of F as linear combinations of rank-one matrices is equivalent to

writing the tensor F as a linear combination of rank-one tensors

F =

K∑
k=1

ak ◦ bk ◦wk , (4.4)

where ak is a vector of length d1, bk a vector of length d2 and wk a vector of length J .

The symbol ◦ corresponds to the tensor product, that for vectors is also referred to as outer

product. Such a decomposition is called Canonical Polyadic Decomposition (CPD) [106] of

the tensor F and the right-hand side of Eq. (4.4) is called Kruskal form of the tensor. We

refer to K as the rank of the Kruskal tensor.

If tensor F can be written in the form of Eq. (4.4), we obtain

fj =

K∑
k=1

wkj s
k, ∀j, (4.5)
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4.3. LEARNING SEPARABLE FILTERS

Figure 4.2: Tensor Decomposition for learning separable filters. Left: A bank of two-
dimensional filters is stacked together to form a 3-dimensional tensor. Right: The tensor is
decomposed in the sum of K rank-one tensors. Thus, the original filters are approximated
by the weighted sum of the separable filters sk = ak ◦ bk.

where the separable filters are given by the ak and bk components of the CPD, that is,

sk = ak ◦ bk. The coefficients wkj ’s necessary to reconstruct the filter j are given by the

j-th component of the wk’s vectors.

In general, for a given K, we have no guarantee that the decomposition of Eq. (4.4)

exists. Thus, we will compute the best approximation of this form by optimizing

min
{ak,bk,wk}k

∥∥∥∥∥F −
K∑
k=1

ak ◦ bk ◦wk

∥∥∥∥∥
2

2

. (4.6)

To this end, we use the CP-OPT algorithm of [1], implemented in the MATLAB tensor

toolbox, in which Eq. (4.6) is solved by conjugate gradient descent. Fig. 4.1(c) shows an

example of filters learned with this approach.

The rank K of the decomposition is the only parameter of the method. It determines

the number of separable filters used to approximate the original filter bank.

Similarly, for the n-dimensional case, let {fj}Jj=1 be a set of filters, with fj ∈ R
d1×···×dn

∀j. Let F be the (n+1)-dimensional tensor formed by stacking the fj ’s along the (n+1)-th

dimension, that is Fi1,i2,...,in,j = (fj)i1,i2,...,in . Applying CPD of rank K to F , yields

F ≈
K∑
k=1

ak,1 ◦ ak,2 ◦ · · · ak,n ◦wk. (4.7)

Therefore, for all j = 1, . . . , J , the separable approximation of fj is given by fj ≈
∑K
k=1 w

k
j s
k,

with sk = ak,1 ◦ ak,2 ◦ · · · ak,n.

In Sec. 4.5.3, we show that the Tensor Decomposition approach of Eq. (4.6) has faster

convergence and gives a better approximation of the original filter bank, compared to the

approach of Eq. (4.3).
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4.4 Computational Complexity

In this section, we compare the computational complexity of different methods used to

compute convolutions of an image with a filter bank. First, we start by introducing the

competing strategies used in the evaluation. Then, we study the case of 2D filters and

finally, the generalization to the n-dimensional case.

Competing Strategies

In the following, we will refer to the non-separable filters obtained by minimizing the

objective function of Eq. (4.1) as NON-SEP. To provide a separable-filters-based baseline,

we also compute separable filters by approximating each NON-SEP filter by the outer

product of its first left singular vector with its first right singular vector, computed using

SVD in 2D and by rank-1 CPD for the nD case. This is the simplest way to approximate

a non-separable filter by a separable one. We refer to these strategies as SEP-SVD and

SEP-CPD respectively. For completeness sake, we reimplemented NON-SEP using the

Fast Fourier Transform to perform the convolutions. This approach is known to speed-up

convolutions for large enough filters and we will refer to it as NON-SEP-FFT.

SEP-COMB and SEP-TD denote the separable filters whose linear combinations can

be used to approximate the non-separable NON-SEP filters as described in Sec. 4.3. More

specifically, SEP-COMB refer to those that have been learned by minimizing the nuclear

norm, as in Eq. (4.3) and SEP-TD to those obtained by Tensor Decomposition, by solving

Eq. (4.6).

Finally, although the SEP-COMB and SEP-TD filters can be used to write the non-

separable ones as linear combinations of them, explicitly computing the coefficients of these

combinations is not always necessary. For example, when the filters output is to be fed to

a linear classifier for classification purposes, this classifier can be trained directly on the

separable-filters output instead of that of the non-separable ones. This approach, which we

will refer to as SEP-COMB∗ and SEP-TD∗, further simplifies the run-time computations

because the linear combinations coefficients are then learned implicitly at training-time.

The different methods described in the previous section are summarized in Tab. 4.1.

Here, we provide an analysis of their computational complexities in terms of the number of

multiplications required to perform the necessary run-time convolutions.
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4.4. COMPUTATIONAL COMPLEXITY

Table 4.1: Summary of the different methods used for our experiments, as described at the
beginning of Sec. 4.4.

Method
Name

Filter Bank Run Time Computa-
tions

NON-SEP Non-separable filters learned from
Eq. (4.1)

Spatial convolutions

NON-SEP-FFT Non-separable filters learned from
Eq. (4.1)

FFT convolutions

SEP-SVD Approximation of NON-SEP by trun-
cated SVD in 2D

Separable convolutions

SEP-CPD Approximation of NON-SEP by rank-
one CPD in 3D

Separable convolutions

SEP-COMB Separable filters learned from Eq. (4.3) Separable convolutions +
linear combinations

SEP-TD Separable filters learned from Eq. (4.6) Separable convolutions +
linear combinations

SEP-COMB*,
SEP-TD*

As SEP-COMB and SEP-TD Separable convolutions

The 2D Case

Let I ∈ R
N1×N2 be an image we want to convolve with a filter bank {fj}Jj=1, with

fj ∈ R
d1×d2 , for all j.

In the NON-SEP case, J convolutions are computed in the spatial domain and each

one requires N1 ·N2 · d1 · d2 multiplications, for a total of

NON-SEPnop = J ·N1 ·N2 · d1 · d2 (4.8)

multiplications.

In the NON-SEP-FFT case, the convolutions are performed in the frequency domain,

which involves the following steps:

• Padding I and fj with zeros to have the same size m1 ×m2, where mi is the closest

power of 2 larger than (Ni + di − 1), for i = 1, 2;

• Computing real-to-complex FFT on the padded image and the J filters;

• Multiplying the resulting Discrete Fourier Transform of the image by that of each

filter;

• Computing complex-to-real Inverse FFT (IFFT) on the results.

To decrease the total computational cost of the convolutions, we can precompute the FFT
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of the filters, at the cost of using more memory.

Assuming that each FFT and IFFT requires c ·m1 ·m2 · log2 (m1 ·m2) complex mul-

tiplications, where c depends on the specific FFT algorithm being used, and that each

complex multiplication requires 3 real multiplications, this yields a total of

NON-SEP-FFTnop = 3 · c ·m1 ·m2 · log2(m1 ·m2)

+ 3 · J ·m1 ·m2

+ 3 · J · c ·m1 ·m2 log2(m1 ·m2) (4.9)

multiplications. In the experiments, the value we used for the constant c is 2.

When the filters are separable, the cost of a spatial convolution reduces toN1·N2·(d1+d2).
If the filter bank is composed of K filters, this represents

SEP*nop = K · (N1 ·N2 · (d1 + d2)) (4.10)

multiplications. This is the total cost for SEP-SVD and SEP-CPD, as well as SEP-COMB∗

and SEP-TD∗. In the cases of SEP-COMB and SEP-TD, one must account for the

additional cost of linearly combining the results to approximate the J non-separable filters.

This requires N1 ·N2 ·K · J more multiplications, for a total of

SEPnop = K ·N1 ·N2 · (J + d1 + d2) (4.11)

multiplications.

In Fig. 4.3(a), we plot the values of NON-SEPnop, NON-SEP-FFTnop, SEP*nop, and

SEPnop, normalized by the number of pixels in the image, as a function of the size

d = d1 = d2 of the filters in the range [3, 25]. A 2D test image of size 488×488 is considered

and convolved with J = 121 non-separable filters and K = 25 separable ones. Notice that

the size of the image is chosen so that the size considered to compute the FFT is a power

of 2 for the maximum value of the filters d = 25. In this way the zero-padding required is

minimal, which is at the advantage of the FFT based approach.

Note that these theoretical curves are very similar to those observed experimentally,

shown in Fig. 4.4. Our code relies on the MATLAB conv2 function for spatial 2D

convolutions and on the fftw library for the frequency domain convolutions. Observe that

these functions can be run in parallel to further reduce the cost of the convolutions, as

shown in Fig. 4.4.
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Figure 4.3: Number of operations per pixel to compute convolutions, as a function of the
filters size. (a) An image of 488 × 488 pixels is convolved with a filter bank of J = 121
non-separable filters and K = 25 separable ones. (b) A volume of 114× 114× 50 voxels is
convolved with a filter bank of J = 121 non-separable filters and K = 25 separable ones.
The theoretical values are very similar to the experimental time shown in Fig. 4.4 and they
show that the number of operations needed to compute the convolutions with our approach
is smaller than both spatial convolution and FFT based convolution.

Figure 4.4: Time needed to compute convolutions using a multi-thread MATLAB imple-
mentation, as a function of the filters size. (a) An image of 488× 488 pixels is convolved
with a filter bank of J = 121 non-separable filters and K = 25 separable ones. (b) A
volume of 114× 114× 50 voxels is convolved with a filter bank of J = 121 non-separable
filters and K = 25 separable ones. Using parallel computation the time needed to compute
the convolution is further reduced and our methods are still the most efficient ones. The
times are averaged over 5 repetitions.
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The nD Case

The generalization to any dimension is straightforward. If x ∈ R
Ni×,...,×Nn is an n-

dimensional image and fj ∈ R
d1×,...,×dn an n-dimensional filter, the cost of a non-separable

convolution becomes
∏n
i=1Ni · di. The cost of a separable convolution is (

∏n
i=1Ni) ·

(
∑n
i=1 di) and the cost of a FFT is c ·m · log2(m), where m is the product, over index i, of

the closest larger powers of 2 of Ni + di − 1.

Fig. 4.3(b) and Fig. 4.4(b) illustrate that using separable filters is even more advanta-

geous for the 3D case. Here the size of the filters is between 3 and 15 and a 114× 114× 50

volume is considered. Again the size of the volume is taken at the advantage of the FFT

based approach.

4.5 Experimental Evaluation

In this section, we show the generality of our separable filter approach by applying it to two

different Compute Vision tasks involving convolution with a filter bank. First we consider

a voxel classification task of biomedical images, by extending the approach of [164] to the

3D case. Then, we consider an image classification problem with Convolutional Neural

Networks [116]. We compare the performance and computational complexity that results

from using either separable filters or non-separable ones and different strategies for deriving

them.

We will show that our separable filters systematically deliver a substantial speed-up

at no significant loss in performance. This is in line with our theoretical analysis of the

previous section. The code and parameters for all these experiments are publicly available

at http://cvlab.epfl.ch/software/filter-learning.

4.5.1 Detection of Curvilinear Structures

In this section, we apply the separable filter approximation schemes described in Sec. 4.3

to the problem of segmenting linear structure in 3D biomedical volumes. We consider as

baseline the approach of [164], which uses a filter bank learned with Eq. (4.1) to extract

the features used for the segmentation task. The goal of this section is therefore to achieve

the same level of performance of [164], but much faster.

Notice that, even if [164] consider the problem of segmenting the linear structures, the

features used in this task are the same as the ones we use in Chap 3 to train our regressors
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(a) (b) (c)

Figure 4.5: Filters learned for the voxel classification task of Sec. 4.5.1. (a) Example volume
from the OPF dataset. (b) Non-separable filters learned with Eq. (4.1). (c) Separable
filters learned with the Tensor Decomposition approach of Eq. (4.6) to reconstruct the
filters in (b).

for centerline detection. This is why we consider it for validating the use of separable filters

also in our case.

As described in Sec. 1.1, biomedical image processing is a particularly promising field of

application for Computer Vision techniques as it involves large numbers of 2D images and

3D image stacks of ever growing size, while imposing strict requirements on the quality

and the efficiency of the processing techniques. Here, we demonstrate the power of our

separable filters for the purpose of identifying curvilinear structures.

As discussed in Sec. 3.4, in [164] it was showed that convolving images with non-

separable filter banks learned by solving the problem of Eq. (4.1) and training an SVM on

the output of those filters outperforms previous methods for the task of linear structures

segmentation [170, 77]. Unfortunately, this requires many such non-separable filters, making

it an impractical approach for large images or image stacks, whose usage is becoming

standard practice in medical imaging. Here we show that our approach solves this issue.

The dataset we use for evaluation is composed of 3D volumes of Olfactory Projection

Fibers (OPF) from the DIADEM challenge [13], which were captured by a confocal

microscope. We first learned the non-separable 3D filter bank made of 49 13 × 13 × 13

pixel filters and then approximate them with 16 separable filters, as described in Sec. 4.3.

An image from the datasets and the filters learned on it are shown in Fig. 4.5.

We train a classifier to use these filters using �1-regularized logistic regression. Since

this classifier does not require us to compute the linear combination of the separable filter

outputs, we can rely on the SEP-COMB∗ and SEP-TD∗ approach for our experiments. For

training we used a set of 200000 samples, randomly selected from 4 train images.
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Table 4.2: Analytic measure of the performance of the voxel classification task over the
OPF dataset. The VI and RI values are compared on the classification thresholded at
the value found using the F-measure. For the learning-based approaches, a training set
of 200000 randomly selected samples and a �1-regularized logistic regressor classifier have
been used. Approaches that use a separable filter basis have been found to reduce the
computational costs by a factor of 30 in classifications tasks.

Method AUC F-measure VI RI Time[s]
OPF:Image 4

OOF 0.997 0.531 0.012 0.998 193.05
NON-SEP-FFT(49) 0.997 0.571 0.013 0.998 339.01
SEP-CPD(49) 0.997 0.567 0.013 0.998 40.06
SEP-COMB*(16) 0.997 0.570 0.013 0.998 11.08
SEP-TD*(16) 0.997 0.567 0.013 0.998 11.08

We use NON-SEP as our baseline. We compare SEP-COMB∗ and SEP-TD∗ against NON-

SEP-FFT. For completeness, we compare our results to those obtained using the Optimally

Oriented Flux [113], which we will refer to as OOF, and SEP-CPD.

As evaluation metric we use: Area Under Curve (AUC), which represents the area

subtended by the ROC curve; the F-measure [200]; the Rand Index (RI) [198] and the

Variation of Information (VI) [140]. The first three measures assumes values in [0, 1], the

higher, the better, while VI assumes values in [0,∞), the lower the better.

The results are reported in Tab. 4.2. SEP-COMB∗ and SEP-TD∗ are 30 times faster than

NON-SEP-FFT for virtually the same accuracy. They are 4 times faster than SEP-CPD,

but as OOF, SEP-CPD is worse in terms of accuracy.

4.5.2 Convolutional Neural Networks

In recent years, Convolutional Neural Networks (CNNs) have become increasingly popular

and have been shown to improve upon the previous state-of-the-art for many challenging

tasks. However, they are computationally intensive and their wide acceptance has been

achieved only after the introduction of powerful GPU implementations. In this section, we

show that replacing the non-separable filters they typically use by separable ones can help

alleviate this problem.

Recent works such as [49, 46] have addressed this issue, albeit in a different way. The

authors of [46] focus on reducing complexity at training time. They show that thanks to

the correlation present in the weights, it is possible to optimize only a small fraction of the

parameters and predict the remaining ones starting from them, without losing accuracy at

test time.
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Table 4.3: Handwritten digit recognition on MNIST dataset with Convolutional Neural
Networks. Different kernel sizes are used in the first and second convolutional layers
to evaluate the effect of kernel size on the classification performance and the execution
time. The classification results and the execution times are reported for separable and
non-separable filters. By using our separable filters approximation scheme, we can divide
the computational times by 2, at the cost of a negligible accuracy loss.

MNIST

Kernel Size Misclassification Rate Execution Time

1st Layer 2nd Layer SEP-TD NON-SEP SEP-TD NON-SEP

5 5 5.27% 5.17% 27.33 28.77
5 9 4.84% 4.17% 24.9 44.61
9 9 3.47% 3.17% 21.9 48.54

Although less effective, the approach of [49] is more similar in spirit to ours. They reduce

the complexity of the convolutional layers at test time by using smaller but non-separable

operators, reducing computation by a 1.6 factor. By contrast, by using separable filters

learned with our method, we show up to a factor 3 speed up.

Finally, the three approaches could be combined to achieve an even greater-speed up.

A network could be trained using the approach of [46], then the decomposition [49] could

be applied to obtain a smaller set of filters, to be turned into separable ones by through

approach.

In our experiments, we considered the following two datasets:

• The MNIST dataset [117] is a standard Machine Learning benchmark that consists

of 70000 images of hand-written digits. The training set contains 60000 images and

the test set 10000. For training we use a batch size of 50 with a learning rate of 1 for

5 epochs.

• We built a Drone Detection dataset that consists of 40× 40 images in which a drone

rotorcraft may or may not appear. The task is to determine whether the drone is

present or not, with a view to automated visual collision avoidance in swarms of such

drones. The training and test datasets both contain 10950 images. Representative

samples are shown in Fig. 4.7. Note that they are low-resolution and subject to

motion-blur. For training we use a batch size of 10 with a learning rate of 1 for 100

epochs.

We consider an architecture consisting of 4 fully connected hidden layers for the MNIST

dataset and 5 fully connected hidden layers for the Drone Detection dataset.

We trained the networks using different kernel sizes in order to study the influence on
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Figure 4.6: Filters learned for digit classification with Convolutional Neural Networks. (a)
12 filters going out of a node of the second convolutional layer. (b) A set of 4 separable
filters obtained after Tensor Decomposition. (c) Comparison of the original and the
approximated filters.

the performance and the execution time. For our experiments, we used a publicly available

Deep Learning MATLAB toolbox [151].

The first layer consists of 6 feature maps connected to the single input layer via 6

kernels. The second layer is a 2-by-2 downsampling layer. The third layer consists of 12

feature maps connected to the 6 downsampling layers via 72 kernels. The fourth layer is

again a 2-by-2 downsampling layer.

For digit classification, the feature maps obtained at the last layer are concatenated

into feature vectors and fed into the last layer, which has 10 output neurons in order to do

multiway classification between 10 handwritten digit characters.

For drone detection, one more convolution layer consisting of 24 feature maps fully

connected to the fourth layer is added. These feature maps are fed into 2 output neurons

in order to discriminate whether the image contains a drone or not.

To obtain separable kernels, we apply the SEP-TD approach at each convolution layer.

For the MNIST dataset, the 6 kernels in the first layer are approximated using 3 separable

filters. In the second layer, we group the 12 filters corresponding to each outgoing feature

map together and approximate them by 4 separable filters independently.

For the Drone Detection dataset, 4 separable filters are used to approximate 6 filters

in the first convolution layer. In the second convolution layer, 12 filters at each outgoing

feature map are approximated with 5 filters independently. In the third convolution layer,

the 24 filters at each outgoing node of the third convolution layer are approximated by 9

filters.

Using separable filters speeds up the Convolutional Neural Network without loss in

accuracy. The execution times and the misclassification rates are reported in Tables 4.3

and 4.4 for different kernel sizes. In particular, for a kernel size of 9, classification becomes
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Table 4.4: Drone detection task with Convolutional Neural Networks. As for the MNIST
dataset, we considered different kernel sizes in the convolutional layers. Using separable
filters the execution time can be reduced up to a factor of 3 without decreasing accuracy.

Drone Detection

Kernel Size Misclassification Rate Execution Time

1st Layer 2nd Layer 3rd Layer SEP-TD NON-SEP SEP-TD NON-SEP

5 5 5 0.17% 0.16% 9.72 17.55
5 5 9 0.09% 0.08% 19.69 44.33
5 9 9 0.02% 0.02% 36.35 102.15

Figure 4.7: Some positive class training images from the Drone Detection dataset. A
Convolutional Neural Network is trained to classify images containing a rotorcraft drone.
We use separable filters to speed up the execution time of the convolutional layers. See
text for more details.

two to three times faster. Note that the purpose of these experiments is not necessarily

to achieve state-of-the-art performance in a given task using CNNs, but to prove that

our approach can be used on an arbitrary CNN to speed up convolutions without loss in

accuracy, which is what it does.

Moreover, notice that, in order to further improve performance, one could fine tune the

last fully-connected layer, while keeping fixed the layers approximated by separable filters.

Fig. 4.6 shows the filters learned in the second convolutional layer learned on the MNIST

dataset and the 4 separable filters used to approximate them. Fig. 4.6(c) presents a visual

comparison between the original and the reconstructed filters.

Finally, we observe that even though our approach is able to speed up the execution

of Convolutional Neural Networks at test time, the main bottle neck associated to these

models is the time required for training. However, the idea of decomposing filter banks as

linear combination of separable filters could be adapted also to speed up the training of

the network. We discuss this possibility in detail in Chap 7.
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4.5.3 Comparison between SEP-COMB and SEP-TD

In Sec. 4.3, we showed that an arbitrary filter bank can be approximated by linear

combinations of separable filters. We also proved that such decomposition can be used in

several Computer Vision tasks to decrease the computational complexity without substantial

changes in accuracy.

In this section, we compare SEP-COMB and SEP-TD in terms of approximation

error and learning time. We start by studying the convergence rate of the two different

approaches. We compute the reconstruction error as the Root Mean Square Error between

the original filter bank and the filter bank approximated by the separable filters, and plot

it as a function of the learning time. For SEP-COMB, we also considered different values

of the parameter λ∗. The results are shown in Fig. 4.8. From the figure, we can see that

SEP-TD converges faster and has lower reconstruction error both in the 2D and 3D case.

Notice that, as expected, for SEP-COMB the error decreases as the value of λ∗ decreases.

In fact, with lower values of λ∗, the squared error term in Eq. (4.6) has more weight.

However, lower values of λ∗ penalize less high rank filters and therefore, in this situation,

it is more difficult to obtain separable filters at the end of the optimization.

We then considered a second series of experiments by computing the error as a function

of the number of separable filters used in the approximation. The results are shown in

Fig. 4.9. Also in this case we see that SEP-TD constantly returns better approximations

than SEP-COMB, for all the values of λ∗ considered and both in 2D and in 3D.

To summarize, the advantages of SEP-TD compared to SEP-COMB are:

• Parameter reduction: The only parameter of SEP-TD is the number of sepa-

rable filters used to approximate the original one, while SEP-COMB relies on a

regularization parameter.

• Faster convergence: The SEP-TD approach converges faster than SEP-COMB.

The advantage of using SEP-TD rather than SEP-COMB is more pronounced in the

3D case. Moreover, the SEP-COMB approach does not guarantee that the filters

actually have rank-1 after convergence and thresholding on the singular values might

be applied.

• Lower approximation error: This can be explained by the fact that in the SEP-

TD approach, a non-separable filter is explicitly written as the sum of the products of

1D filters. This approach provides a better approximation quality then SEP-COMB,

which relies on a soft constraint to make the filter ranks low.
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(a) (b)

Figure 4.8: Comparison of the reconstruction errors of SEP-TD and SEP-COMB as a
function of the learning time for approximating (a) a 2D non-separable filter bank and (b)
a 3D non-separable filter bank. The performance of the SEP-COMB approach depends on
the specified regularization parameter λ∗. Small regularization parameters yield a smaller
reconstruction error. SEP-TD does not need to satisfy an additional constraint and yields
a smaller reconstruction error compared to SEP-COMB with a faster convergence. In the
3D case, the difference is even more pronounced.

(a) (b)

Figure 4.9: Comparison of the reconstruction errors of SEP-TD and SEP-COMB as a
function of the number of separable filters used to approximate (a) a 2D non-separable filter
bank of 121 filters and (b) a 3D non-separable filter bank 49 filters. The results are averaged
over 10 repetitions. Also in this case we observe that SEP-TD returns more accurate results
than SEP-COMB for every number of separable filters. Moreover, when the number of
separable filters increase, the error decreases faster for SEP-TD than SEP-COMB.
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Conclusion

In this chapter, we have proposed a learning-based filtering scheme applied to the extraction

of curvilinear structures, along with two learning-based strategies for obtaining a basis of

separable filters to approximate an existing filter bank. Thanks to this approximation, we

get the same performance as with the original filter bank. Moreover, we also considerably

reduce the number of filters, and thus, the number of convolutions. We presented two

optimization schemes. In the first one the separable filters are learned by lowering their

ranks. In the second one, which proved to be more efficient and accurate, the filters are

obtained by Tensor Decomposition.

Our techniques bring to learning approaches one of the most coveted properties of

hand-crafted filters, namely separability, and therefore reduce the computational burden

traditionally associated with them. Moreover, designers of hand-crafted filter banks do

not have to restrict themselves to separable filters anymore: they can freely choose filters

for the application at hand, and approximate them using few separable filters with our

approach.

For example, in [202] our separable filters approximation scheme was applied to a

filter bank learned to detect feature points. Thanks to the separable approximation, the

authors obtained an improvement of both speed and accuracy compared to the original

non-separable case.

Moreover, after the introduction of separable filters approximation scheme, many other

works considered the use of separable filters, in particular for speeding up Convolutional

Neural Networks [94, 115, 103, 122]. This shows once more the relevance of our approach.

The features extracted with the method described in this chapter achieve state-of-the-art

performance when used as input to our regression-based method of Chap. 3 for centerline

regression. However, since the features extracted with these filters are local, they are not

able to discriminate ambiguous situations, where contextual information is required.

In the next chapter, we show how the convolutional filters described in this chapter

can be used to extend our regression-based method of Chap. 3 to a context-aware method.

Thanks to this new approach we can further improve the accuracy of our method for

centerline detection and radial estimation.
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Leveraging Contextual Information for Centerline
Detection

In Chap. 3, we have reformulated centerline detection as a regression problem. We have

introduced a supervised learning method, which consists in learning a set of pixel-wise

regressors to approximate a scale-space distance transform, whose local maxima correspond

to centerline locations and radii.

Performing Non-Maximum Suppression on the regressors output yields a large improve-

ment in the accuracy for centerline and radii estimation, compared to previous methods.

However, the method of Chap. 3 only relies on local information. Therefore, it is not able

to discriminate linear structures in ambiguous situations, where a larger context is required.

As a consequence, false detections on the background or gaps in the linear structures are

present in the output score map.

In this chapter, we extend our method by taking advantage of contextual information.

We consider context not only in the spatial domain, by widening the portion of the image

considered to extract the features, but also in the radial dimension, by incorporating

information across scales. Using the taxonomy we introduced in Chap. 2, the method

presented in this chapter can be considered a scale-space context-aware method.

We achieve this by adapting the Auto-Context algorithm [193], which was originally

proposed for image segmentation, to a multiscale regression framework. More precisely,

we use the outputs of the regressors as features to a layer of new ones. By iterating this

process, we can progressively correct earlier mistakes by exploiting information across a
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widening portion of the image and across scales.

We validate our approach with extensive numerical experiments and show that it gives

better performance both for pixel-wise evaluation and also when used in conjunction with

a tracing algorithm, compared to state-of-the-art methods.

Moreover, our approach is very generic and also performs well on contour detection.

We show an improvement above pixel-wise and patch-wise contour detection algorithms on

the BSDS500 dataset [10].

The rest of the chapter is organized as follows: In Sec. 5.1, we underline the importance

of context for the centerline detection problem and show some failure cases of the local

method of Chap. 3. Then, we introduce an iterative regression method and show how to

incorporate spatial and radial context in our algorithm in Sec. 5.2 and Sec. 5.3, respectively.

The features used as input to our iterative regression method are described in Sec. 5.4.

Experimental results for centerline detection and tracing are provided in Sec. 5.5, while in

Sec. 5.6 we apply our method to boundary detection.

Part of the content of this chapter has been previously published in [182].

5.1 The Importance of Context for Centerline Detection

Contextual information is fundamental to solve many Computer Vision problems [186, 188,

158, 73]. While local information might be sufficient for many low-level vision tasks, such

as detecting changes in intensity values, estimating local orientation, denoising, etc., for

higher-level tasks, information from a larger portion of the image is needed. For example,

texture analysis, detection of occluding contours and object recognition are tasks that, in

general, can not be solved by local methods alone.

For the problem of linear structure detection, local methods are adequate when the

structures clearly appear in the image as elongated segments, strongly emerging from the

background and when no other locally elongated structure is present in the image. However,

in situations, such as those of Fig. 5.1, where occlusions, low contrast or structured noise

appear, local information is not enough (Fig. 5.1(c)). On the contrary, by considering

a larger portion of the image, these ambigous situations can be easily discriminated

(Fig. 5.1(b)).

One of the main difficulties in using context in a Computer Vision system is how to

take advantage of this large amount of information while keeping computation efficient.
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Figure 5.1: Importance of context for centerline detection. (a) Two local patches of size
21× 21. The patch in the top row appears as a line-like structure, although it corresponds
to a roof top. The patch in the bottom row is centered on a road pixel, but it is partially
occluded by a tree. (b) Enlarged views of the patches in (a), of size 55× 55. Thanks to
the additional contextual information road and non-road segments are recognizable. (c)
Score map obtained with the method of Chap. 3. Since the method only relies on local
information, it makes mistakes on the pixels corresponding to the patches in (a).

Many solutions have been proposed in the literature. A classical, and still in wide use,

method is the Hough transform [89, 55], which combines the response of local detectors

using a voting technique. Other approaches, instead, rely on a set of context-aware

features [183, 22] that can be computed efficiently. Among them, pooling techniques [28, 75]

are a standard way to incorporate context. They are typically applied to a first layer of

locally extracted features and they proved to be effective to obtain local invariance and

discriminate texture [32]. In Auto-Context-like methods [193], contextual features are

extracted from the output of a classifier. Iterating this process, the receptive field of the

method is enlarged at every new iteration.

In order to detect centerlines, we will use the same principles of the methods described

above. First, inspired by [22], we will use a set of contextual features. For every pixel, our

regressor will use the features extracted not only from a local window centered at that

pixel, but also from pixels within a given radius from it. We will describe in Sec. 5.4 how

this can be done efficiently.

Second, we remark that if we are given an approximated score map estimating the

location of the centerline, and in the score map there is a location with a strong response,

but which is isolated, i.e. no other centerline is detected around it, then it is likely that

this isolated response corresponds to a false detection. Similarly, if in the score map there

is a line-like and continuous response with only a small gap in it, where the response of
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the detector is weaker, we can conclude that in reality also the pixels in the gap belong

to the linear structure. In Sec. 5.2, we show how the Auto-Context method can be used

to implement efficiently these observations and improve the score map returned by our

regressors.

Finally, the same reasoning described above can be done for the response of the regressor

at the different scales. As a consequence, in Sec. 5.3, we describe how we can improve

radial estimation by aggregating radial contextual information.

5.2 Adding Spatial Context

In this section, we first briefly recall the method and the notations used in Chap. 3. Then,

we describe how contextual information can be used to improve the performance of our

method in the case of structures with fixed radius. The multiscale case is considered in the

next section.

Given an image I, containing linear structures and the binary ground truth Y , cor-

responding to the set of centerline points C, finding the centerlines can be formulated

as a binary classification problem of learning a mapping between a feature vector f(x, I)

extracted from a local neighborhood of pixel x, and the value of Y at x.

Learning such a classifier, however, can be difficult in practice because of the similar

aspect of nearby pixels to the centerline and ambiguities on the exact location of a centerline

due to low resolution, occlusions and blurring.

To address this difficulty, in Chap. 3 we have replaced the binary ground truth Y by

the modified distance transform dC of Y :

dC(x) =

⎧⎨
⎩

e
a(1−DC (x)

dM
) − 1 if DC(x) < dM

0 otherwise
, (5.1)

where DC is the Euclidean distance transform of the set C, a > 0 is a constant that

controls the exponential decrease rate of dC close to the centerline and dM a threshold

value determining how far from a centerline dC is set to zero. An example of the function

dC computed on a small patch is shown in Fig. 3.2.

Function dC has a sharp maximum along the centerlines and decreases as one moves

further from them (Fig. 3.3). We apply the GradientBoost algorithm [82] to learn a regressor

ϕ(·) that associates the feature vector f(x, I) to dC(x). In this way, we induce the output
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5.2. ADDING SPATIAL CONTEXT

Figure 5.2: Improvement obtained by our context-aware iterative regression method. (a)
Input image I(x); (b) Score map ϕ(0)(·) obtained for M = 0, which corresponds to the
method of Chap. 3; (c) Score map ϕ(M)(·) with M = 2 obtained using our context-aware
approach, as described in Sec. 5.2; (d) Score map Φ(·) obtained by adding the multiscale
learning step described in Sec. 5.3. Both the iterations and the last multiscale regressor
help to remove false detections on the background and to obtain a better localization
accuracy of the centerlines. For (b), (c), and (d) we show the maximum projection along
the radial dimension for visualization purposes.

of the regressor to have a unique local maximum in the neighborhood of the centerlines.

As a result, centerline points can be easily extracted by Non-Maximum Suppression. This

approach is more robust to small displacements and returns centerlines that are better

localized compared to classification-based methods.

However, as explained in the previous section, using ϕ(·) to predict function dC(·), may

result in incorrect large values on the background or missed parts of the linear structures,

since only local information is used for prediction purposes.

These mistakes can be avoided by including more contextual information in the algorithm,

as is done in the so-called Auto-Context algorithms [193, 176] for classification purposes.

To this end, we use the score map ϕ(x) to extract a new set of features able to discriminate

isolated responses on the background and to fill gaps in the detected structures. These new

features are added to the original ones to train a new regressor. By iterating this process

we obtain a sequence of regressors able to include more and more contextual information

in the learning algorithm and to correct the mistakes done at the previous iterations.

In the following, we describe how the regressors are learned, assuming we are given two

set of features f and g, extracted from the image and from the score map respectively. In

Sec. 5.4, we describe in detail how the set of features is computed.

Let {(fi, di)}i be the set of training samples used to learn the first regressor ϕ(0)(x) =

ϕ(x), where fi = f(xi, Ii) ∈ R
J is the feature vector corresponding to a point xi in image

Ii and di = dC(xi), as described in Sec. 3.2.

Now, let us consider a new feature vector g(x, ϕ(0)), extracted from the score map
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ϕ(0)(x) and let {(fi, gi, di)}i be the new training set, with gi = g(xi, ϕ
(0)
i ) ∈ R

J ′
and ϕ(0)

i =

ϕ(0)(f(x, Ii)). In order to learn a new regressor, able to improve the performance of the

previous one, we apply again the GradientBoost algorithm to learn a better approximation

of the function dC(·):

ϕ(1)(f(x, I), g(x, ϕ(0))) =
T∑
t=1

α
(1)
t h

(1)
t (f(x, I), g(xi, ϕ

(0)
i )) . (5.2)

We iterate this process M times learning a series of regressors

{ϕ(m)(f(x, I), g(x, ϕ(m−1)))}m=0,...,M . (5.3)

The final output ϕ(M)(·) will be used as approximation of dC(·). For the sake of brevity,

we will write ϕ(m)(x) instead of ϕ(m)(f(x, I), g(x, ϕ(m−1))).

To prevent overfitting, which is a known weakness of Auto-Context frameworks, we

adopt several strategies. First, at the beginning of each Auto-Context iteration new pixel

locations are sampled from the train images to build a new training set. Second, at

each boosting iteration t we learn the weak learner ht using only a random subset of the

whole training set, as in Stochastic GradientBoost [70]. Finally, as discussed in Sec. 5.4,

the features used to learn a weak learner are also subsampled at each boosting iteration.

Fig. 5.2(c) shows the advantage of using iterating regression.

In practice, the method converges fast: the performance does not improve beyond the

second iteration and we therefore set M = 2 in all our experiments.

5.3 Adding Scale-Space Context

In this section, we consider the centerline detection problem in the case where structures

at several scales are present in the image. Now, at every centerline pixel is associated a

radial value r that we also want to estimate. In Chap. 3, this was achieved by learning a

set of regressors {ϕri(·)}Ri=1 to approximate the multiscale version of function dC , defined

in Eq. (3.8).

As in the single-scale case, and as summarized in Fig. 5.3, we use the Auto-Context

strategy to improve the accuracy of our method and create a sequence {ϕ(m)
ri (·)}i,m of

scale-space regressors.

Potentially, all the outputs at every scale, obtained at iteration m− 1 could be used to

train the regressors for the next iteration. However, this would increase the learning and
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Figure 5.3: Iterative regression for multiscale centerline detection. For each value of radius
r, the input image is convolved with a bank of filters to extract a set of image features.
The features are used as input to regressors ϕ(0)

r . The outputs of the regressors are then
convolved with other filter banks to extract new features. These features are fed together
with the image features to a second layer of regressors ϕ(1)

r . This process is iterated M
times. In the final step, the output of the regressors is fed to Φ, a multiscale regressor, that
computes the final score map.

test times considerably. We therefore adopt a different strategy and divide the learning

process into simpler subproblems. At the first M iterations the regressors at different scales

are learned independently, that is for each ri, ϕ
(m)
ri = ϕ

(m)
ri (fri(x, I), g(x, ϕ

(m−1)
ri )). Then,

as a final step, we take the score maps obtained at all scales {ϕ(M)
ri (x)}Ri=1 and use them

to train a last multivariate regressor Φ(·), where now Φ(x) ∈ R
R.

We build the function Φ(·) again with GradientBoost:

Φ(x) =

T ′∑
t=1

αtht({ϕ(M)
ri (x)}Ri=1) , (5.4)

where now the weak learners ht({ϕ(M)
ri (x)}Ri=1) ∈ R

R return a vector of values, each

component corresponding to a different scale. We use Φ(·) as the final approximation of

the scale-space function dC .

This last step imposes consistency and smoothness on the values returned by the

previous regressors, which were trained independently and improve localization and radial

estimation accuracy. Fig. 5.2(d) shows the advantage of this last step on a sample road

image.

5.4 Scale-Space Context-Aware Features

In this section, we discuss the image features we feed as input to the regressors described

in Sec. 5.2 and Sec. 5.3.
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In order to extract the image features f(x, I), we again rely on the convolutional filter

learning framework described in Sec. 4.2. However, compared to the method of Chap. 3, we

exploit additional image information by also considering locations within a certain distance

of location x. This produces a much larger pool of possible features

f(x, I) = {(fj ∗ I)(x+ l)}j,l , (5.5)

where the fj are the learned filters and with l ∈ R
n, ‖l‖ ≤ Λ for some fixed Λ > 0. For

example, for a 121-filter bank, setting L = 13 results in approximately 64, 200 possible

features. We handle this potentially large number by considering at each boosting iteration

only a random subset of all possible locations and convolutional features. The GradientBoost

algorithm will automatically select the most relevant features and locations. Moreover,

randomly subsampling them has the added benefit of reducing overfitting.

We use the same filter banks as in Chap. 3. To speed up the computation, we again

approximate the filters {fj}j with a set of separable ones, as described in Chap. 4.

After iteration m, we extract a new set of features from the score map ϕ(m)(·) that will

be used in the next iteration. As for the image information, we use the method of Sec. 4.2

to learn filters specifically trained to extract features from ϕ(m)(·).

Ideally we should learn a set of filters on the score maps at each iteration. In practice,

however, this would be prohibitively expensive. In biomedical imagery, the background is

relatively uniform and the score maps produced by the regressors exhibit characteristics

similar to those of the original images. We therefore use the same filters as for the image

to extract features from the score maps. In other kinds of images, such as aerial or natural

images, which contain objects other than the linear structures, we learn instead a bank of

filters from the ground truth training images dC(x). This produces filters able to detect

linear structures and junctions similar to those we would have learned on the score maps.

Neighbor locations are again considered to capture more context. Formally, the feature

vector on the score image at the iteration m is given by {gj ∗ ϕ(m)(x+ l)}j,l. To keep the

computational complexity under control, we subsample the set of features at each boosting

iteration also in this case.

In the case of multiscale detection, at the last iteration, the function Φ is learned from

all the previously computed maps {ϕ(M)
ri }Ri=1 and we do not use features extracted from the

original image anymore. This compensates for the increased number of score map features.

Moreover, image features are not really needed here because the purpose of this last step is

to enforce score consistency over the different scales.
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5.5 Experimental Evaluation

In this section, we first introduce the datasets and the parameters used to test our centerline

detection method, in Sec. 5.5.1. We describe our evaluation methodology and we discuss

our results. We then evaluate the improvement brought by our method when used in

conjunction with automated tracing algorithms. We first evaluate the accuracy of our

method for tracing paths on the linear structure, in Sec. 5.5.2. Then, in Sec. 5.5.3 we

evaluate its performance when using it for reconstructing the whole graph of the linear

structure. Finally, in the next section, we apply our algorithm to the problem of boundary

detection in natural images.

5.5.1 Pixel-Wise Evaluation

In this section we repeat the pixel-wise evaluation of Sec. 3.6, for centerline detection and

radial estimation, as done for the method of Chap. 3.

We use the same datasets and the same evaluation metrics as in that chapter, with

the only exception that we use an extended version of the Aerial dataset. The new Aerial

dataset is composed of 13 images for training and 13 images for testing. For this dataset,

we sample 10 scales ranging from 5 to 14. We trained 2 regressors at scales 6 and 9.

For iterative regression, we always used M = 2 iterations and the maximum contextual

radius Λ was set to 13. For the Aerial dataset, we learned a bank of 36 convolutional

filters on the distance transform ground truth and applied it to the score map to extract

the features used during iterative regression. In order to train the final regressor Φ, more

samples were needed to obtain good performance. We therefore used 106 samples for this

purpose, half of them sampled close to the centerlines (within a distance dM ) and the other

half far from it. All the other parameters are the same as in Chap. 3.

Fig. 5.4 and Fig. 5.5 show the Precision-Recall curves of the different methods, computed

for different tolerance factors ρ and δ. From the figures, we notice that iterative regression

consistently brings an improvement, both for centerline localization accuracy and for radial

estimation. This confirms the importance contextual information to solve the problem.

Qualitative results are given in Fig. 5.7 and Fig. 5.6. In particular, from Fig. 5.7 we see

the advantage of using our scale-space contextual method on a Brightfield stack. Thanks

to spatial context we obtain more continous centerlines, while thanks to radial context the

radial estimation is smoother.
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(a) Centerline precision-recall curves for ρ = 1.
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(b) Centerline precision-recall curves for ρ = 2.0.
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(c) Centerline precision-recall curves for ρ = 3.
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(d) Centerline precision-recall curves for ρ = 4.
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(d) Centerline precision-recall curves for ρ = 5.

Figure 5.4: Precision-Recall curves for centerline detection for different tolerance values.
Our method outperforms the others on all the datasets we considered. Using iterative
regression further improves the results.
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Aerial Brightfield VC6 Vivo2P
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(a) Segmentation Precision-Recall for δ = 0.1.
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(b) Segmentation Precision-Recall for δ = 0.2.
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(c) Segmentation Precision-Recall for δ = 0.3.
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(d) Segmentation Precision-Recall for δ = 0.4.
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(e) Segmentation Precision-Recall for δ = 0.5.

Figure 5.5: Precision-Recall curves for segmentation for different tolerance values. Our
method outperforms the others on all the datasets we considered. Using iterative regression
further improves the results. Legend in Fig. 5.4(a).
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Figure 5.6: Centerline Detection Results. (a) Aerial image. (b) Brightfield image stack.
(c) VC6 image stack (d) In vivo two-photon (Vivo2P dataset) volume. In each case,
we show from top to bottom the original image, the maximum projection along the
radial component of our regressor’s output, centerlines detected by thresholding after
Non-Maximum Suppression, and ground truth centerlines. In the last three rows, the
images have been inverted for visualization purposes.
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(a) (b) (c) (d) (e)

Figure 5.7: Maximum intensity projection of the segmentation results on a Brightfield stack.
(a) Segmentation obtained with the local method of Chap. 3; (b) Segmentation obtained
with our context-aware method; (c-e) Top row: Detail of the red top rectangle in (a,b).
Thanks to the radial context used by our method, we obtain more accurate radii estimation.
(c-e) Bottom row: Detail of the blue bottom rectangle in (a,b). Thanks to spatial context
our method has less background detections and more continuous segmentations of the
linear structures. The images have been inverted for visualization purposes.

5.5.2 Tracing Evaluation

The evaluation measures used to compare the results in the previous section are only local

measures. For the problem of linear structure reconstruction it is also interesting to have

a global measure able to evaluate how well a tubularity score can be used to trace linear

structures.

To this end, we use in this section the tubularity scores obtained with our method and

the baselines with the Fast Marching algorithm to generate paths between two points on

a connected linear structure. We then evaluate how well these paths match the ground

truth path using the approach proposed in [174], which we adapted to take into account

also the estimation of the radius. In particular we use the overlapping measure OV and

the accuracy measure AD. OV represents the ability to track the complete ground truth

path, and is defined as

OV =
TPM + TPR

TPM + TPR + FN + FP
, (5.6)

where TPR and TPM are the numbers of true positives in the reference path and the

reconstructed path respectively, and FN and FP are the numbers of false negatives and

false positives. In addition of the condition defined in [174] for true positives, we also

take into account the radial estimation and impose that min(rest, rgt)/max(rest, rgt) > th,
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Figure 5.8: Example of random paths used in the Tracing Evaluation of Section 5.5.2. The
ground truth paths are represented in blue. The paths obtained from the MDOF tubularity
score are represented in yellow, while those obtained using the tubularity score returned by
our method are in red. The paths obtained with our method are most of the time much
closer to the ground truth paths. In particular our method is able to follow the linear
structure on a longer distance even in case of complex tree topology, such as the Brightfield
stack (b) or in images with many background objects, such as the Aerial image (a). In
such cases, the paths returned using MDOF are partially on the background or on adjacent
structures. In simpler situations, such as for the Vivo2P dataset (c), the two methods are
both able to provide the correct path. Best viewed in color.

where rest is the radial estimation at one point, rgt the ground truth radius and th ∈ [0, 1] is

a threshold value. Setting th = 0, the radial estimation is not considered and the evaluation

is equivalent to [174]. For th = 1 perfect match of the radius is required. In our experiments

we set th = 0.75. AD is the average distance between ground truth path and the path

extracted automatically. It was computed in the scale-space to again take into account the

radial estimation.

For each dataset, we randomly sampled 1000 paths of fixed length L from the ground

truth, generated the paths joining the starting and ending points of these patches using

the different tubularity measures and the Fast Marching algorithm and finally computed

the corresponding OV and AD values.

Fig. 5.9 shows the OV and AD values as a function of the path length L. Note that

as the length of the path increases our method remains more robust. Unlike the others,

it also retains its accuracy. As shown in Fig. 5.8, the resulting paths follow the true

linear structures over longer distances, without being disturbed by adjacent structures or

background objects.

For smaller values of L, all methods perform well. The OOF-based measures even

appear slightly better than the learning-based ones. This is an artifact due to the fact that

the ground-truth paths have been generated using a semi-automated tracing tool that itself

relies on OOF [25]. This is particularly true for the Vivo2P dataset, that only features

short dentritic trees with simple topology.
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(a) OV measure as a function of the path length L.

(b) AD measure as a function of the path length L.

Figure 5.9: Tracing Evaluation. Our method is more robust when used to trace linear
structures. The accuracy of our method remains constant for large values of the path
length L, while the performance of the other methods decreases. OV is the fraction of
points on the ground truth path marked as true positives, the larger the better. AD is the
average distance between ground truth path and centerlines extracted automatically, the
smaller the better. On the simpler Vivo2P dataset all methods perform well; OOF-based
measures appear slightly better than the learning-based ones because the ground-truth
paths have been generated using a semi-automated tracing tool that relies on OOF [25].

5.5.3 Automated Reconstruction

We evaluated our approach in combination with a state-of-the-art tracing algorithm [196].

A tubularity measure is used in the first step of the algorithm to build a graph. This graph

is then processed to extract the subgraph describing the linear structures. In the original

implementation of [196] the tubularity measure was OOF [114]. Here we used instead the

more accurate MDOF measure [194].

We used the DIADEM score [13] as an evaluation metric. It computes a similarity

measure between two tree graphs and it takes into consideration the topology of the

reconstruction. The results are reported in Table 5.1. Using our method yields a substantial

improvement on the challenging Aerial and Brighfield datasets. On the Vivo2P dataset

the difference is smaller but our method still performs slightly better. This is due to

the comparative simplicity of that dataset, which contains only structures with a simple

topology.

The reconstruction obtained with our method are shown in Fig. 5.10 for two Aerial

images and in Fig. 5.11 for a Brightfield and a Vivo2P image stacks. From Fig. 5.10(d) we

see that we are able to correct errors present in the ground truth.
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Figure 5.10: Road tracing. We used our method as a preprocessing step for a state-of-the-art
tracing algorithm [196] to reconstruct road networks. The green color corresponds to true
positives, red to false negatives, and blue to false positives. Most of the mistakes of our
method are made at the ends of the roads. (a) An image where the roads were almost
perfectly reconstructed. (b)-(d) Another image for which our method correctly recovers
the centerlines and the radii (d) while the ground truth was incorrect (c) for the vertical
road on the bottom-left part of the image. Best viewed in color.

Figure 5.11: Automated neuron delineations obtained by feeding the output of our ap-
proach to the algorithm of [196]. Different colors indicate different dentritic trees. (a)
Reconstruction of neurons in a Brightfield image stack; (b) Reconstruction in a Vivo2P
volume. Best viewed in color.
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Table 5.1: Automated reconstruction results. DIADEM scores computed on the recon-
struction returned by [196] using either our method or MDOF [194] as initial tubularity
measure. For the Aerial dataset, we considered only the images containing road networks
having a tree topology, since the DIADEM score is not defined for generic graphs.

Method Aerial Brightfield Vivo2P
Our Method + [196] 0.84 0.60 0.71
MDOF + [196] 0.75 0.56 0.70

5.6 Boundary Detection

To demonstrate how generic our approach is, we consider here the problem of boundary

instead of centerline detection. As centerlines, natural image boundaries are one dimensional

structures whose exact location can be uncertain, as shown in Fig. 5.12. In this example

and as often the case, the local appearance of boundary pixels and of their neighbors are

extremely similar. In fact, as shown in Fig. 5.12(b), different people may mark different

pixels as boundary points. Moreover, large contextual information is needed to discriminate

local intensity edges, such as texture or illumination changes, that do not correspond to

object boundaries.

Our regression-based approach gives us a robust way to deal with this uncertainty as

shown in Fig. 5.12(b) and we can enforce a single maximal response for each boundary.

Moreover, by including contextual information, as described in Sec. 5.2, we are able to

better discriminate local intensity changes that are not object boundaries.

In the remainder of this section, we describe how we adapt our method for boundary

detection purposes and the dataset used to test its performance.

To test our algorithm we used the Berkeley BSDS500 dataset [10]: The BSDS is a

standard dataset used to test boundary detection algorithms. It is composed of 500 color

images. 200 are used for training, 100 for validation and the remaining 200 for testing.

Ground truth is made of boundaries as drawn by several annotators.

No radial information is associated to a boundary, therefore, we train a single regressor

following the single-scale approach of Sec. 5.2. Since the appearance of a boundary is often

more complex than linear structures, we used 106 training samples and trees of depth 5 as

weak learners.

Moreover, in natural images color and texture are important sources of information to

detect boundaries [136]. To compute color features we converted the input RGB images to

Luv color space and learned a different filter bank on each channel.
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Figure 5.12: Learning to predict boundaries in natural images. (a) A training image. (b)
First row: Detail of image (a). Second row: Ground truth annotated by several human
subjects. All the annotations are typically used in classification based approaches. This
can produce multiple responses on a boundary. Third row: Aligned ground truth obtained
using [11]. Fourth row: The function dC used in our method enforce a single detection and
can model uncertainty.

To detect texture boundaries instead, we added to our feature vector a corresponding

pooled version. We tried different pooling strategies and the one that worked better for

us was to take the absolute value of the average over a 5 × 5 region. As for centerline

detection, we used M = 2 regression iterations. Features on the score map where extracted

using filters learned on the ground truth maps, as described in Sec. 5.4, in the case of the

Aerial dataset.

In the BSDS500 dataset the ground truth is made of 4 to 10 different annotations. In

order to compute the function dC of Eq. (3.5), we first align the different annotations using

the approach described in [11], as shown in Fig. 5.12(b). In this way, we obtain a single

response for each boundary and we compute the function dC from this binary map.

Finally, as done in [160, 53, 176], we also run our boundary detector on the test images

at 3 different resolutions: half, original and double size, and then average the results 1.

For evaluation, we compare our method against state-of-the-art pixel-wise boundary

detectors based on classification: Sparse Contour Gradients SCG [160] relies on gradients

of sparse codes and linear SVM to classify the boundaries; Cascaded Hierarchical Model

CHM [176] is an iterative method like ours, but it is based on classification. We also

compare against the Structured Edge (SE) prediction approach [54], which is a patch-wise

method based on structured random forests [107]. It predicts for every pixel location a

binary patch corresponding to the edge profile at that point. Finally, we also consider the

1The code used for and the results obtained with our experiments are publicly available at:
http://cvlab.epfl.ch/software/centerline-detection.
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Figure 5.13: Precision-Recall curves on the BSDS500 dataset for different boundary
detection methods. In brackets is shown the F-measure computed with a fixed threshold
for every image (ODS [10]). Our method outperforms the baselines also on this task. The
advantage of our method is mainly given by the regression formulation. Retraining our
model using the binary ground truth to classify the boundaries deteriorates the performance
by 5% (red dashed line in the graph).

gPb-ucm approach of [10] and MCG [11] which segment the images in different regions

and also include a globalization step to make prediction more accurate.

The Precision-Recall curves obtained using the standard Berkeley benchmark [10] are

shown in Fig. 5.13. Our method is more accurate than state-of-the-art pixel-wise techniques

and also than the patch wise approach of [54], Moreover, unlike gPb [10], SCG [160] and

MCG [11], our method does not include any globalization step.

The advantage of our method is mainly given by the regression approach. In fact,

by applying our method with a classification-based formulation gives significantly worse

results. This Classification results are shown in Fig. 5.13, they were obtained with

the same implementation as for our regression method, using the same image features

and the same number of Auto-Context iterations—the only difference was the objective

function minimized during training: The classifier was trained to classify the pixels lying

on boundaries versus the other pixels by minimizing the exponential loss, rather than

regressing the distance transform.
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Figure 5.14: Compared to classification based approaches, the boundaries detected by our
method are better localized and less noisy on the background. In particular, from the
image details in the second row, we see that thanks to our regression formulation we avoid
multiple detections of a boundary.

The boundaries detected by the different methods on some test images are shown in

Fig. 5.15. When we compare the qualitative results obtained with our method against the

two state-of-the-art pixel-wise classification-based detectors, SCG [160] and CHM [176], we

see that our approach can avoid double responses and multiple detections (Fig. 5.14). The

gPb-ucm [10] and SE [53] methods do not have this problem since they obtain boundaries

after segmenting an image or an image patch in different regions.

However, our method is still more accurate and also gives a general framework that is not

limited to the contour detection problem. Moreover, as a possible extension of our method,

we can naturally incorporate information about the strength of a boundary [11, 129] by

modifying the shape of the distance function we want to learn.

Despite great efforts and the use of powerful learning methods [26, 177, 91], the accuracy

of local and context-aware boundary detection algorithms has remained far behind the

average human performance (green dot in Fig. 5.13).

Only very recently, the method proposed in [211], could make a qualitative leap and

closely approach human performance. The main difference of this approach, compared to

previous ones, is its global nature. In fact, following the taxonomy of Chap. 2, this method

is both global, by taking as input the entire image, and also image-wise prediction-based.

Thanks to this large contextual information, the method is able to discriminate object

boundaries which require high-level semantic information. This underlines once more the

importance of context in solving fundamental Computer Vision problems.

We discuss in more detail the method of [211] in Chap. 7, where we consider how to

integrate global information also in our algorithm.
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Figure 5.15: Boundary detection results. Our method is able to capture finer details, and
is also more robust to false edges. See for example the lizard in the top image or the front
paw of the leopard on the bottom.
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Conclusion

In this chapter, we have extended our regression-based approach to take advantage of

contextual information. Thanks to a scale-space iterative regression algorithm, we were able

to correct the mistakes and improve the performance of the local formulation of Chap. 3.

Moreover, we showed that the output of our method can be used in combination with

tracing algorithms requiring a scale-space tubularity measure as input, increasing accuracy

also on this task. Finally, our approach is very general and applicable to other linear

structure detection tasks. For example, we obtained an improvement over previous works

when training it to detect boundaries on natural images.

However, one of the main limitation of our approach is that it is based on pixel-wise

predictions. Since the response of every pixel in the image is computed independently, there

is no guarantee that the output of our method will be smooth. Small displacement in the

input image features can abruptly change the output of the regressor. As a consequence,

discontinuities and topological inconsistent results are still present in the regressor output,

and this is independent on the amount of contextual information we consider in input.

In the next chapter, we consider a patch-wise techniques which allows us to induce

smoothness and topological consistency on the regressor output. The method efficiently

approximates the projection of the score map onto the set of admissible ground truth

images. Moreover, we provide sufficient conditions under which the projection is exact.
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Efficient Projection onto the Set of Elongated
Structures for Accurate Extraction

In the previous chapter, we have shown how to include contextual information in our

regression-based method. Thanks to a scale-space iterative method, we could efficiently

take advantage of both spatial and radial context. This led to an improvement of centerline

localization accuracy and radii estimation. Moreover, we have also proven the generality

of our approach by using it in conjunction with a tracing algorithm or by applying it to

boundary detection, showing an improvement also in these cases.

However, the method of Chap. 5 essentially classifies individual locations and does

not explicitly model the strong relationship that exists between neighboring ones. As a

result, isolated erroneous responses, discontinuities, and topological errors are still present

in the resulting score maps. This problem does not depend on the amount of contextual

information considered as input to the regressor, but on its pixel-wise nature. In fact, since

no spatial smoothness constraints are explicitly imposed on the regressor output, small

changes in the input feature map can produce arbitrary different output values.

Up to a point, these problems can be mitigated by relying on structured learning to

model correlations between neighbors, as in [54]. In this chapter, we show that a better way

is to first compute the score map using an appropriately trained pixel-wise regressor, as in

Chap. 5, and then systematically replace pixel neighborhoods by their nearest neighbors in

a set of ground truth training patches.

This is in the spirit of algorithms for image denoising and inpainting that search for
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nearest neighbors within the image itself [44, 43, 128]. It is also closely related to the

approach of [74] that improves boundary images by finding nearest neighbors using a

distance defined in terms of descriptors extracted by a Convolutional Neural Network. By

contrast, in our method, we compute distances in terms of the patches themselves and we

will show that it improves both performance, especially near junctions, and generality.

Following the taxonomy of Chap. 2, the algorithm of this chapter falls in the category

of patch-wise prediction methods. However, we will show that, under certain assumptions,

our patch-wise formulation induces global consistency on the whole image. In effect, by

assuming that the structure of all admissible ground truth images is well represented by

the set of training patches, it can be formally shown that our method is equivalent to

projecting the score map onto the set of all admissible ground truth maps.

In short, our algorithm induces global spatial consistency on the regressor score map

and improves its performance. Our method is general, in the sense that it is not limited to

the centerline detection problem or to the regression formulation of the Chap. 3. To prove

its accuracy and generality, we apply it to challenging datasets in four different domains

and show that it compares favorably to state-of-the-art methods.

The rest of the chapter is organized as follows. In Sec. 6.1, we discuss the limitations of

pixel-wise prediction algorithms and show in particular some failure cases of our context-

aware regression approach of Chap. 5. In Sec. 6.2, we improve our method by introducing

our patch-wise projection algorithm and in Sec. 6.3 we give conditions under which our

algorithm is equivalent to projecting the score map onto the set of ground truth images.

We also show the validity of these conditions by applying our method to a synthetic dataset.

In Sec. 6.4 we discuss some implementation details and finally, in Sec. 6.5, we demonstrate

the versatility of our approach by applying it on four very different problems.

Part of the content of this chapter has been previously published in [180].

6.1 Topological Inconsistency of Pixel-Wise Approaches

As discussed in Chap. 2, methods that rely on statistical classification techniques currently

deliver the best results for boundary, centerline, and membrane detection. As shown in

the previous chapters, reformulating the problem in terms of regression, performs best for

centerline and boundary detection, and we will demonstrate here that it performs equally

well for membrane detection.

More specifically, the algorithm of Chap. 5 involves training regressors to return distances
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(a) Image (b) Pixel-wise regression (c) Our patch-wise method

Figure 6.1: Limitation of pixel-wise approaches. Pixel-wise classifiers and regressors reach
state-of-the-art performance in several Computer Vision tasks. However, the response of
such methods does not take into account the very particular structure and the spatial
relation present in the ground truth images. (a) An aerial road image. For this problem
the ground truth is composed by a continuous 1-D curve. (b) Output of our method of
Chap. 5. Since this method is based on pixel-wise regression, its output has discontinuities
on the centerlines and isolated responses on the background. (c) The output of our method
is obtained by projecting the patches of the score image of (b) into the closest ground truth
patches from the training images. In this way the structure of the ground truth patches is
transferred to the score image, resulting in a provably correct global spatial structure.

to the closest centerline in scale-space. In this way, performing Non-Maximum Suppression

on their output yields both centerline locations and corresponding scales. Although this

has proved very effective, like for all other pixel-wise techniques that do not incorporate

any a priori geometric knowledge that may be available, this approach can easily result in

topological mistakes, as shown in Fig 6.1.

In fact, even though the feature vector extracted from neighboring pixels have over-

lapping domains, small changes in the input vector, can produce a completely different

output of the regressors. This phenomenon is even more pronounced for classification-based

approaches, which are trained to produce a discontinuous function, returning value one

for pixels on the centerline and zero for pixels immediately next to it. This problem is

mitigated by our regression formulation. However, since no explicit constraint is given

during training, some discontinuities in the output score map are still present.
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As a consequence, the output score map of pixel-wise methods is often topologically

inconsistent, meaning that it contains errors such as isolated responses, gaps in the linear

structure and missing junctions, which never occurs in the ground truth images (Fig. 6.2).

As discussed in Sec. 1.1.4 and Sec. 5.5.2, these kind of errors, have small effect when

computing pixel-wise evaluation metrics, such as those of Sec. 3.6. However, they can

become problematic when trying to reconstruct the connectivity of the network.

In this chapter, we demonstrate that we can correct the errors made by pixel-wise

methods by projecting their score map onto the set of distance transforms corresponding

to the kind of structures we are trying to reconstruct. This results in a technique that

is more accurate and more widely applicable than the method of the previous chapter.

Furthermore, it is generic in the sense that it is applicable to other methods returning a

score map, such as [54, 38].

6.2 Efficient Projection using Patch-Wise Nearest Neigh-

bors

In this section we describe how to improve the results obtained with a pixel-wise regressor

by projecting patches extracted from the score map of the regressor into a set of ground

truth patches.

The central element of our approach is to project the distance transform produced by

pixel-wise regression, as described in the previous chapters, onto the set of all possible ones

for the structures of interest. Since this set is too large to be computed in practice, we

first propose a practical computational scheme. Then, in next section, we introduce formal

conditions under which the projection is exact.

Before describing our method, we start by introducing the notation used in this chapter

and by briefly recalling the regression formulation of Chap. 3.

Centerline Detection

Let I ∈ R
N be an image containing linear structures, where N is the number of pixels in

the image, and let Y be the corresponding binary ground truth image, such that Y (p) = 1

if pixel p is on a centerline and Y (p) = 0 otherwise.

Let f(p, I), the feature vector extracted from a local neighborhood around pixel p in

image I. As explained in Chap. 3, learning a classifier mapping f(p, I) to Y (p) can be
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(a) (b) (c) (d) (e)

Figure 6.2: Centerline detection as a patch-wise regression problem. (a) Original image
patch; (b) Centerline ground truth; (c) Distance function of Eq. (6.1) proposed in Chap. 3;
(d) The response of a pixel-wise regressor trained to predict the function in (c) is discontin-
uous and returns topologically incorrect results, also when iterative regression is applied, as
in Chap 5. (e) Nearest Neighbors of the score patches in (d), found in the training set. In
our method we apply Nearest Neighbors search to the regressor output and take advantage
of the particular structure of ground truth patches to correct its mistakes.

difficult in practice. To address this difficulty, we have replaced the binary ground truth Y

by the modified distance transform of Y

dC(p) =

⎧⎨
⎩

e
a(1−DY (p)

dM
) − 1 if DY (p) < dM

0 otherwise
, (6.1)

where DY is the Euclidean distance transform of Y .

Fig. 6.2(c) shows examples of function dC computed on small patches. Learning a

regressor to associate the feature vector f(p, I) to dC(p) induces a unique local maximum in

the neighborhood of the centerlines. This approach is more robust to small displacements

and returns centerlines that are better localized compared to classification-based methods.

To learn the regressor we apply the GradientBoost algorithm [82], which approximates

dC(·) with a function ϕ(·) of the form ϕ(q) =
∑T
t=1 αtht(q) , where q = f(p, I) denotes the

input feature vector. In Chap. 3, we described in more detail how ϕ(·) is learned.

In addition, to include contextual information, inspired by the Auto-Context algo-

rithm [193] for image segmentation, in Chap. 5 we adopted an iterative technique which

improved the accuracy of the prediction. This was achieved by using the score map ϕ(·) to

extract a new set of features that are added to the original ones to train a new regressor.

93



CHAPTER 6. EFFICIENT PROJECTION ONTO THE SET OF ELONGATED
STRUCTURES FOR ACCURATE EXTRACTION

Boundary and Membrane Detection

The method described above, designed for centerline detection, extends naturally to

boundary and membrane detection, as also described in Sec. 5.6. As centerlines, boundary

in 2D images and membranes in 3D image stacks are elongated structures of codimension 1

and there are substantial ambiguities in their exact location.

Therefore, and as before, we can replace the binary ground truth, provided for such

problems, by the distance transform of Eq. (6.1). By training a regressor to associate

feature vectors to the distances to the boundaries, we can obtain the boundaries from the

score map returned by the regressor by Non-Maximum Suppression. The distance function

is computed 2D for boundaries and 3D for membranes.

6.2.1 Improving the Distance Function by Patch-Wise Projection

In this section, we show how we can improve the score map returned by a pixel-wise

regressor or classifier, by projecting patches of the score map onto the set of ground truth

patches.

Given an image I and corresponding binary ground truth Y , let dY be the image

obtained by applying function dC of Eq. (6.1) to every pixel of Y . Since it corresponds

to pixels belonging to specific structures, Y is constrained to have well defined geometric

properties. For example, in the case of centerlines or boundaries in images, Y is composed

of 1-dimensional curves, while for boundaries in 3D volumes, Y is a 2D surface. This means

that the set of all admissible ground truths forms a low-dimensional set in the set of all

binary images. Similarly, the set of images dY is low dimensional in the set of real valued

images. We will denote the set of images dY by MN .

Let X be the score map obtained by applying a regressor ϕ to each pixel of an input

image I. Ideally we would like X to be an element of MN , so that it is guaranteed to be

geometrically correct. However, this is not true in general. Fig. 6.2(d) shows typical errors

committed at critical points, such as T-junctions. This is a standard problem with many

edge detectors, such as the Canny detector.

In theory, one way to avoid this problem is to project X into MN , which is equivalent

to finding the element of MN closest to X,

ΠN (X) = argmin
dY ∈MN

‖dY −X‖2. (6.2)
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Figure 6.3: Method overview. A score map X is obtained from image I by applying a
regressor ϕ trained to return distances to the centerlines. Every patch xi of size D in
X is projected onto the set of ground truth training patches, by nearest neigbor search.
The projected patches ΠD(xi) are averaged to form the output score map ΠD→N (X).
Centerlines are obtained by Non-Maximum Suppression.

In practice, however, MN is not known or too large to be sampled exhaustively. Therefore,

ΠN (X) can not be computed directly.

As shown in Fig. 6.3, our solution is to approximate it by projecting small patches of

X onto the set of ground truth train patches.

Formally, let MD = {yk}Kk=1 be the set of training patches of size D, extracted from

local neighborhoods ND in the ground truth training images. For each pixel pi, i = 1, . . . , N

in the score image X, let xi = X(ND(pi)) be the squared neighborhood of size D around

pixel pi in image X.

For every i, we consider the projection of xi onto MD, given by

ΠD(xi) = argmin
y∈MD

‖y − xi‖2. (6.3)

Fig. 6.2(d) shows examples of nearest neighbors for three score patches. We then average

all these projections to obtain a new score image ΠD→N (X).

More precisely, given the set of projected patches {ΠD(xi)}Ni=1, we take the pixel values

of the new image ΠD→N (X) to be

ΠD→N (X)(p) =
1

R

∑
i:p−pi∈NR(p)

ΠD(xi)(p− pi), (6.4)

where R ≤ D is the size of the neighborhood used for averaging and where we take ΠD(xi)

to be centered at zero, with ΠD(xi)(p− pi) the value of ΠD(xi) at p− pi.

The image ΠD→N (X) obtained in this way is an approximation of ΠN (X). In the

next section, we introduce sufficient conditions under which ΠN (X) = ΠD→N (X) and we

provide a formal proof in the Appendix A.
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6.3 Projection onto the Set of Elongated Structures

In the previous section, we have seen how to use the projection of the score map patches

to produce a new score map, approximating the projection of the original one onto the

set of ground truth images MN . In this section, we ask ourselves under which conditions

this approximated projection is exact, i.e. if it belongs to the set MN . We give sufficient

conditions in Sec. 6.3.1, while, in Sec. 6.3.2, we illustrate the validity of these conditions by

applying our method to a synthetic dataset.

6.3.1 Equivalence of ΠD→N(X) and ΠN(X)

In this section we state under which conditions the output ΠD→N (X) of our method is

equivalent to the projection ΠN (X) of the score image X into the set of all admissible

ground truth images MN . For this, we introduce two fundamental properties, which we

name completeness and consistency. The first one is a characterization of the set MN

in terms of the patches in MD; while the second one is a condition of smoothness of the

projection ΠD on the score map X.

More precisely, the two properties are:

(i) Completeness of MD in MN : The training set of patches MD is composed of all

admissible ground truth patches that can be extracted from images in MN . Moreover,

averaging patches of MD that coincide for overlapping pixels, gives an image of MN ;

(ii) Consistency of ΠD on X: For two patches xi and xj , extracted from overlapping

neighborhoods ND(pi) and ND(pj) in image X, their projections ΠD(xi) and ΠD(xj)

coincide for all pixels in averaging intersection area of size R of ND(pi) ∩ND(pj).

We formalize these concepts in the Appendix A, where we also prove that under these

conditions our method amounts to project the score map X into the ground truth set MN .

More precisely we prove the following

Theorem 1. If MD is complete in MN and if {ΠD(xi)}Ni=1 is consistent, then

‖X −ΠD→N (X)‖2 = ‖X −ΠN (X)‖2. (6.5)

Moreover, if the function FX(Y ) = ‖Y −X‖ has a unique minimum in MN , we have

ΠN (X) = ΠD→N (X). (6.6)
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Figure 6.4: The output ΠD→N (X) of our method can be seen as a projection of the score
map X into the set of admissible ground truth images MN . This is achieved by projecting
small patches xi of X into the set of ground truth patches MD and then averaging the
results to obtain ΠD→N (X).

Fig. 6.4 illustrates this equivalence. Intuitively, this means that the output of our

method ΠD→N (X) is the best approximation of X in the space of ground truth images

MN . As a consequence, ΠD→N (X) has the same geometrical properties of the images in

MN .

Intuitively, property (i) states that the set MN can be generated by “gluing” together

small patches extracted from images in MN , and that MD contains all of these patches.

For example, we can suppose this to be true in the case of simple linear structures. In

fact, in this case, the corresponding ground truth images can be formed by gluing together

elementary line-like structures, such as straight segments, junction patches, corners, etc.,

provided that the glued patches are equal when overlapping.

The second property (ii), intuitively means that for small displacements of the score

map patches xi, their projection ΠD(xi) does not change abruptly. We can assume this to

be true if X is regular enough and if the size D is large enough to capture characteristic

shapes of the ground truth images.

In practice, these conditions will rarely be strictly satisfied. However, we also show in

the Appendix A that, by relaxing them and assuming only approximated projections, the

error made by our algorithm is within a given bound to the optimal solution. This bound

can be estimated from the error committed by the projections on the patches ΠD(xi) and

the size of our training set compared to the set all admissible training patches.

From a practical point of view, from properties (i) and (ii), we can immediately observe

that there is a trade-off in the choice of the size D of the patches. In fact, smaller values
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of D, makes it easier to gather the complete set of admissible patches MD and then to

satisfy condition (i). However, with larger patches, the intersection ND(pi) ∩ ND(pj) in

(ii) for two neighboring pixels pi and pj is larger and therefore it is more likely that the

corresponding projections ΠD(xi) and ΠD(xj) are equal in the averaging region of size R.

We also remark that computing the projections in terms of the regression function dC

of Eq. (6.1), makes our algorithm more robust to small variations of the shape of the patch,

compared to computing the projection using the binary ground truth. In fact, nearest

neighbor search in a binary space presents many equivalent local minima and suffers from

the thick boundary problem [191]. This problem is avoided when using a smooth function,

like dC , to compute the nearest neighbors. This is an additional advantage of our regression

formulation.

In the next section, we apply our method to a synthetic dataset and show empirically

the validity of the properties stated above and the equivalence of the projections ΠD→N (X)

and ΠN (X).

6.3.2 Synthetic Example

In this section, we apply the method described in Sec. 6.2.1 to a set of synthetic images.

We show that, when the conditions of Sec. 6.3.1 are satisfied, our method can reconstruct

a test image exactly. We study the behavior of the method when adding different types

of noise to the test image. In particular, we investigate the influence of parameter D on

the reconstruction error and empirically observe the trade-off involved in the choice of D,

which was already derived from the theoretical analysis of Sec. 6.3.1.

The synthetic dataset we consider is shown in Fig. 6.5. It is composed of three train

images of size 200× 100 pixels and a test image of size 150× 200 pixels. The images are

binary and contain simple linear structures at 4 different orientations. The lines cross in

different ways, forming corners, X- and T-junctions.

In order to apply our method, we compute the function dC of Eq. (6.1), with parameters

a = 6 and dM = 7. Then, we normalize them in the range [0, 1]. We denote with Yte

the binary test image and with dYte the image obtained by applying dC to every pixel in

Yte. Similarly, Ytri and dYtri , for i = 1, 2, 3 indicate the ground truth images of the train

set. In order to avoid boundary effects, we pad all the images with zeros before applying

the distance transform. For a given value of D, the set MD is created by sampling all

the pixel locations in the train images. We consider squared patches of odd size, so that

D = (2δ+1)×(2δ+1) and we take the averaging window size R to be R = (2ρ+1)×(2ρ+1),
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(a) (b) (c) (d)

Figure 6.5: Synthetic dataset used in the experiments of Sec. 6.3.2. (a-c) Training images;
(d) Test image. The centerlines have double thickness for visualization purposes.

with ρ = round(δ/3).

We will create a score map X by corrupting dYte with different levels and different

types of noise. X emulates the output of a method which aims to approximate dYte. Then,

we show that, when the conditions of Sec. 6.3.1 are satisfied, we are able to recover dYte

exactly by applying the projection method of Sec. 6.2.1 to image X. For brevity, we will

indicate the output of our method ΠD→N , instead of ΠD→N (X).

In order to compute the error of the method, we consider the Mean Square Error (MSE)

between the ground truth image dYte and the reconstruction returned by our method

ΠD→N , defined as:

MSE =
1

N

N∑
i=1

(
dYte(pi)−ΠD→N (pi)

)2

, (6.7)

where N is the number of pixels in the test image1.

MSE as a Function of the Patch Size

In the first set of experiments, we study the influence of the patch size on the algorithm.

We start by adding Gaussian noise to the test image dYte. We use Gaussian noise with

mean equal to zero and standard deviation equal to 0.1. The resulting image X is shown

in the top left corner of Fig. 6.6.

We apply our method for integer values of δ between 0 and 17. We repeat the experiments

5 times and average the errors obtained at the different repetitions. The results are plotted

in Fig. 6.8(a). We observe that for δ in the range 8 to 12, the error is, up to numerical

errors, equal to zero, showing that our method perfectly recovers the ground truth dYte.

1Notice that if ΠN (X) = dYte, we have MSE = 0 if and only if ‖ΠD→N (X)− ΠN (X)‖2 = 0, which is
the condition of equivalence of Sec. 6.3.1.
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(a) (b) (c)

Figure 6.6: First row: synthetic score maps used in our experiments for different level
of Gaussian noise, with size δ = 9. Second row: results obtained when applying our
algorithm to the score maps of the first row. Third row: Results obtained by iteratively
applying our algorithm. (a) σ = 0.1; (b) σ = 0.5; (c) σ = 0.75.
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(a) (b) (c)

Figure 6.7: First row: synthetic score maps used in our experiments for different level of
structured noise. Second row: results obtained when applying our algorithm to the score
maps of the first row, with size δ = 9. Third row: results obtained by iteratively applying
our algorithm. (a) Noise density 0.012; (b) Noise density 0.025; (c) Noise density 0.033.
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(a) (b)

Figure 6.8: MSE as a function of δ, where the size of the patch is D = (2δ + 1)× (2δ + 1),
when adding (a) Gaussian noise and (b) Structured noise to the test image. The results
demonstrate the trade-off involved in the choice od D. In the case of Gaussian noise, the
reconstruction of the method is exact for an optimal range of the size between 8 and 12. For
structured noise there is a unique optimal value of δ, equal to 12. Notice the logarithmic
scale of the RMSE axis and that the minimum error is about 10−18, thus, lower than
machine precision. This means that, for the optimal values of δ, the reconstruction of our
method is exact, up to numerical approximations.

For values smaller than 8 or bigger that 12, the reconstruction is not perfect. In the case of

a too small patch, we do not have enough contextual information in order to discriminate

the real underline signal and the projection can vary on neighboring pixel positions. As a

consequence, condition (ii) of Sec. 6.3.1 is not satisfied. While for a too large patch, the

training set does not contain all the possible configurations of the training patches and

therefore it is condition (i) which is not satisfied.

We repeat the same experiment, but this time we generate X by adding to Yte structured

noise. More precisely, we add salt-and-pepper noise, by randomly turning off pixels on

the linear structure and turning on pixels in the binary ground truth. Then, we apply

function dC . Examples of the resulting score images X are shown in the first row of Fig. 6.7.

They emulate the output of a pixel-wise regressor with false detections on the background

and missing detections on the linear structure. The error as a function of δ is shown in

Fig. 6.8(b). We see that now perfect reconstruction is achieved only for a larger value of

δ = 12, compared to the Gaussian noise case, this is because now the structured errors in

the score map X locally resemble to the structures in the train images. Therefore, more

contextual information is needed in order to correctly discriminate them.

MSE as a Function of the Noise Intensity

We then performed a second series of experiments. Now we fix the value of the patch

size, as the optimal one found in the previous experiments and vary the intensity of noise.
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(a) (b)

Figure 6.9: MSE as a function of the noise intensity added to the test image. (a) Gaussian
noise of variance σ2 and δ = 9; (b) Structured noise and δ = 12. When the level of
corruption is under a certain threshold, the error is lower than machine precision and
therefore the reconstruction of the method is exact . When the noise is too strong, our
algorithm can only compute an approximation of the real projection. Notice the logarithmic
scale on both axis.
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(a) (b)

Figure 6.10: MSE as a function of the number of iterations of our projection algorithm,
for different levels of noise. (a) Gaussian noise and δ = 9; (b) Structured noise and δ = 12.
The MSE decreases for the first few iterations and then remains constant. If the noise is
below a certain level, our method converges to the exact solution after one or two iterations.
If the noise is too strong the projection converges to a different image than the ground
truth.
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The results are shown in Fig. 6.9(a) and Fig. 6.9(b) for Gaussian and structured noise

respectively. From these plots we see that after a certain level of noise, we can not recover

the exact image dYte anymore. The reason is that with such level of noise, either the real

underline structure is not visible anymore or we would need too large a window in order

to discriminate them. In the first case, the score map X is too far from the set MN and

its projection on it can be different than dYte. In the second case, we are again in the

situation where the training set MD does not contain all admissible patches. However,

notice that in all the experiments the MSE remains low. In particular, except for really

strong level of noise or really small values of the patch size, the MSE is always lower than

10−4. Example of images reconstructed with our method for different levels of noise are

shown in Fig. 6.6 for Gaussian noise and Fig. 6.7 for structured noise. We notice that when

the noise is too strong our algorithms add local line-like structures on the background or

introduces gaps in the real linear structure. We notice however that even when the level of

noise is extreme, our method is still able to partially recover it.

Iterative Projection

Finally, we perform a last series of experiments by iteratively apply our method to the

score map. As before, we fix the value of δ as the optimal one found in the first set of

experiments and we compute the MSE for different levels of noise. The reconstruction

errors as a function of the number of iterations are shown in Fig. 6.10. We can see that the

error decreases for the first few iterations and then it converges, meaning that the score

map does not change anymore. For moderate level of noise, iterating the projection helps

to further clean some spurious response that could not be eliminated at the first iteration

(e.g. third row of Fig. 6.7(a)). For stronger levels of noise, instead, the method converges

to a different image than the ground truth dYte. In this situation the initial score map is

too corrupted and it is not possible to recover dYte with our method, as illustrated also by

Fig. 6.6(c) and Fig. 6.7(c).

In summary, in this section we have empirically shown that our method is able to

correctly recover an image in MN , when the conditions of Sec. 6.3.1 are satisfied. By

studying the approximation error as a function of the size of the patch used to compute

the projection we have also confirmed observations that we already deduced from the

theoretical analysis.

In Sec. 6.5, we will apply our method to real datasets, showing that it helps improving

the results score maps of a pixel-wise regressor. Before this, in the next section, we discuss

some implementation details.
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6.4 Implementation Details

In this section, we describe some implementation details of our method. In Sec. 6.4.1,

we define an extension of our method by considering a multi-resolution framework. This

extension will be used in the experiments section to handle situations in which very large

values of the patch size D are needed in order to correct the errors of the regressor. Then,

in Sec. 6.4.2, we describe how we can avoid the computation of the nearest neighbors for

many image patches. In this way, we can decrease the computational complexity of our

method.

6.4.1 Multi-Resolution Approach

Given the score image X, the only parameter of our method is the size D of the patches xi

on which the projection is computed.

Ideally, we would like D to be large enough to capture enough contextual information.

At the same time, using a too large value for D makes it difficult to gather a representative

training set of patches. As a consequence, a large value of D can provoke loss of details.

To handle this trade off, we can adopt a multi-resolution approach. For clarity’s sake, we

describe below the case of 2 resolutions, but the generalization to an arbitrary number of

them is straightforward.

Given two patch sizes D1 > D2 > 0, for every pixel pi we consider the patch xi =

X(ND1
(pi)) of size D1 and its central part of size D2, x

(cent)
i = X(ND2

(pi)). Then, we

consider the downsampled version of xi to size D2, x
(down)
i .

We do this for both the score images and the training ground truth patches y ∈ MD1
.

We then perform Nearest Neighbors search in terms of the distance

k(xi, y) = ‖x(cent)
i − y(cent)‖2 + ‖x(down)

i − y(down)‖2. (6.8)

We then take the multiscale projection ΠD1/D2
(xi) to be y(cent)

i∗ , where yi∗ = argmin k(xi, y)

in MD1
. This replaces the projection ΠD(xi) in the definition of ΠD→N (X).

Thanks to the downsampling term in Eq. (6.8) we can include more contextual informa-

tion in the method. At the same time, by considering only the smaller central part y(cent)
i

for the final projection, we can preserve the details.
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6.4.2 Efficient Implementation for Sparse Score Maps

Given the score map X, the main computational cost of our method comes from the

computation of the nearest neighbors {ΠD(xi)}Ni=1, for every patch of size D in image X.

Many algorithms for approximated nearest neighbor search have been proposed [16, 17,

147] and can be applied in combination with our method. Since the size D used in our

experiments can be very large, especially for 3D data, we use in our implementation the

FLANN library [147], which is optimized for nearest neighbors search of high dimensional

vectors.

Moreover, we take advantage of the specific properties of the ground truth set MN , and

in particular of the sparsity of the ground truth images, to further reduce the computational

cost. In fact, it is easy to show that if the maximum of a score patch xi is smaller than a

given threshold, its nearest neighbor is necessary the uniform patch of zeros.

More precisely, suppose that the patch of zeros 0 of size D belongs to MD. Then, given

an image patch xi, we have

if max
p∈ND(pi)

xi(p) < min
y∈MD\{0}

‖y‖22
2‖y‖1 , then ΠD(xi) = 0. (6.9)

This means that we do not need to explicitly compute the nearest neighbors of those

patches whose maximum is smaller than a given threshold, where the threshold can be

computed in closed form from the training set MD.

To prove the statement above, we start by observing that ΠD(xi) = 0 if and only if

‖xi − 0‖2 < ‖xi − y‖2, for all y ∈ MD \ {0}. Writing explicitely the distances, we have

ΠD(xi) = 0 if and only if

∑
p

xi(p)
2 <

∑
p

(xi(p)− y(p))2 =
∑
p

(
xi(p)

2 − 2xi(p)y(p) + y(p)2
)
. (6.10)

Subtracting the left hand side from both sides of (6.10), we have

0 < −2
∑
p

xi(p)y(p) +
∑
p

y(p)2 ⇔ 2
∑
p

xi(p)y(p) <
∑
p

(y(p))
2
. (6.11)

This gives us the condition

ΠD(xi) = 0 ⇔ 2
∑

p∈ND(pi)

xi(p)y(p) <
∑

p∈ND(pi)

(y(p))
2
, ∀y ∈ MD \ {0}. (6.12)
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Now let xmax = maxp xi(p). Since y(p) ≥ 0 for every p, we have2

∑
p

xi(p)y(p) ≤
∑
p

xmaxy(p) = xmax
∑
p

y(p). (6.13)

Thus, from (6.13) and (6.12)

∑
p

y(p)2 > 2xmax
∑
p

y(p) ⇒
∑
p

y(p)2 > 2
∑
p

xi(p)y(p) ⇒ ΠD(xi) = 0, (6.14)

where the last implication follows by (6.12). Since y(p) ≥ 0 and y �= 0, we have
∑
p y(p) =

‖y‖1 > 0 and we can write (6.14) as

if xmax <

∑
p y(p)

2

2
∑
p y(p)

∀y ∈ MD \ {0}, then ΠD(xi) = 0, (6.15)

that is condition (6.9) we wanted to prove.

Thanks to this observation, depending on the sparsity of the ground truth images and

of the score map, in the experiments of next section, we can avoid calculating the nearest

neighbor for up to 60% of pixels.

6.5 Experimental Evaluation

To demonstrate the versatility of our method, we evaluate it on four very different

problems, road centerline detection in aerial images, blood vessels delineation in reti-

nal scans, membrane detection in 3D Electron Microscopy (EM) stacks and boundary

detection in natural images. The code used in our experiments is available online at

http://cvlab.epfl.ch/software/centerline-detection.

6.5.1 Centerline Detection

In this section, we consider again the problem of road centerline detection in aerial images.

We use the same Aerial dataset as in Chap. 5, a sample image of the dataset is shown

in Fig. 6.1. This dataset comprises 13 training- and 13 test-images. For each one, manually

annotated road centerlines and widths are available. In this section, we will focus only on

the task of centerline localization, and therefore we will not consider the radial information.

2Form the definition of dC in Eq. (6.1), we have y(p) ≥ 0. For generic y(p) we should consider
xmax = maxp |xi(p)|
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We use the training data to learn the regressor used to compute the score map, using

the method of Chap. 5. As can be seen in Fig. 6.1(b), the result while state-of-the-art can

still be improved, especially near junctions, which is illustrated in Fig. 6.1(c).

To this end, we used the approach of Sec. 6.2.1 with the projection patch size equal to

D = 81× 81 and the size of the patch used to compute the averaging equal it R = 21× 21.

To build the training set of patches used in the nearest neighbor search, we randomly

sampled 3 · 105 patches from locations within a distance of 16 pixels to the ground truth

centerlines to which we added a uniform patch of zeros, corresponding to the background.

We also randomly rotated the training patches to obtain a more general dataset. In our

MATLAB implementation, processing a small 620× 505 image on a multi-core machine

took a few seconds and a larger 1185× 898 one about 40.

For this dataset, we found that the use of a large patch size D is required to correct

the mistakes of the regressor. However, using a too large value for D makes it difficult to

gather a representative training set of patches. As a consequence, a large value for D can

result in loss of details. To handle this trade off, we adopted the multi-resolution approach

of Sec. 6.4.1. We use D2 = 81× 81 and D1 = 41× 41.

In order to select the optimal parameters, thanks to the efficiency of our method,

we could extensively search in the space of the parameters by using a cross-validation

procedure.

We will refer to our approach as Ours-SingleRes and Ours-MultiRes depending on

whether we use this multiscale approach or not.

Baselines In order to evaluate the accuracy of our method, we consider for comparison

the algorithm we used to produce our input score maps (that is the method of Chap. 5) and

the Structured Edge detector of [54], which we will refer to as Reg-AC and SE respectively.

For the latter, we used the code provided by [54] and trained a structured Random Forest

to predict the centerline locations.

To highlight the importance of using ground truth images for nearest neighbor search,

we also applied Non-Local Means denoising [168], which relies on nearest neighbor search

of patches in image itself, to the score images we used as input for our algorithm. We

also applied to them K-SVD denoising [3], where the required dictionary was built from

the ground truth images. We used the code provided by the authors of [168, 3]. We

experimented with different parameters and found consistently similar results. We will

refer to these approaches as Reg-AC-NLM and Reg-AC-KSVD, respectively.

108



6.5. EXPERIMENTAL EVALUATION

Table 6.1: Aerial dataset results. The values correspond to the F-measure computed on
whole image (first column) and on pixels close to junctions only (second column). Our
method is more accurate than the state-of-the-art, in particular close to junctions.

Whole image Junctions only
SE [54] 0.93 0.89
Reg-AC (Chap. 5) 0.91 0.82
Reg-AC-NLM 0.93 0.87
Reg-AC-KSVD 0.93 0.87
Ours-SingleRes 0.94 0.92
Ours-MultiRes 0.95 0.94

Image Evaluation We applied Non-Maximum Suppression to the output of all meth-

ods to find the actual centerlines and used the evaluation procedure of the Berkeley

benchmark [10]. We computed Precision-Recall curves that include a tolerance factor

for centerline localization. In Table 6.1, we give the results for a 2 pixel tolerance. The

corresponding Precision-Recall curves are shown in Fig. 6.11. The rankings are mostly

independent of the choice of this factor and our approach comes out consistently ahead.

Junctions Evaluation The evaluation above does not account for the topological prop-

erties of the centerlines. Therefore, since junctions are present only at sparse image

locations, errors close to junctions have only a small influence on the final performance.

This is a weakness of this evaluation scheme because accurate delineation near junctions is

particularly important for subsequent processing steps.

To remedy this, we recomputed the Berkeley metrics only near junctions. More precisely,

we automatically identified from the test ground truth images the junction locations by

using morphological operations, and then considered 21× 21 regions centered around them.

We then computed the Precision-Recall curves only there. The Precision-Recall curves are

shown in Fig. 6.11 and the corresponding F-measures for a tolerance of 2 pixels are given

in Table 6.1.

Note that the advantages of our method and in particular the multi-resolution approach

are even more marked near junctions, where ambiguities are strongest. The F-measure as

a function of the tolerance factor is shown in Fig. 6.11.
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Figure 6.11: Aerial Dataset evaluation results. Top row: Precision-Recall curves for
centerline detection for different tolerance values (in pixels), computed on the whole image.
Second Row: Precision-Recall curves for the junctions evaluation. Third row: F-measure
as a function of the tolerance factor (in pixels), (a) Whole image; (b) Junctions only.
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6.5.2 Vessel Segmentation

We consider the problem of segmenting blood vessels in retinal scans. To test our approach

we consider the DRIVE dataset [185], which comprises 20 training images and 20 test

images of size 565× 584.

We train a regressor to return distances from the blood vessels. For this task, the

structure of interest, while still elongated, is not limited to centerlines and has a visible

width. Therefore, we trained the regressor to return its maximal response over the whole

width of the blood vessels, instead of only at centerlines as for Sec. 6.5.1. We then applied

nearest neighbor projection with patch sizes of Sec. 6.2.1 equal to D = 13×13 and R = 7×7.

We sampled all training patches within a distance of 6 pixels to a vessel and randomly

rotating them.

We compare our approach with SE [54], N4-Fields [74] and KernelBoost [23]. Ta-

ble 6.2 shows the F-measure obtained with the different methods. Our approach is

comparable or better than the state-of-the-art [23] and [74].

To study the behavior of the methods close to junctions, which are of great importance to

get the topology of the vessels right, but have little influence on the performance computed

on the whole image, we repeated the junctions evaluation, similarly to Sec. 6.5.1. As shown

in Table 6.2 our method outperforms the baselines by a large margin. Fig. 6.12 shows

the results on a test image. Fig. 6.13 shows the results on a particularly complex region

of a test image, with several thin junctions and low contrast. Our method can correctly

reconstruct the topology of the blood network, which [74] fails to achieve. Moreover, as can

be seen from Fig. 6.13, our method is more accurate than the ground truth in some part of

the images. This actually penalizes our method when evaluating on the whole image.

Table 6.2: DRIVE results. The table shows the F-measure for the different methods
computed on the whole image and only on regions around a junction. Our method reaches
state-of-the art performance on the dataset and outperforms the other methods on the
junction evaluation.

Whole image Junctions only
SE [54] 0.67 0.52
Reg-AC 0.79 0.71
KernelBoost [23] 0.80 0.76
N4-Fields [74] 0.81 0.74
Ours 0.81 0.80
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(a) (b) (c) (d)

Figure 6.12: Drive results. (a) Image; (b) Ground truth; (c) N4-Fields [74]; (d) Our
approach. Our method responds strongly on thin vessels and is less sensitive to the bright
structured noise on the left part of the image.

(a) (b) (c) (d)

Figure 6.13: Vessel segmentation. Raw image and score maps on a region with complex
topology. (a) Image; (b) Ground truth; (c) N4-Fields; (d) Our approach. Our method
recovers jucntions in the image even in regions with very low contrast and for very thin
structures.

6.5.3 Membrane Segmentation

In this section we consider the problem of membrane detection in 3D EM stacks. Our

dataset is made of four stacks of size 250× 250× 309. The first stack is used for training,

the second for validation, and the last two for testing. An expert annotated all voxels

belonging to dendrites in these volumes. From these, we automatically extracted the

dendritic boundary voxels that form the membranes. Since other cells such as axons

and ganglions are also present but not annotated, we only considered the voxels within a

distance of 11 voxels from the dendrites for both training and evaluation.

The Context Cue Features of [22] have proved very effective for EM supervoxel classifi-

cation and we use them here as input to the regressor of Chap. 5.

We applied our method to the output score returned by the regressor after 0, 1, and 2

iterative regression iterations. For this task smaller patches gave better results, so we used

patch sizes D = 9 × 9 and averaging on a R = 5 × 5 window. We sampled 2 · 106 truth

patches within a distance of 6 pixels to a vessel plus a uniform patch of zeros, for nearest

neighbor search. For comparison purposes, we also applied Non-Local Means denoising to

the score maps. All the parameters were optimized using the validation volume. Processing

a test stack took about 6 minutes.
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6.5. EXPERIMENTAL EVALUATION

As for the centerlines, to account for potential inaccuracies in the annotations, we

compute a 3D version of the Berkeley benchmark with different tolerance factors. The

F-measures for a tolerance of 3 voxels are shown in Table 6.3. The the Precision-Recall

curves and the F-measure as a function of the tolerance are given in Fig. 6.14 and the

rankings are similar.

Our approach always brings an improvement compared to the baseline. Applying

Non-Local Means to the score map made the performance slightly worse in this case. This

is probably because applying Non-Local Means smoothes the regressor’s response while our

approach keeps it sharp, especially close to junctions, as shown in Fig. 6.15.

Table 6.3: F-measure for the Membrane Detection dataset. We applied our approach
to the output of [22], trained to predict the regression function of Sec. 6.2, at different
iterative regression iterations. Notice that our method applied at the first iteration performs
better (F = 0.87) than the other methods at the second iteration (F = 0.85 and F = 0.84).

No Iter Iter 1 Iter 2
ContextCues [22] 0.78 0.84 0.85
ContextCues + NLM 0.76 0.83 0.84
Ours 0.81 0.87 0.88
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Figure 6.14: Membrane Segmentation Results. Top: Precision-Recall curves at the second
iterations for different tolerance values (in voxels). Bottom: F-measure as a function of the
tolerance factor (in voxels) for different iterations.

113



CHAPTER 6. EFFICIENT PROJECTION ONTO THE SET OF ELONGATED
STRUCTURES FOR ACCURATE EXTRACTION

(a) (b) (c) (d)

Figure 6.15: Top row: A test stack used in our experiments. Middle row: Detail of a slice
of a test stack and responses of different methods. (a) Image; (b) Initial score map; (c)
Non-Local Means applied to (b); (d) Our approach applied to (b). Bottom row: intensity
values along the orizontal black lines in the images. Our method removes background
spurious responses while sharpening the response on the membranes. The smoothing effect
of the Non-Local Means approach instead decreases accuracy on the junctions. Best viewed
in color.
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6.5.4 Boundary Detection

To test our method on the boundary detection task, we consider the BSDS dataset [10],

as in Chap. 5. We trained our regressor with the same parameters as in Sec. 5.6. We ran

our approach with patch size D = 21× 21 and R = 11× 11 sampling 3 · 106 train patches.

As is done [160, 54, 74], we use a multiscale approach to detect the boundaries. More

precisely, we apply our projection method to the score maps returned by the regressor

at 3 different resolutions—half, original, and double size—and then average the results.

Finally, Non-Maximum Suppression was applied to the score map for evaluation purposes.

Processing one image at the three different scales took less than one minute.

Table 6.4 shows the ODS and OIS scores of ours and previous methods. ODS is the

best F-measure computed using the same threshold for all images in the test set. OIS is

the F-measure computed by selecting the best threshold for each image independently. AP

is the area under the Precision-Recall curve [10]. The baselines are given by a pixel-wise

classifier (SCG [160]) and two patch wise classifiers (SE [54] and N4-Fields [74]). We

also considered an extension of SE, where we train the structured forests to return patches

corresponding to our regression-based ground truth, rather than binary ones. We will refer

to this approach as Reg-SE. Below, we describe in detail how its output is computed.

Structured Edge Detection with Regression In order to process structured output

patches with binary decision trees, in SE, at every node, a low-dimensional embedding of

the ground truth patches is considered. In this way, node splitting is reduced to a classical

muli-label classification problem and standard information gain criteria can be used.

For our regression formulation, Reg-SE, we tried different low-dimensional embedding

and splitting criteria. The best that worked for us was to first compute sums along random

lines through the ground truth patches and then to compute a PCA decomposition of

the resulting vector. Then, the Gini information gain criterion was applied to the first 8

PCA components. At the leaf nodes, in order to store only one patch corresponding to a

boundary profile, we experiments both by averaging all the patches arriving at that node,

and also by considering the nearest neighbor of this average in the set of training patches.

The latter gave the best performance on the validation set and therefore we used it at test

time. The performance are given in Tab. 6.4, notice that for Reg-SE, they are computed

without applying our projection method to the score map.

From Tab. 6.4, we see that our approach is the most accurate in terms of ODS and OIS.

We also observe that using regression in combination with [54] (Reg-SE) gives slightly

higher ODS and OIS compared to the original binary formulation Reg-SE. However,
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Reg-SE has lower performance than our approach. This is probably do to the fact that

it is more difficult for the trees to separate the regression-based ground truth patches,

compared to a pixel-wise formulation. This underlines the advantage of our approach

of splitting the learning phase in two steps, by first learning an approximated pixel-wise

regressor and then matching local patches, rather than directly predicting the patches.

We notice that in this case our approach only slightly improves the performance of the

input pixel-wise score map Reg-AC. This is because to the Berkeley benchmark considers

a large tolerance factor (of about 4 pixels) in the localization of the centerlines. Moreover,

the benchmark does not take into account the topology of the solution. However, when we

compare qualitatively the output of our method, we can see that our method is able to

eliminate background noisy detection and that it returns more continuous boundaries, as

shown in Fig. 6.17. A comparison of the boundaries detected with the other patch-wise

methods on two test images are depicted in Fig. 6.16.

Finally, we observe that applying our method slightly decreases the AP of the score

map. This is because the projection, by removing background noise and weak responses,

can also eliminate some weak detections corresponding to actual boundaries. However, the

advantage brought by the smoothing and linking effect and the projection increase the

overall performance, as indicated by the ODS and OIS scores.

As already discussed in Sec. 5.6, the work of [211] recently improved the performance

of local pixel-wise and patch-wise methods for boundary detection, giving an ODS measure

of 0.79. A similar idea has been used in [165] for segmenting membranes in 2D EM slices,

showing also in this case a large accuracy improvement. This was achieved thanks to the

image-wise formulation of these two algorithms, which rely on a Fully Convolutional Neural

Network architecture [125]. In the next chapter, we discuss how the principles behind these

approaches can be used to improve our centerline detection method.

Table 6.4: Boundary dataset results. Our method is more accurate than state-of-the-art
pixel-wise and patch-wise prediction methods. Direcly learning the patches from the images,
even by using our regression-based ground truth (Reg-SE), is less accurate than our
solution of first learning an approximate score map using a pixel-wise regressor and then
matching local patches to improve its consistency.

ODS OIS AP
SCG [160] 0.739 0.757 0.768
SE [54] 0.743 0.764 0.800
N4-Fields [74] 0.747 0.770 0.777
Reg-SE 0.746 0.768 0.738
Reg-AC 0.755 0.775 0.787
Ours 0.756 0.777 0.763
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(a) (b) (c) (d) (e)

Figure 6.16: Boundary detection results. Boundaries obtained by Non-Maximum Sup-
pression on the score image returned by different methods. (a) Image; (b) SE [54]; (c)
N4-Fields [74] (d) Ours; (e) Human annotations. Our approach returns more continuous
boundaries and preserves important details, like for example the right hand of the lady on
the top image and the beak of the swan in the bottom image.

Conclusion

In this chapter, we have proposed an effective method for detecting centerlines, segmenting

linear structures, and finding boundaries and membranes.

We have shown that it compares favorably to the state-of-the-art and can be understood

as an efficient projection onto the set of feasible solutions. This means that domain

knowledge, such as engineering constraints on roads and biological ones on blood vessels

and membranes, could be introduced as a preprocessing step by refining this set. In practice,

this could mean cleaning-up the patches we sample from it.

In the next chapter we discuss this and other possible extensions of our method. We

consider the limitations of the current approach and possible future work for improving it.
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(a) (b) (c)

Figure 6.17: Details of the score map obtained for boundary detection. (a) Original Image;
(b) Detail of the boundary score map of Reg-AC; (c) Detail of the score map after applying
our patch-wise method. Our method sharpen the boundary map, suppress background
responses and recover details, like for example the giraffe’s horn in the first row and the
scuba diver head in the second row.
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Conclusion

In this thesis, we have considered the problem of detecting centerline and estimating the

radius of linear structures in n-dimensional images.

We began in Chap. 1 by defining the centerline detection problem and the interest it

represents for the field of Computer Vision. We also presented the main challenges and

some relevant applications associated with it.

In Chap. 2, we discussed previous work. We described the main characteristics of linear

structures detection methods, and we underlined their advantages and their limitations. In

particular we presented a general taxonomy for centerine and boundary detection methods,

which was useful to categorize the different approaches presented in the thesis.

In Chap. 3, we reformulated the centerline detection problem using a regression-based

approach. We showed that regression is a better formalism compared to both classification-

based and hand-crafted methods. To solve the associated regression problem, we used a

pixel-wise method, based on local convolutional features. We demonstrated the advantage

of our method by applying it to several challenging 2D and 3D datasets and showing a

large improvement over the state-of-the-art.

The features used by our method were described in Chap. 4. In this chapter, we also

introduced a novel and generic approximation scheme for convolutional filter banks. More

precisely, we have shown how tensor decomposition techniques can be used to approximate

a large non-separable filter bank as linear combination of a smaller set of separable filters.

This decomposition allowed us to efficiently process large datasets and compute large
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feature vectors, used for different Computer Vision tasks.

In Chap. 5, we introduced a scale-space context-aware method for estimating the

location and the radius of the linear structures. Thanks to radial and spatial contextual

information, our algorithm is able to correctly discriminate the linear structures when local

information is not enough, thus, improving the performance of the local method of Chap. 3.

Moreover, we also used the score map returned by our method as input to a state-of-the-art

tracing algorithm, showing an improvement also in this case. Finally, we demonstrated

the generality of our approach by applying it to the boundary detection problem, showing

better localization accuracy compared to a classification formulation also for this problem.

In Chap. 6, we considered the problem of the geometrical consistency of the solu-

tion, which is of critical importance for correctly reconstruct the topology of the linear

structures. Pixel-wise methods trat each pixel independently, therefore, they generally

return inconsistent results. However, in this chapter we have shown that by applying a

patch-wise projection method to the score map of a pixel-wise regressor, we can mitigate

this problem. We also introduced a geometric interpretation of our method and proved

that it approximates the projection of the score map onto the set of admissible ground

truth images. Our method is more accurate than other patch-wise methods, in particular

close to topological relevant points, such as junctions.

We believe that our work represents an important step forward in the understanding

and for the solution of the linear structures detection problem. However, many challenges

and questions still need to be tackled in order to obtain a “computer system that can

perform the delineation task at close to human levels” [65]. In the following we discuss

future directions of research that, in the light of the work of this thesis, can help to further

approach to this goal.

Future Work

In this section, we discuss the limitations of the methods described in this thesis and

propose possible improvements.

(a) Improving the regression formulation In Sec. 3.2, we introduced our regression

formulation as an efficient way to learn a function whose local maxima correspond to

the centerline points of the structure of interest. We designed a function satisfying this

criterion and tried to predict it by minimizing the squared error of our prediction. However,

the shape of our regression ground truth is arbitrary and, in fact, there exist an infinity
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of functions satisfying the same criterion. Moreover, predicting exactly the values of

our function is not the main interest of our formulation, since we are just interested in

its local maxima. As discussed in Sec. 3.1, a ranking formulation could help overcome

these limitations. However, solving the optimization problem associated with it would

be computationally impractical. A way to solve this limitation can be to combine in an

efficient way our regression formulation and the ranking one. For example, we could design

a specific loss function penalizing the errors close to the centerline in a different way than

the error for points far from it and we could add the ranking constraints only for a relevant

subsets of pixels. Another solution would be to automatically learn the loss function, as

it is done in adversarial training approaches [78, 48]. This case is discussed in point (e)

below.

(b) Image-wise prediction Recent advances in Convolutional Neural Networks archi-

tectures [125] have shown that deep learning algorithms can be trained to return entire

images as output. These architectures have been applied to the problem of pixel label-

ing [125], boundary detection [211] and membrane segmentation [165]. They have the

double advantage of considering global information, by taking as input the whole image

and also of producing smooth score maps, by directly returning the prediction for the

whole image. Because of these advantages, they outperform pixel-wise and patch-wise

prediction methods. However, these architectures usually show low localization accuracy.

In the case of image segmentation, the results are too smooth and further processing is

needed for accurate results, for example by using Conditional Random Fields [215]. In the

case of boundary detection, the score maps returned by these methods have thick contours.

Combining this type of architectures with our regression formulation we could solve this

issue when applying them to the centerline detection problem.

(c) Separable filters for Convolutional Networks Although deep learning based

methods, as the ones described in the previous paragraph, reach state of the art performance,

they require huge computational power and very large databases in order to be trained

effectively. In particular, their use is strongly limited in the case of 3D volumes, such as

those used in biomedical settings and in this thesis. Typical 3D architecture only takes

as input small volumes and therefore they can not take advantage of large contextual

information as in the 2D case. The use of separable filters could help to mitigate this issue.

In Chap. 4, we have shown how our separable filters scheme could be used to increase

efficiency of Convolutional Networks at test time. In order to apply separable convolutions

effectively also during training, our method should be modified. For example, we could

start by approximating the filters learned on a dataset where we have enough training
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data with our separable filter approach. Then, supposing that the separable filters learned

in this way are generic enough, we could train a new network, by only optimizing the

weights wjk of Eq. (4.2), to recombine the separable filters. In this way, we would have a

double computational advantaged: First, we have the expressive power of non-separable

convolutions, but computed efficiently by separable ones and their linear combinations;

Second, we do not need to compute the gradient of the filters, but, we would only optimize

on the linear weights wjk used to recombine them.

(d) Improving the patch-wise projections Once a score map is obtained, for example

by using the image-wise prediction as in (b), it is still possible to apply the projection-based

method of Chap. 6. However, the main limitations of this method are its dependency on a

representative training set of patches and on the accuracy of the score map, which needs

to be close enough to the real underline ground truth for accurate results. In order to

overcome the first limitation, we could explicitly design the training set by modifying the

patches sampled from the training images to have the desired properties. We could also

weight the average of Eq. (6.4) depending on the distance of the score and the ground

truth patches. To overcome the second limitation, instead, we could modify the distance

function used to compute the nearest neighbors. For example, we could include a term

which takes into account the original image information of the patches. Moreover, since it

could be difficult to define an appropriate distance function for the image patches, we could

automatically learn to match corresponding patches by using a Siamese Neural Network

architecture [31].

(e) Adversarial training for centerline detection As discussed above, defining the

right set of constraints and the most appropriate loss function for our problem might be

problematic in practice. Difficulties might come from the computational point of view or

by the impossibility to explicitly define the actual criterion we want our system to be able

to emulate. Recently, adversarial training techniques [78, 48] have emerges as a way to

automatically learning the loss function. They consist in alternatively training two models:

the first one trying to discriminate the output of the second one from the ground truth

images; and the second one trying to deceive the first one. In this way, after convergence,

the second model will be able to generate predictions which are not distinguishable from

the ground truth. This is achieved without defining an explicit criterion on the output

shape. This method can therefore be adapted to the centerline detection problem to obtain

geometrically consistent results.
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(f) Other applications Finally, the ideas introduced in this thesis could be useful to

solve other Computer Vision problems. Some works have already adapted our regression

formulation to the 1-dimensional case, for the detection of feature points [202] or for

accurately detecting cells in biomedical data [102, 212]. Our method could also be extended

and used to track points in spatio-temporal sequences. In fact, trajectories of moving points

appear as curvilinear structure in a 3D or 4D space. Using our regression-based approach

could be useful to accurately localize and track these objects. For example, a relevant

application would be the tracking of people joints in videos. The algorithm would take a

video sequence as input and would output a score map whose local maxima correspond to

joints locations in space and time. Then, applying Non-Maximum Suppression to the score

map would then return joints locations over time.

To conclude, the problem of linear delineation remains a challenging and prolific

Computer Vision problem. Since the beginning of the field, it interested a large number

of scientists and brought to the design of general techniques, whose scope proved to go

beyond the single linear delineation task. The study of this problem influenced and was

influenced by advances in artificial and biological intelligence and led to important practical

applications. We hope that our contribution represents a step forward, even if small, in the

same directions and that it can be useful for the pursuit of the same goals.
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APPENDIX A

Proof of Theorems

In this appendix, we consider the patch-wise projection method of Chap. 6. This method

was introduced to improve the score map returned by a pixel-wise regressor. It amounts to

projecting small patches of the score map onto the set of training ground truth patches. In

Sec. 6.3.1, we stated that our approach can be interpreted as projecting the whole score

map onto the set of admissible ground truth images. In this appendix, we formalize this

concepts and we provide a proof of the Theorem 1 enunciated in Sec. 6.3.1. Moreover,

we also consider the case of approximated projections and, by relaxing the hypothesis of

Theorem 1, we provide bounds for the error made by our method, in terms of the errors

made on the projected patches.

A.1 Equivalence of ΠD→N(X) and ΠN(X)

We start this section by introducing the notation used in the chapter, in Sec. A.1.1. Then,

in Sec. A.1.2, we define precisely the hypothesis of Theorem 1 and prove its validity. In

Sec. A.1.3, instead, we consider the case of approximated projection.
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APPENDIX A. PROOF OF THEOREMS

A.1.1 Notation

Let I ∈ R
N be an image containing elongated structures we are interested in extracting.

Let {pi}Ni=1 be the grid of pixels on which the images are defined, where for simplicity we

assume the image to be squared: N =
√
N ×√

N . For a pixel pi, we denote by ND(pi) the

squared neighborhood of pixels centered at pi of size D =
√
D ×√

D.

Let Y ∈ {0, 1}N be the binary ground truth corresponding to the centerlines in image

I and let dY ∈ R
N be the image obtained by applying function dC to every pixel of Y ,

where dC is defined by

dC(p) =

⎧⎨
⎩

e
a(1−DY (p)

dM
) − 1 if DY (p) < dM

0 otherwise
, (A.1)

with DY the Euclidean distance transform of Y , a > 0 a constant that controls the

exponential decrease rate of dC close to the centerline and dM > 0 a threshold value

determining how far from a centerline dC is set to zero.

We denote by MN the set of images dY , obtained from all ground truth images Y ,

corresponding to admissible solutions for a given problem.

We define X the score image obtained by applying the regressor ϕ of Chap. 3 or Chap. 5

to every pixel of image I. The projection of X onto MN is denoted by ΠN (X) and it is

given by

ΠN (X) = argmin
dY ∈MN

‖dY −X‖2. (A.2)

This projection represents the best approximation of X in the set of admissible ground

truth images.

As described in Chap. 6, ΠN (X) can not be computed in practice, therefore we

approximate it by averaging the projections of small patches of X. In order to formalize

this, we define for every pixel pi of image X the corresponding patch xi of size D centered

at pi, xi = X(ND(pi)). We also denote by MD the set of all patches of size D extracted

from images in MN .

The projection of xi onto MD is given by

ΠD(xi) = argmin
y∈MD

‖y − xi‖2. (A.3)

Then, the approximated projection ΠD→N (X), returned by our method is defined as

ΠD→N (X)(p) =
1

R

∑
i:p−pi∈NR(p)

ΠD(xi)(p− pi), (A.4)
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where R ≤ D is the size of the neighborhood used for averaging and where we take ΠD(xi)

to be centered at zero, with ΠD(xi)(p− pi) the value of ΠD(xi) at p− pi. In the following,

to simplify notations, we will consider the case R = D. The generalization to a generic

value of R is straightforward and it is discussed at the end Sec. A.1.2.

Let {qd}Dd=1 be the
√
D ×√

D grid of pixels on which the patches of size D are defined.

For a pixel p ∈ {pi}Ni=1 in the image grid of pixels, we denote with p(l), for l = 1, . . . , D the

elements of ND(p).

For every patch x of size D, we can associate a neighborhood ND(p) of size D in the

image grid of pixels thanks to a one to one correspondence ν, given by ql = ν(p(l)), for

every l. In this case, we will say that the support of x is ND(p). In other words, we say

that the support of x is ND(p) if x is considered to be centered at image location p. In

such case, to simplify our notation, we will write x(p(l)) instead of x(ν(p(l))).

For example, given the score image X, the image patch xi = X(ND(pi)), centered at

pi, has support ND(pi). In the same way, we will consider the support of the projections

ΠD(xi) to be ND(pi). In this way, we can rewrite the definition of ΠD→N (X) Eq. (A.4) as

ΠD→N (X)(p) =
1

D

∑
i:p∈ND(pi)

ΠD(xi)(p). (A.5)

We say that two patches xi and xj overlap if the intersection of their supports, ND(pi)∩
ND(pj), is not empty.

We indicate with X|N the restriction of an image X to a subset of pixels N ⊆ {pi}i.
For example, using this notation, we can write xi = X|ND(pi).

Let {yj}Jj=1 be a set of patches of size D such that for every j, yj has support ND(pj).

We say that {yj}Jj=1 covers the pixel grid {pi}Ni=1 if

⋃
j

ND(pj) = {pi}Ni=1. (A.6)

This means that for every pixel pi there exist at least one j such that pi is in the support

of yj .

Then, for a set of patches {yj}Jj=1, such that {yj}Jj=1 covers {pi}Ni=1, we can define a

new image of size N , which we call the average image of patches {yj}Jj=1 and we denote by
⊔J
j=1 yj . This new image is obtained by averaging the patches yj on their supports. More
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precisely, for every pixel p ∈ {pi}i, the value of the average image at pixel p is given by

⎛
⎝

J⊔
j=1

yj

⎞
⎠ (p) =

1

Γp

∑
j: p∈ND(pj)

yj(p) (A.7)

Where the normalization constant Γp is equal to the number of elements in the sum and

in general it depends on the pixel location p. Notice that (A.7) is well defined for every p

because of (A.6).

In other words, for a pixel p, the value of
⊔J
j=1 yj in p is given by the average of the

values yj(p), for those yj with support containing p. For example, in the case of image

patches xi = X(ND(pi)), since xi(p) = xj(p) for all p ∈ ND(pi) ∩ND(pj), we have

X =
N⊔
i=1

xi. (A.8)

Notice that in this case we have Γp = D for every p.

With this notations, using the fact that the support of ΠD(xi) is ND(pi), we can write

the approximated projection ΠD→N (X) as

ΠD→N (X) =

N⊔
i=1

ΠD(xi). (A.9)

Also in this case the normalization constant in Eq. (A.7) is Γp = D for every p.

A.1.2 Exact Projection

In this section, we prove the equivalence ΠD→N (X) = ΠN (X). We first give two definitions

that will be used as hypothesis of the following Theorems.

Definition 1. We say that MD is complete in MN if the following holds:

Y ∈ MN ⇐⇒ ∃{yi}Ni=1 ⊆ MD such that Y =
N⊔
i=1

yi, (A.10)

where, ∀i, yi has support ND(pi) and ∀i, j, yi(p) = yj(p) for all p ∈ ND(pi) ∩ND(pj).

This is property (i) given in Sec. 6.3.1 of the thesis. It means that the training set of

patches MD is composed of all admissible ground truth patches and that averaging patches

that coincide in the intersection of their supports, gives an image of MN .

The following definition formalizes instead hypothesis (ii) of Sec. 6.3.1.
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Definition 2. Let us consider the set of all the projections {ΠD(xi)}Ni=1 of all patches of

size D of an image X. We say that {ΠD(xi)}Ni=1 is consistent if, for all xi and xj such

that ND(pi) ∩ND(pj) �= ∅, we have ΠD(xi)(p) = ΠD(xj)(p) for all p ∈ ND(pi) ∩ND(pj).

This means that the projection of two overlapping patches is the same for every pixel

in the intersection of their support.

We can now state the following

Theorem 2. If MD is complete in MN and if {ΠD(xi)}Ni=1 is consistent, then

‖X −ΠD→N (X)‖2 = ‖X −ΠN (X)‖2. (A.11)

Proof. Since ΠN (X) ∈ MN and MD is complete, for every patch xi the restriction of

ΠN (X) to xi belongs to MD, ΠN (X)|ND(pi) ∈ MD. Then, by (A.3), we have for all xi

‖ΠD(xi)− xi‖2 ≤ ‖ΠN (X)|N (pi) − xi‖2. (A.12)

Let {xij}Kj=1 be a subset of {xi}Ni=1 such that ND(pij1 ) ∩ND(pij2 ) = ∅ for all j1 �= j2

and X =
⊔
j xij . The subset of patches {xij}Kj=1 is given by a grid of non-overlapping

image patches covering the whole image 1.

Since {ΠD(xi)}Ni=1 is consistent, ΠD→N (X) =
⊔
j ΠD(xij ). In fact, for the hypothesis

of consistency, the patches ΠD(xi) coincide in their intersection. Then,

‖ΠD→N (X)−X‖2 = ‖
⊔
j

ΠD(xij )−
⊔
j

xij‖2 =

=
∑
j

‖ΠD(xij )− xij‖2.
(A.13)

Where the second equality holds since patches xij do not overlap. Eq.(A.13) tells that the

distance between images X and ΠD→N (X) can be computed by summing the distances

between non-overlapping patches ΠD(xij ) and xij .

Then, from (A.12) and (A.13)

‖ΠD→N (X)−X‖2 ≤
∑
j

‖ΠN (X)|N (pij )
− xij‖2 =

= ‖ΠN (X)−X‖2,
(A.14)

where again the second equality follows by the fact that patches xij do not overlap.

1Such a decomposition always exists assuming that we can pad images with zeros.
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However, since MD is complete and {ΠD(xi)}i is consistent, ΠD→N (X) ∈ MN . In fact

ΠD→N (X) is given by the average of the projections ΠD(xi) satisfying definition (A.10).

Therefore, since ΠN (X) is defined in (A.2) as the point of minimum distance to X in MN ,

we have

‖ΠN (X)−X‖2 ≤ ‖ΠD→N (X)−X‖2. (A.15)

From (A.14) and (A.15) we have the thesis.

Notice that the thesis of Theorem 2 tells us that the distance between our approximation

ΠD→N (X) and X is as good as the distance between X and ΠN (X). The equivalence of

the two projections is given assuming that there is a unique minimum of the distance to X

in MN . This is stated in the following

Corollary 1. In the hypothesis of Theorem 2, if the function F (Y ) = ‖Y − X‖ has a

unique minimum in MN , we have

ΠN (X) = ΠD→N (X). (A.16)

Proof. The thesis follows by (A.11) and the hypothesis.

In the proof of Theorem 2, we have considered the averaging size R to be equal to

the projection size D. The generalization to the case R ≤ D is straightforward. In fact,

in this case we only have to consider the intersections in Definition 1 to be yi(p) = yj(p)

for all p ∈ NR(pi) ∩ NR(pj), and in Definition 2 to be ΠD(xi)(p) = ΠD(xj)(p) for all

p ∈ NR(pi)∩NR(pj). Moreover, in the proof of the theorem, the disjoint partition {xij}Kj=1

should be such that such that NR(pij1 ) ∩NR(pij2 ) = ∅. Notice that these conditions are

weaker than the case R = D, making our theorem more general.

However, also in the case R ≤ D, in real applications only limited training patches are

available and the hypothesis of completeness might not be satisfied. Also consistency will

not hold in general and projections in the intersection of overlapping patches will not be

exactly the same.

Nevertheless, in the next section we show that by relaxing the hypothesis of Theorem 2

and assuming only approximated projections, we can prove that the error committed by our

method is within a certain bound to the optimal solution. This bound is directly related to

the error committed by the projections on the patches ΠD(xi) and the size of our training

set.
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A.1.3 Approximated Projection

In this section, we consider the case of approximated projection. We start by relaxing

the hypothesis of completeness and supposing that only a smaller subset MD of all the

possible training patches is available.

More precisely, let M̄D the set of all patches yi of size D of images dY in MN , assume

that M̄D is complete in MN
2 and that the set of available training patches MD is included

in M̄D, MD ⊆ M̄D. For a patch x, we denote ΠD̄(x) the projection of x onto M̄D.

For ε ≥ 0, we say that MD is ε−complete in MN , if for all y ∈ MD there exists

ȳ ∈ M̄D such that ‖y− ȳ‖2 ≤ ε. This means that every ground truth patch ȳ is close, up to

an error of ε, to an available training patch y. This hypothesis will replace the hypothesis

of completeness of Theorem 2.

The hypothesis of consistency will be replaced by the following:

∃ε1 ≥ 0 s.t. ∀xi ‖ΠD→N (X)|N (pi) −ΠD(xi)‖2 ≤ ε1, (A.17)

∃ε2 ≥ 0 s.t. ∀xi ‖ΠN (X)|N (pi) −ΠD̄(xi)‖2 ≤ ε2. (A.18)

This means that the restriction to N (pi) of the images ΠD→N (X) and ΠN (X) are close

to the projections of patch xi onto MD and M̄D respectively. Note that if {ΠD(xi)}i is

consistent, then ε1 = 0 and if {ΠD̄(xi)}i is consistent, then ε2 = 0.

We now have the following

Theorem 3. If MD is ε−complete in MN and if (A.17) and (A.18) hold. Then,

−N

D
(ε1 + ε) ≤ ‖ΠN (X)−X‖2 − ‖ΠD→N (X)−X‖2 ≤ N

D
(ε1 + ε2). (A.19)

Proof. Let {xij}j be a disjoint partition of the image, as in the proof of Theorem 2. Then,

‖ΠN (X)−X‖2 =
∑
j

‖ΠN (X)|N (pij )
− xij‖2 ≤

≤
∑
j

(
‖ΠN (X)|N (pij )

−ΠD̄(xij )‖2 + ‖ΠD̄(xij )− xij‖2
)
≤

≤
∑
j

(
ε2 + ‖ΠD̄(xij )− xij‖2

)
=

=
N

D
ε2 +

∑
j

‖ΠD̄(xij )− xij‖2.

(A.20)

2If M̄D is not complete, we can extend MN by adding to it all images that can be obtained with
Eq. (A.7) from patches in M̄D that coincide in their supports.
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Where the first inequality is the triangle inequality and the second inequality is given by

hypothesis (A.18).

Since MD ⊆ M̄D, for every xi, ‖ΠD̄(xi)− xi‖2 ≤ ‖ΠD(xi)− xi‖2. In fact, ΠD̄(xi) is

the point of minimum distance to xi, computed on a larger set M̄D compared to ΠD(xi).

Then, Eq.(A.20) becomes

‖ΠN (X)−X‖2 ≤ N

D
ε2 +

∑
j

‖ΠD(xij )− xij‖2. (A.21)

By using the triangle inequality and hypothesis (A.17), Eq. (A.21) becomes

‖ΠN (X)−X‖2 ≤ N

D
ε2 +

∑
j

(
‖ΠD(xij )−ΠD→N (X)|ND(pij )

‖2

+‖ΠD→N (X)|ND(pij )
− xij‖2

)
≤

≤ N

D
ε2 +

∑
j

(
ε1 + ‖ΠD→N (X)|ND(pij )

− xij‖2
)
=

=
N

D
(ε2 + ε1) +

∑
j

‖ΠD→N (X)|ND(pij )
− xij‖2 =

=
N

D
(ε2 + ε1) + ‖ΠD→N (X)−X‖2.

(A.22)

The inequality in (A.22) proves the right hand side in (A.19). For the left hand side we

proceed analogously:

‖ΠD→N (X)−X‖2 =
∑
j

‖ΠD→N (X)|ND(pij )
− xij‖2 ≤

≤
∑
j

(
‖ΠD→N (X)|ND(pij )

−ΠD(xij )‖2 + ‖ΠD(xij )− xij‖2
)
≤

≤ N

D
ε1 +

∑
j

‖ΠD(xij )− xij‖2.

(A.23)

Where we first used triangle inequality and then hypothesis (A.17).

Since ΠN (X)|ND(pi) ∈ M̄D for all pi, and since MD is ε−complete, ∀pi there exists

yi ∈ MD such that ‖yi−ΠN (X)|N (pi)‖2 ≤ ε. Moreover, for all yi ∈ MD, ‖ΠD(xi)−xi‖2 ≤
‖yi − xi‖2. In fact, ΠD(xi) is the point of minimum distance to xi in MD. Hence,
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substituting in (A.23) we have

‖ΠD→N (X)−X‖2 ≤ N

D
ε1 +

∑
j

‖ΠD(xij )− xij‖2 ≤

≤ N

D
ε1 +

∑
j

‖yij − xij‖2 ≤

≤ N

D
ε1 +

∑
j

(
‖yij −ΠN (X)|ND(pij )

‖2+

+‖ΠN (X)|ND(pij )
− xij‖2

)
≤

≤ N

D
ε1 +

∑
j

(
ε+ ‖ΠN (X)|ND(pij )

− xij‖2
)
=

=
N

D
(ε1 + ε) + ‖ΠN (X)−X‖2.

(A.24)

Equation (A.24) proves the left hand side of (A.19) and this ends the proof.
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