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Abstract—This report describes implementation of the stan-
dard i-vector-PLDA framework for the Kaldi speech recognition
toolkit. The current existing speaker recognition system imple-
mentation is based on the Subspace Gaussian Mixture Model
(SGMM) technique although it shares many similarities with the
standard implementation. In our implementation, we modified
the code so that it mimics the standard algorithms in the i-
vector based speaker recognition system. The implementation is
compared with the existing Kaldi recipe for speaker recognition
on the NIST SRE 2008 evaluation set. The entire implementation
is made available at https://github.com/idiap/kaldi-ivector under
the Apache 2.0 license.

Index Terms—Speaker Recognition, Formant emphasis, i-
vector

I. INTRODUCTION

State-of-the-art speaker recognition systems build speaker

models based on Mel Frequency Cepstral Co-efficients

(MFCC) feature vectors extracted from speech utterances.

The sequence of feature vectors from an audio sample are

adapted with respect to a prior model such as the Universal

Background Model (UBM) to form a vector of stacked means

called the supervector [1]. The supervectors are transformed

to a low-dimensional representation of the speech utterance

with Total Variability Space (TVS)-based modelling. This low-

dimensional representation is called the i-vector (identity vec-

tor). The i-vectors are further processed using discriminative

modelling techniques (eg: LDA [2, 3] and PLDA [4]) to re-

orient the TVS and get rid of the channel effects at the model

level. This constitutes a typical speaker recognition system.

This framework is implemented for the Kaldi toolkit so

that it can be seamlessly used with other speech technologies

available in there. The rest of the document is organized as

follows. First, the standard i-vector systems is described in

Section II. Next, the standard scoring strategies are described

in Section III. The organization of the package is discussed

in Section IV. In Section V the results on the NIST SRE

2008 dataset is presented. Finally, Section VI summarizes the

results.

II. STANDARD I-VECTOR SYSTEM

An i-vector is a fixed dimensional representation of a

speech recording. Given a supervector s obtained from a
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speech recording with respect to a UBM/GMM (Universal

Background Model/Gaussian Mixture Model) with a mean

supervector m, the total variability space model is given by

s = m+Tw, (1)

where T is the matrix defining the low-dimensional space and

w is the corresponding i-vector for s.

If there are C components in the UBM and the feature

vectors obtained from the recording are F -dimensional, the

supervector has CF elements. The i-vector dimensions R is

typically much less than CF .

The UBM here is represented by a Gaussian Mixture Model

(GMM) (Section 2.3.9 in [5]). Let the weights of the cth

mixture of the GMM be ωc. Thus, the density function of

the GMM represented by parameter set θ for a feature vector

x is given as

P (x|θ) =
C
∑

c=1

ωc N (x;µc,Σc), (2)

where N (x;µc,Σc) represents the value of probability den-

sity function of a Gaussian distribution with mean µc and

covariance matrix Σc (see Section 2.3 in [5]). Note that µc

and Σc are the mean and covariance parameters of the cth

component of the GMM.

Given a speech recording O that contains a sequence of

feature vectors {x1,x2, . . . ,xt}, the i-vector is computed

from the sufficient statistics of the model in Equation 1. The

sufficient statistics include the zeroth and first order statistics.

The centered first order statistics are computed as follows

fc =

(

∑

t

γt,cxt − ηcµc

)

, (3)

where fc is the cth F × 1 block of the supervector such that

f = [f t1f
t
2...f

t
C ]

t,

µc and Σc are the mean vector and covariance matrix of the

cth mixture of the UBM, respectively, and γt,c is defined as

follows

γt,c = ωcN (x;µc,Σc). (4)

In Equation 3, ηc is the effective number of feature vec-

tors aligned with the cth mixture. The vector [η1η2 · · · ηC ]
t

represents the zeroth order statistics for the utterance. The

alignment of the feature vectors with respect to a mixture is
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soft. Only the top scoring components are retained and the

posteriors are re-normalized to sum to 1.0. In our systems, the

top 20 scoring posteriors are retained and re-normalized for

every feature vector. In Equation 3 we avoid the whitening of

the statistics with respect to the UBM means and variances,

as it is often the case in conventional i-vector system imple-

mentations [6, 7].

The hyperparameter T is estimated based on the EM

algorithm described in [8]. In the first iteration, we assume

that T is initialized with random values. Further, given f and

T, w is estimated as follows

w = L
−1

T
t
Σ

−1
f . (5)

L
−1 is the covariance estimate of the i-vector and is defined

as

L =

(

I+
∑

c

ηcT
(c)′

Σ
−1
c T

(c)

)

, (6)

where T
(c) is the cth DxR sub-matrix of T such that

T = [T(1)t
T

(2)t...T(C)t]t. (7)

The E-step in the EM algorithm for estimating T refers to

obtaining the current estimate of wi for every utterance Oi in

the development dataset. The M-step involves re-estimating T

as follows

T
(c) = C

(c)(A(c))−1, (8)

where C and A are defined as follows

C =

(

∑

i

fiw
t
i

)

(9)

and

A
(c) =

(

∑

i

ηc,i
(

L
−1 +wiw

t
i

)

)

−1

. (10)

ηc,i refers to ηc for ith utterance.

The i-vectors contain both speaker and channel information.

To get rid of the channel information applying a combination

of LDA (Linear Discriminant Analysis) and WCCN (Within

Class Covariance Normalization) is studied in [2]. In current

state-of-the-art systems, PLDA (Probabilistic LDA) is applied

on top of this.

To perform speaker verification, two i-vectors are compared

- the i-vector corresponding to the target speaker and the

test i-vector. In state-of-the-art speaker verification systems,

two i-vectors are compared with respect to the PLDA models

estimated from a development dataset and a log-likelihood

ratio is obtained as a result [6, 7, 9–11].

A. Differences with the default Kaldi implementation

The implementation of the i-vector system available in

the current Kaldi releases can be seen a combination of

the standard i-vector implementation mentioned above and

the Subspace Gaussian Mixture Model (SGMM) architecture

used for Automatic Speech Recognition (ASR). The i-vector

extractor estimation algorithm is different from Equations 5

and 8. There are two important differences with the standard

implementation.

First, the bias term m in Equation 1 is subsumed in the

matrix T. That is, the first column of T is m. To remove this

offset from, the mean of i-vectors is calculated over a list of

i-vectors.

Second, the EM algorithm to estimate T is based on the

SGMM system. In particular, the parameters Σc in Equation

6 are updated. The update equations are given in Section 5.7

of [12]. Updating Σc does not affect the UBM covariances,

however. The posteriors for the sufficient statistics are still

computed with respect to the original UBM parameters.

B. Channel Compensation

The i-vectors are low dimensional representations of the

audio recordings and still contain information about the

channel and the session apart from information about the

speaker and the content. To remove these undesirable effects,

discriminative classifiers are trained on a development data set.

Two levels of classifiers are used. First, the LDA transform is

applied and the dimension of the i-vector is reduced. This

is followed by PLDA modelling on the dimension-reduced,

length-normalized i-vector. Length normalization is discussed

in Section II-C. The LDA and PLDA training and scoring

algorithms are already available in Kaldi.

C. Length Normalization

In [9], it is observed that length normalized i-vectors after

whitening are useful in Gaussianizing the i-vector distribution.

This is a simpler form of Radial Gaussianization [13]. This is

extremely important when dealing with non-Gaussian nature

of the i-vectors, if present [14]. Thus, i-vectors obtained are

length normalized after applying the LDA transform. If w is

the i-vector, the length normalized i-vector w̃ is given by

w̃ =
w

||w||
. (11)

III. SCORING

To evaluate the truth of the claims attached to a test

utterance, their similarity is measured with respect to the target

models. The measure of similarity (or distortion) depends

on the modelling technique used. In probabilistic modelling

techniques, likelihood scores are evaluated. In deterministic

modelling techniques, such as LDA, distance measures are em-

ployed. In this section, scoring methods involved in the UBM-

GMM framework and the TVS framework are described.

Generally, evaluating a claim consists of validating a hy-

pothesis. Let H0 be the same speaker hypothesis; that is, both

utterances (train and test) belong to the same speaker. This is

considered the null hypothesis. This is opposed to the hypoth-

esis H1 in which the utterances belong to different speakers.

Scoring a claim consists of evaluating both hypotheses. To

score a claim is to evaluate both hypotheses.

A. Scoring in i-vector framework

Since, every utterance is converted to an i-vector by the

system, scoring a claim in a speaker verification system is

done using similarity measures between the claimed speaker’s



3

i-vector and the i-vector corresponding to the test utterance.

The i-vectors extracted from the supervector contain speaker

and channel information. The channel information is removed

by discriminative training techniques such as LDA, WCCN

and PLDA. Channel compensation using LDA and WCCN

are only linear transformations. Moreover, they are determin-

istic transformations. This is different from PLDA where the

transformation is probabilistic in nature. Thus, the scoring

mechanism differs in the two cases.

Given two i-vectors to be compared, w1 and w2, a cosine

similarity measure is used to determine the similarity (or

distortion) between them. The cosine similarity measure is

computed as follows

dcos(w1,w2) =
w

t
1w2

||w1||||w2||
, (12)

where ||.|| signifies the norm of the vector. If LDA based

channel compensation is applied on the i-vectors, the similarity

measure becomes

dcos(w1,w2) =
(At

LDAw1)
t
(At

LDAw2)

|| (At
LDAw1) |||| (At

LDAw2) ||
, (13)

where ALDA is the LDA projection matrix.

B. PLDA scoring

Scoring in the PLDA framework is different from the

previously mentioned scoring methods. The idea here is to

verify if the test utterance shares the identity vector with the

claimed speaker or they are from two different models. This

is summarized as follows

scl = log
P (wcl,wtst|H0)

P (wcl|H1)P (wcl|H1)
, (14)

where wcl is the i-vector of the claimed target speaker, wtst is

the i-vector corresponding to the speaker in the test utterance

Otst, H0 is the same speaker hypothesis and H1 is the

hypothesis that the train and test i-vectors are from different

speakers. The method to compute the log likelihood ratio score

is based on [15].

IV. CODE ORGANIZATION

The code organization follows that in the Kaldi pack-

age [16]. The existing code structure in src/ivector and

src/ivectorbin is retained. The existing i-vector class naming

scheme is followed. The suffix ”Conv” is added to the existing

classes to refer to the new implementation. For example,

the class IvectorExtractor is called IvectorExtractorConv. The

entire set of classes are implemented in ivector/conv-ivector-

extractor.cc and ivector/conv-ivector-extractor.h The member

variables and functions in the classes are similar to those

already available in the existing implementation. For some

data structures, however, unused variables and functions are

removed. The implementation heavily relies on the Kaldi

matrix libraries.

A standard Kaldi recipe is available in the scripts folder.

This follows the NIST SRE 08 recipe already available so

that the results can be easily reproduced and compared. The

binaries in src/ivectorbin folder are used by this script. Binaries

related to i-vector extraction and EM algorithm to estimate

T-matrix can be easily found by appending ”-conv” suffix

to the default binaries. However, the existing and the new

implementations are not compatible with respect to the T-

matrix and other relevant parameters.

V. EXPERIMENTS

The existing Kaldi recipe was modified to test the new

implementation with the existing setup. NIST SRE 08 dataset

was used as the evaluation set [17]. The evaluation set consists

of 8 conditions. The conditions are explained in Table I. The

systems are evaluated and compared using Equal Error Rates

(EER).

To train the UBM, T-matrix, LDA and PLDA models

the following data sets were used: Fisher English Parts I

and II, NIST SRE 2004, 2005 and 2006, and Switchboard

Cellular Parts I and II. The UBM has 2048 components.

The i-vector is configured to have 500 dimensions. The first

150 eigenvectors corresponding to the highest eigenvalues are

retained after LDA. Then, length normalization is applied

followed by scoring with PLDA. System development and

evaluation are gender-dependent. The Kaldi-MFCC features

are used by both systems. The features are computed on 20 ms

window with 10 ms frame shift with bandpass filtering from

20 Hz to 3700 Hz. The MFCCs have 20 dimensions including

the energy component. The energy based speech/non-speech

detector is used for voice activity detection.

The results for the male speakers of the dataset are presented

in Table II. The EERs are computed using the “compute-eer”

tool available in Kaldi. The ”Kaldi baseline” system refers

to the implementation available in Kaldi and the ”Standard

i-vector” refers to the Idiap’s implementation of the standard

i-vector system. Improvements can be observed for conditions

5 and 6. For conditions 2 and 8 there is no change in EER.

For all other conditions minor deterioration is observed.

The systems for the female dataset are compared in Table

III. Improvements are obtained in more conditions than that

seen with the male dataset. In particular, 5 out of 8 conditions

showed improvements. In some cases, the gains obtained (for

example in condition 1) are significant.

VI. SUMMARY

The standard i-vector system is implemented for the Kaldi

toolkit. This is done by modifying the existing codebase for

i-vector based speaker recognition. An equivalent recipe for

NIST SRE 2008 is provided. The toolkit is available under the

Apache 2.0 license at https://github.com/idiap/kaldi-ivector.
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TABLE I
NIST SRE 2008 CONDITIONS

Condition Train Test Notes

Cond1 Interview speech Interview speech All trials

Cond2 Interview speech Interview speech Same microphone

Cond3 Interview speech Interview speech Different microphones

Cond4 Interview speech Telephone speech -

Cond5 Telephone speech Interview speech -

Cond6 Telephone speech Telephone speech All trials

Cond7 Telephone speech Telephone speech English only

Cond8 Telephone speech Telephone speech English from native speakers

TABLE II
RESULTS IN TERMS OF EQUAL ERROR RATE (IN %) ON THE NIST SRE 2008 DATASET FOR MALE SPEAKERS.

System Cond1 Cond2 Cond3 Cond4 Cond5 Cond6 Cond7 Cond8

Kaldi baseline 9.1 1.2 9.3 7.5 7.3 5.4 2.7 2.2

Standard i-vector 9.3 1.2 9.5 7.7 6.6 4.9 3.0 2.2

TABLE III
RESULTS IN TERMS OF EQUAL ERROR RATE (IN %) ON THE NIST SRE 2008 DATASET FOR FEMALE SPEAKERS.

System Cond1 Cond2 Cond3 Cond4 Cond5 Cond6 Cond7 Cond8

Kaldi baseline 11.5 1.5 11.8 9.8 9.6 6.6 4.3 4.7

Standard i-vector 8.2 0.9 8.1 9.3 8.9 8.3 5.2 5.3
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