
Research and Applications

Addressing Beacon re-identification attacks:

quantification and mitigation of privacy risks

Jean Louis Raisaro1,*, Florian Tramèr1,*, Zhanglong Ji2,*, Diyue Bu3,*, Yongan Zhao3,

Knox Carey4, David Lloyd5,6, Heidi Sofia7, Dixie Baker8, Paul Flicek5, Suyash

Shringarpure9, Carlos Bustamante9, Shuang Wang2, Xiaoqian Jiang2,

Lucila Ohno-Machado2, Haixu Tang3, XiaoFeng Wang3, and Jean-Pierre Hubaux1

1School of Computer and Communication Sciences, �Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2Health

Science Department of Biomedical Informatics, University of California San Diego, San Diego, CA, USA, 3School of Informatics

and Computing, Indiana University Bloomington, Bloomington, IN, USA, 4GeneCloud, Intertrust, CA, USA, 5European Molecular

Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK,
6Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK, 7Division of Genomic Medicine, National Institutes of

Health, Bethesda, MD, USA, 8Martin, Blanck and Associates, Alexandria, VA, USA, and 9Department of Genetics, Stanford Uni-

versity, Stanford, CA, USA

Corresponding Author: Jean-Pierre Hubaux, School of Computer and Communication Sciences �Ecole Polytechnique Féd-

érale de Lausanne Station 14, EPFL IC ISC LCA1, BC 207, 1015 Lausanne, Switzerland. Phone: þ41 21 693 2627, E-mail:

jean-pierre.hubaux@epfl.ch

*These authors contributed equally to this work

Received 27 May 2016; Revised 27 September 2016; Accepted 1 December 2016

ABSTRACT

The Global Alliance for Genomics and Health (GA4GH) created the Beacon Project as a means of testing the will-

ingness of data holders to share genetic data in the simplest technical context—a query for the presence of a

specified nucleotide at a given position within a chromosome. Each participating site (or “beacon”) is responsi-

ble for assuring that genomic data are exposed through the Beacon service only with the permission of the indi-

vidual to whom the data pertains and in accordance with the GA4GH policy and standards.

While recognizing the inference risks associated with large-scale data aggregation, and the fact that some bea-

cons contain sensitive phenotypic associations that increase privacy risk, the GA4GH adjudged the risk of re-

identification based on the binary yes/no allele-presence query responses as acceptable. However, recent work

demonstrated that, given a beacon with specific characteristics (including relatively small sample size and an

adversary who possesses an individual’s whole genome sequence), the individual’s membership in a beacon

can be inferred through repeated queries for variants present in the individual’s genome.

In this paper, we propose three practical strategies for reducing re-identification risks in beacons. The first two strate-

gies manipulate the beacon such that the presence of rare alleles is obscured; the third strategy budgets the number

of accesses per user for each individual genome. Using a beacon containing data from the 1000 Genomes Project,

we demonstrate that the proposed strategies can effectively reduce re-identification risk in beacon-like datasets.
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INTRODUCTION

The Global Alliance for Genomics and Health (GA4GH)1 conceived the

Beacon Project as a means of testing the willingness of international sites

to share genomic data in the simplest of all technical contexts: a public

web service that any data holder could implement to enable users to sub-

mit queries of the form, “Do you have any genomes with nucleotide A

at position 100,735 on chromosome 3?,” to which the service would re-

spond with “Yes” or “No.” A site offering this service is called a beacon

and is responsible for ensuring that genomic data are exposed through

the Beacon service only with the permission of the individual to whom

the data pertain and in accordance with the GA4GH ethical framework2

and privacy and security policy.3 Thus, the Beacon service is designed to

be technically simple, easy to implement, and privacy protective.

The availability of vast quantities of high-quality genomic and

health data is essential to the advancement of biomedical knowledge.

Yet, privacy concerns often limit researchers’ ability to access poten-

tially identifiable health data. Indeed, in some cases, privacy laws and

regulations actually impede individuals’ ability to make their own

data available to researchers.4 This problem is particularly acute in

the field of genomics, where the vast majority of variants predicted to

be functionally important are extremely rare, occurring in <0.5% of

the population.5 As a result, it is unlikely that any single institution

will hold enough data to achieve sufficient statistical power in study-

ing any particular condition. Recognizing the urgent need for federa-

tion across organizations, the GA4GH was formed in 2013 to enable

responsible sharing of genomic and health-related data by establishing

consistent policy and interoperable standards and protocols.

From its inception, the GA4GH has been committed to achieving a

responsible and effective balance between data sharing and individual

privacy, a challenge that has been extensively explored in the litera-

ture.6–9 In 2008, Homer et al.6 showed that statistical techniques can

reveal the presence or absence of an individual in a genomic data set,

even when the targeted individual’s genome accounts for <0.1% of

the total data. The publication of this paper had a significant impact,

prompting several major institutions, including the Wellcome Trust

and the US National Institutes of Health, to limit public access to data

formerly adjudged to be safely anonymous.10 As this scenario demon-

strates, privacy concerns can undermine the ability of researchers to

publish and access genomic data.

At the outset, the GA4GH recognized that the Beacon approach

can reveal information about the individuals in a data set. However,

in performing the risk assessment, the GA4GH recognized several

conditions that served to mitigate the risk that any individual would

be identified based on Beacon search. First, the Beacon user interface

is extremely restrictive, enabling queries only for the presence or ab-

sence of the four nucleotides (A, C, T, G) that make up every indi-

vidual’s genome. Second, the number of individual genomes

aggregated in each beacon is very large. Third, for a data seeker to

be able to identify an individual through Beacon queries would re-

quire as a precondition that the data seeker possess a significant

amount of genomic data associated with the targeted individual, such

as a variant call format file of the individual’s whole genome sequence.

In such a case, a potential adversary would know all variants in the in-

dividual’s genome and would have much more efficient means of dis-

covering a disease association than persistent beacon queries. Thus,

GA4GH concluded that the risk of a data seeker identifying an indi-

vidual through Beacon queries was acceptably low, even for the case

of a data seeker willing to violate GA4GH’s ethical standards.

However, Shringarpure and Bustamante11 describe an attack in

which an anonymous adversary, even with knowledge of only a

small portion of a target’s genome, can successfully launch a re-

identification attack: in a beacon comprising 1000 individuals, for

instance, 5000 queries suffice. Such an attack relies on a likelihood

ratio test whose power is a function of the responses returned by the

beacon, the size of the data set, the allele-frequency spectrum, and

the sequencing error rate. Their paper demonstrates that under cer-

tain conditions, the anonymous-access model implemented by the

Beacon Project does not prevent identification of individuals whose

genomes could be exposed through a Beacon interface.

The goal of this paper is to further examine the potential vulner-

abilities and risks associated with the Beacon model and to explore

ways of mitigating re-identification risks—thus enhancing Beacon pri-

vacy protections. Re-identification is the process by which anony-

mized personal data is matched with its true owner.12 We first

analyze the re-identification threat described by Shringarpure and Bu-

stamante and the vulnerability the attack exploited. We then propose

an optimized version of the attack that considers an adversary with

some background knowledge about the allele frequencies (AFs) in the

targeted beacon. We describe three potential strategies for mitigating

the risk of re-identification and assess their effectiveness through sev-

eral experiments with data obtained from the 1000 Genomes Proj-

ect.13 We conclude the paper by discussing the strengths and

weaknesses of the proposed strategies and by providing some recom-

mendations for strengthening Beacon privacy protections.

MATERIALS AND METHODS

Original re-identification attack
We begin by describing the re-identification attack proposed by

Shringarpure and Bustamante.11 In the following, we refer to it as

the “SB attack.”

As noted earlier, the setting of the SB attack is similar to that of

previous works such as that of Homer et al.9 The attacker is as-

sumed to have access to the variant call format file of a target vic-

tim’s genome and queries the beacon at heterozygous positions to

determine whether the victim is in the beacon. The SB attack relies

on a likelihood-ratio test (LRT) that evaluates the likelihood of the

beacon’s responses under two possible hypotheses:

• The null hypothesis H0: The queried victim’s genome is not in

the beacon.
• The alternative hypothesis H1: The queried victim’s genome is in

the beacon.

The re-identification risk is measured by the power of such a test,

i.e., Prðreject H0jH1 trueÞ. To make their test as general as possible,

Shringarpure and Bustamante assume only that the attacker knows the

beacon size N, as well as the site frequency spectrum of the beacon

population. Formally, the alternate allele frequency fi of a heterozygous

SNP observed in the population is assumed to be distributed as fi

� betaða; bÞ for population parameters a; b. Their LRT further allows

for a probability d of sequencing errors, resulting in a mismatch be-

tween the attacker’s copy of a genome and the copy in the beacon.

Given a set of beacon responses R ¼ fx1; . . . ; xng, the log-

likelihood of the sequence is

LðRÞ ¼
Xn

i¼1

xilogPrðxi ¼ 1Þ þ ð1� xiÞlogPrðxi ¼ 0Þ: (1)

Under H1, let Di
N�1 denote the probability that none of the

N � 1 other genomes in the beacon have an alternate allele at posi-

tion i. Similarly, under H0, we denote by Di
N the probability that
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none of the N genomes in the beacon have an alternate allele at i.

Then, under the two hypotheses, we have

LH1
ðRÞ ¼

Xn

i¼1

xilogð1� dDi
N�1Þ þ ð1� xiÞlogðdDi

N�1Þ; (2)

LH0
ðRÞ ¼

Xn

i¼1

xilogð1�Di
NÞ þ ð1� xiÞlogðDi

NÞ: (3)

Shringarpure and Bustamante show that under their assump-

tions, for any position i we have Di
N�1 ¼ E½p2N�2

i � and Di
N ¼

E½p2N
i �, where pi � betaðb; aÞ. The log of the LRT is given by

K ¼ LH0
ðRÞ � LH1

ðRÞ ¼ nBþ C
Xn

i¼1

xi; (4)

where B and C are constant for N; d; a;b fixed. Thus,
Xn

i¼1
xi (the num-

ber of “Yes” responses from the beacon) is a sufficient statistic for the LRT.

“Optimal” attack with real allele frequencies
The SB attack removes direct dependency on AF and sets conservative

bounds for the number of queries required for successful re-

identification. We consider here a more capable and determined attacker

who has access to some background knowledge on AFs and optimizes

his attack by querying the rarest alleles in the victim’s genome first. In

other words, similarly to best practices in forensics, the attacker makes

use of alleles with maximum re-identification power instead of perform-

ing random requests. This assumption appears reasonable in practice, as

allele frequency information for different ancestries is already publicly

available on the Web (e.g., 1000 Genomes Project,14 HapMap Project,15

etc.) and easily accessible even by nonexpert attackers. We show through

several experiments (see Results section) that this new attack is signifi-

cantly more powerful than the original SB attack, even when the attacker

has incomplete knowledge of AFs in the beacon.

Formally, the attacker assumes AFs f1; f2; . . . ; fM for the M SNPs

in the victim’s genome. Without loss of generality, we assume the

frequencies are already ordered (i.e., f1 � f2 � . . . � fM). Then, the

attacker will maximize his re-identification power by first querying

those SNPs that are least likely to appear in the beacon under H0,

specifically those with the lowest frequency. In this setting, Equa-

tions (2) and (3) still hold, but the computation of Di
N�1 and Di

N is

different. Under the alternative hypothesis, we have

Di
N�1 ¼ Prðnone of the other N� 1 genomes

have an alternate allele at position iÞ

¼ ð1� fiÞ2
� �N�1

¼ ð1� fiÞ2N�2:

Similarly, under H0, we have Di
N ¼ ð1� fiÞ2N.

As the probabilities Di
N�1 and Di

N now directly depend on the

position i, we have that the following LRT

K ¼ LH0
ðRÞ � LH1

ðRÞ

¼
Xn

i¼1

log
Di

N

dDi
N�1

� �
þ log

dDi
N�1ð1�Di

NÞ
Di

Nð1� dDi
N�1Þ

� �
xi

¼
Xn

i¼1

log d�1ð1� fiÞ2
� �

þ log
d

ð1� fiÞ2
� 1� ð1� fiÞ2N

1� dð1� fiÞ2N�2

 !
xi:

(5)

We will evaluate the power of this test empirically through ex-

periments in a variety of settings with real data and different levels

of adversarial background knowledge. We will estimate the null dis-

tribution of the LRT by computing Equation (5) for a number of

control individuals known not to be in the beacon. The null hypoth-

esis is rejected if K < t for some threshold t. We then let ta be such

that Pr½K < tajH0� ¼ a. The power of the test is computed as

1� b ¼ Pr½K < tajH1�, where the distribution of K given H1 is esti-

mated by querying individuals in the experimental beacon.

Risk mitigation strategies
Based on the “optimal” version of the re-identification attack, we

propose three different practical strategies to mitigate the risk. With-

out loss of generality, we can assume that any defense mechanism

that effectively mitigates the “optimal” re-identification attack also

effectively mitigates the original SB attack. Our experimental results

(see Results section) show the validity of this assumption.

Beacon alteration strategy

The first strategy (S1) relies on the observation that most of the sta-

tistical power in the re-identification attack comes from queries tar-

geting unique alleles in the beacon. In particular, S1 alters

the beacon by answering a query with “Yes” only if there are at least

k > 1 individuals sharing the queried allele. In other words, k is the

minimum number of individuals in the beacon sharing the queried

allele when returning “Yes.” Current beacons set k ¼ 1; i.e., when

there are one or more individuals in the population with the queried

allele, the answer will be “Yes.” We assume the value of k is made

public, hence the attacker will modify the attack to accommodate

this change (see Supplementary Appendix A for LRT under S1). Yet,

already for k ¼ 2, we found that in practice what the attacker can

infer is limited (see Results section).

Random flipping strategy

The second strategy (S2) relies on the same observation but instead of

altering the beacon response, it introduces noise into the original data.

The disadvantage of S1 is that only a subset of variations (e.g., the non-

unique SNPs when k ¼ 2) in the beacon population can be queried. In

practice, unique alleles that are likely to be the most useful in human

genetics research are completely hidden. S2 improves the usability of

the beacon over S1 because it hides only a portion e of unique alleles,

but not all. In other words, a beacon with S2 will add noise by sam-

pling from a binomial distribution with probability e only to unique al-

leles in the database and provide false answers (e.g., “No” instead of

“Yes”) to queries targeting these unique alleles. The main goal of S2 is

to share as many unique alleles as possible while reducing the likeli-

hood that the information released will be sufficient to re-identify an

individual in the database. We assume the value of e is public. As for

S1, the attacker will adapt the LRT statistic to take it into account (see

Supplementary Appendix B for LRT under S2).

Query budget per individual strategy

The third strategy (S3) mitigates the re-identification risk by assign-

ing a budget to every individual in the database; this budget is ap-

plied to each authenticated Beacon user. With respect to strategies

S1 and S2, S3 leverages two additional assumptions:

• Each Beacon user has been identity proofed, holds a single ac-

count, is authenticated, and does not collude. If users are allowed

to collude, then to be effective, S3 will have a dramatic impact

on the utility of the system. This assumption appears reasonable

in practice as, in order to collude, a user needs by definition to in-
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volve someone else. We assume each user holds a single Beacon

account to eliminate the possibility of a single user simulating

multiple profiles in collusion, which carries higher risk than ei-

ther collusion among multiple users or a re-identification attack

that can be undertaken at an individual scale. This is because an

attack involving multiple accounts all working on behalf of a sin-

gle attacker does not require exchanging files with other users and

could be conducted more quickly than a single-threaded attack.
• The attacker has accurate genomic information, which means

d ¼ 0. This is a worst-case assumption because if we can prevent

re-identification under this condition, we can prevent the pro-

posed “optimal” attack, too. Note that in practice, because there

are some sequencing errors (i.e., d > 0), the attacker will actually

have less power. Hence, this approach is conservative from a re-

identification point of view. Moreover, by assuming d ¼ 0, we

can significantly simplify the analytical treatment of the problem.

The basic idea is that each time an individual’s genome contrib-

utes to a “Yes” answer for a given query (i.e., the individual has the

queried allele), her corresponding budget for that Beacon user is re-

duced by an amount that depends on the frequency of the queried al-

lele. If her budget is less than this amount, her information will not

be used to answer that query and the individual will be removed

from the dataset, as shown in Algorithm1 in Table 1. In this way,

the privacy of the individual will be always preserved at a cost of a

slight decrease of utility.

Let R be the set of responses of the beacon; the goal of S3 is to

keep track of the power of the attack, which is based on the LRT

K ¼ LH0
ðRÞ � LH1

ðRÞ, to prevent any individual genome from con-

tributing to a query response that can leak identity information with

high confidence (see Supplementary Appendix C for formal descrip-

tion of S3).

Experiments with real data
To evaluate the effectiveness of the proposed strategies in reducing

risk under the “optimal” attack with real AFs, we designed and ran

several experiments on real data with the following setup. We created

a beacon composed of 1235 samples of chromosome 10 randomly

chosen from the 2504 individuals in phase 3 of the 1000 Genomes

Project.13 A total of 31 relatives were removed. The resulting data set

consists of individuals with either European, African, admixed Ameri-

can, East Asian, or South Asian ancestries. Among these samples, 100

were selected as the control set. Similarly, from the remaining individ-

uals not in the beacon, 100 were selected as the test set.

The null distribution of the LRT statistic was obtained through

the exact-test computation on the 100 individuals in the test set (i.e.,

not in the beacon). With a false positive rate of a ¼ 5%, we com-

puted the power (1� b) as the proportion of test rejected (i.e., when

K < ta) for the control set (i.e., how many individuals in the control

set, hence in the beacon, were successfully re-identified).

RESULTS

“Optimal” re-identification attack in single-population

Beacon
We evaluated the re-identification power of our attack on a beacon

composed of individuals coming from the same ancestry group.

From phase 3 of the 1000 Genomes Project, we selected 502 samples

of European (EUR) ancestry and randomly picked half of them to

set up the beacon. The remaining half was used to compute the EUR

population AFs. We considered several scenarios where the attacker

has different types of background information.

As expected, results in Figure 1 show that the worst-case sce-

nario is represented by an attacker knowing the exact ancestry of

the population in the beacon. With only three SNPs, beacon mem-

bership could be re-identified with 100% power and a 5% false pos-

itive rate. Yet, because the beacon ancestry information is not

always public, a more realistic scenario is to consider an attacker

who knows only the AFs of a random population, possibly from a

different ancestry than the one of the beacon. Even with the least

precise background information (in this case the AFs from East

Asian (EAS) ancestry), 36 SNPs are sufficient to re-identify an indi-

vidual. Figure 2 shows the Kendall rank correlation coefficient16 be-

tween the actual AFs in the beacon and the AFs from different

ancestry groups. By combining the information in Figures 1 and 2, it

is easy to observe that the higher the ordinal association between the

beacon AFs and the AFs known by the attacker, the fewer queries

needed to re-identify with 100% power and 5% false positive rate

(see Supplementary Appendix D for results on the “optimal” attack

in a multipopulation beacon).

“Optimal” re-identification attack in Beacon with S1
We evaluated the proposed solution S1 by considering an attacker

who knows the AFs of the 1000 Genomes Project and the value of

threshold parameter k. As such, we set up a beacon as described in

Materials and Methods section and computed the LRT statistic as de-

scribed in Supplementary Appendix A. Figure 3 shows that, under

such an attack, no individual in the beacon can be re-identified if a

“Yes” answer is provided only when the queried allele appears at

least k ¼ 2 times in the database. Yet, the downside of this method is

that only a fraction of the alleles that are in the beacon can be shared.

For example, in our experimental beacon, only 60% of the alleles are

shared by two or more individuals and thus can be shared; the queries

to the remaining rare alleles (�40%) will receive a “No” answer even

though they are actually present in the Beacon database.

Table 1. Algorithm describing mitigation strategy S3

Algorithm1

Requires: upper bound on test errors p

1. Set all bj ¼ �logðpÞ.
2. Receive i’th query and check whether it has been asked before. If yes, go to Step 3. If no, go to Step 4.

3. Return the previous answer, then go to Step 2.

4. Compute the risk ri ¼ �logð1�Di
NÞ.

5. Check whether there are any records with the asked variant and bj > ri. If no, return no and go to Step 2.

6. For all the individuals with such variant and bj > ri, reduce their budgets by ri. Then return yes.

7. Go back to Step 2 and wait for the next query.

4 Journal of the American Medical Informatics Association, 2017, Vol. 0, No. 0

http://jamia.oxfordjournals.org/lookup/suppl/doi:10.1093/jamia/ocw167/-/DC1
http://jamia.oxfordjournals.org/lookup/suppl/doi:10.1093/jamia/ocw167/-/DC1
http://jamia.oxfordjournals.org/lookup/suppl/doi:10.1093/jamia/ocw167/-/DC1


“Optimal” re-identification attack in Beacon with S2
To evaluate the effectiveness of S2 against an attack with back-

ground knowledge on AFs, we consider an attacker who knows the

AFs of the 1000 Genomes Project and the value of the parameter e.

Figure 4 shows how the statistical power of the attacker decreases

when different portions (e) of unique alleles are hidden. When e is

set to 0:001, the attacker has to query around 104 unique alleles to

obtain a strong power of re-identification, compared to 200 queries

for 100% re-identification when no random flipping on unique al-

leles (of S2 strategy) is applied. When e �0:15, the re-identification

Figure 1. “Optimal” re-identification attack in single-population beacon. Different power rates per number of SNPs queried from an unprotected beacon with a

single population (EUR) by an adversary with different types of background knowledge: (green) the attacker knows the allele frequencies (AFs) of a population

from the same ancestry (EUR) as the one in the beacon and performs queries following the rare-allele-first logic; (red, cyan, blue, and purple) the attacker knows

the AFs of a population from an ancestry different from the one in the beacon and performs queries following the rare-allele-first logic (African [AFR], admixed

American [AMR], East Asian [EAS], or South Asian [SAS], respectively); (yellow) the attacker knows the AFs of a distinct population with the same ancestry (EUR)

other than the one in the beacon but performs queries in random order; (black) the attacker does not have any information on AFs (i.e., the original attack by

Shringarpure and Bustamante11).

Figure 2. Kendall rank correlation coefficient with respect to true beacon allele frequencies. Kendall rank correlation coefficient between the actual AFs of the single-

population beacon of Figure 1 and the AFs of populations with different ancestries. Values closer to 1 represent higher correlation. Color mapping as in Figure 1.
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power will not increase above 35%, which will keep the power at

an acceptable risk level (i.e., relatively low confidence of re-identi-

fication).

Budget evaluation in Beacon with S3
We evaluated strategy S3 with the same experimental setting as for

S1 and S2. By default, we set p¼ .05, which means the statistical

power of attack cannot exceed 0.95. Differently from experiments

performed on solutions S1 and S2, which show an increase in re-

identification risk given certain levels of utility of the beacon, we

evaluate the efficacy of S3 by computing the decrease of utility

across queries for a certain level of re-identification risk.

To this purpose, we emulate the query behavior of a typical hon-

est beacon user by generating queries based on the distribution of

query frequency per allele frequency extracted from ExAC browser17

logs over a period of 12 weeks (data on beacon query frequencies

were not available at the time of this work.) During this time frame, a

total of 1 345 291 queries were asked on 934 680 variants present in

ExAC. Table 2 shows the proportion of queries per range of AFs.

Figure 3. “Optimal” re-identification attack in beacon with S1. Different power rates per number of SNPs randomly queried from a beacon with mitigation S1 by

an adversary with knowledge on k and on AFs from the 1000 Genomes project: (blue) k ¼ 1; (green) k ¼ 2.

Figure 4. “Optimal” re-identification attack in beacon with S2. Different power rates per number of SNPs queried (with rare-first logic) from a beacon with mitiga-

tion S2 by an adversary with knowledge on e and on AFs from the 1000 Genomes project. Different colors for different values of e.

6 Journal of the American Medical Informatics Association, 2017, Vol. 0, No. 0



Figure 5 shows how the number of individuals with enough bud-

get decreases with respect to the number of queries answered by the

beacon. Note that the beacon’s utility is completely preserved for

the first 2000 queries.

DISCUSSION

In this paper, we have analyzed in detail the beacon re-identification

attack originally proposed by Shringarpure and Bustamante and a

new and “optimal” version of it by considering a smarter adversary

who makes use of public information on AFs. We evaluated the

power of our new attack through several experiments on real data

by considering different conditions of adversarial background

knowledge. Our results show that our attack always outperforms

the original SB attack. As one might expect, we have observed that

the power of an adversary’s re-identification attack is directly re-

lated to the completeness and accuracy of the adversary’s knowledge

of the AF of the targeted Beacon. As already analyzed by Shringar-

pure and Bustamante, the underlying LRT test can be extremely

harmful when a beacon is linked to sensitive phenotypes. Yet it is

important to emphasize that, although our attack further reinforces

SB’s concern, the re-identification risk is relative to each beacon.

These attacks fundamentally rely on the assumption that the at-

tacker already has access to the genome of the victim.

Despite such a strong assumption, several research efforts in ge-

nomic privacy have studied the problem of re-identification of mem-

bership in genetic databases and have shown that this is extremely

hard to prevent and sometimes even impossible.18

Based on the “optimal” re-identification attack, we have proposed

three different strategies aimed at effectively thwarting beacon member-

ship re-identification. Because the accuracy of the beacon re-

identification attack depends on the power and false positive rate of the

LRT test, the probability that a test behaves correctly (rejecting the null

hypothesis when it is false and failing to reject when it is true) is given

by Power * (Probability of alternative hypothesis)þ (1�False positive

rate) * (Probability of null hypothesis). From the perspective of a beacon

administrator, the attacker’s test should be incorrect most of the time;

i.e., power should be low and/or the false positive rate should be high.

The three proposed strategies all address the mitigation problem

by controlling the power or the false positive rate. The first (S1) and

second (S2) strategies reduce the power to nearly zero when the

LRT must have a small false positive rate, whereas in the third solu-

tion (S3), the test always has 100% power but a high false positive

rate. In particular, S1 and S2 directly alter the beacon to reduce the

inference power of the attacker, whereas S3 introduces a new idea

of personal budget that decreases when the genome of the individual

is used to positively answer a query.

Results of our experiments have shown that all proposed mitiga-

tion strategies have advantages and disadvantages, as summarized in

Table 3. S1 effectively mitigates the attack by keeping the power of

the LRT to 0.2 if all unique alleles are flipped. Yet it generates a sig-

nificant loss in utility of the beacon because the majority of the

queries of a typical beacon user usually target rare alleles. We define

the utility of a beacon as the proportion of true answers it can pro-

vide. S2 can be considered a more sophisticated version of S1

because it flips only a portion of unique alleles, affording more fine-

grained control over the utility vs privacy trade-off. The attack infer-

ence power can be confined to a secure level by flipping only 15%

of unique alleles (which means a drop in utility of 6% against 40% of

S1). Note that the utility of a beacon adopting either S1 or S2 is fixed

a priori and does not change along with the power of the attack.

Finally, results of experiments on S3 show that, given a certain as-

surance level (p¼ .05), the beacon utility is completely preserved for

the first 2000 queries. Yet S3 relies on the assumption that the beacon

Table 2. Proportions of queries (over a period of 12 weeks) for each

range of allele frequency

Allele frequency < 0.001 0.001–0.01 0.01–0.05 0.05–0.5 > 0.5

Queries in ExAC 0.853 0.076 0.023 0.033 0.014

Figure 5. Budget evaluation in beacon with S3. Behaviors of individual budgets per number of SNPs queried according to the typical user’s query profile obtained

from ExAC log data. The cyan curve represents the number of individuals with enough budget to answer “Yes” to queries targeting alleles with AF¼ 0.001. Red,

green, and blue curves correspond to 0.002, 0.005, and 0.01, respectively.
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system is not anonymous and has a controlled level of access with user

authentication and identity proofing. Based on data collected from the

ExAC browser logs, a budget of 2000 queries per beacon user seems a

reasonable compromise between re-identification risk and utility.

Preventing inference attacks on large databases is widely known

to be one of the most daunting of database security challenges.19

This fact has been a major consideration in the development of

GA4GH’s framework for responsible sharing of genomic and

health-related data, privacy and security policy, and security infra-

structure. Effective risk management must leverage policy, technol-

ogy, and community governance to address re-identification risks.

Effective risk management is fundamental to facilitating and promot-

ing data sharing across the GA4GH global community. We empha-

size that security and privacy are components of risk management.

Technical risk-management strategies such as those proposed in this

paper are practical and can be adapted according to the context of

each beacon. Therefore, they represent a valuable set of options for

assessing and mitigating risk within the GA4GH community.
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Risk mitigation strategy Disadvantages Advantages
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to be most useful in genetic research
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most likely to be targeted by attackers

S2: Random flipping Decreases rate of true answers returned from querying unique

alleles likely to be useful in genetic research

Permits some unique alleles to be discoverable and to

fine-tune the privacy–utility trade-off

S3: Query budget per

individual
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and holding no more than one Beacon

account; may require complicated accounting scheme

Enables all alleles to be discoverable until budget is

exceeded
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