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SUMÁRIO 
 
A análise do comportamento inelástico de estruturas, quer ao nível global (força-
deslocamento) quer local (tensão-extensão), é fundamental no contexto de avaliações 
baseadas em critérios de desempenho (Performance Based Earthquake Engineering). 
Tal objectivo é atualmente atingido fazendo uso de ferramentas numéricas que 
requerem um significativo esforço computacional. 
Nomeadamente, elementos de viga baseados em plasticidade distribuída oferecem um 
bom compromisso entre a precisão de resultados obtida e o tempo de análise requerido, 
sendo por isso o tipo de elementos finitos mais usualmente utilizado em análises 
estruturais. Dentro desta categoria, as formulações baseadas em deslocamentos são 
as mais simples em termos de desenvolvimento analítico e implementação numérica. 
No entanto, uma desvantagem fundamental destas últimas relaciona-se com o campo 
de deslocamentos axiais imposto. Esta limitação implica que o equilíbrio pode apenas 
ser verificado de uma forma ponderada (i.e., em média) e, quando a não-linearidade 
material é adicionalmente considerada, tal traduz-se no desenvolvimento de diferentes 
valores do esforço axial em secções de integração distintas. Consequentemente, a 
capacidade de flexão do membro estrutural é frequentemente sobrestimada, levando a 
um desempenho deficiente do elemento finito. 
O presente artigo introduz um novo elemento baseado em deslocamentos que verifica 
o equilíbrio axial de uma forma estrita. Este último foi implementado pelos autores num 
código de elementos finitos ad hoc, e o seu desempenho é mostrado através de dois 
exemplos de aplicação. Comparações com a formulação clássica de deslocamentos e 
com a formulação de forças são também mostradas, ao nível local e global. 
 
 
ABSTRACT 
 
In the framework of Performance Based Earthquake Engineering (PBEE), assessing the 
inelastic behaviour of structures both at the global (force-displacement) and local (stress-
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strain) level is of priority importance. This goal is typically achieved by advanced 
nonlinear analysis that rely on the use of increasing computational power. 
Due to a good compromise between accuracy and processing time, distributed plasticity 
beam elements represent the most employed finite element in nonlinear structural 
analysis. In particular, displacement-based elements are the simplest in terms of 
implementation and the most efficient from the state determination viewpoint.  
However, a fundamental drawback of classical displacement-based formulations is 
related to the assigned axial displacement field. This limitation implies that equilibrium is 
only verified on an average sense and, in case of material nonlinearity, it yields different 
values of the axial force in distinct integration sections. This results in a misevaluation of 
the moment capacity of the structural member and therefore in a poor local and global 
performance of the finite element.  
In this paper a new displacement-based element strictly verifying the axial equilibrium 
condition is introduced. The latter was implemented by the authors in an ad hoc finite 
element software and its performance is presented by means of two application 
examples. Comparisons between classical displacement-based and force-based 
formulations are made, both at the global and local level. 
 
 
PALAVRAS-CHAVE: Elementos viga, Equilíbrio axial, Formulação de deslocamentos, 
Formulação de forças, Discretização por fibras. 
 
 
1.  INTRODUCTION 
 
In the framework of Performance Based Earthquake Engineering (PBEE), a reliable 
assessment of the inelastic behaviour of structures is of fundamental importance. 
Nonlinear analysis provides the means for calculating the structural response beyond 
the elastic range and assessing the expected level of damage, following which a decision 
on whether or not retrofit measures are required should be taken. 
One of the most commonly employed tool for the simulation of the nonlinear response of 
reinforced concrete (RC) structures is represented by beam element models, as they 
feature an attractive compromise between accuracy and computational cost. Amongst 
beam formulations, lumped and distributed plasticity approaches can be distinguished. 
The former, as the name suggests, concentrate the occurrence of inelastic deformations 
in pre-defined locations along the element length. On the other hand, distributed plasticity 
elements do not impose a priori a specific location for the development of plasticity nor 
restraints to its progression along the member length. Such type of formulations 
discretize the element into several numerical integration sections from which the 
response is obtained. Each section is typically subdivided into fibres to which an inelastic 
material constitutive law is assigned.  
Within distributed plasticity elements, the choice of the imposed independent fields yields 
the so-called displacement-based (DB) and force-based (FB) formulations [1]. An 
important point, in the context of the present work and as further discussed below, is that 
most of these approaches have been developed for Euler-Bernoulli beam theory (plane 
sections remain plane and perpendicular to the deformed element axis), which is the 
form that is available in roughly all the commonly used structural analysis software (e.g., 
[2,3]). DB formulations employ linear and Hermitian polynomial functions for the axial 
and transversal displacement fields respectively (which provides an exact solution only 
for the case of linear elastic material and nodal loads). FB formulations, on the other 
hand, use constant and linear shape functions for the axial force and bending moment 
respectively (which gives an exact solution regardless of the material nonlinearity 
assigned to the fibres). Therefore, one FB element usually suffices to simulate the 
nonlinear response of a structural member while if DB elements are used member 
discretization in several finite elements is required. Additionally, and importantly for the 
purpose of the present work, equilibrium in FB formulations is verified pointwise along 
the element length whereas in DB elements only the average of the internal forces is in 
equilibrium with the nodal forces (i.e., equilibrium is only verified in an average sense).     
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Despite the undebatable superiority of FB elements over the DB counterpart in terms of 
theoretical accuracy, DB elements are more straightforward and less computationally 
burdensome for what concerns their formulation and numerical implementation in a Finite 
Element code. 
In the present work it is postulated that DB formulations, which have been gradually 
replaced by FB approaches over the past 15-20 years, have good reasons to be revived 
as they offer a bypass around some of the limitations that stem from the application of 
the well-known Euler-Bernoulli hypothesis. In fact, the latter has been shown 
experimentally to be quite constraining. As pointed out by Priestley et al. [4], the first 
reason for the mismatch between the force-displacement response as obtained from a 
FB element (which verifies equilibrium in an exact form) and experimental results is the 
fact that tension shift effects are ignored. The latter cause a linear distribution of plastic 
curvatures inside the plastic zone of the structural member ([5–8], see Figure 1). 
Furthermore, a recent test campaign on circular bridge piers [8] has shown that the 
intersection of this plastic curvature profile with the elastic curvatures occurs at an 
increasing height for larger ductility demands (see again Figure 1). The two above 
physical phenomena can be analytically simulated by imposing appropriate lateral 
displacement profiles (in accordance with the observed curvatures), suggesting that DB 
approaches (and not FB formulations) are the natural framework to develop such finite 
element. This paper is a first step to address these issues and hence to gradually reflect 
unanimous experimental findings in beam elements that can later be used more 
confidently in engineering practice. 
To accomplish such goal, one fundamental drawback of the classical DB formulations 
should be addressed beforehand. The imposed axial displacement field implies that 
equilibrium is only verified on an average sense which, in case of material nonlinearity, 
results in different values of the axial force for distinct integration sections. This leads to 
a misevaluation of the moment capacity of the structural member and therefore to a poor 
local and global performance of the finite element. This paper presents an enhanced DB 
element in which the axial equilibrium is strictly verified (hence somehow emulating the 
advantages of a FB formulation) through the use of adaptive shape functions for the 
generalized strains. This formulation will be further extended in the future to include 
transversal displacement profiles that simulate the above mentioned effect of tension 
shift. 
The new element and its state determination are described in Section 2. Section 3  
presents two application examples showing the comparison between the new element 
and the classical DB and FB formulations, whilst future developments and conclusions 
are provided in Section 4. 
 

 
 Measured curvature profile in a circular cantilever pier for different levels of 

imposed displacement ductility (adapted from [8]). 
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2.  AXIALLY EQUILIBRATED DISPLACEMENT-BASED ELEMENT: STATE 
DETERMINATION 
 
The state determination of the enhanced displacement-based element satisfying axial 
equilibrium is schematically illustrated in the flowchart of Figure 2(a). It consists in 
determining the element basic forces and tangent stiffness matrix given a set of 
incremental basic displacements. The element forces Pbas and displacements Ubas acting 
on the element in the basic reference system (e.g. without rigid body modes) are shown 
in Figure 2(b). They include the nodal axial force/bending moments (P1, M1, M2) and the 
end axial displacement/rotations (U1, θ1, θ2). The steps to be performed to go from the 
basic to the global reference systems involve classical structural analysis operations 
(e.g. the use of rotation matrix and nonlinear compatibility and equilibrium relations, such 
as those associated to a corotational formulation) and will thus be omitted. 
In the classical DB formulations, a linear shape function for the axial displacement field 
u(x)—i.e. corresponding to a constant average axial strain profile ε0(x)—is employed 
along the element. Hermitian polynomials are used instead for the transverse 
displacement field v(x) resulting in a linear curvature profile κ(x). When nonlinear material 
behaviour is considered, such generalized deformations lead to internal generalized 
forces—N(x), M(x)—which are not strictly equilibrated, but only on an average sense. 
Straightforward equilibrium considerations imply that, when no distributed axial loads are 
applied along the element axis, the axial force N(x) has to be the same in all integration 
sections and equal to the basic axial force P1. The former condition, combined with the 
fact that the integral (along the element length) of the average axial strain ε0(x) must be 
equal to the applied axial displacement U1, can be manipulated to provide direct 
relationships between Δε0(xi) and the current generalized axial force N(xi) at each 
integration point (IP) i [9]. An iterative procedure that systematically adjusts the values 
of the incremental axial strains Δε0(xi) can therefore be set up until the difference between 
the generalized axial forces N(xi) in all the integration sections is below a defined 
tolerance [9]. Once convergence is attained, the set of axial strains ε0(xi) strictly satisfying 
axial equilibrium is known and the generalized strains’ shape functions can be updated. 
The principle of virtual work is then applied in order to determine the set of equilibrated 
element basic forces as well as a consistent element tangent basic stiffness matrix KT. 
 
 
3.  APPLICATION EXAMPLES 
 
The axially equilibrated displacement-based formulation has been implemented in the 
finite element software SAGRES (Software for Analysis of GRadient Effects in 
Structures), originally developed by the second author. In the following subsections, two 
application examples compare the accuracy of the proposed formulation with respect to 
the classical displacement-based and force-based approaches. The influence of the 
constant axial force criterion will be examined in detail as well as the need for member 
discretization into several finite elements.  
In both application examples, the reference structure is represented by a 3 m height 
cantilever column, to which an external constant axial load P and an incremental lateral 
displacement Δ are applied. 
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 (a) Procedure for the element state determination; (b) Element basic forces and 

displacements. 

 
 
3.1.  Steel column 
 
A steel column is considered in this first application example. The column section 
(roughly corresponding to an HEA 400 profile) is depicted in Figure 3(a) as well as the 
adopted bilinear material constitutive law—Figure 3(b). The main material properties 
(which also includes the concrete properties used in the second application example) 
are listed in Table 1. A coarse sectional discretization and a monotonically increasing 
steel stress-strain law were chosen, on the one hand to maintain the computational 
problem as simple as possible, and on the other to avoid numerical problems (such as 
localization) that may arise with softening behaving materials (e.g. concrete). A high axial 

a) b) 
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load (3500 kN) was applied with the intention of better contrasting the results obtained 
through the different beam element formulations employed. 
Force-based (FB), classical displacement-based (DB/c), and axially equilibrated 
displacement-based (DB/ae) elements are used for the simulation of the member 
inelastic response. In the Figure 4(a) the results obtained with a single beam element to 
represent the column are displayed. DB elements featured two Gauss-Legendre 
integration sections while nine Gauss-Lobatto integration points were used for the FB 
element model. As discussed in Calabrese et al. [10], FB elements are sensitive to the 
element discretization and a minimum number of 4 IPs is generally required for good-
accuracy solutions. DB element models, on the other hand, are only sensitive to the 
structural discretization and hence it is not justifiable to use more than 2 integration poins 
per element.  
The DB/c element model shows, as expected, a stronger and stiffer response due to the 
constraints imposed in both the axial and lateral displacement fields. By removing the 
constraint on the axial displacement field through the iterative procedure introduced in 
Section 2, the DB/ae becomes considerably softer, yielding a reduction in the simulated 
lateral strength. However, it can be noted that the latter is still overestimated when 
compared with the solution provided by the FB formulation, where no displacement fields 
are assigned and exact equilibrium is satisfied. Multiple DB elements are required to 
output a force-displacement response closer to that given by the FB model. This is shown 
in Figure 4(b), where results from models employing 1, 2 and 4 DB elements are 
displayed. Even though mesh refinement leads both DB approaches to the FB solution, 
it is evident that the DB/ae element model converges much faster than the one using 
classical displacement shape functions. Indeed, two DB/ae elements provide a 
sufficiently accurate solution, which can only be reached with four DB/c. 

 
 Steel column fibre section: (a) Sectional discretization; (b) Steel stress-strain law. 

 
 Main material properties 

 
Reinforcing steel 

fy [MPa] Es [MPa] b [-] 

480 200000 0.005 

Concrete 
fc [MPa] fcc [MPa] Ec [MPa] εc [-] εcc [-] 

37 42 30000 0.002 0.003 

a) b) 
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 Force-displacement response of the steel column: (a) using one element per 

member; (b) influence of structural member discretization. 

 
The evolution of the axial force during the analyses is shown in Figure 5(a) for the two 
integration sections in both the DB/c and DB/ae formulations (case where the structural 
member was discretized with one finite element only). As it can be observed, after an 
initial elastic phase (which ends at around load step 150), the linear axial displacement 
shape function used in the DB/c element leads to different axial force values in the two 
integration points. Although the average element equilibrium is conserved (the axial 
forces in the two IPs are symmetric around the value of the imposed axial load), the 
moment in the two IPs (after inelasticity commences) is computed with values of the axial 
force that are based on the incorrect assumption of a linear axial displacement 
distribution along the element length. This inevitably results in a wrong evaluation of the 
moment capacity for the structural member (which is also due to the inadequate 
assumption of linear variation of curvatures), and therefore of its lateral resistance. On 
the contrary, the axial force in both IPs of the DB/ae is constant (i.e., axial equilibrium is 
strictly verified) and always equal to the external applied axial load, thus providing a 
better estimate of the element moment capacity. Additionally, Figure 5(b) displays the 
very good performance of the iterative procedure in terms of the number of global 
Newton-Raphson iterations required to achieve convergence. 
 
3.2.  Reinforced concrete column 
 
A reinforced concrete column represents the case study for the second application 
example. The section discretization and the employed concrete stress-strain curves are 
shown respectively in Figure 6(a) and (b). The RC section is 30 cm large and 40 cm deep 
with 2 cm cover concrete in both directions. The longitudinal reinforcement is composed 
by 16 steel bars, each one of 10 mm diameter. The mathematical model for both the 
confined and unconfined concrete is the one proposed by Popovics [11] while the same 
bilinear constitutive law presented in the previous section—Figure 3(b)—is used for the 
reinforcing steel. A summary of the main materials properties is given in Table 1. 
The global force-displacement responses of FB, DB/c and DB/ae element models are 
compared in Figure 7. As in the previous section, nine Gauss-Lobatto IPs and two 
Gauss-Legendre IPs are employed for FB and DB elements respectively. Only one 
element is used to discretize the structural member and the axial load ratio (ALR) is 
varied between 1% and 8%. For the same axial load level, the strongest and stiffest 
response is again provided by the DB/c element models, followed by the DB/ae and the 
FB ones. The difference between the maximum lateral strength attained by the diffent 
models for distinct axial load ratios increases with the applied axial load. Taking the 

a) b) 
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response of the FB model as reference, the average relative error of the DB/c model is 
around 80% (75%, 80% and 84% for 1%, 4% and 8% ALR respectively) while it reduces 
to 20% if DB/ae elements are considered (14%, 20% and 26% for 1%, 4% and 8% ALR 
respectively). 
Finally, in Figure 8 the axial strain profiles for the DB/c and DB/ae (ALR=4%) are shown 
for different levels of drift. Due to the imposed linear axial displacement field, the axial 
strain profile for the DB/c is constant. As expected, due to the shifting of the neutral axis, 
positive strain values (tension) increasing with the drift demand are observed. On the 
other hand, the DB/ae shows different strain values in the distinct integration sections, 
which are the result of the iterative procedure to obtain a constant axial force along the 
column. Highest tensile strains are always recorded at the bottom IP. This behaviour is 
certainly much closer to the reality than the one simulated by the DB/c since the shifting 
of the neutral axis (caused by the section decompression) occurs at the base of the 
column, where the moment is maximum, rather than along its entire height.  

 
 (a) Axial force evolution; (b) Number of Newton-Raphson iterations per load step. 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

  (a) Sectional discretization of the RC column; (b) Uniaxial concrete stress-strain 

law. 

 

 

ϕ10mm 

Core 
concrete 

Cover 
concrete 

a) b) 

a) b) 
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 Force-displacement response of the RC column for different axial load ratios. 

 

 
 Axial strain profiles at different levels of drift: (a) Classical DB element; (b) Axially 

equilibrated DB element. 

 
 
4.  CONCLUSIONS AND FUTURE WORK  
 
The linear shape functions used to describe the axial displacement field in a classical 
displacement-based element constitutes a significant limitation in the accuracy of this 
finite element formulation when inelastic material behaviour is considered. The resulting 
axial forces become equilibrated only in an average sense, inevitably leading to a poor 
local and global performance of the finite element. 
In this paper a displacement-based element strictly satisfying axial equilibrium is 
presented. The pointwise equilibrium is achieved by an intra-element iterative procedure 
which automatically recalculates the correct axial strain profile required to guarantee 
such axial force equilibrium. Once the latter condition is met, the principle of virtual work 
is employed to compute the element basic forces and to obtain a consistent stiffness 
matrix.  

a) b) 



Elemento de Viga com Funções Adaptativas para Garantir Equilíbrio Axial 10 
 

Two application examples are used to compare the element formulation described above 
against classical displacement-based and force-based approaches. The strengths and 
weaknesses of the proposed formulation are pinpointed both at the global and local level. 
Namely, it is shown that when compared to the classical displacement-based approach, 
a greater accuracy can be obtained in terms of force-displacement response and 
generalized axial stress-axial strain profiles. The improved predictions do not require 
relevant additional computational time.   
The axially equilibrated DB element presented herein is intended as a first step in the 
formulation of a more sophisticated beam element. The latter will include the additional 
modification of the imposed transversal displacement profile in order to account for 
physically relevant effects in the nonlinear cyclic response of members, such as tension 
shift, which current beam element models are not able to capture. 
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