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Abstract: We consider a class of large scale robust optimization problems. While the robust
optimization literature often relies on structural assumptions to reformulate the problem in a
tractable form using duality, this method is not always applicable and can result in problems
which are very large. We propose an alternative way of solving such problems by applying a
constrained bundle method. The originality of the method lies in the fact that the minimization
steps in the bundle method are solved approximately using the alternating direction method of
multipliers. Numerical results from a power grid regulation problem are presented and support
the relevance of the approach.
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1. INTRODUCTION

We consider an optimization problem of the form:

minimize f(x)

subject to l(x, z) ≤ 0
(1)

where the decision variable is x ∈ Rnx and z ∈ Rnz repre-
sents the uncertainty entering the problem. Optimization
problems with uncertainty are very common in opera-
tions research, management science and optimal control
applications. A popular modeling paradigms to treat such
problems is robust optimization (Ben-Tal, A. et al., 2009),
where the uncertain parameters are assumed to lie in a set
Z and the decision should satisfy constraint for any value
of the uncertain parameter so that:

l(x, z) ≤ 0, ∀z ∈ Z (2)

Finding a x satisfying (2) is in general a challenging
task, even when l is convex in x for all z. One way
to proceed is to find a reformulation that circumvents
the universal quantifier and has a tractable form. Most
tractable reformulations of robust constraints rely on a
convex reformulation (Ben-Tal et al., 2014). Supposing Z
takes the form:

Z = {z0 +Aζ | ζ ∈ Z ⊂ Rm} (3)

where z0 is the nominal value of the uncertainty. Under the
assumption that l is concave in z for all x and additional
technical assumptions, the main result of Ben-Tal et al.
(2014) reads:

Theorem 1. x satisfies (2) if and only if x, v satisfying:

z>0 v + δ∗(A>v|Z)− g∗(x, v) ≤ 0 (4)

1 This work has received support from the Swiss National Science
Foundation under the GEMS project (grant number 200021 137985)
and the European Research Council under the European Unions Sev-
enth Framework Programme (FP/2007-2013)/ ERC Grant Agree-
ment n. 307608 (BuildNet).

where δ∗(.|Z) is the so-called support function of Z and
g∗ the partial concave conjugate of g defined as:

l∗(x, v) = inf
y∈dom(g)

vT y − g(x, y)

In particular, when l is linear in x and z respectively and
Z is defined as the intersection of finitely many convex
cones, then Equation (4) is convex in x, v and can be solved
efficiently.

Despite this, it may be necessary for large systems of
robust inequalities to add a very large number of auxil-
iary variables in order to render the problem tractable.
Moreover, this approach is only applicable under struc-
tural assumption on l, in particular concavity in z for
all x. Considering these limitations, other methods have
been proposed to solve such problems. Mutapcic and Boyd
(2009) propose a “cutting-set” method where the problem
is solved in an alternating fashion: the decision variable x
is computed with a finite subset of the constraint; based on
that decision, a pessimizing realization of the uncertainty
z is computed by maximizing the constraint function on
the uncertainty set. That pessimizer is then added to the
surrogate uncertainty set and the procedure is repeated
until convergence. It has been reported in Bertsimas et al.
(2015) that the cutting set method can outperform refor-
mulations in some cases.

The cutting set method is very related to cutting planes
method and their modern versions called bundle meth-
ods (Bonnans et al., 2006). Though bundle methods were
originally designed for nonsmooth unconstrained convex
optimization, variants tackle constrained problems. In this
work, a method is proposed to solve large scale robust
optimization problems. It combines ideas from the cutting
set method of Mutapcic and Boyd (2009) and of the
constrained bundle method of Sagastizábal and Solodov
(2005). Instead of assuming exact solutions to the min-
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imization subproblems within the bundle method itera-
tions, we propose to use an approximate solution to the
minimization step and in particular to use the alternating
direction method of multipliers (ADMM) to perform this
step efficiently. We will see that obtaining low accuracy
solutions to the minimization quickly allows to solve bigger
problems faster.

The method is demonstrated on “‘flexibility commitment
problems” arising in power systems applications. Increas-
ing attention in the literature has been devoted to how
to provide balancing services, also called ancillary ser-
vices (AS) to the power grid with load-side resources.
Our previous work (Gorecki et al., 2015b) formalizes the
computation of resource flexibility in a theoretically sound
framework, relying on robust optimization. Other works
(Zhang et al., 2014) also rely on robust or stochastic
optimization to solve similar problems. These methods
ultimately require to solve large robust optimization prob-
lems. Due to the multi-stage nature of the problems, the
number of decision variables tends to grow very quickly,
and even in the cases where tractable reformulations are
available, the size of the problem can become prohibitive.

We show how the method proposed allows to tackle in-
stances that could not be solved using convex reformu-
lations. It also provides slightly suboptimal solutions on
smaller instance faster and thanks to the monotonic fea-
sibility property of the bundle method, usually provide
feasible solutions.

2. THE BUNDLE METHODOLOGY

We consider a convex minimization problem of the form:

minimize f(x)

subject to g(x) ≤ 0
(5)

where f , g are convex proper functions defined on Rn.
It is assumed that f is a known ‘simple’ convex function
while g may be nonsmooth. It is assumed that an oracle is
available for g giving for a query point x the value function
g(x) and a vector s ∈ ∂g(x), so that:

∀y ∈ Rn, g(y) ≥ g(x) + s>(y − x) (6)

The spirit of the method proposed in Sagastizábal and
Solodov (2005) is to apply a standard unconstrained
bundle method on the improvement function at the current
center y, defined as:

hy(x) := max(f(x)− f(y), g(x)) (7)

relying on the fact that a point x is a minimizer of (5)
if and only if it minimizes hx on Rn (Theorem 2.1 in
Sagastizábal and Solodov (2005))

At each iteration k, the algorithm queries a point xk and
maintains a bundle of all the information collected so far:

Bk =
⋃
i<k

{(xi, fi = f(xi), gi = g(xi), si ∈ ∂g(xi))} (8)

and the information for the current center (yk, f(yk))

This bundle of information is used to define a cutting plane
model of the improvement function:

Hk(x) = max(f(x)− f(yk), Gk(x)) (9)

where
Gk(x) = max

i<k
(gi + s>i (x− xi)) (10)

where each hyperplane gi + s>i (.− xi) is a lower bound on
the constraint function g and consequently Gk ≤ g ∀k.
Given a proximal parameter ck, the next iterate xk is
generated by solving a proximal minimization problem at
the current center:

minimizex ψk(x) := Hk(x) +
1

2ck
‖x− yk‖2 (11)

Due to strict convexity, this problem admits a unique
minimizer xk. The oracle is called at xk to recover the
values gk and sk. A sufficient decrease condition is used to
determine if the center is updated. Defining the expected
improvement

δk := ψk(yk)−ψk(xk) = g+(yk)−Hk(xk)− 1

2ck
‖xk−yk‖2

(12)
where g+(.) = max(g(.), 0). To determine if the center is
updated, we check if the actual improvement hyk(yk) −
hyk(xk) achieves at least a fixed fraction of the expected
improvement, i.e. :

hyk(yk)− hyk(xk) ≥ mδk (13)

where m is a tuning parameter. This translates to the
following two inequalities:

f(xk)− f(yk) ≤ g+(yk)−mδk
g(xk) ≤ g+(yk)−mδk

(14)

We can see in the first equation that if the current center is
infeasible, we can sacrifice optimality in order to improve
the feasibility. On the other hand, we do not allow to
sacrifice feasibility in order to improve the cost. A direct
consequence of that is the monotonic improvement of the
infeasibility of the centers. Furthermore, once a feasible
center has been identified, the center remains feasible.
If the test (14) is passed, we update the center so that
yk+1 = xk (serious step), otherwise we set yk+1 = yk (null
step).

Let us define ĥk = 1
ck

(yk − xk), the so-called aggregate

subgradient and εk = g+(yk) −Hk(xk) − ck‖ĥk‖2 so that

δk = εk + 1
2ck
‖ĥk‖2. It holds that

ĥk ∈ ∂εkhk(yk) (15)

meaning that hk(.) ≥ hk(yk) + ĥ>k (.− yk)− εk.
Termination of the algorithm is decided using the termi-
nation criterion δk ≤ tolδ. Indeed, it implies that both εk
and ĥk are small and yields the approximate optimality
condition (Sagastizábal and Solodov, 2005):

∀M > 0, ∀x s.t. ‖yk − x‖ ≤M,

hk(x) ≥ hk(yk)− εk −M‖ĥk‖2
(16)

Typically, a split termination criterion is used:

εk ≤ tolε and ‖ĥk‖2 ≤ tolg (17)

When the center is updated, the improvement function
becomes hk+1 = hyk+1

. Since the cost at the center is
allowed to grow to improve feasibility, it might be that
hk+1 ≤ hk with strict inequality for some points. Therefore
the lower bounding model Hk on hk will not in general be
a lower bound on hk+1, hence the need to change Hk+1

accordingly. In our case, Gk is still a lower bound on hk+1

and we can simply take:

Hk+1(x) = max(Gk+1(x), f(x)− f(yk+1)) (18)



3. ALGORITHM DESCRIPTION

We are faced with the robust optimization problem:

minimize f(x)

subject to l(x, z) ≤ 0 ∀z ∈ Z (19)

where z ∈ Rnz is the uncertain parameter assumed to lie
in a known set of dimension nz and l is convex in x for all
z ∈ Z. Problem (19) can be put in the form of Problem (5)
by taking:

g(x) = max
z∈Z

l(x, z) (20)

g is also convex but usually nonsmooth and expensive to
evaluate. Therefore, this problem fits the assumptions of
the bundle methodology.

3.1 Algorithm structure

We state here the main steps of the algorithm:

(1) Initialization: Define a starting point x0. Call the
oracle at x0 to collect cutting plane B0 ← (g0, s0)
to form the first model H0(x) = max(f(x) −
f(x0), G0(x)) with G0 = g0 + s>0 (x− x0). Define the
first center y0 = x0

(2) Minimization Step at iteration k: Solve Prob-
lem (11) and yield an approximate solution xk. We
propose to use ADMM and refer the reader to sub-
section 3.3 for details

(3) Termination test: Compute δk per equation (12).
If δk ≤ tolδ, terminate and return yk as the solution.

(4) Oracle call: Call the oracle (subsection 3.2) at the
candidate point xk and recover gk and sk such that
g(.) ≥ gk + s>k (.− xk).

(5) Update test: If hyk(yk) − hyk(xk) ≥ mδk, serious
step. Define yk+1 = xk and update Hk+1 as in
equation (18). Otherwise, null step and yk+1 = yk.

(6) Bundle management:
Bk+1 ← Bk ∪ {(xk+1, fk+1, gk+1, sk+1)}. Some vari-
ations on that step are discussed in subsection 3.2.
Update Hk by adding the new hyperplane to Gk.

(7) k ← k + 1 and go to step (2)

Termination of this algorithm is discussed and proved in
Sagastizábal and Solodov (2005).

3.2 Implementation of the oracle

We are looking for a subgradient of the function g defined
in (20) at the current point xk. Subgradients of g are
closely related to the worst-case scenario of the uncertainty
in the maximization (20). Similarly to Mutapcic and Boyd
(2009), an exact oracle will need to compute a maximizer
z? in the maximization in Equation (20). A subgradient
s of l(., z?) at xk will then be a subgradient of g at z?.
Indeed we have:

∀y, g(y) ≥ l(y, z?) ≥ l(xk, z?) + s>(y − xk)

= g(xk) + s>(y − xk)
(21)

Remark 1. In order to have an efficient oracle, we need to
able to compute the maximizer quickly. If l is concave in z
and Z is convex, the problem will be a convex optimization
problem and the maximizer will be computed efficiently.
These assumptions are similar to the ones required in order
to be able to reformulate the robust constraints using

Theorem 1 to the robust inequality in (19). Therefore in
this case, both methods are alternative ways to solve the
same problem.

Remark 2. As discussed in Mutapcic and Boyd (2009), if
a global maximizer is not realistically available for z?,
then requirements can be relaxed. The oracle will aim
at producing a scenario that strictly violates constraints.
Based on that point, a cutting plane can be added to
the model which will trigger improvement at the next
iteration. Of course convergence to the overall optimum
can no longer be guaranteed.

Oftentimes, the robust optimization problem is subject to
multiple robust constraints, so that l(x, z) = maxi li(x, z)
in (19). The following remarks are in order:

• Even if each li is concave in z, l will generally not be
concave in z, but the maximum of l can be evaluated
as follows:
(1) For i = 1, . . . , r, compute z?i = arg minz∈Z li(xk, z)

and l?i = li(xk, z
?
i ).

(2) Find index j such that j = arg minil
?
i

(3) Compute s ∈ ∂lj(xk, z?j )
(4) Return (lj , s).
Step (1) is most expensive and consists in solving m
convex optimization problems in dimension nz, which
can be performed in parallel.
• We can add more than one lower bounding cutting

plane per iteration. It is actually efficient to add
multiple cuts based on the worst case violation for
each robust constraint li. The intuition for that is that
if the current iterate violates constraint i considerably
for a particular scenario zi, it is somewhat likely
that zi is also a pessimizer for the solution of the
problem. In this case, the oracle returns ns lower
bounding planes, for example for the ns most violated
constraints.

3.3 Minimization step

One of the core principles of bundle methods is that the
minimization problem (11) takes a relatively simple form,
typically a quadratic program. For example, if f is linear,
then Problem (11) can be transformed into a quadratic
program (QP). Note that from one iteration to the next,
the algorithm solves similar quadratic programs: during
null steps, only the model of the improvement function is
enriched, which adds new constraints to the minimization
subproblem; during serious steps, the constraint corre-
sponding to the cost in (22) and the linear part of the
cost are updated. Strategies have been proposed to solve
this succession of QPs efficiently, e.g. (Kiwiel, 1991). We
perform an approximate minimization, keeping the follow-
ing points in mind:

• The subgradients produced by the oracle may not
define the “best” lower bounding planes to add, but
they will not introduce errors in the lower bounding
model G.
• A low accuracy solution is likely to identify the

same pessimizers in the uncertainty set as the exact
solution would.

We propose to use ADMM (Boyd et al., 2011) to solve the
minimization problem, which allows to get low accuracy



solutions quickly for large problems, exploiting favorable
structure and the opportunity to warm start successive
iterations. Assuming a linear cost function f(x) = c>x
and introducing slack variables σ, problem (11) becomes:

xk+1 = argminx,σ{ max
i
σi +

1

2ck
‖x− yk‖2}

subject to Sx+m = σ
(22)

where

S =


c>

s>1
...
s>k

 and m =


−c>yk

g1 − s>1 x1
...

gk − s>k xk


The steps of the ADMM algorithm are (Boyd et al., 2011):

xt+1 = argminx
1

2ck
‖x−yk‖2+

ρ

2
‖Sx+m−σt+µt‖2 (23)

σt+1 = argminσ max
i
σi +

ρ

2
‖Sxt+1 +m− σt + µt‖2 (24)

µt+1 = µt + Sxt+1 +m− σt+1 (25)
where µ is the scaled Lagrange multipliers associated with
the equality constraints.

Step (23) can be solved efficiently by precomputing a
factorization of M = ρS>S + 1

ck
Inx and performing only

forward backward solves online. The second step is a
proximal step for the function k(σ) = maxi σi. It can be
performed efficiently (Parikh and Boyd, 2014) as follows:
by bisection, find the solution t? to the scalar equation:

k∑
i=1

ρ(vi − t?)+

where vi = (Sx + m + µ)i. Then, σi = min(t?, vi).
This makes both steps very computationally efficient,
which combined with the ability to warm start successive
iterations provide a good performance.

Remark 3. Affine equalities Ax = b can easily be incorpo-
rated in the problem by adding them to Problem (11). This
would result in step (23) being an equality constrained QP.

Remark 4. If the original problems contains generic conic
constraints of the form Az ≤K b, meaning that b−Ax ∈ K
with K a convex cone, ADMM can handle those in an
almost identical fashion provided an efficient projection
algorithm on the cone K is available.

3.4 Approximate solution to the minimization step

Supposing the minimization step is solved with a tolerance
tolh so that xk satisfies:

hk(xk)− hk(x∗k) ≤ tolh (26)

where xk is the solution proposed by our inexact mini-
mization and x∗k is the true solution to Problem (11). Then,
hk(yk)−hk(x∗k) = hk(yk)−hk(xk)+hk(xk)−hk(x∗k) ≤ δk+
tolh. Therefore, the termination criterion δk ≤ tolδ yields
δ∗k ≤ tolδ + tolh, where δ∗k is the expected improvement for
xk∗. This is also a valid termination criterion, but with a
relaxed tolerance.

Following the presentation in Boyd et al. (2011), we
introduce the primal and dual residuals within the ADMM
algorithm:

rt+1
1 = Sxt+1 +m− σt+1

rt+1
2 = ρS>(σt+1 − σt)

(27)

It can be shown that:

hk(xt)− p? ≤ ρ‖µt‖‖rt1‖+ d‖rt2‖ (28)

where d is an upper bound on ‖zt − z∗k‖ the distance of
the current iterate to the optimal point for the current
iteration. The termination criterion for the ADMM is:

‖rt1‖2 ≤ tolprim and ‖rt2‖2 ≤ toldual (29)

with tolprim and toldual chosen so as to meet ρ‖µt‖2‖rt1‖+
d‖rt2‖2 = tolh.

4. NUMERICAL RESULTS

We illustrate the method proposed and the performance
of the algorithm proposed on a frequency regulation pro-
vision problem. In this section, bold letters are used to
denote sequences over time, e.g., p = [pT0 , p

T
1 , . . . , p

T
N−1]T .

4.1 System description

We consider a three zones office building located in
Chicago offering power consumption tracking to the grid
by maniuplating its air conditionning power consumption.
We assume that a linear state-space description of the
building is available. We refer the reader to Gorecki et al.
(2015a) for details on model construction for building
systems. {

xi+1 = Axi +Buui +Bddi
yi = Cxi

(30)

where xi ∈ Rn is the state, ui ∈ Rm is the thermal input
provided to each zone, di the disturbance affecting the
system, summarizing the effect of weather and internal
gains and yi ∈ Rp is the room air temperature at time i.

We define comfort constraints at the level β as |yi −
Tref| ≤ β. The inputs are constrained to lie in a set which
describes physical limitations for the equipment u ∈ U.
We define the admissible input trajectories set as:

U(x̄,d) =


u

xi+1 = Axi +Buui +Bddi
yi = Cxi
|yi − Tref| ≤ β
ui ∈ U
x0 = x̄,
∀i = 0, . . . , N − 1,


(31)

where x̄ is the current estimate of the state of the building,
N the prediction horizon. U(x̄,d) represents the set of
all the input trajectories that preserve occupants comfort
while respecting physical limits of the actuators.

4.2 The problem of frequency regulation provision

In order to regulate the frequency of the network, the TSO
pays ancillary service providers (ASP) for “flexibility” in
their power consumption. As part of grid operation, the
TSO dispatches a tracking signal called the AGC signal
to the ASPs, which make sure their power consumption
follows their pre-purchased power consumption with the
addition of the AGC signal. The tracking service pro-
curement consists of advertising two quantities, namely a
baseline energy consumption p̄, and a capacity bid γ. The
latter represents the highest deviation (in absolute value)
in power consumption with respect to the purchased base-
line the provider is ready to absorb. If a bid of γ = 1MW is
accepted, the AGC signal dispatched to that provider will



lie in the band ±1MW . The following tracking constraints
are enforced:

|pi − p̄i − γai| ≤ αγ (32)

where p̄i is the baseline purchased for timestep i, ai
the normalized AGC signal and γ is the capacity bid.
α represents the maximum tracking error allowed, as a
percentage of the total bid submitted.

It is assumed that the power consumption is a known
function of the inputs p = h(u). The building receives
a fixed payment in accordance to its accepted bid. For
the sake of demonstration we look for the maximum
flexibility the building can provide. We solve the following
optimization problem:

Problem 1. (Reserve Scheduling Problem).

maximize γ

s.t. ∀a ∈ Ξ, (33)

(Building Contraints) u ∈ U(x0,d), (34)

(Recourse policy) u = π(a), (35)

(Power Consumption) p = h(u), (36)

(Power tracking) ‖p− p̄− γa‖∞ ≤ αγ (37)

The decision variables are the capacity bid γ, the day-
ahead baseline consumption p̄, and the control policy
π. x0 and d are data of the problem and represent the
initial condition and the prediction for the disturbances.
Equation (35) expresses the fact that the inputs can be
chosen as a function of the uncertain parameter a, as it
becomes known. This formulation falls in the category of
robust optimization problems.

We use the popular affine parametrization of the policies
(Ben-Tal, A. et al., 2009) due to their nice trade-off
between performance and computational properties. It
results in u = Ma + v, where M and v are the decision
variables. In order to ensure that the policies are causal,
appropriate constraints on M are imposed so that ui can
depend on ai up to time i:

Mi,j = 0 for j > i

For the design of the uncertainty set is discussed, a data-
driven design is chosen. We build the set Ξ as follows:

Ξ = {a | ‖a‖∞ ≤ 1, ‖ cumsum(a)‖∞ ≤ smax} (38)

where cumsum(a) denotes the cumulative sum of the

signal a ((cumsum(a))i =
∑i
k=1 ak). smax is chosen as

the maximum integral on a number Ns of previously
observed AGC realizations. Extensive details on the design
procedure are provided in Fabietti et al. (2016). Ξ then
describes the feasible input set of an ideal electric battery,
therefore it allows us to abstract the building as a virtual
electric storage.

4.3 Solving the problem

One challenge of the above problem is that the problem
needs to be solved over long periods of times. The problem
with horizon N has 14N robust constraints to satisfy for
a total number of 18N nontrivial decision variables.

• Dual reformulation: The problem is a robust linear
program with a polytopic uncertainty set. A dual re-
formulation introduces 14N ∗4N = 56N2 variables to
form a linear program with 14N2 equality constraints,

Parameter Value Parameter Value

m 0.3 ck 300
ns 200 tolprim 10−2

toldual 10−2 tolδ 10−1

tolg 3.10−4 smax 3

Table 1. Parameter values in the algorithm

Horizon 50 100 150 200 250

# variables 1020 2070 3120 4170 5220
# bundle iterations 16 29 40 46 50
# constraints added 2896 5468 7793 9400 9672
Total time (s) 54 631 1910 3885 6511
Oracle time (% of total) 12 7.5 6 12 18

Table 2. Bundle execution details

14N inequality constraints and 56N2 non-negativity
constraints. The problem obtained is a linear pro-
gram, sometimes prohibitively large due to the large
number of added variables. The program was for-
mulated in Matlab, parsed with YALMIP (Löfberg,
2004) and solved using the LP solver CPLEX 12.6
with the dual simplex algorithm.

• Bundle method with inexact minimization: We
solve the problem using the bundle method described
in Section 3. The minimization step is solved using
ADMM. Successive minimization are warm-started
using the solution of the previous steps and the
subproblems are solved to low accuracy. The oracle
is implemented using Gurobi 6.5 and using a pool of
4 processors for parallel computations.

Computations are performed on a workstation with a 2.7
GHz Intel Core i7 processor 4 Gb of memory. Table 1
recaps the parameters used in the bundle algorithm.

We report computational times in Figure 1 as a function of
the horizon. The computational time for the reformulation
grows exponentially with the size of the problem and the
problem fails to solve above horizon superior to 100 due
to memory excess issues in YALMIP. With the bundle
method, a solution to the problem can be found for
horizons up to 250. The computational time for the bundle
does not grow exponentially with the size of the problem.
This cannot be claimed to be a characteristic of the
method, but it suggests that the algorithm is capable of
identifying the most critical constraints efficiently. This is
reflected in the number of bundle iterations reported in
Table 2 and the number of constraints generated, which
roughly grows linearly with the size of the problem. Most
of the computational time is spent in the minimization
step, but we can observe that the oracle evaluations
represent a significant part of the runtime as well, hence
the advantage of parallelizing the computations for this
step.

Remark 5. The dual formulation implementation solves
the problem to a higher precision (to ensure feasibility).
Also, a more efficient implementation of the dual reformu-
lation is possible, so the comparison should be considered
with caution. The key observation is that the bundle
method requires a linear number of outer iterations to get
a solution, in contrast to the simplex method whose solve
time seem to grow faster with the horizon.

Figure 2 shows the behavior of the building when following
tracking signals coming from the set described in (38).
One day of tracking sampled at 15 minutes is depicted.
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Fig. 2. Temperatures in the building [top] and total
power consumption [bottom] in response to 15 ran-
dom tracking signals. Nominal values in black.

15 random scenarios of the uncertainty were selected as
vertices of the set and scaled by the optimal flexibility.
The open-loop controller computed is applied to gener-
ate trajectories. The resulting temperature and power
consumption trajectories are depicted. Due to the high
tolerance used to compute the solution, the solution of
the bundle is suboptimal. On instances where the exact
solution could be computed through reformulation, an
average suboptimality of 3% is observed. The solution
is however always strictly feasible due to the monotonic
nature of the constrained bundle method with respect to
feasibility.

5. CONCLUSION

We propose a constrained bundle method to solve large
scale robust optimization problems, relying on approxi-
mate solutions of the minimization steps. The method
is demonstrated on a large multi-stage energy planning
problem. Further work will include a more comprehensive
study of the computational advantage of this method, and
a detailed analysis of the interplay between the inner loop
of ADMM and the outer bundle loop.

ACKNOWLEDGEMENTS

We are grateful to Harsh Shukla for his support.

REFERENCES

Ben-Tal, A., Hertog, D.d., and Vial, J.P. (2014). Deriving
robust counterparts of nonlinear uncertain inequalities.
Mathematical Programming, 149(1-2), 265–299. doi:
10.1007/s10107-014-0750-8.

Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. (2009).
Robust Optimization. Princeton University Press.

Bertsimas, D., Dunning, I., and Lubin, M. (2015). Refor-
mulation versus cutting-planes for robust optimization.
Computational Management Science, 13(2), 195–217.
doi:10.1007/s10287-015-0236-z.

Bonnans, J.F., Gilbert, J.C., Lemaréchal, C., and Sagas-
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