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Abstract

With the increasing availability of both molecular and topo-climatic data, the main challenges facing landscape geno-

mics – that is the combination of landscape ecology with population genomics – include processing large numbers of

models and distinguishing between selection and demographic processes (e.g. population structure). Several methods

address the latter, either by estimating a null model of population history or by simultaneously inferring environmental

and demographic effects. Here we present SAMbADA, an approach designed to study signatures of local adaptation, with

special emphasis on high performance computing of large-scale genetic and environmental data sets. SAMbADA identifies

candidate loci using genotype–environment associations while also incorporating multivariate analyses to assess the

effect of many environmental predictor variables. This enables the inclusion of explanatory variables representing popu-

lation structure into the models to lower the occurrences of spurious genotype–environment associations. In addition,

SAMbADA calculates local indicators of spatial association for candidate loci to provide information on whether similar

genotypes tend to cluster in space, which constitutes a useful indication of the possible kinship between individuals. To

test the usefulness of this approach, we carried out a simulation study and analysed a data set from Ugandan cattle to

detect signatures of local adaptation with SAMbADA, BAYENV, LFMM and an FST outlier method (FDIST approach in ARLEQUIN)

and compare their results. SAMbADA – an open source software for Windows, Linux and Mac OS X available at http://lasi-

g.epfl.ch/sambada – outperforms other approaches and better suits whole-genome sequence data processing.
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Introduction

In the 1970s, several studies reviewed by Hedrick et al.

(1976) implemented gene–environment associations to

correlate the frequency of alleles with an environmental

variable to look for signatures of selection (see also Mit-

ton et al. 1977). Thirty years later, Joost et al. (2007, 2008)

developed the concept to allow simultaneous processing

of large numbers of logistic regressions to accommodate

the increasingly larger numbers of molecular markers in

use since the introduction of PCR (e.g. ALFPs,

microsatellites). Since then, correlative approaches have

been used in parallel with population genetics outlier-

detection methods (e.g. Beaumont & Nichols 1996; Vitalis

et al. 2003; Foll & Gaggiotti 2008) as cross-validation (e.g.

Jones et al. 2013; Henry & Russello 2013) to detect signa-

tures of local adaptation, that is a region of the geo-

graphic landscape where a particular genetic variant

occurs at higher frequency and is correlated with an
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environmental variable, potentially reflecting the higher

fitness it confers to its carriers in that region (see a review

in Vitti et al. 2013). Even though this kind of approach is

still in vogue (Colli et al. 2014; Lv et al. 2014), there has

been a recent revival in the interest of developing new

statistical approaches for landscape genomics for use

with genome-scale data sets, as such analyses enable the

inference of environmental drivers of selection (Coop

et al. 2010; Frichot et al. 2013; G€unther & Coop 2013;

Guillot et al. 2014; Frichot & Franc�ois 2015; Gautier 2015;

de Villemereuil & Gaggiotti 2015). For example, BAYENV

(G€unther & Coop 2013) implements a Bayesian method

to compute correlations between allele frequencies and

ecological variables taking into account differences in

sample sizes and population structure. LFMM (Frichot

et al. 2013; Frichot & Franc�ois 2015) estimates the influ-

ence of population structure on allele frequencies by

introducing unobserved variables as latent factors, while

SGLMM (Guillot et al. 2014) extends the approach of

Coop et al. (2010) by rooting it in a spatially explicit

model and by implementing inference by means of the

Integrated Nested Laplace Approximation and Stochas-

tic Partial Differential Equation (SPDE) computational

framework. Recently, Gautier (2015) introduces BayPass

elaborating on the BAYENV model to capture some linkage

disequilibrium information, among other important

improvements, while de Villemereuil & Gaggiotti (2015)

present BAYESCENV, an FST-based genome-scan method,

which takes into account environmental differentiation

between populations. It is based on the Beaumont &

Balding’s (2004) F model and similarly as implemented

on BAYESCAN (Foll & Gaggiotti 2008), it considers that

genetic variation at a given locus is affected by demo-

graphic processes that affect the entire genome (e.g. pop-

ulation expansions), selective events that change the

allele frequencies at the locus as a response to an envi-

ronmental variable (e.g. local adaptation to high temper-

ature), and additional effects unrelated to the

environmental variable tested. These methods aim at dis-

tinguishing between the effects of selection and those of

demographic history; however, the increasing availabil-

ity of large genomic data sets, has increased the compu-

tational intensity of this problem. In parallel, the

geographic coordinates of samples are becoming fre-

quently collected during field campaigns, enabling the

computation of spatial statistics to shed an independent

light on the interaction of selection and demographic

signals.

Here we present the software SAMbADA, an extension

of MATSAM (Joost et al. 2008), which offers an open source

multivariate analysis framework to detect signatures of

local adaptation in large-scale population genomics data

sets. SAMbADA focuses on high performance computing to

process whole-genome data and includes spatial

statistics that measure indices of spatial autocorrelation

to account for underlying patterns of spatial association

in the data set due to population structure. The program

is illustrated using two case studies: one in 5000 diploid

individuals simulated for 100 SNPs in a heterogenous

landscape, and the other one in 813 Bos taurus and Bos

indicus individuals in Uganda genotyped for ~40 000

SNPs. Lastly, SAMbADA’s performance is compared with

other state-of-the-art software programs to detect

signatures of selection.

Materials and methods

This section first presents SAMbADA’s approach and

implementation, with an overview of the accompanying

modules. The second part introduces two case studies

using simulation and a data set from Ugandan cattle,

and how these data were collected and prepared for the

subsequent analyses.

SAMbADA’s approach

SAMbADA provides a locus-based approach to study

local adaptation in a set of polymorphic markers using

genome–environment associations. It aims at determin-

ing whether each investigated molecular marker is

selected by one or a set of specific environmental vari-

ables (e.g. while multiple loci may be selected by the

same environmental variable, it is also possible that

different loci are affected by different environmental

variables). As the analysis is performed independently

for each locus, the number of possible combinations

grows quickly with the size of both molecular (i.e.

number of markers) and environmental data sets (i.e.

number of variables) tested. To enable processing of

large data sets, SAMbADA provides an automated proce-

dure for selecting candidate loci associated with the

environmental variables tested. For each locus, the set

of predictor variables is kept parsimonious, because

the main goal of the method is to detect which loci

are potentially locally adapted rather than making pre-

dictions for the genotype of an individual based on its

habitat. SAMbADA uses logistic regressions to model the

probability of observing a particular genotype of a

polymorphic marker given the environmental condi-

tions at the sampling locations (Joost et al. 2007). As

the state of a given genotype is considered as a binary

presence/absence in each sample, SAMbADA can handle

many types of molecular data (e.g. SNPs, indels, copy

number variants and haplotypes), provided the user

formats the input as required by SAMbADA and

described in the software’s documentation. Specifically,

biallelic SNPs are recoded as three distinct genotypes

(e.g. AA, AG and GG).

© 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
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Univariate analysis. In the univariate case, each model

involving a genotype and an environmental variable is

compared with a constant model, in which the probabil-

ity of the presence of the genotype is the same at each

location in the landscape and is equal to its frequency in

the data set. A maximum likelihood approach (Dobson

& Barnett 2008) is used to fit the models. Significance is

assessed with both log-likelihood ratio (G) and Wald

tests (Joost et al. 2007). Bonferroni correction is applied

for multiple comparisons (Bonferroni 1936; Shaffer 1995).

To this end, the nominal significance threshold a is

divided by the number m of hypotheses to be tested, that

is the number of models that were fitted (e.g. if 10 000

SNPs are tested with five environmental variables,

m = 150 000, as for each biallelic SNP there are three pos-

sible genotypes), to obtain the significance threshold a0

(a0 = a/m). The models having both P-values (computed

from G and Wald scores) lower or equal to a0 are consid-

ered as significant. To avoid numerous computations of

P-values, the significance threshold a0 is converted to a

minimum score threshold using the quantile function of

the v2 distribution. For each model, the property ‘show-

ing a score larger or equal to the score threshold’ is

equivalent to ‘showing a P-value lower or equal to the

threshold a0’. Thus, the significance assessment can be

performed directly on the scores.

In comparison with MATSAM (Joost et al. 2008), SAMbADA

proposes several improvements: faster processing (see

SAMbADA’s implementation and Table S8, Supporting

information), multivariate analysis and measures of

spatial autocorrelation.

Multivariate analysis. In the multivariate approach, sev-

eral environment variables can be used at the same time

to model the presence of each genotype. In this case, the

selection procedure is similar to a forward stepwise

regression (Dobson & Barnett 2008) and is adapted to

assess the significance of multivariate models. Both G

and Wald tests refer to a null model to build the null

hypothesis. The current model could be compared to the

constant model (the same as in the univariate case) using

multivariate v2 statistics. While rejecting the null hypoth-

esis in this configuration would indicate that at least one

parameter in the model is statistically significant, it

would not provide information about which parameter

(s) is relevant to the model. Therefore, SAMbADA assesses

parameter significance in multivariate models with

either a Wald test applied to each parameter separately

(except the constant parameter) or with G tests excluding

a parameter at a time: model selection is based on sim-

pler models nested in the current one (see Supporting

information).

Multivariate models allow the inclusion of pre-

existing knowledge, provided the data constitutes a

continuous variable. In particular, if population structure

was analysed beforehand and can be represented as a

coefficient of membership for each individual, this infor-

mation can be included in the modelling. For models

involving both an environmental variable and this coeffi-

cient, the selection procedure will assess whether the

environmental variable is associated with the genotype

while taking into account the possible effect of admix-

ture. In case there are many ancestral populations,

several coefficients may be included in the analysis.

Spatial autocorrelation. Beyond the detection of selection

signatures, SAMbADA quantifies the level of spatial depen-

dence in the distribution of each genotype. This measure

of spatial autocorrelation refers to similarities or differ-

ences in genotypes occurrences between neighbouring

individuals that cannot be explained by chance. Assess-

ing whether geographic location has an effect on allele

frequencies is especially important in landscape geno-

mics, because statistical models assume independence

between samples. Thus, if individuals with similar geno-

types tend to concentrate in space, spurious correlations

may co-occur with specific values of environmental vari-

ables. On the other hand, spatial independence of data

strengthens the confidence in the detections. Spatial

autocorrelation is a well-known concern (Legendre 1993)

when investigating local adaptation, but few software

allow its measurement [e.g. GEODA – Anselin et al. (2006)

– or the libraries PySAL for PYTHON – Rey & Anselin

(2010) – or SPDEP in R – Bivand & Piras (2015)].

SAMbADA measures the global spatial autocorrelation

in the whole data set with Moran’s I, as well as the spa-

tial dependence of each point with local indicators of

spatial association (LISA) (see Moran 1950; Anselin 1995

and see Sokal & Oden 1978 for application in biology). In

practice, LISAs are computed by comparing the value of

each point with the mean value of its neighbours as

defined by a specific weighting scheme based on a kernel

function (see Supporting information). The sum of LISAs

on the whole data set is proportional to Moran’s I (Anse-

lin 1995). Both a spatially fixed kernel type relying on

distance only and a varying kernel type considering the

number of points can be used. SAMbADA includes three

fixed kernels (moving window, Gaussian and bisquare)

and a varying one (nearest neighbours). Significant spa-

tial autocorrelation indices are determined based on an

empirical distribution of the indices: for Moran’s I, val-

ues (genotype occurrences) are permutated among the

locations of individuals in the whole data set and a

pseudo P-value is computed as the proportion of permu-

tations for which I is equal to or more extreme (higher

for a positive Moran’s I or lower for a negative Moran’s

I) than the observed I. For LISA, the pseudo P-value is

separately computed for each point (individual), by

© 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
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keeping the individual of interest fixed and permuting

the values of its neighbouring points with the rest of the

data set.

SAMbADA’s implementation

SAMbADA was developed as a standalone application writ-

ten in C++, using the Scythe Statistical Library (Pemstein

et al. 2011) which offers functions in matrix computation

and probability distributions. SAMbADA is distributed

under an open source GNU General Public License to

ease its use for research and teaching.

Desktop and high performance computing. When the devel-

opment started, the estimations of computational load

showed that it could prove difficult to both provide the

new features described above and analyse whole-

genome sequencing (WGS) data sets with a single com-

puter. Thus, SAMbADA is distributed with a module

enabling High Performance Computing of large data sets.

Desktop version (SAMbADA): SAMbADA includes multi-

variate analyses and spatial autocorrelation computation.

Many options are provided to facilitate formatting data

and to customize analyses. For instance, the significance of

models is assessed during the analysis and nonsignificant

associations can be discarded on the fly. Moreover, models

can be sorted out according to their scores before writing

the results in order to facilitate their interpretation.

Parallel computing version (SAMbADA and Supervi-

sion): To speed-up the analysis of large data sets, Super-

vision enables parallel processing with SAMbADA by

splitting data sets and merging results. The combination

of SAMbADA and Supervision makes it possible to analyse

large data sets: (i) univariate logistic models identify can-

didate loci exhibiting selection signatures; (ii) these loci

may be then investigated in the light of spatial autocorre-

lation measures and multivariate models. The former

step may point out whether the observed correlation is

due to similarities between neighbours, while the latter

allows the inclusion of population structure, if any, in

the model to assess the additional effect of the environ-

mental variable after taking demography into account.

Modules. SAMbADA includes several modules that enhance

interfacing with other programs.

Geovisualization of spatial statistics: SAMbADA pro-

vides an option to save spatial autocorrelation results as

a shapefile (.shp), a common format for storing vector

information in Geographic Information Systems (GIS).

This feature relies on the shplib open source library

(http://shapelib.maptools.org/), which is included and

distributed with SAMbADA.

Recoding molecular data: SAMbADA is distributed with

a utility for recoding molecular data into binary

information, so that each genotype is considered on its

own. Currently RecodePlink handles ped/map files, a

standard format for SNP data used in genomics analysis

(Purcell et al. 2007).

Supervision: For very large molecular data sets, SAM-

bADA provides a module to share workload between

computers. Supervision splits the input data in several

files that can be processed separately, even on indepen-

dent computers. At the end of an analysis, Supervision

merges the results to provide the same output as if the

whole data set had been processed at once. This module

enables the processing of WGS data sets with SAMbADA

using a couple of desktop computers (see Table S9,

Supporting information).

Alternative methods to detect selection

The performance of SAMbADA was compared with other

software for detecting signatures of selection. These

analyses involved two other correlative approaches

[BAYENV – Coop et al. (2010) – and Latent Factor Mixed

Models – Frichot et al. (2013); Frichot & Franc�ois (2015)],
and an FST-outlier-detection approach (Beaumont &

Nichols 1996) included in ARLEQUIN 3.5 (Excoffier & Lis-

cher 2010). Please note that these methods consider allele

counts, whereas SAMbADA recodes them into genotypes.

An overview of BAYENV, LFMM and ARLEQUIN is available in

the supporting information.

Simulation study

As SAMbADA and LFMM (Frichot et al. 2013; Frichot &

Franc�ois 2015) share a similar correlative approach, sim-

ulated data were used to compare their performance in

scenarios where the selected loci are known. The analy-

ses used a subset of the simulation data generated by

Forester et al. (2016) who included LFMM in their work.

Simulated data. The simulations were run using the pro-

gram CDPOP v1.2 (Landguth & Cushman 2010), which

models population genetic change across a landscape

surface as a function of mutation, mating, gene flow,

drift and selection. Each simulation had 5000 diploid

individuals with 100 bi-allelic loci, one of which was sub-

ject to selection. All loci experienced a 0.0005 mutation

rate per generation, free recombination and no physical

linkage. Ten Monte Carlo (MC) replicates of each simula-

tion were run for a total of 1250 generations, discarding

the first 250 generations as burn-in (no selection

imposed) to establish a spatial genetic pattern prior to

initiating the landscape selection configurations.

The simulations used a discrete landscape selection

configuration generated using the neutral landscape

model QRULE (Gardner 1999) to simulate binary

© 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
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landscape maps (1024 9 1024 pixels). Habitat fragmenta-

tion was controlled with the H parameter, which affects

the aggregation of habitat pixels. A low value of H

(H = 0.1) was used, resulting in less aggregated (more

dispersed) habitat patches, and 10 landscape replicates

were produced (one for each MC replicate) to average

across stochastic variation among simulated landscapes.

Discrete habitat types (type ‘AA’ or ‘aa’) represented

habitat patches in which AA or aa genotypes were,

respectively, favoured (see Fig. S3, Supporting informa-

tion for an example of the landscape configuration).

The effect of varying selection strength was tested,

mediated through density-independent (i.e. environ-

ment-driven) mortality (s) determined by genotypes of

the selected locus. Selection strengths included s = 0.01

or ‘1%’, s = 0.05 or ‘5%’, and s = 0.10 or ‘10%’. AA indi-

viduals had no mortality in ‘AA’ habitat patches and

experienced 1%, 5% or 10% mortality if they occurred in

‘aa’ patches. Individuals with ‘aa’ genotypes at the locus

under selection experienced the opposite selection gradi-

ent. The Aa genotypes experienced uniform selection

(s/2) across the entire surface.

Dispersal capacity for movement and mating was set

to a maximum of 5% of the landscape surrounding an

individual, with dispersal occurring once per generation.

Mating pairs of individuals and dispersal locations of

offspring were chosen based on a random draw from the

inverse-square probability function of distance, trun-

cated with the specified maximum distance. Mating

parameters represented a population of unisexual indi-

viduals with females and males mating with replace-

ment. The number of offspring produced from mating

was determined from a Poisson distribution (k = 4),

which produced an excess of individuals each generation

to maintain a constant population size of 5000 individu-

als at every generation. Carrying capacity of the simula-

tion surface was 5000 individuals. Excess individuals

were discarded once all 5000 locations became occupied,

which is equivalent to forcing out emigrants once all

available home ranges are occupied (Balloux 2001; Land-

guth & Cushman 2010). Combining the 10 landscape

configurations and the three levels of selection strength,

a total of 30 molecular data sets were analysed in this

simulation study.

Simulation analysis. A set of 500 individuals were ran-

domly selected from each simulation of 5000 individuals

(the 500 individuals were chosen from the same position

in the grid in each simulation and replicate) to carry out

the selection analyses with SAMbADA and LFMM (see

Fig. S3, Supporting information). Simulation data were

filtered for a minimum allele frequency (MAF) of 1%;

no simulation loci were found to have a MAF <1%. All

analyses used three environmental predictor variables:

the x-coordinate location of an individual (‘x’), the

y-coordinate location of an individual (‘y’) and the loca-

tion of an individual in an AA or aa patch (‘habitat’).

Two types of analyses were run with SAMbADA: (i) Uni-

variate analysis with the three environmental predictor

variables; (ii) Multivariate analysis using the population

structure to build the null models. For univariate analy-

sis, the significance threshold was set to a0 = 0.01/900

(100 loci, three genotypes and three environmental vari-

ables) after Bonferroni correction. The second type of

analyses was performed as follows for each replicate:

Population structure was assessed with ADMIXTURE

(Alexander et al. 2009) using the 99 neutral loci.

ADMIXTURE (Alexander et al. 2009) estimates the maxi-

mum likelihood of individual ancestries from multilocus

SNP genotype data sets and assumes that samples des-

cend from a predefined number of ancestor populations

that became mixed. ADMIXTURE estimates both the frac-

tion of each sample coming from each population and

the marker frequencies in these populations. The opti-

mal number of populations K is assessed by a k-fold

cross-validation procedure (see Table S4, Supporting

information, for the value of K in each simulation). As

the sum of the coefficients of admixture is 1.0 for each

sample, only (K � 1) values are required to specify the

ancestry of each sample. Thus, (K � 1) ‘population vari-

ables’ were created by computing a PCA on the coeffi-

cients of admixture and by taking the (K � 1) first

principal components. The set of predictor variables

was composed by the three environmental variables (‘x’,

‘y’ and ‘habitat’) and the (K � 1) ‘population variables’.

The (K � 1) ‘population variables’ were used to com-

pute a ‘null model’ including the population structure

for each marker, and then, the models to be tested were

built by adding one environmental variable to the set of

‘population variables’. In the current implementation of

SAMbADA, this is performed by computing all the models

from 1 to K variables (i.e. the total number of clusters in

the data) before extracting the models of interest. As the

models to be tested included one variable more than

their corresponding null model, the total number of

models considered for the Bonferroni correction was the

same as for the univariate analysis.

For LFMM, K was determined using the Patterson

method (Patterson et al. 2006) as suggested by Frichot

et al. (2013) for simulation studies (see Table S5, Support-

ing information, for the value of K in each simulation).

LFMM models were run with the package LEA (v. 1.2.0; Fri-

chot & Franc�ois 2015) in R (v. 3.2.3; R Core Team 2016)

using the following parameters: 10 000 iterations with a

burn-in of 5000 iterations, and five replicate runs. The

median z-score and P-value were chosen from each set of

five runs; significant outliers were detected as those loci

with a P-value <(0.001/300) after Bonferroni correction.

© 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
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The significance thresholds a for SAMbADA and LFMM were

estimated separately for each method.

For each of the three simulation scenarios, the

following metrics were averaged across the 10 replicates:

true-positive rate (TPR), false-positive rate (FPR) and a

genotype–environment association index (GEA) that

determines how effective a method is at identifying the

predictor that is driving selection (Forester et al. 2016).

The GEA index ranges from 3 (best performance) to 0

(worst performance) and is coded: 3 = correct identifica-

tion of variable ‘habitat’; 2 = ‘habitat’ is significant, but

less than ‘x’ or ‘y’; 1 = ‘habitat’ is not detected but ‘x’ or

‘y’ are; and 0 = no variable is detected as significantly

associated with the locus under selection.

Ugandan cattle

In addition to the simulated data set, we illustrate the

use of SAMbADA with an empirical data set of Ugandan

cattle, which is composed of two main populations.

Ankole (or Ankole-Watusi) cattle are a Sanga breed (tau-

rine-zebu cross) that appeared in the Nile Basin around

2000 years BC. They migrated southward and are now

found in southwest Uganda, Rwanda and Burundi

(Ndumu et al. 2008; Ajmone Marsan et al. 2010). Short-

horn zebus were introduced in East Africa around the

VIIIth century AD; they later spread as they were less

affected than taurine and Sanga cattle by rinderpest, but

their susceptibility to trypanosomiasis is presumed to

have restrained their dispersion across Africa (Ajmone

Marsan et al. 2010). Shorthorn zebus are now common in

northeast Uganda and are being crossbred with Ankole

cattle in the centre of the country.

Sampling design. In the context of the European Nextgen

project (http://nextgen.epfl.ch), the sampling of Ugan-

dan cattle was designed to cover the whole country,

including each eco-geographic region, and to obtain a

homogeneous geographic distribution of individuals

across the country. To this end, a regular grid made of 51

cells of 70 9 70 km was produced. On average, four

farms were visited in each cell and four unrelated indi-

viduals were selected from each farm, for a total of 917

biological samples retrieved from 202 farms. The sam-

pling season took place between March 2011 and January

2012. Recorded information also included the location of

the farm, the name of the breed, a picture and morpho-

logical information (e.g. withers height and horns length)

for each individual. These elements were stored in a

database accessible through a Web interface, enabling

real-time monitoring of the sampling campaign.

Molecular data. Out of the 917 individuals, 813 samples

were genotyped with a medium-density SNP chip

(54 609 SNPs, BovineSNP50 BeadChip; Illumina Inc., San

Diego, CA, USA). Only markers located on the autoso-

mal chromosomes were considered in the analyses. The

data set was filtered with PLINK (Purcell et al. 2007) with

a call rate set to 95% for both individuals and SNPs, and

a MAF set to 1%. The resulting data set after filtering

contained 804 samples and 40 019 SNPs.

Population structure. Population structure was analysed

with the software ADMIXTURE (Alexander et al. 2009) using

a subset of 28 197 SNPs pruned for linkage disequilib-

rium as recommended in the manual. The SNPs were fil-

tered with PLINK (option – indep-pairwise),

r2 < 0.2, sliding window of 10 SNPs, step size of 5 SNPs),

and the number of populations K was chosen using the

cross-validation index of ADMIXTURE. The best partition of

the data set consisted of four populations, although the

vast majority of the samples (96%) were allocated to one

of two clusters on the basis of the ancestry coefficients

(Fig. S1, Supporting information). Mapping these coeffi-

cients revealed that these two clusters (340 and 431 indi-

viduals of 804) occurred in the southwest and northeast

of Uganda, respectively. Using pictures of sampled indi-

viduals, the first cluster was identified as Ankole cattle

and the second one as zebu. These observations are in

agreement with the known background of Ugandan cat-

tle. The remaining two clusters (33 animals in total) pos-

sibly represent introgression from allochthonous gene

pools. The results of the population structure analysis

were used to define the parameters needed by each

method to detect selection signatures.

Environmental data. Habitat characteristics of sampling

locations were described with the WorldClim data set

containing monthly values of precipitation, minimum,

mean and maximum temperature as well as 19 derived

variables, at 1 km resolution (Hijmans et al. 2005). This

data set provides appropriate data as it consists of repre-

sentative climate information collected during 30 years

(WMO standard climate normal, Arguez & Vose 2010)

and its high resolution suits the scale of our study. These

environmental variables were originally stored in four

tiles (portions of map) which were pasted using the

Geospatial Data Abstraction Library (GDAL Develop-

ment Team 2013) and a customized Python script. The

topography is described by the 90 m resolution SRTM3

(Shuttle Radar Topography Mission) digital elevation

model (DEM) (Farr et al. 2007). SAGA GIS (www.sagagi-

s.org) was used to paste the 36 tiles covering the country

and to derive slope and orientation from the SRTM

DEM. Longitude and latitude were also taken into

account as a rough proxy for population structure.

Finally, the values of the 72 environmental variables

were extracted for each sampling locality using the
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‘Point Sampling Tool’ extension (http://hub.qgis.org/

projects/pointsamplingtool) in QuantumGIS (www.qgis.

org).

Variable selection for univariate analysis: Considering

all environmental variables in the computation of the

multiple logistic regressions would have provided a

comprehensive analysis with a low risk of missing detec-

tions. Nonetheless, some variables are highly correlated;

thus, the corresponding models for a genotype are likely

to represent the same phenomenon. To lower the depen-

dency between models and spare computation time, we

used the variance inflation factor (VIF) to control for

multicollinearity (Dobson & Barnett 2008). A maximum

VIF of 5 was chosen, corresponding to a coefficient of

correlation of 0.9 between pairs of variables. The number

of variables was reduced iteratively by randomly remov-

ing one of the two most correlated variables until the

maximum correlation was lower than the threshold (0.9).

This procedure led to a set of 23 environmental variables

that were used for univariate landscape genomic

analyses (Table S1, Supporting information).

Variable selection for multivariate analysis: The

multivariate analysis with SAMbADA consisted in bivari-

ate models along with their corresponding univariate

and constant models. A maximum of two explanatory

variables were considered to ease the interpretation of

their respective effects. Moreover, SAMbADA’s conserva-

tive approach to assess model significance tends to

reject models including numerous environmental vari-

ables. In this study, the multivariate models were used

to take population structure into account. The informa-

tion on population structure was derived from the

analysis of individual ancestries. To this end, a new

variable ‘population structure’ was defined by per-

forming a principal component analysis (PCA) on the

coefficients of ancestry and was used to represent the

population structure in SAMbADA analyses (see ‘Protocol

of analysis’ for details). It was thus added to the set of

23 environmental variables and the correlation-based

variable selection method was reapplied to limit the

coefficient of correlation between pairs of variables to

0.81, which corresponds to limiting the VIF to 2.9. On

this basis, 15 predictor variables (including the ‘popu-

lation structure’ variable) were considered for SAMbADA

multivariate analysis (see Table S1, Supporting

information).

Protocol of analysis. Four approaches were applied to

detect selection signatures among the 40 019 SNPs from

804 samples. As SAMbADA processes each genotype inde-

pendently, while BAYENV, LFMM and ARLEQUIN treat each

locus as a whole, we defined a locus as ‘detected’ by

SAMbADA if at least one of its three genotypes showed a

significant association with an environmental variable.

For BAYENV, LFMM and ARLEQUIN, the selection signatures

are analysed per locus.

Data preparation: Since Ugandan cattle globally com-

prises two admixing populations (Fig. S1, Supporting

information), the 33 samples from the two smaller popu-

lations were excluded from the analyses with SAMbADA

and LFMM, leading to a set of 771 samples for these meth-

ods. To estimate whether the population structure could

be efficiently summarized by the Ankole and zebu clus-

ters, a PCA was run on the coefficients of ancestry for the

subset of 771 samples taken from the results of ADMIXTURE

for K = 4. The first principal axis of this PCA accounted

for 95% of the variance among all molecular markers, so

that a single coefficient is sufficient to provide an overall

view of an individual’s ancestry. Given this configura-

tion, SAMbADA’s multivariate analysis needed a single

variable, that is the first axis of the PCA, to summarize

the population structure. As the cattle population is

essentially constituted of two clusters, the number of

latent factors tested with LFMM covered a range of values

of K that included the estimated K as described by Fri-

chot & Franc�ois (2015). This range consisted of values of

K from K = 1 to K = 4. For BAYENV and ARLEQUIN, as these

approaches require the samples to be clearly assigned to

a population, the 804 samples were classified into popu-

lations based on their coefficient of ancestry and using a

threshold of 0.85, below which samples were excluded

from the analysis. This led to, respectively, three clusters

of 162 Ankole cattle, 8 zebus and 10 cattle from the third

population; samples from the fourth population were

highly admixed and none satisfied the condition. This

method was preferred over a classification based on sam-

pling locations or phenotypic traits because Ugandan

cattle are generally admixed (see Fig. S1, Supporting

information). The univariate correlative approaches –
SAMbADA, BAYENV and LFMM – used a selected set of 23

environmental variables, while SAMbADA multivariate

analysis used a set of 15 environmental variables (see

‘Environmental data’ for details).

Computational set-up for correlative Bayesian

approaches: BAYENV (v. 2.0, Coop et al. 2010; G€unther &

Coop 2013) first estimated the interpopulation covari-

ance matrix with a run of 100 000 iterations over a set of

1000 loci selected at random among the loci identified as

neutral by SAMbADA’s univariate analysis. Then, the full

data set was analysed for another 100 000 iterations to

detect the signatures of selection. LFMM models were run

with the package LEA (v. 1.4.0; Frichot & Franc�ois 2015) in
R (v. 3.3.0; R Core Team 2016) using the following param-

eters: 10 000 iterations with a burn-in of 5000 iterations,

and five replicate runs for each value of the number of

latent factors.

Models selection: The statistical significance threshold

for SAMbADA, LFMM and ARLEQUIN was set to a = 0.01 before
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applying the Bonferroni correction. The analysis of

SAMbADA’s multivariate models followed the same proto-

col as its counter-part on the simulation data: the univari-

ate models involving the ‘population structure’ variable

were used as ‘null models’ for assessing the significance

of bivariate models involving the ‘population structure’

variable and one environmental variable; all other models

were discarded. For LFMM, the median z-score and P-value

were chosen from each set of five runs. The number of

latent factors was set to K = 2 based on the quantile –
quantile (QQ) plots (see Fig. S2, Supporting information).

For BAYENV, model selection was based on the Jeffreys’

scale of evidence (Jeffreys 1961) and on the distribution of

Bayes Factors (BF) for neutral loci (Coop et al. 2010). This

distribution was estimated by selecting a random subset

from the loci identified as neutral by SAMbADA. BAYENV’s

results were analysed separately for each environmental

variable and models showing a BF higher than 10 (strong

evidence) or higher than the 1st percentile of the neutral

distribution (if higher than 10) were used to build the set

of candidate loci.

Results

Results for the simulated data

Detection of selection signatures. Univariate models in SAM-

bADA show that on average both the TPR and the

genome–environment association index (GEA index)

increase with the strength of selection (see Table 1a and

Table S3, Supporting information, for detailed results).

TPR ranges from 60% for the weak (1%) selection, to 90%

for intermediate (5%), and to 100% for strong selection

(10%), while the GEA index takes the values of 0.7, 1.6

and 2.1 for the corresponding selection pressures. The

FPR is high (43–45%) but consistent among the different

scenarios. When population structure is taken into

account using multivariate models, the TPR index and

the GEA index decrease for the weak and intermediate

levels of selection compared to the univariate models,

but their values remain unchanged for the stronger level

of selection, whereas the FPR decreases for all levels of

selection (2–4%, see Table 1b and Table S4, Supporting

information, for detailed results). Overall, LFMM behaved

very similar to the SAMbADA univariate approach showing

the same TPR and FPR and marginally better GEA val-

ues (Table 1c and Table S5, Supporting information, for

detailed results).

Spatial autocorrelation. Spatial statistics were computed

for one genotype per locus for each replicate of the three

selection scenarios. The choice of the genotypes was

based on SAMbADA’s univariate models: for each locus,

the genotype in the model with the highest G score was

chosen to represent the locus in the subsequent analyses.

Spatial autocorrelation was measured using Moran’s I,

and the spatial ponderation was based on the number of

nearest neighbours. The weighting schemes included 5,

15, 30, 45 and 60 neighbours. The threshold of pseudo-P-

values was set to 0.01 (99 permutations) for assessing the

significance of global and local values of Moran’s I.

Figure 1 presents an overview of the correlograms

obtained for each simulation scenario. For each scenario,

the loci were ordered in three groups: loci under selec-

tion (L0), neutral loci detected by SAMbADA (i.e. false-posi-

tive detections) and neutral loci not detected by SAMbADA

(i.e. true-negative detections). On average, the group of

false positives shows a higher value of Moran’s I than

the group of true negatives. The loci under selection

show values of Moran’s I similar to the group of true

negatives for the weak selection scenario, while their val-

ues of Moran’s I tend to be higher than both groups of

neutral loci for the intermediate and strong selection sce-

narios (see Table 1). The individual correlograms for

each replicate of the three selection scenarios are found

in Figs S4–S6, Supporting information.

Local indicators of spatial association were summa-

rized for each locus by counting the number of sampling

points showing a significant value. The amount of signif-

icant LISA points is generally higher for the locus under

selection than the averaged values of each of the two

groups of neutral loci (see central part of Fig. S6,

Table 1 Average true-positive rate (TPR), false-positive rate

(FPR) and genotype–environment association index (GEA

index) across the 10 replicates for each simulation scenario. All

simulations use a dispersal level of 5% and a discrete landscape

with an aggregation index H of 0.1. TPR scales from 0% (worst

performance, locus under selection not detected) to 100% (best

performance, locus under selection detected); FPR scales from

0% (best performance, no false detection) to 100% (worst perfor-

mance, 99 neutral loci detected as significant); GEA index scales

from 0 (worst performance, no detection) to 3 (best performance,

correct detection). Results for (a) SAMbADA univariate models, (b)

SAMbADA multivariate models taking into account the population

structure, (c) LFMM

Selection (%) TPR (%) FPR (%) GEA index

(a) SAMbADA univariate

1 60 45 0.7

5 90 43 1.6

10 100 45 2.1

(b) SAMbADA multivariate

1 10 4 0.1

5 50 2 0.5

10 100 2 2.1

(c) LFMM

1 50 43 0.6

5 90 43 2.0

10 100 43 2.8
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Supporting information). For the replicates where the

locus L0 was detected by SAMbADA’s univariate models,

all detected loci were ordered according to the decreas-

ing number of significant LISA points. For the intermedi-

ate and strong selection scenarios, the locus L0 is often

found among the first loci. For instance, L0 is found

between positions 1 and 5 for the LISA computed with

15 neighbours in the intermediate selection scenario (see

right part of Fig. S6, Supporting information).

Results for the Ugandan cattle

Detection of selection signatures. Using univariate models,

SAMbADA identified 2354 SNPs (5.9%) potentially subject
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Fig. 1 Summary of correlograms computed for the simulation data. Spatial autocorrelation was measured using Moran’s I, and the spatial

ponderation was based on the number of nearest neighbours. The weighting schemes included 5, 15, 30, 45 and 60 neighbours. Each locus

was represented by its genotype involved in the model with the highest G score. Each graph summarizes the correlograms of one of the

selection scenario s: a) weak, b) intermediate, and c) strong selection. The loci were sorted in three groups: the loci under selection

(L0 – red bars), the neutral loci detected by SAMbADA (black bars) and the neutral loci not detected by SAMbADA (grey bar). For each group,

the averaged Moran’s I is represented by the dot on the bar, the two marks above and below indicate the standard deviation and the outer

bounds show the minimal and maximal values of Moran’s I for this group. [Colour figure can be viewed at wileyonlinelibrary.com]
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to selection, BAYENV 1169 (2.9%), LFMM 970 (2.4%) and AR-

LEQUIN did not identify any locus as significant. Among

the 2354 loci detected by SAMbADA, 967 were <100 000

base pairs apart from another detected locus, suggesting

that some loci may be detected simply due to physical

linkage to selected regions. Figure 2 counts the number

of common detections between landscape genomic

approaches. SAMbADA’s results partially match those of

BAYENV with 214 common loci (i.e. 9% of SAMbADA’ and

18% of BAYENV’s detections). Concerning the third correla-

tive approach, LFMM is more conservative than SAMbADA

and the overlap is smaller because 79 loci (i.e. 3% of SAM-

bADA’ and 8% of LFMM’s detections) are detected by both

SAMbADA and LFMM, while 24 loci (i.e. 2% of BAYENV’s and

2% of LFMM’s detections) are detected by both BAYENV and

LFMM. However, 110 SNPs detected only by LFMM are

<100 000 base pairs apart from loci detected by SAMbADA,

potentially identifying the same selection signature.

Lastly, ARLEQUIN’s best results involved 17 SNPs with P-

values lower than 10�4. Although these results are not

significant – the threshold corrected for multiple compar-

isons was a0 = 2.5 9 10�7 – it is interesting to compare

them with the other methods. Among these 17 SNPs, one

was common with SAMbADA, 16 were common with

BAYENV and none with LFMM, suggesting that population-

based methods, whether using outliers or environmental

correlations, tend to overlap substantially in detecting

selection signatures. Quantile – quantile (QQ) plots of

SAMbADA and LFMM results are presented on Fig. S2 (Sup-

porting information).

The loci detected by SAMbADA’s univariate analysis

with the highest G scores were compared among meth-

ods. Table 2 shows that BAYENV generally agreed with

SAMbADA’s detections, while LFMM’s results differed. Some

of the most significant loci detected by SAMbADA were

ignored by LFMM. A total of eight loci were identified by

the three correlative methods and four of them were

among the most significant models detected by SAMbADA

(see Table 2). Three of these SNPs occur close to each

other on chromosome five.

SAMbADA’s multivariate analysis identified 12 signifi-

cant bivariate models, corresponding to 8 loci (see

Table S2, Supporting information). In SAMbADA’s frame-

work, this means that these models involving one envi-

ronmental variable and the variable ‘population

structure’ provided a significantly more accurate estima-

tion of the genotype’s frequency than their univariate

parent involving the variable ‘population structure’ only.

Therefore, although population structure might partly

explain the distribution of these genotypes, adding an

environmental variable provided a significantly more

accurate estimation of their distribution (a0 = 5.9 9 10�9).

The loci detected by SAMbADA’s multivariate analysis

include three loci that were detected by all correlative

approaches (Hapmap28985-BTA-73836, ARS-BFGL-

NGS-106520 and BTA-73842-no-rs, see lines 7, 8 and 9 in

Table 2).

Computation time was measured for the three correl-

ative approaches using a desktop computer with 8-core

CPUs at 4.0 GHz and 16 Gb of RAM, except for BAYENV,

which used a slightly less powerful computer (8-core

CPU at 3.1 GHz and 8 Gb of RAM). SAMbADA analysed

the univariate models within 1.5 h using a single pro-

cessing thread and both univariate and bivariate models

in 2.6 h using four threads. LFMM analysed the data set in

26.9 h for each value of K using five threads (one per

run) and BAYENV in 41.3 h with a single thread, for one

run. Ratios between computation times tend to increase

with larger data sets (see Table S7, Supporting

information).

Spatial autocorrelation. Global and local indicators of spa-

tial autocorrelation were computed for two genotypes

with a weighting scheme based on the 20 nearest neigh-

bours and a pseudo P-value threshold of 1%: (i) ARS-

BFGL-NGS-46098 (genotype GG) (hereafter ARS-46

(GG)), which was detected by SAMbADA only with one of

the highest G scores (Table 2, line 4), and (ii) Hap-

map28985-BTA-73836 (genotype GG) (hereon HM-28

(GG)), which was detected by SAMbADA while the corre-

sponding locus HM-28 was detected by BAYENV and LFMM

(Table 2, line 7). SAMbADA identified isothermality, the

stability of temperature across the year, as strongly asso-

ciated with both genotypes. Figure 3 shows local indices

of spatial autocorrelation for these two genotypes. On

the one hand, ARS-46 (GG) was positively autocorrelated

for the majority of points and the index was significant

for half of them. Although the distribution of this geno-

type shows spatial dependence, nonsignificant associa-

tions were found at the edge of Lake Victoria and in a

corridor in the North of the Lake with some occurrences

in the West of Uganda. On the other hand, the local

indices of spatial association of HM-28 (GG) showed

lower values in general and were only significant in the

Fig. 2 Comparison of the selection signatures identified by the

three landscape genomic approaches. The total number of SNPs

detected by each method is indicated below the name. The dia-

gram shows how these sets of SNPs overlap between methods.
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Table 2 List of SNPs detected by SAMbADA corresponding to the univariate models with the highest G scores. Loci are identified by their

name, their chromosome and their position in million base pairs (Mbp). The following columns show whether SAMbADA (univariate),

BAYENV and LFMM detected them with the corresponding environmental variables and P-values (SAMbADA, LFMM) or Bayes Factor (BAYENV).

Loci in bold type are the common discoveries of SAMbADA univariate and bivariate, LFMM and BAYENV. Local indicators of spatial autocor-

relation were analysed for SNPs on lines 4 and 7

Loci Chr. Pos (Mbp)

SAMbADA BAYENV LFMM

Env P-value Env BF Env P-value

1. Hapmap41074-BTA-73520 5 48.35 prec7 48.35 9 10�47 tmin10 136

latitude 1.41 9 10�43 bio9 89.7

bio7 6.07 9 10�43 prec6 74.2

2. ARS-BFGL-NGS-113888 5 48.32 prec7 4.86 9 10�47 tmin10 39.3

latitude 1.06 9 10�43 bio9 27.6

bio7 1.26 9 10�42 prec6 24.9

3. Hapmap41762-BTA-117570 5 18.94 prec7 2.74 9 10�44 bio9 15.3

latitude 3.95 9 10�41 prec6 13.3

prec6 4.95 9 10�37 prec5 12.6

4. ARS-BFGL-NGS-46098 20 2.95 prec7 2.94 9 10�44

latitude 2.58 9 10�39

prec6 4.35 9 10�39

5. BTA-73516-no-rs 5 48.75 prec7 2.51 9 10�39 bio9 12.8

latitude 4.57 9 10�36 prec6 11.8

prec6 7.61 9 10�33 prec5 11.5

6. Hapmap41813-BTA-27442 5 49.04 prec7 6.06 9 10�39 bio9 16.7

latitude 7.37 9 10�36 prec6 15.3

prec6 2.26 9 10�32 prec5 14.9

7. Hapmap28985-BTA-73836 5 70.34 bio3 6.98 9 10�36 bio9 12.5 bio3 4.01 9 10�19

prec6 1.18 9 10�35 prec6 11.5 bio7 3.94 9 10�14

bio7 1.61 9 10�33 prec5 11.1 latitude 6.63 9 10�10

8. ARS-BFGL-NGS-106520 5 70.2 bio3 6.26 9 10�35 tmin10 79.5 bio3 3.61 9 10�17

bio7 3.55 9 10�33 bio9 23.3 bio7 1.18 9 10�12

latitude 1.13 9 10�31 prec6 18.7 prec6 2.03 9 10�10

9. BTA-73842-no-rs 5 70.18 bio3 8.95 9 10�34 bio9 13.4 longitude 3.19 9 10�15

bio7 2.64 9 10�30 prec6 11.3 prec6 1.35 9 10�9

latitude 4.13 9 10�30 prec5 10.7 bio15 2.55 9 10�9

10. Hapmap31863-BTA-27454 5 48.99 prec7 1.08 9 10�33

latitude 3.00 9 10�30

prec6 3.26 9 10�27

11. Hapmap50523-BTA-98407 5 46.74 prec7 6.36 9 10�32 bio9 14.4

prec6 7.61 9 10�28 prec6 12.8

latitude 9.69 9 10�28 prec5 12.3

12. BTB-01400776 20 2.7 prec7 4.71 9 10�31

latitude 5.23 9 10�30

prec6 1.65 9 10�25

13. ARS-BFGL-NGS-10586 2 128.64 latitude 9.47 9 10�29 bio9 11.5

bio7 1.73 9 10�25 prec6 10.1

prec7 1.81 9 10�25

14. Hapmap23956-BTA-36867 15 47.2 latitude 1.59 9 10�28 bio9 23.1

prec7 2.17 9 10�26 prec6 20

prec6 8.85 9 10�25 prec5 19

15. ARS-BFGL-NGS-94862 11 103.53 longitude 1.23 9 10�27 bio9 45.6 longitude 9.52 9 10�10

prec7 1.26 9 10�22 prec6 42.1

latitude 4.26 9 10�20 prec5 40.8

16. BTA-122374-no-rs 14 16.44 latitude 1.97 9 10�27

prec7 1.05 9 10�23

prec11 1.26 9 10�23

17. ARS-BFGL-NGS-43694 5 49.65 prec7 8.16 9 10�27

latitude 3.41 9 10�25

prec6 5.93 9 10�24
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northwest of Uganda. This particular region also showed

the lowest values of isothermality in Uganda, that is a

high variability of temperatures. This correlation

between HM-28 (GG) and isothermality also appeared

with bivariate LISAs, where the presence of the genotype

was compared with the mean value of isothermality

among neighbouring points (not shown).

Discussion

The main features of SAMbADA are the processing speed,

the multivariate modelling and the measurement of spa-

tial autocorrelation. Processing speed is key when deal-

ing with high-throughput data, while multivariate

modelling and spatial autocorrelation measurements

improve the interpretation of results, particularly when

the data set includes population structure. Models may

indeed include the global ancestry coefficients provided

by a preliminary analysis (e.g. ADMIXTURE). This facilitates

the detection of genotypes correlated with the environ-

ment while taking population structure into account.

Additionally, introducing measurements of spatial auto-

correlation into these analyses takes into account the

valuable contribution of spatial statistics in landscape

genomics. Unlike most current and nonspatial

approaches (e.g. Coop et al. 2010; Frichot et al. 2013;

Frichot & Franc�ois 2015), SAMbADA allows the determina-

tion of whether the observed data reflects independent

samples, a requirement of the underlying statistical

model. Spatial autocorrelation measurements help

assess whether the occurrence of a genotype is related

to its frequency in the surrounding locations. More

specifically, local indices of spatial autocorrelation allow

the mapping of areas prone to spatial dependence. The

results of the present analysis show that using spatial

statistics in conjunction with correlative models may

lower the risk of false positives in landscape genomics.

This is important when the individuals under study

share demographic history (e.g. individuals within

breeds of a livestock species – Orozco-terWengel et al.

2015 – or absence of gene flow in a divergence-after-

speciation model configuration – Cruickshank & Hahn

2014), in the presence of isolation by distance (Meirmans

2012) or cryptic relatedness (Corbett-Detig et al. 2015),

and when genetic background are ignored (Franc�ois
et al. 2016). However, while some population structures

do not show significant spatial autocorrelation, one has

to keep in mind that particular demographic structures

may totally mimic selection signatures (Holderegger

et al. 2008) and that in this case, correlative approaches

are not able to recognize the cause of the spatial pattern

observed. SAMbADA can analyse such cases with the

Table 2 (Continued)

Loci Chr. Pos (Mbp)

SAMbADA BAYENV LFMM

Env P-value Env BF Env P-value

18. BTB-01356178 20 2.49 latitude 1.49 9 10�26 tmin10 62.7

prec7 6.28 9 10�26 bio9 33

prec6 6.69 9 10�23 prec6 27.9

19. BTA-108359-no-rs 14 16.31 longitude 2.35 9 10�26

prec7 3.87 9 10�26

prec11 6.28 9 10�25

20. ARS-BFGL-NGS-15960 5 28.02 prec7 3.20 9 10�26 bio9 76.8

prec6 7.57 9 10�24 prec6 74.1

longitude 1.78 9 10�23 prec5 72.9

21. ARS-BFGL-NGS-116294 2 128.58 latitude 6.05 9 10�26 tmin10 43

prec7 3.34 9 10�23 bio9 18

bio7 6.44 9 10�23 prec6 15.2

22. Hapmap52789-rs29018750 5 70.26 bio7 1.05 9 10�25

bio3 1.32 9 10�24

latitude 1.08 9 10�23

23. ARS-BFGL-NGS-86183 8 43.5 prec7 4.73 9 10�25

prec6 1.27 9 10�21

latitude 3.35 9 10�21

24. ARS-BFGL-NGS-16554 20 1.44 bio7 1.18 9 10�24 tmin10 55.4

prec7 1.27 9 10�24 bio9 15.2

latitude 4.91 9 10�23 prec6 12.7

25. ARS-BFGL-NGS-30091 22 47.94 longitude 1.25 9 10�24

prec7 3.08 9 10�14

tmax10 3.63 9 10�14

© 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
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multivariate models including the global ancestry coeffi-

cients.

Simulation study

The simulation study shows that SAMbADA univariate

models and LFMM are able to detect the locus under selec-

tion in discrete, low-agglomerated landscapes, provided

that the strength of selection is high enough. In the weak

selection scenario, the mortality at birth is compensated

by the dispersal of individuals in approximately half the

replicates, so that the locus under selection is not

detected. On the contrary, it is only missed once for the

intermediate selection strength and is always detected

for the strong selection scenario. However, this power of

detection comes at the cost of high FPRs. The relatively

low dispersal capacity of individuals leads to isolation

by distance, so that frequencies of neutral alleles vary

across space (Forester et al. 2016). This induces some

spurious correlations with the ‘x’ and ‘y’ coordinates,

used as proxies for continuous gradient-like environ-

mental variables. These false detections affect both the

SAMbADA univariate models, which do not correct for

population structure, and LFMM, which tries to model it

as unobserved variables. Besides their comparable TPR

and FPR, LFMM seems to recognize the variable ‘habitat’

as the driver of selection in more replicates than SAMbADA

which tends to assign better scores to models involving

‘x’ or ‘y’. The GEA index of both methods increases with

the selection strength, showing that higher selection

strengths increase the power of detection and the ability

to distinguish the environmental variable driving local

adaptation.

SAMbADA’s multivariate analysis leads to a consider-

ably lower FPR than the previous methods (2–4% vs. 39–
45%). Therefore, including population structure as a set

of covariates improves the ability of SAMbADA to distin-

guish between signals of selection and differences in alle-

lic frequencies due to isolation by distance. In the strong

selection scenario, the multivariate models have the

same power of detecting the locus under selection as the

univariate models. However, the TPR is lower for the

intermediate level of selection and very low for the weak

selection scenario. Thus, controlling for population struc-

ture in multivariate models with a conservative signifi-

cance threshold (e.g. Bonferroni correction) may

decrease the power of detecting loci under weak to mod-

erate selection strengths. These results illustrate the

trade-off which exists between the power of detection of

correlation-based approaches and the specificity of the

(a) (b)

Fig. 3 Local indicators of spatial association of markers ARS-46 (genotype GG) and HM-28 (genotype GG). The weighting scheme is

based on the 20 nearest neighbours. Red points tend to be similar to their neighbours, while blue points differ from them. Yellow points

are independent from their neighbourhood. Small points indicate nonsignificant values (P > 0.001). The map in the background repre-

sents the relief, the darker the shade, the higher the altitude. Samples coming from the same farm have been spread on a circle around

their actual location. [Colour figure can be viewed at wileyonlinelibrary.com]

© 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
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said detections obtained by taking the population struc-

ture into account.

The analysis of spatial autocorrelation enables the

comparison of the locus under selection (L0) to neutral

loci detected by SAMbADA (false positives) and neutral loci

not detected by SAMbADA (true negatives). False-positive

loci tend to have higher values of Moran’s I than the

group of true negative for all selection scenarios (see

Fig. 1 and Figs S4–S6, Supporting information, for

details). This illustrates the fact that spatial dependency

in neutral loci increases their probability of being

detected as potentially subject to selection. The spatial

autocorrelation of both groups of neutral loci (false-posi-

tive and true-negative) stays stable with increasing selec-

tion pressure, while the spatial autocorrelation of true

positive clearly increases with the selection pressure. The

latter effect may be emphasized by the fact that several

genotypes are positively selected in distinct habitats and

negatively selected in the other habitats. Therefore, loci

with high values of spatial autocorrelation can also be

subject to selection and should not be discarded from the

analysis on this sole criterion. Local indicators of spatial

autocorrelation draw the same picture as the global Mor-

an’s I: when counting the number of sampling points

showing a significant LISA value, the locus under selec-

tion is often among the loci showing the most significant

LISA points, and this trend also increases with selection

pressure (Table S6, Supporting information).

Ugandan cattle

In the study of Ugandan cattle, SAMbADA detected the

highest number of SNPs as potentially subject to selec-

tion among the four approaches. However, SAMbADA’s

detection rate may reflect false positives probably due to

population structure. This interpretation is supported by

the shape of the quantile–quantile plots, where SAMbADA

univariate analysis shows an excess of models with small

P-values (see Fig. S2, Supporting information, part a).

Indeed, the distribution of cattle populations follows

roughly a north–south axis which corresponds to the gra-

dient shown by some environmental variables. This over-

lay may result in some spurious associations. Regardless,

environmental conditions can underlie the intensity of

some health threats, such as the trypanosomiasis. The

two cattle species bore some specific traits before they

met in Uganda (e.g. drought tolerance and disease resis-

tance). These specificities have contributed to shape their

respective distribution in the country. In this case, the

observed genome–environment associations can reflect

the local adaptation of cattle in Uganda. Moreover, the

discrepancy between the results may indicate that the

more conservative approaches induce some false nega-

tives. The zebus are indeed highly admixed with Ankole

cattle and only eight of them were retained in the refer-

ence population used by BAYENV and ARLEQUIN (compared

with 162 Ankole cattle). This difference in sample size

may have affected ARLEQUIN’s analysis and prevented the

detection of selection signatures. Another potential

source of discrepancy between approaches is the use of a

pre-existing SNP chip to analyse local adaption. Some

ascertainment bias could result from the choice of the set

of loci as neither Shorthorn zebus nor Ankole cattle were

included in the SNP chip development. However, using

the observed heterozygosity of both populations as a

proxy of the effect of ascertainment bias, we can see that

the average observed heterozygosity of Ankole is ~0.27
and that of the one of zebu is ~0.25, largely reflecting that

if there is a bias it probably affects both groups similarly.

Additional data from the BovineHD Genotyping Bead-

Chip (Illumina Inc., San Diego, CA, USA) suggest that

both Ankole and zebu here have similar observed

heterozygosity (L. Colli, personal communication).

Comparing these results in the light of spatial depen-

dence gives information about the differences between

SAMbADA’s, BAYENV’s and LFMM’s detections. The locus

ARS-46 was detected by SAMbADA only, and its genotype

GG showed a widespread pattern of spatial autocorrela-

tion (Fig. 3a). This pattern could originate from the

underlying population structure, as Ankole cattle are

more common in the southwest, while zebus are more

common in the northeast of the country. This spatial

dependence in the occurrence of this genotype is in con-

tradiction with the assumptions of SAMbADA’s statistical

model. Thus, the correlation detected by logistic regres-

sions between ARS-46 (GG) and environmental variables

could be spuriously driven by demographic factors, as

described above. Patterns of spatial dependence for HM-

28 presented a different situation (Fig. 3b). The low value

of spatial autocorrelation for HM-28 (GG) implies that

the distribution of this genotype was mostly indepen-

dent of location, thus the logistic models are reliable for

this genotype. HM-28 was also detected by the three

landscape genomic approaches and by SAMbADA multi-

variate analysis, and this supports a possible adaptive

origin of the observed correlation with isothermality.

Maps of local spatial autocorrelation for the genotypes

ARS-46 (GG) and HM-28 (GG) illustrated a general

trend: BAYENV and LFMM discarded SNPs showing signifi-

cant local spatial autocorrelation for a large proportion

of the sampling locations, while SAMbADA detected them.

Thus, in this case, measuring the local autocorrelation of

candidate genotypes may help distinguishing between

the effects of local adaptation and those of population

structure among SAMbADA’s detections.

Regarding common detections, three of the SNPs

identified by SAMbADA when population structure was

included as a covariate were among the common

© 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
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detections of the three correlative approaches. SAMbADA

bivariate analysis is rather conservative with only eight

detected loci; however the distribution of P-values is

close to the expected distribution, suggesting that popu-

lation structure was taken correctly into account (see

Fig. S2, part b, Supporting information). Thus, pre-exist-

ing knowledge on demography may be built on to refine

correlation-based detections of selection signatures. One

possible approach consists of assessing population struc-

ture and then including one or a few variables summa-

rizing this structure in the constant model used by

SAMbADA. In this way, only genotypes showing a signifi-

cant correlation with the environment while taking the

population structure into account are detected. In case

there are more than two main populations, hence requir-

ing several variables to summarize the samples’ ancestry,

these summary variables could for instance be derived

from a PCA of the samples’ coefficients of ancestry. In

the present study, the coefficients of ancestry for the

Ankole and zebu populations are essentially comple-

mentary for most samples, thus using the first principal

axis of the PCA is similar to using one of these

coefficients of ancestry as the summary variable.

Concerning the biological function of frequently

detected loci, these three loci are located on chromosome

5, near the gene POLR3B whose mouse counterpart is

involved in limiting infection by intracellular bacteria

and DNA viruses (UniProt, www.uniprot.org). More-

over, genotype HM-28 (GG) shows spatial autocorrela-

tion in the northwestern part of Uganda and this area

overlaps with one of those where the highest load of

tsetse fly (Glossina spp.) occurs in the country (Abila et al.

2008; MAAIF et al. 2010). Hence, the risk of cattle try-

panosomiasis is high in this region and the detected

mutations may be involved in parasite resistance.

Comparison between simulated and empirical data

The analyses of the simulation and cattle data lead to

some common observations. SAMbADA’s univariate mod-

elling detects some spurious associations in scenarios

with population structure. As a countermeasure, multi-

variate analysis, which includes predictors variables

accounting for this population structure, lowers the rate

of false positives. However, the assumption that the

main axis of molecular variation represents only the pop-

ulation structure may induce some false negatives, espe-

cially when the selection pressure is low (simulated

data) or when the full data set was used to assess the

said population structure (cattle data). The comparison

of the two types of data also reveal some differences: the

environmental variable ‘habitat’ which drives selection

in the simulation data is discrete with a complex spatial

distribution (low-agglomeration), while there are many

continuous environmental variables describing the habi-

tat in Uganda and most of these present a north – south

gradient. Another difference is the spatial distribution of

individuals: each sample came from a distinct location in

the simulation data, while several individuals were sam-

pled at each location in Uganda. These differences may

be reflected in the observed patterns of spatial autocorre-

lation. The simulated data show that molecular markers

displaying a high spatial dependence can actually be

subject to selection. In fact, as many environmental vari-

ables are auto-correlated in nature, it can be expected

that the distribution of a molecular marker selected by

one of these variables will also present some spatial cor-

relation. Therefore, it is currently not possible to distin-

guish between true and false positives solely on the basis

of their spatial dependence. The most efficient approach

involves comparing the results of several methods taking

the population structure into account, and to observe the

patterns of spatial autocorrelation to analyse how the

detected GEAs are linked to the spatial distributions of

markers and environmental variables.

Perspectives

The increasing availability of large molecular data sets

raises challenges regarding their analysis. Correlative

approaches in landscape genomics enable fast detection

of candidate loci to local adaptation. However, these

methods must take into account the effect of population

structure (De Mita et al. 2013; Frichot et al. 2013; Joost

et al. 2013; Frichot & Franc�ois 2015). Limited dispersal of

individuals leads to spatial autocorrelation of marker fre-

quencies, which may cause spurious correlations with

the environment. SAMbADA addresses these issues by

rapidly detecting selection signatures with the possibility

of including prior knowledge of the population structure

in the analysis and by measuring the level of spatial

autocorrelation for candidate loci. The next methodologi-

cal step involves developing spatially explicit models

that directly include autocorrelation. SGLMM (Guillot

et al. 2014) provides such a model; however, the current

R-based implementation does not enable whole-genome

analysis.

The recent availability of whole-genome sequence

(WGS) data also raises issues regarding the statistical

assessment of multiple comparisons. Indeed, while many

individuals and few genetic markers were available

10 years ago, the current high costs of WGS limit the

number of sequenced samples. Therefore, standard pro-

cedures for multiple comparisons, such as the Bonferroni

correction, are over-conservative and may lead to dis-

card some adaptive loci. In this context, alternatives pro-

cedures focus on controlling the ratio of false positives in

a set of significant results. Among them, Storey and

© 2016 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
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Tibshirani’s false discovery rate (2003) was especially

designed for large molecular data sets and suits any

detection method relying on significance tests. This

method is available as an R package (q value, Storey

et al 2015) and its implementation in SAMbADA is

ongoing.

Computation time is critical when processing large

data sets. In this context, SAMbADA is able to swiftly anal-

yse high-density SNP-chips and variants from WGS.

When taking population structure into account, SAMbA-

DA’s multivariate analysis is approximately 10 times

quicker than LFMM and 16 times than BAYENV for a data set

comparable to this study, and these ratios increase with

larger data sets (see Table S7, Supporting information).

SAMbADA’s simple underlying model has the advantage

that the computation time grows linearly with the size of

the genetic data under study. Therefore, SAMbADA’s mod-

ule for parallelized processing enables the analysis of

WGS data sets on desktop computers (see Table S9, Sup-

porting information). SAMbADA’s processing speed, com-

bined with its ability to analyse the spatial

autocorrelation in molecular data and to incorporate

prior knowledge on population structure, suits a wide

range of applications, especially those involving whole-

genome sequence data.
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Software availability

SAMbADA is an open source software written in C++ avail-

able at http://lasig.epfl.ch/sambada (under the license

GNU GPL 3). Compiled versions are provided for

Windows, Linux and MacOS X.

Data availability

NextGen data are described at http://projects.en

sembl.org/nextgen/. Ugandan cattle SNP data are

available at ftp://ftp.ebi.ac.uk/pub/databases/nextgen/

bos/variants/chip_array/ in PLINK format (files UGBT.

bovineSNP50.UMD3_1.20140307.[ped/map].gz) with the

following data policy ftp://ftp.ebi.ac.uk/pub/databases/

nextgen/documentation/README_data_use_policy.

Simulation data, landscape surfaces and individual sam-

ple files are available at Dryad doi:10.5061/dryad.v0c77.
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version of this article:

Fig. S1 Population structure computed with ADMIXTURE.
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Fig. S2 Quantile-Quantile plots of the detections of SAMbADA and

LFMM in the Ugandan cattle dataset.

Fig. S3 Example of a landscape selection configuration used for

simulations.

Fig. S4 Correlograms for the 10 replicates of the simulation data

under weak selection pressure (1%).

Fig. S5 Correlograms for the 10 replicates of the simulation data

under intermediate selection pressure (5%).

Fig. S6 Correlograms for the 10 replicates of the simulation data

under strong selection pressure (10%).

Table S1 Environmental variables used to detect selection signa-

tures with correlative approaches.

Table S2 List of SNPs detected by SAMbADA with bivariate mod-

els including the variable ‘pop’ representing the population

structure.

Table S3 Detections of SAMbADA in the simulation data using

univariate models.

Table S4 Detections of SAMbADA in the simulation data using

multivariate models taking into account the population struc-

ture.

Table S5 Detections of LFMM in the simulation data.

Table S6 Summary of the local indicators of spatial association

(LISA) for the simulation data.

Table S7 Comparison of approximate computation times among

methods.

Table S8 Comparison of computation times between MATSAM

(v2) and SAMbADA.

Table S9 Computation times for parallel processing of larger

datasets with SAMbADA.

Appendix S1 Multivariate analysis.

Appendix S2 Spatial autocorrelation.

Appendix S3 Alternative methods to detect selection.
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