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Automating Verification of Functional
Programs with Quantified Invariants

Abstract

We present the foundations of a verifier for higher-order functional
programs with generics and recursive algebraic data types. Our ver-
ifier supports finding sound proofs and counterexamples even in
the presence of certain quantified invariants and recursive functions.
Our approach uses the same language to describe programs and in-
variants and uses semantic criteria for establishing termination. Our
implementation makes effective use of SMT solvers by encoding
first-class functions and quantifiers into a quantifier-free fragment
of first-order logic with theories. We are able to specify properties
of datastructure operations involving higher-order functions with
minimal annotation overhead and verify them with a high degree of
automation. Our system is also effective at reporting counterexam-
ples, even in the presence of first-order quantification.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification; F.3.1 [Logics and Meaning of
Programs]: Specifying and Verifying and Reasoning about Programs

Keywords  software verification; higher-order functions; satisfia-
bility modulo theories

1. Introduction

This paper presents the foundations of a system for verifying and fal-
sifying (possibly quantified) properties of purely functional higher-
order programs. The language we consider, although syntactically
a subset of Scala, has simple type-theoretic foundations (Hindley-
Milner type system with algebraic data types), but enriches it with
specifications. Specifications include function pre- and postcondi-
tions as well as invariants, and they can refer to recursive functions
and quantifiers over first-order values. Our tool supports automated
finding of proofs and counterexamples for specifications and also es-
tablishes termination of functions to ensures soundness of reasoning.
We illustrate our system on a set of examples.

Figure 1 shows the specification of a purely functional binary
search tree storing unbounded integers (in source code denoted
Biglnt but here rendered Z for brevity). The code shows the type
definition as well as its functions content, contains, and insert. The
data type invariant appears as a require clause in the constructor
Node. While there are many ways to define invariants for simple
binary search trees (including some that are executable), this one is
closest to textbook description and it is very concise. The specifica-
tion of methods in ensuring clauses also indicate that they behave
as expected: contains corresponds to set membership and insert to
insertion into a set. Our system verifies that all the specifications
and invariants hold, that all pattern matching is complete, and that
all functions terminate. The verification takes under 1.5 seconds,
which is notably faster than executing the scalac compiler itself.

Figure 2 shows the use of functions stored inside case classes
along with quantified invariants enforcing that stored functions
satisfy the supplied conditions. Using such data type definition, it
is possible to manipulate functions together with specifications and

sealed abstract class Tree {
def content: Set[Z] = this match {
case Leaf() = Set.empty[Z]
case Node(l, v, r) = l.content ++ Set(v) ++ r.content

def insert(value: Z): Node = (this match {
case Leaf() = Node(Leaf(), value, Leaf())
case Node(l, v, r) =
if (v < value) Node(l, v, r insert value)
else if (v > value) Node(l insert value, v, r)
else Node(l, v, r)
}) ensuring(_.content == content ++ Set(value))

def contains(value: Z): Boolean = (this match {
case Leaf() = false
case Node(l, v, r) =
if (v == value) true
else if (v < value) r contains value
else | contains value
}) ensuring(_ == (content contains value))

case class Leaf() extends Tree

case class Node(left: Tree, value: Z, right: Tree) extends Tree {

require(V((x:Z) = (left.content contains x) = x < value) &&
V((x:Z) = (right.content contains x) = value < x)) }

Figure 1. Binary Search Tree with invariant specified within the
Node data type definition.

case class ~[A,B](f: A = B, pre: A = Boolean, ens: B = Boolean) {
require(V((x: A) = pre(x) = ens(f(x))))

def apply(x: A): B = {
require(pre(x))
f(x

} ensuring(ens) }

def map[A, B](list: List[A], f: A ~ B): List[B] = {
require(V((x:A) = list.contains(x) = f.pre(x)))
list match {
case Cons(x, xs) = Cons[B](f(x), map(xs, f))
case Nil() = Nil[B]()
} } ensuring (res = V((x: B) = res.contains(x) = f.ens(x)))

Figure 2. Encoding of first-class functions with contracts and its
use to define a map on lists.

ensure that the conditions are propagated through data structures, as
shown on the example of the map function on lists. The verification
and termination of this program also succeed quickly.

Figure 3 shows a definition of (a relaxed form of) multisets
using first-class functions. Using this data type, we specify merge
sort, ensuring that the multiset of elements is preserved (Section 9
also discusses a version with generic elements mapped to keys.)
Verification also succeeds quickly, and the only function for which
the system does not automatically prove termination is merge itself,
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case class Bag[T|(f: T = Z) {
def union(that: Bag[T]) = Bag((x: T) = f(x) + that.f(x))
def equals(that: Bag[T]) = V((x: T) = f(x) == that.f(x)) }

def content[T](list: List[T]): Bag[T] = list match {
case Nil() = Bag(_ = 0)
case Cons(x, xs) =
Bag(y = if (x == y) 1 else 0) union content(xs) }

def isSorted(list: List[Z]): Boolean = list match {
case Cons(x1, tail @ Cons(x2, _)) = x1 < x2 && isSorted(tail)
case _ = true }

def merge(I1: List[Z], 12: List[Z]): List[Z] = {
require(isSorted(I1) && isSorted(12))
(11, 12) match {
case (Cons(x, xs), Cons(y, ys)) =
if (x <'y) Cons(x, merge(xs, 12))
else Cons(y, merge(l1, ys))
case = I11++12}
} ensuring { res = isSorted(res) &&
(content(res) equals (content(I1) union content(I2))) }

def split(list: List[Z]): (List[Z], List[Z]) = (list match {
case Cons(x1, Cons(x2, xs)) =
val (s1, s2) = split(xs)
(Cons(x1, s1), Cons(x2, s2))
case _ = (list, Nil[Z]())
}) ensuring { res =
(content(res. 1) union content(res. 2)) equals content(list) }

def mergeSort(list: List[Z]): List[Z] = (list match {
case Cons(_, Cons(_, )) =
val (s1, s2) = split(list)
merge(mergeSort(s1), mergeSort(s2))
case _ = list
}) ensuring { res = isSorted(res) &&
(content(res) equals content(list)) }

Figure 3. Higher-order functional encoding of multisets and the
specification of mergeSort with multiset content semantics.

def associative[A](f: (A,A) = A): Boolean =
Y((x: A, y: A, z2 A) = f(f(x, y), z) == f(x, f(y, 2)))

def commutative[A](f: (A,A) = A): Boolean =
Y((x: A, y: A) = f(x, y) == f(y, x))

def rotates[A](f: (A,A) = A): Boolean =
Y((x: A, y: A, z2 A) = f(f(x, y), z) == f(f(y, z), x))

def assocComm[A](f: (A,A) = A): Boolean = {
require(associative(f))
commutative(f) }.holds

def commAssoc[A](f: (A,A) = A): Boolean = {
require(commutative(f))
associative(f) }.holds

def commRotateAssoc[A](f: (A,A) = A): Boolean = {
require(commutative(f) && rotates(f))
associative(f) }.holds

Figure 4. Exploring dependencies between algebraic properties
with counterexamples and proofs.

because the decrease in list size that split produces is not obvious to
the system.

‘What makes our tool useful is that it can also report counterexam-
ples. This feature works best for quantifier-free safety properties, but
also works in some interesting cases for quantified properties. If in
Figure 1 we swap the ordering in the appropriate line of contains to
become else if (v > value) r.contains(value), our system (given an
appropriate command-line option) finds the counterexample; it also

confirms that the counterexample is real by performing execution
that soundly interprets a priory unbounded quantifiers to confirm
that the returned tree satisfies the invariants.

Our system can also find counterexamples for termination: for
a function defining an interpreter for lambda calculus (Section 9)
our termination checker ends up considering a possibly looping
path and then uses the SMT solver to find that the well-known term
(Az.xzx)(Az.zx) makes the path constraint satisfiable.

Figure 4 shows how function values and quantifiers enable
abstraction of algebraic properties. Our system enables users to then
reason about relationships between these properties. The shorthand
holds is an abbreviation for ensuring(_ == true), and claims that a
function with Boolean return type always returns true, so it can
be used to encode conjectures and theorems. Our system finds
counterexamples (over a domain of 7 uninterpreted elements) for
the conjectures assocCom and comAssoc showing that neither of
the properties associativity and commutativity implies the other.
Furthermore, it proves comRotateAssoc, showing that commutativity
and “rotation” imply associativity. These counterexamples and
proofs are also found in time below 1.5 seconds.

Contributions. We present a verifier for higher-order functional
programs with the ability to automatically find proofs and counterex-
amples. Our verifier incorporates the following new techniques:

e Verification of first-class functions along arbitrary paths in the
program even when these are contained within input datastruc-
tures. We discuss a meaningful representation for reported coun-
terexamples and present a sound and executable notion of first-
class function equality. Our procedure is complete for counterex-
amples.

Termination checking in the presence of higher-order functions,
recursion and etc. We present a termination prover that builds
upon the verification techniques we presented in a sound and
efficient way, that conservatively allows the use of inductive
reasoning in many useful cases.

Support for arbitrarily nested ADT invariants that significantly
reduce the annotation burden of proofs and provide better
specification mechanisms for first-class functions. The technique
we present is complete for counterexample finding as well.

First-order quantifier instantiation with support for sound model
finding. We present an extension to MBQI that enables model
finding even in cases where the clause set is not stratified and
discuss certain decidability implications.

We discuss how the different presented techniques integrate with
each other and consider soundness of the unified procedure.

We have evaluated our verifier on a set of benchmarks covering a
wide range of features.

2. Preliminaries

Defining the programs. We start by defining the purely functional
subset of Scala (called PureScala) on which our transformation is
defined. A PureScala program P consists of a set of definition non-
terminal expansions as well as an expr expansion. An expression
can be a primitive operation, conditional, pattern matching, appli-
cation of named or of first-class function. Algebraic data types are
written as simple forms of Scala case classes. (Figure 6 in the Ap-
pendix shows the syntax.) The set of definitions that are relevant
to the given expression is defined by the expression itself and is
therefore not explicitly considered hereafter. Note that we use the
terms program and expression interchangeably for this reason.

The typing rules for PureScala are as expected for call by value
simply typed lambda calculus with recursive sum and product
typesi (called algebraic data types or ADTs hereafter). We generally
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assume that considered programs and expressions are well-typed.
We therefore associate to each expression E its type E.tpe. We
implicitly assume that variables and first-class function definitions
are each associated with some fixed type, providing the initial I"
context for E : E.tpe.

Given an algebraic data type (ADT) T, we associate to T a set
of constructors { const 1, ..., const , } such that each consr ; is
a my-ary function of type T;1 X -+ X T4 m, — T. Instances of
type T therefore have the shape const ;(E1, . . ., Em, ). We omit the
T index and write cons; when the relevant ADT type is clear from
context. Expressions within an ADT instance (i.e. ADT fields) are
accessed through pattern match case deconstruction.

We do not distinguish between recursive and anonymous func-
tion definitions (unless explicitly stated otherwise) as all functions
are considered first-class. We use £, g, ... to refer to first-class
function expressions. We further associate to function £ the fol-
lowing variable sequences f.args corresponding to its arguments
and f.closures corresponding to some deterministic ordering of
the free variables in £. Finally, we have the expression f.body that
corresponds to the body of £.

We define vars(P) to be the free variables within program/ex-
pression P. If an expression contains no free variables, we say it is
ground. We define the notion of value as

value = true | false | cons;(value,...,value)

| ground function f

Given a program P, we call a mapping m that relates each variable
v € vars(P) to some value V : v.tpe a set of inputs to P. Note that
m[P] must be ground, and evaluation semantics follow those of the
simply typed lambda calculus with conditionals. Further note that
any well-typed program P with inputs m will either evaluate to some
value or diverge, evaluation cannot get stuck.

Basic formula terminology. A signature ). consists of a set of
sorts, one of function symbols, and a set of predicate symbols.
We view predicates as functions with boolean-sorted result. Each
function symbol is associated with a sequence of argument sorts
(whose length is the function’s arity) and a result sort. Functions
with zero arity are called constants. We let vars(¢) consist of the
set of uninterpreted constants in ¢. A ferm can be either a constant or
a function application f(¢1,...,t,) where f is a function symbol
and ¢, to t,, are terms. Boolean-sorted terms are sometimes called
atoms, and we generically use clause to refer to any production
using atoms, disjunction (V), conjunction (A), and their derivatives
as these can trivially be translated into CNF form. We sometimes use
set inclusion notation over finite sets to denote equality disjuncts.
We are generally interested in satisfiability of clause sets where
uninterpreted function symbols are taken as existentially quantified.

We are also interested in X'-theories, namely sets of X'-sentences
that are closed under logical deduction. We assume each theory
T is associated to a single sort o7, and can introduce a set of
interpreted function symbols whose interpretations are restricted by
the models for T". We use the ~ symbol for the interpreted equality
symbol. We are specifically interested in the theory of algebraic
data types where a specific ADT theory 7T is defined similarly to
an ADT T in PureScala. Namely, we associate to 7" the following
interpreted function symbols for 1 < ¢ < n: isConsr,i, consr,i,
and fieldr;, j for 1 < j < my;, as well as the usual axiomatization.
We again omit the 7" index when it is clear from context. We assume
theories are separate. Namely, given a theory 7" with associated sort
o, given an interpreted function symbol f associated to 1" and the
following interpretation t = M f(t1, ..., tn)], either i) the sort of
tis op, orii) t C M[t;] for some i : 1 < 4 < n. Note that this
assumption does not hold for all interesting theories supported by
SMT solvers (e.g. consider sets with cardinality), but it does hold for
the theories on which our transformation depends. Moreover, our

definition of theory separation can be further augmented to allow ¢
with non-container sort such as integer or real. Such considerations
are out of the scope of this paper.

Finally, we say a term ¢ is ground ift it contains no uninterpreted
symbol. Given a ground term ¢ and the equivalence class of ground
terms G¢ = {t2 |[= t ~ t2 }, we call the term tmin € G with
smallest size a value (given multiple terms with same size, one is
selected by convention). Term interpretation in a model is assumed
to always produce a value.

3. Verification of Programs with Function Values

In this section we introduce mapping from PureScala program ex-
pressions (containing first-class function applications) to quantifier-
free terms and formulas suitable for an SMT solver that has no
knowledge of recursive or first-class functions. We build on this
translation to present a procedure to prove that a boolean-result
PureScala expressions cannot return false. Our procedure iteratively
refines information about named and anonymous functions, gener-
ating a sequence of quantifier-free formulas that constitute increas-
ingly precise program approximations.

3.1 Transformation from Expressions to Formulas

The main difference between source expressions and target formula
terms is that functions in the target formulas are represented using
values from an uninterpreted domain. The translation function
explicitly represents increasing amount of information about the
applications of such functions.

From types to sorts. We first introduce a translation function S
from PureScala types T to sorts. When T is boolean or an algebraic
data type, then S(T) is an appropriately chosen unique formula sort.
For function types, however, we introduce a special sort o with
infinite cardinality. All function types map to o¢. The only relation
symbol defined on o is ~ and represents a notion of equality.

Our typing relation supports only invariant type parameters.
We can therefore consider that instantiations of an ADT type T
with different type arguments correspond to disjoint sorts. This
consideration further extends to generic function definitions. We can
thus ignore generic type parameters in the following by assuming
(potentially infinite) sets of fully typed definitions. As these sets
are explored incrementally through as-needed type substitutions
in the access of £.body, the relevant portions of the definition sets
remain finite. Finally, we allow uninstantiated type parameters in our
formulas and let S map to some (unique) sort with infinite cardinality
and equality (cardinality limitations are outside the scope of this
paper).

Program names to formula constants. We define an injection V
from PureScala variables to formula constants. (Such constants are,
effectively, existentially quantified because we will be checking
satisfiability of generated formulas.) For a variable v: T the result of
mapping V(v) has sort S(T).

Function applications. Our procedure relies on tracking two sets
that are computed by the transformation. The first set, A, tracks func-
tion applications and consists of 4-tuples (b, ¢, tpe, [a1, ..., an])
where b is a X'-constant specifying the path condition under which
this function application can take place, c is a X-term with sort
o¢ specifying the caller, tpe is the PureScala function type corre-
sponding to ¢, and [a1, . .., ay] are X-terms argument to ¢ (some-
times written a™ for brevity). We define the projection functions
()bs ()c and (-)¢pe for app € A. The second set, F', tracks
(b, f, £, [c1,- .., cn]) 4-tuples where bis a X-constant as in A, f isa
(fresh) X'-constant with sort o, f is a first-class PureScala function
discovered during translation, and ¢" are X'-terms corresponding to

2016/7/7



the closures of £. We also define the projection functions (-)s, (+) ¢
and ()¢ for fun € F.

Transformation rules. The transformation (b, E) ~ (e, ¢, A, F')
takes as input the X'-constant b describing the current path condition
and the expression E in PureScala and returns a 4-tuple where e is a
XY-term, ¢ is a set of clauses, and A, F are defined above. We further
define the following projective transformation (b, E) ~~t e. The
transformation is defined inductively, so given {SUB1,...,SUBy}
the set of all direct children of E (expression children can be
inferred from the definition of PureScala’s syntax in Figure 6)
with (b, SUB;) ~ (_, ¢4, Ai, Fi), we generally have ¢ = |, ¢,
A =, Ai and F' = |, F;. Therefore, it is useful for the sake of
clarity to introduce the difference projection (b, E) ¢ ¢ — |, ¢:.
Note that the result of s completely defines the ¢ resulting
from the transformation ~~ of (b, E) (and vice-versa). We similarly
introduce a4 and “r . The rules of inferrence described
below assume by convention that (b, E) ¢ (), (b,E) <4 0, and
(b,E) F () when left unspecified.

We start by defining the fairly straightforward transformation of
PureScala expressions for which closely corresponding encodings
exist in the formula domain.

(b,v) ~»t V(v) (b, true) ~~t true (b, false) ~>t false

(b7 El) >t e
(b, cons; (Eq, . . .

(b, Em) ~~t em

,Em)) ~t Cons;(e1, ..., em)

In order to handle general function definitions without resorting
to quantifiers, we translate these to constants and perform incremen-
tal dynamic dispatch over call sites discovered during the transfor-
mation. This leads to the following rules for function handling

f fresh with sort o f function

FuN

(b,£) ~t f (b,£) &F {(b, f, £, V(f.closures))}
A (b,C) ~tc (byE1) ~teq (b,En) ~ten
(0, C(Br, - En)) o dispatchg (¢ €1, .- €n)
(b,C(E1,...,En)) ®a{(b,c, Ctpe,le1,...,en])}

where the FUN rule accumulates potential dispatchees, and the APP
rule both introduces well-typed dispatch calls through type-indexed
function symbols and perform the necessary bookkeeping for future
inlining.

We now define the transformation of if-expressions and discuss
how they introduce sound path conditions. The transformation of a
(b, E) pair where

E ::= if (COND) THEN else ELSE

relies on two boolean-sorted fresh constants by and b., one for each
new path condition (namely COND and —COND). We also need a
fresh constant  with sort S(T) where E : T. Given (b, COND) ~~t ¢,
(bt, THEN) ~~t e, and (be, ELSE) ~~t e, we can define the clausal
encoding of the if-expression as

¢branch:{ (b/\C) <:>bt, by = (Tﬁt),
(bA—c) < b, ~

Note that computation of ¢ and e relies on the constants b; and b,
such that the clauses (and other bookkeeping information) resulting
from the transformation of THEN and ELSE depend respectively
on b; and b.. Furthermore, the clauses in ¢prqncn ensure that the
data-flow can only take a single branch of the conditional, thus
ensuring b; and b. are sound path conditions. The definition of

Pbranck nNaturally leads to the following inferrence rule

bt, be, T fresh (b, COND) ~ (¢, ¢c, Ac, Fe)
(ba THEN) ~ (t7¢t7AtaFt) (vaLSE) 2 (6, ¢67A67F6)
(b,E) ~ (',
¢c U ¢t U ¢c U ¢branch,
A UA U A,
F.UF,UF,.)

IF

Finally, encoding of pattern match expressions is similar to that of
if-expressions and can be found in the appendix.

Properties of transformation. 'We will now state several relevant
properties of the transformation ~-. In this next part, we will
consider the expression E with inputs m such that m[E] — v. We
further consider (b, E) ~> (e, ¢g, Ag, Ft) and (b, V) ~ (v, ¢y, _, _)
as given. We start by noting that the transformation ~~ corresponds
to an under-approximation of the expression E with respect to
evaluation semantics.

Lemma 1. There exists model M |=b A ¢ A ¢y N e >~ v.

Consider E; C E such that (b;,E;) ~»t t; occured during the
transformation of E. Note that all E; C E that are not contained
within an anonymous function definition are visited by ~». The
position of E; uniquely defines ¢;, and vice-versa. Furthermore, they
each uniquely define b;, leading to the well-founded definitions
Ct(El) = t;, CE(ti) = E;, Cb(EZ) = bi, and Cb(ti) = b;.
Furthermore, if the position E; is encountered during evaluation of
m[E], there exists a unique value Ey corresponding to that position.
We can therefore define Cy (E;) = Ey if E; is encountered during
evaluation, and Cy(E;) = L otherwise.

Proposition 2. For M |= b A ¢s A ¢py ANe ~ v and E; C E,
M = Cy(E:) iff Cv(E:) # L.

As our encoding of first-class functions introduces fresh constants,
the set of models satisfying Lemma 1 will be underconstrained in
general. We therefore introduce the following lemma that deals more
specifically with these constants

Lemma 3. There exists an M satisfying Lemma 1 such that
for Ec C E where Ec ::= C(E1,...,En) and for fun € Fy,
if M = Cy(Ec) A (fun)s, then M = Ci(C) ~ (fun)s iff
Cv(c) = Cv(Ce((fun) ).

3.2 Unfolding Function Applications

We discuss how our procedure relates the uninterpreted function
applications introduced by the APP rule to the associated function
definitions.

We start by considering a constant-program pair (be, P) with
(be, P) ~> (ep, @», Ap, Fp). Given app € A, and fun € F» where
app = (be,c,tpe,a™), fun = (bg, f,£,c"), and tpe = f.tpe,
consider the transformation (be, £.body) ~> (es, ¢¢, Az, Ft) where
b is a fresh constant. Further consider the substitution

0s = {V(f.args) — a™ }H{ V(f.closures) — c" }.

Note that the first portion of 6; is entailed by the evaluation rules
on function applications and the second part corresponds to the
semantics of m/[P] for inputs m. Now, consider the clause

.o an) = O¢es]. (disp)

Under the conditions b, by and ¢ ~ f, the (disp) clause along
with the substituted sets 0: [¢:], 0:[A¢], and 0:[F:] corresponds
to taking the transformation after having inlined the function call
associated with app in P. We therefore define

Z(app, fun) = (O:[¢ps] U{ be <= (be Abs Ac f),
bf —— (dlSp)}7 Qf[[Af]], 6f|IFf]])

dispatch; (¢, a1, .
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which enables us to progressively refine the transformation of P
by introducing new clauses corresponding to inlinings of function
applications in P. Note that we preserve the b = c¢ structure of
our clause set. Furthermore, if fun doesn’t correspond to C, then
all new elements will be irrelevant as b¢ will not hold.

Lemma 4. Given inputs m with m[P] ==V and (bp, V) ~~t vy,
given Ec C P where C¢(Ec) = dispatchtpe(c7 ai,...,an) and
(Cy(Ec), Cv(Ec)) ~t v, there exists model M such that either

1. M Ebe A e A ep > vp AB:[[z] A Osfles] =~ ve, or
2. M E by A e Aep > vp A —bs.

Based on these considerations and assuming P : Boolean, we define
the sequence U(P) = wo,u1,... of triplets u; = (¢s, As, F})
where ug = (¢pp U {bp, mer}, Ap, Fp) and w; is defined given
app; € Ai—1 and fun; € Fi_1 as u; = u;—1 U Z(apps, fun;).
The sequence of u; can therefore be seen as progressively inlining
function applications inside the program. This definition leads to
the following theorem

Theorem 5. Given P : Boolean with ¢; from U(P), if ¢; € Unsat,
then no inputs m exist such that m[[p] — false.

Given some expression E : Boolean, if there exist no inputs m such
that m[E] — false, we say E is valid. We are generally interested
in this work in either showing validity (as is the case for Theorem 5),
or reporting inputs for which the given expression evaluates to false.

4. Inductive Assumptions Modulo Termination

In practice, most interesting properties dealing with recursive func-
tions will never have ¢; € Unsat as the uninterpreted dispatch
symbols offer too high a degree of freedom. It therefore becomes
useful to introduce some notion of inductiveness into the procedure.
Consider an expression POST : Boolean such that there exists a
function application £ (v1, ..., v,) C POST where f.closures = (),
vars(POST) = {v1,...,vy },and vy, ..., v, are taken as quantified.
We extend the procedure to produce sound proofs in the presence of
assumption POST when f is terminating.

Given app;, fun; selected in U(P) where (fun;)s = f,
consider b¢ and 0¢ introduced by Z(app;, fun;). Recall that be
holds iff (app:)e A (funi)e A (appi)e =~ (fun;)s and O =
{V(f.args) — a" } for a" from app; (the second part of 0 is
omitted as f.closures = (). Now consider the transformation
(bf7 POST) ~ (p7 ¢P7 AP7 FP) and let

Prost(appi, funi) = (Oe[dp] U{bs = 0O¢[p] },
Os [[Apﬂv O [[Fpﬂ )

For simplicity, we extend Pposr to a total function by letting
Prost(appi, fun;) = (0,0,0) when (fun;)s # £. We then also
extend the procedure U (P) to Uposr(P) such that u; is now defined
as u; = Ui—1 U I(appi, fun,) U Prost (appi, funi).

We want to show that the result of Theorem 5 is preserved in
the extended Uposr(P). Clearly, if there exist inputs m to POST such
that m[POST] — false, then Lemma 1 tells us that there exists
M = bs A ¢p A —p. Consequently, there exists an app, fun pair
where Peosr(app, fun) = (¢, _,_) such that ¢ € Unsat. As the
existence of inputs m to POST does not imply the inexistence of
inputs m, to P such that m,[P] — false, such a case leads to
unsoundness. In order to guard against this occurence, we must
therefore show that there exist no such inputs m.

If we consider Uposr (POST) directly, our clause set ¢; will, at
some point, contain both —p from the initial transformation of
POST and p from Prosr(app;, fun;), thus leading to ¢ € Unsat
even when inputs exist. We therefore consider the expression Epost

defined as
Esopy ::= { f.args — v" }[£.body]
Epost ::= { £(V1,...,Vn) — Epopy }[POST]

Lemma 6. Given ¢; from Usost(Epost), if ¢ € Unsat and POST
terminates on all inputs, then there exist no inputs m such that
m[pPOST] — false.

Showing validity of POST is interesting in its own right, however it
is can be useful to consider arbitrary property P.

Theorem 7. Given ¢; from Upost(P), if ¢; € Unsat, POST is valid,
and POST terminate on all inputs, then there exist no inputs m such
that m[pP] — false.

Note that we can trivially extend the Uposr(-) procedure to a set
of expressions POSTy, ..., POSTy, as all Pposr, are independent.
However, the termination condition on each POST; becomes some-
what more complex in this setting. Indeed, divergence may appear
due to inter-dependencies between the different assumptions even
though each POST; terminates for all inputs on its own. We associate
to each POST; its relevant function application £;(vi 1, ..., Vin,).
Given inputs m, we inductively define the set S;,, of all expressions
relevant to termination

1. m[POST;] € Sm,

2. if £4(E1, ..., En) was seen during evaluation of S € Sy, then
{vik = Vi | 1 <k < n}[POST;] € Spm.

We say POST1, . . ., POST,, are post-terminating for inputs m iff for
all s € S, evaluation of S is terminating. Note that for a single
POST, post-termination for all inputs is equivalent to termination
for all inputs. Let us now define Uposr({ POST1, . .., POSTm, }, P) in
the obvious way using the relevant Peosr; in the inductive definition
of w;. We can thus conclude with the following corollary

Corollary 8. Given ¢; from Usosr({POST1,...,POSTm },P), if
¢; € Unsat, POST1, . ..,POST., are valid, and POST1, ..., POSTy,
are post-terminating for all inputs, then there exist no inputs m such
that m[p] — true.

5. Proving Termination

The soundness for inductive assumptions discussed in the previous
section relies on termination of the expression for all inputs. Our
verification framework therefore features an automated termination
checker, which checks termination of each function definition. In
principle, we could choose any method to ensure termination of
computations, as long as we only use inductive reasoning for
computations we have shown terminating. Note that it is also
permissible to use properties previously proven by induction to
establish termination of subsequent properties, which allows proving
termination using non-trivial semantic arguments. Our process
of verifying a program thus involves an interleaved sequence of
verification and termination checks, as is common in interactive
proof assistants.

Our termination checker requires that the recursion in type defini-
tions is restricted to recursive reference of a type (with the same for-
mal type parameters) in the field position. In particular, it disallows
recursive definitions in which the type-level recursion involves func-
tion type constructor. The data types that the termination checker
accepts can therefore be encoded in polymorphic lambda calculus
[31], [28, Chapter 23]. Furthermore, function values stored in the
arguments of the function whose termination is being checked are
assumed to be terminating.

Given our definition of evaluation semantics, an infinite sequence
of evaluation steps must contain an infinite subsequence of function
application reduction steps. In the following, we distinguish between
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anonymous functions of the shape (x1,...,x,) = E (which are
considered first-class) and named functions (which are not). We
assume named functions are lifted to anonymous functions when
appearing in first-class positions.

It is useful when constructing termination proofs to be able to
consider some notion of path under which a given sub-expression
can be evaluated. Namely, given expressions E, S C E and PATH, if
for all inputs m we have m[PATH] — true iff m[E] encounters
the position of S during evaluation, then we call PATH the path to S
in E. Given our formalization of PureScala, it is difficult to consider
the notion of path in the presence of pattern match expressions.
Let us therefore consider the extension to PureScala with the
following expression non-terminals isConst,;(+) and fieldr i ;(+),
as well as the corresponding trivial extensions to ~-. It is clear
that given a program P, we can now transform it into an equivalent
program (with respect to evaluation and ~~ transformation) that
contains no pattern match expressions. We assume hereafter that
all considered expressions have been thus transformed. We can
now talk about the path under which an expression E C P will be
evaluated (noted path(E)), computed as the conjunction of all if-
expression conditionals (respectively their negation depending on
which branch contains E) that must hold for evaluation to reach E.
ForE C ((x1,...,%xn) = R) C P, we relax our definition of path to
avoid tracking the anonymous function to its application points and
let path(E) contain the free variables xi, ..., xn. Note that when
these are taken as universally quantified, this constitutes a sound
approximation of first-class function application points.

Our aim is to show that all evaluation traces must be finite by
establishing that the set of named function application reduction
steps in each trace must be finite. Given the expression E, we
therefore consider the set

CE)={f(A1,...,A) | £(A1,...,A,) CE}
and for each named function f in P, we let Ct = C(£.body). As in
the path case, given anonymous function (x1, . .., x,) = E defined
within £.body, all named function applications within E belong to
Ct as well. We then define the following relation

A1,..., Ay, values M free INPULS g(E1,...,Em) € Ct
0 =mpree U{ve — Ar | vic € f.args}
Opath(g(E1, ..., Em))]— true OB ] ~— Vi, 1 <i<m
(f(A1,-.,An),8(V1,...,Vm)) ER

Note that we use the extra inputs m .. to cover the free variables in
g(E1,...,Em) that appear due to anonymous function arguments.

We assume without loss of generality that P ::= £o(vi,...,vs)
as any program P can be brought into such a form by introducing
a fresh named function fq such that fo.body = P and fo.args =
vars(P). Note that as £y is fresh, it will only appear once in any eval-
uation trace given inputs. Now for inputs m, consider an evaluation
trace such that the named function application g(B1, . .., By, ) is due
to be reduced at some point in the trace, g # fo and By, . .., By, are
values. As evaluation has reached this point, there must exist some
named function application reduction f(A1,...,Ay) in the trace
such that (£(A1,...,An),g(B1,...,Bm)) € R.Indeed, even when
g(B1,...,Bm) is contained within a closure which has arbitrarily
travelled through the program, this closure must have been created
at some point in the body of some f(A1,...,A,). Furthermore,
as we universally quantify over potential closure arguments, any
concrete arguments given to the closure will have been considered
during construction of R, hence the inclusion. We assume that input
first-class functions are terminating and support the assumption by
checking that all functions defined in program terminate. This leads
to the following statement

Proposition 9. Given inputs m, if the trace of m[£o.body] contains
infinitely many named function application reduction steps, then
there must exist an infinite sequence APPq, APP1,... such that
APPy ::= fo(m[fo.args]) and (APP;, APP; 1) € R.

A well-understood and general technique used to show finiteness
of named function application chains consists of selecting a measure
from the domain of a well-founded relation and showing that it
decreases in all possible chains. Let us consider the following
measure that corresponds to the structural size of the provided
argument. For each ADT type T in the program, let

def sizer(adt: T): N = adt match {
case consy(Vi,1,....Vi,m,;) = 1 + Z]. sizeT, ; (v1,5)

case consy (Vn,1,-- - Va,m, ) = 1 + Zj sizer,, ; (Vn,5) }

where sizet, (x) = 0 for non-ADT type T». Note that by adding type
parameters to the sizer definitions, we can support generic ADT
definitions with a finite number of function definitions. It is trivial
to (manually) show that each sizer function is terminating. Given
expression E, we write sizeg ¢pe (E) as size(E) for brevity. Now given
g(E1,...,En) € Ct, consider the expression

.,Eyn)) == if (path(g(E1,...,En))) {
>, size(Eq) < >
} else { true }

Let us assume that for all £ € P, E € C¢ and inputs m we have
m[DEC(E)] — true. Now consider the sequence APPg, APP, . ..

DEC(g(E1, . -

v Ef.args Size(vk)

where APPg ::= fo(m[[fo.args]]), APP; = fi(Ai,l, .. ~,Ai,ni)
and (APP;,APPi11) € R. Given ) size(Ai;) — Vi, we can
consider the sequence Vi > Vg > --- > 0. As no infinite strictly

decreasing sequence can exist in the domain of a well-founded
relation, Proposition 9 ensures that there is no trace of m[£¢.body]
in which an infinite number of named function application reduction
steps occur. Furthermore, we also know that the maximal recursion
depth for any named function is upper bounded by & computed as

Z size(m[vi]) = h.

v €fp.args

Let us now consider the transformation of P such that all named
functions are transformed into anonymous functions and recursive
calls are inlined up to depth h + 1 (an arbitrary value can be
chosen for the result of the deepest call). Clearly, evaluation of
the transformed program must achieve the same result as evaluation
of P for inputs m. As a result, we obtain program without recursion.
Thanks to our assumptions that recursion does not involve recursive
type constructors, we can encode data types as well into types
of polymorphic lambda calculus. Therefore, the execution of the
program reduces to a call-by-value evaluation in polymorphic
lambda calculus [31], [28, Chapter 23], in which all evaluations
terminate. Consequently, our check ensures termination of the
execution. We obtain the following proposition.

Proposition 10. If there exists no infinite sequence APPg, APP1, . ..
such that APPg ::= £o(m[£fo.args]) and (APP;, APP;11) € R, and
all types in P are well-founded, then P terminates on inputs m.

Verification-based termination. We discussed in previous sec-
tions various procedures for showing validity of PureScala programs,
namely the absence of models such that the program evaluates to
a certain value. We can thus employ the U (-) procedure described
previously to construct termination proofs

Theorem 11. If for each E € | J; c» Ct there exists some ¢; from
U(DEC(E)) such that ¢; € Unsat, then P terminates for all inputs.

Remember that soundness of the Upost(+) procedure for inductive
assumptions requires termination for all inputs of the POST expres-
sion. We therefore cannot use this procedure when construction
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termination proofs as long as we haven’t established termination
of POST. Further recall that when considering multiple inductive
assumptions, the termination requirement becomes much stronger.
Therefore, when considering termination of program P with a set of
inductive assumptions POST1, . . . , POST,,, we extend the definition
of Cs to also contain the set of calls stemming from each relevant
POST;. Formally, given £;(v; 1, ..., Vs n,) associated to POST;, we
extend Ct, such that

oargs = {V'L,k — ug | ug € fi.args}
Ointine = { £i(vi,1, ..., Vi) — £i.body }
C((eav‘gs U einline)[[POSTiﬂ) Q Cfi

Note that this extension to Ct, potentially introduces new pairs into
R and relates it as follows with post-termination

Proposition 12. [fPOST1, ..., POSTy, is not post-terminating for
inputs m, then there exist £; associated to POST;, and an infinite
sequence APPg, APP1, ... such that APPy ::= £;(m[f;.args]) and
(APP;, APP;41) € R.

If we can show that for all £ € P, E € C (using the new definition),
and inputs m we have m[DEC(E)] — true, then P must post-
terminate on all inputs (no infinite decreasing and lower-bounded
chain can exist). However, Uposr(+) cannot be used to verify the
validity of DEC(E)!

Let us consider the call-graph G, such that (f,g) € G iff
f € pand g(E1,...,En) € C:. We let G} be the transitive closure
of Gy. Given £ € P, we let Calls(f) = {g | (£f,£) € Gy }
and Posts(f) = {posT; | (£,£f;) € G;}. If we can show
that for all g € Calls(f), E € (g, and inputs m we have
m[DEC(E)] — true, then Posts(f) is post-terminating for all
inputs. Indeed, if (f,h) ¢ G7, then h is entirely irrelevant to post-
termination of Posts(£). These considerations lead to the following
statement

Theorem 13. For £ € P, if Posts(f) is post-terminating for all
inputs, Posts(£) are valid, and for each E € | ¢, Cg there exists
some ¢; from Uposr (Posts(£), DEC(E)) such that ¢; € Unsat, then
P terminates for all inputs.

We can thus construct a termination checking procedure that lever-
ages (independently verified) inductive assumptions in a sound way.

Non-termination. 1If termination proving fails, we consider the
relation Rs C R such that (£(A1,...,An),g(B1,...,Bm)) € Rs:
iff there exists g(E1,...,Em) C f.body such that i) there exists
no ((x1,...,xn) = R) C f.body for which g(Ei,...,Emn) C
R, and ii) given & = {vix — Ap | vi € f.args} we have
Opath(g(E1,...,Em))] = true and 0[Ex] —— Bk, 1 < k < m.
Intuitively, for all elements of R, if an evaluation trace contains the
first element of the pair, it must contain the second as well. If we can
find a sequence APP1, ..., APP,, such that (APP;, APP; 1) € R
and APP; = APP,,, then for each APP;, we have a set of arguments
that cause non-terminating of the corresponding function. Given
some call-graph cycle, the above conditions can be encoded as a
satisfiability query and handled by our verification procedure (see
below).

6. Counterexamples and Function Equivalence

We have discussed how our procedure can be used to soundly verify
properties of PureScala programs, however, its real strength lies
in reporting counterexamples to these properties when they exist.
We show how our unfolding-based approach can be extended to
provide incremental encodings of program over-approximations
which correspond to concrete executions when satisfied.

Inputs and equality. Given (¢;, A;, F;) € U(P) with M = ¢,
let us consider the conversion from M to a set of inputs m. Given a

value term ¢ € M, we therefore need a means of translating it back
to a PureScala expression. As the sort conversion function S is not
bijective, we further provide the expected type of ¢. Additionally,
as the interpretation of the function corresponding to a o¢-sorted
term is given by the interpretation of the associated dispatch symbol,
our translation depends on the model M. We inductively define the
reverse transformation Cps as follows

Cui (true, Boolean) = true Cni(false, Boolean) = false

Em = CM(em,Ti,m)
,em), T) = cons;(E1,...,En)

E1 = Cum(e1, Tin)
Crm(Consi(e,. ..

It remains to consider the translation when ¢ has sort o¢ (and the
expected type is therefore T = (T1,...,Tn) = Tres. We rely here
on the set A; of function applications witnessed up to this point,
and consider the set A;(t) C A; such that for app € A;(t), we
have M = (app)y, M[(app)c] = t, and (app)tpe = T. We also
assume that we can construct some arbitrary value Vs of type Tres
(note that otherwise, no terminating function exists for T). Given
A;i(t) = {app1, ..., appm } where each app; = (b, c;,tpe, a}),
we define
Ejr =Cu(Ma;k], Tk),1 <j<m,1
R; = Cm (M[[dispatchtpe(cj, Aj1y---, aj,n)}], T
CM(t,T) = (V1 tT1,...,vn Tn) =
if (V1 ==E1,1 && ... && v, == El,n) R1

<k<n
res),1 <j<m

elseif (vi == Em,1 && ... && v, == Em,n) R
else Vres

It is often interesting given a variable v to consider Cas (V(v), v.tpe)
which we write Caz(v) for short. We also write Cpz(vars(P)) to
describe the inputs { vy, — Cas(vi) | vi € vars(P) }.

Note that the above definition of function-typed term extraction
imposes a strong constraint on the kind of first-class functions
considered as inputs to the program. However, by disallowing
the equality predicate between function-typed expressions in our
programs, the above becomes a sound representation of (terminating)
functions. Not that our procedure doesn’t consider non-terminating
functions in program inputs and will not be able to construct V.
when no terminating input exists. However, we consider such cases
as pathological and these can be identified (and reported) based on
the program type definitions.

One can define the && operator through an if-expression. Fur-
thermore, meaningful equality predicates exist both in the theory
of boolean algebra ( <= ) and that of ADTs. However, although
we do ensure the ~ predicate is defined on terms of sort o, our
encoding of first-class functions into fresh constants doesn’t ensure a
sound congruence relation. Furthermore, equality between functions
is a problematic notion in itself. Indeed, full functional equality (in
the HOL sense) is undecidable and would therefore make no sense
in our operational semantics. Conversely, reference equality would
break purity and would require explicit modelling of the heap.

As mentionned previously, syntactic equality of functions can
lead to sound models given the existence of inputs. Such a definition
of equality can furthermore be efficiently implemented through tech-
niques such as hash-consing. Finally, one can define a corresponding
encoding into the formula domain. We start by inductively defining
the notion of simple PureScala expressions as

simple == v | true | false | cons;(simple, ..., simple)
| function £

Note that given a simple expression E and a mapping 6 from
free variables in E to PureScala values, 0[E] is a value. Now
consider the set F' obtained from some number of applications
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of the FUN rule defined in ~». Given funi, fune € F where
fun; = (bs, f5,£5,¢}),7 € {1,2}, consider the closure substitu-
tion 6; = { V(£;.closures) — c" }. We then inductively define
the eq(E17 Eg) predicate as follows

1. if for j € {1,2}, E; is simple and vars(E;) C f;.closures,
6q(E1,E2) < 91 [[Ct(E1)]] ~ 92[[Ct(E2)]];

2. elseif for j € {1,2}, Ej; = vj, then eq(E1,E2) <= vi = va;

3. else if E; and E2 are produced by the same non-terminal in
the PureScala grammar, then given their respective children
E1,1,...,E1n and E2,1,...,E2n,

eq(El, Ez) <~ eq(EM, E2,1) JARERWAN eq(El,n, Ez,n);

4. otherwise, —eq(E1, E2) must hold.

We define the < predicate such that (f1,£1,¢7) < (f2,f2,¢5)
corresponds to the clause given by f1 ~ fo iff eq(£f1,£2). We
further extend the definition to fun; < funs (b and by are
irrelevant). We can now state the following proposition that follows
from the freshness of fi and fo

Proposition 14. For funi, funs € F, there must exist some model
M such that M = funi % funs.

Note that in case No. 1 of the definition of eq, we refer to the
associated term Cy(E;) where E; has not yet been transformed.
However, as E; does not depend on £f;.args, 8; is equivalent with
0: defined in Z(app, fun) for such expressions, and these can be
computed ahead of time. Let us now consider the transformation
(b,E;) ~ (ej,0j,A;, F;) for some given b. Our definition of
simple expressions ensures that e; doesn’t depend on b, and both
¢; and A, are empty. Further note that the < predicate between
members of 6; [ F;] doesn’t depend on b and its choice is therefore
irrelevant in our use cases.

Given z,y € F, let Feq(z,y) be the union of the 6;[F;] sets
corresponding to each E; encountered during computation of = < y
along with « and y themselves. Further let F¢, (x, y) be the fixpoint
where

1. Feg(z,y) C Fy(x,y), and
2. given ', y' € Fiy(z,y), Feq(z',y") C Fiy(x,y).

One can see that 7, must be finite as there can only exist finitely
many lambdas within a program. Given a set F', we can thus define
the clause set

EQ:«(F)={a' Xy |z,y e FAa'y € Fl(z,y)}
and extend Proposition 14 to the set F', again ensured by freshness
Proposition 15. There must exist some model M = EQ¢(F).

Lemma 16. For funi, funs € F where fun; = (_, f;,£5,_)
and £ is ground for j € {1,2}, we have £1 = £2 iff some model
M = f1 ~ fa N EQ:(F) exists.

Enumerating relevant functions. We have until now only dis-
cussed how a sound congruence relation can be enforced on the
tuples funi, funs produced by ~», yet no such tuples exist in F’
for first-class functions that are free in the program. As our programs
cannot refer to function equality, it is conservative to consider that
the sets of input functions and functions defined within the program
do not intersect. Indeed, purity cannot be broken by this constraint.
Furthermore, since our definition of function equality depends on
the syntax of the function, function-typed input extraction Cs can
be easily extended to ensure that if M[t1] # M][t2] for two o
sorted terms ¢1, t2, then Cas (1, T) # Ca (t2, T) by adding redun-
dant if-expressions to the resulting first-class function bodies. It is

therefore safe to assert that f1 2 f> if at least one of f1, f2 is free in
the program. This observation enables us to avoid explicit modelling
of the value associated to each free function in the program.

It remains to discuss how to obtain an exhaustive enumeration
of the free functions in P. We introduce here the notion of sort enu-
meration. Given a sort o, its enumeration consists of the sequence
to,t1,... of terms with sort o such that the following conditions
are satifsied:

Completeness: for term ¢ of sort o, there exists j € N and some
model M such that M |= ¢ ~ ¢;.

o¢-exhaustiveness: for any value term ¢ of sort o with subterm
s C t of sort o, there exists j € N, s; C t; and some model
M suchthat M =t ~t;and M = s ~ s;.

Unicity: for ¢;, ¢; in the enumeration such that ¢ # j and for model
M, we must have M |=¢; # t;.

It is clear that an enumeration of all value terms of sort o will satisfy
the previous conditions. The proposed definition is more general to
enable useful optimizations (consider for example the constant i of
integer sort which is a valid enumeration of integers).

Let us now consider the formula ¢ with v € vars(¢) where
v has sort ¢ and o, t1,... is an enumeration of ¢. Consider the
set of terms F;(v) = {s | s C t;,7 < i A s has sort o¢ } and the
clause n;(v) = v € {t; | j <1 }. The completeness condition of
sort enumerators ensures satisfiability is preserved and gives us the
following proposition:

Proposition 17. If M |= ¢ exists, then there exists j € N and
model M such that M; = ¢ U n;(v).

More importantly, sort enumerators give us the means to consider
the set of all relevant functions, leading to the following lemma:

Lemma 18. Given a model M = n;(v), there is no term s C M[v]
with sort o such that M |= s € E;(v).

When considering multiple sort enumerations jointly, we require
that the sets of constants introduced by each enumeration be disjoint.
This property can be trivially ensured through freshening.

Consider the set A obtained through some number of applica-
tions of the APP rule defined in ~», and V' the set of constants
obtained by transforming the free variables in the program such
that constants in A, F' and EQs(F) either belong to V' or were
introduced by the ~~ transformation. As the sort o; is not truly
related to a theory of first-class functions, we must consider func-
tion terms contained within free functions. Indeed, free function
application results that contain terms with sort o¢ are not consid-
ered during our enumeration and therefore won’t belong to any
E;(v). Now consider app € A where app = (b, c,tpe,a™): if
the clause ¢ € F;(v) holds, then we must enumerate the sort of
dispatch, . (c, a1, ..., a,) (noted disp(app) hereafter) as it may
contain further relevant functions. We can therefore define the set of
all potentially relevant function terms as

Eas(V,A) =]  Ei(w)U UappeA E;(disp(app)).

Remember that we want to enforce distinctness with respect to the
function tuples in F’, thus leading to the definition

EQri(V, A F) ={f % (fun)s | f € EBaus(V, A), fun € F'}.
Proposition 19. There must exist model M |= EQjy(V, A, F).

veV

We have discussed how 7;(v) will bind the terms in F;(v) to v,
however we cannot assert 7); (disp(app)) directly as disp(app) is
only free when (app)c € Fau,:(V, A) holds. We therefore want
a conditional binding for E;(disp(app)), given by the clause set
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na4,:(V, A) defined as follows
conditionally, (app, S) = (app:) € S => n;(disp(app))
na,i(V, A) = { conditionally, (app, Eau,:(V, A)) | app € A }.

Finally, given (¢, As, F;) € U(P)and V = {V(v) | v € vars(P) },
we define the following clause set

Vi = EQ:(F;) UEQyi(V, Ay, Fi) Uni(V) Unai(V, Ay).

Over-approximating the program. Given the uninterpreted nature
of the various dispatch,,, function symbols, we want to consider an
over-approximation of the program where only paths for which
all relevant inlinings have taken place are allowed. We define
D; = { (app;, fun;) | j < i}, the set of all application-function
pairs that have been considered (i.e. dispatched) up to this point. For
app € A;, we define the set of functions that have been considered
as dispatch targets for app

Ti(app) = { (funy)s | (app;, fun;) € Di, app; = app }.

Now consider the case where the caller (app). is in fact free in the
program (i.e. comes from a free variable). No dispatch for app is
necessary as the interpretation for (app). defined by the reverse
transformation Cs corresponds to the semantics given by dispatch.
We can therefore define the set of handled callers for app

Tou,i(app) = Ti(app) U Eau,i-

Remember that each clause in ¢; is of the shape b = ¢ for
some constant b. If (app)c & Tuu,i(app) holds, then all parts of
the program that depend on the result of the function application
associated to app must be disallowed as the relevant function
inlining hasn’t taken place yet. This condition extends to each
app € A; and leads to the clause set

pi = { (app)e & Tau,i(app) = —(app)s | app € A; }.

We assume a fair selection strategy of (app;, fun;) at each inlining
step, so for any app € A;, fun € F; there exists j € N such that
app = app; and fun = fun;. We can thus state the following:

Theorem 20. Given a model M = ¢; U ¥; U p;, we have
Cas (vars(p))[[P] — false.

Theorem 21. Ifinputs m exist such that m[P]| — false, then there
exists i € N and model M such that M = ¢; U 1; U p;.

Corollary 22. For inductive assumption POST where POST is
valid and terminates on all inputs, given (¢;, A;, F;) € Usost(P)
with associated 1;, p; and model M = ¢; U ; U p;, we have
Cui (vars(P))[P] —= false.

Conversely, if inputs m exist such that m[[p] — false, there
exists j € N and model M such that given (¢, A;, F;) € Usost(P)
with associated 15, p;j, we have M |= ¢; U; U p;.

7. Algebraic Data Type Invariants

Given an ADT type T, we define an algebraic data type invariant
as a PureScala expression INV with a single free variable x: T
that is universally quantified. Semantically, the ADT invariant
implies that for any valid instance E+ of type T, we must have
{x + Et }[INV] = true. We describe how the concept of sort
enumeration can be further leveraged to support finding models that
agree with ADT invariants.

It is interesting to note that ADT invariants do not increase
the expressivity of contracts for first-order functions (though they
do decrease the annotation burden). However, they enable some
level of specification for first-class functions by leveraging the type
system. There exists a clear relation between our ADT invariants
and refinement types. However, as our refinement is named, we need
only consider T-typed instance construction points to ensure a valid

true > INV false > INV
E1 D> INV Em >INV cons;(E1,...,Em): T
{x+> cons;(E1,...,Em) }[INV]— true

cons;(E1,...,Em) >INV

E1 >INV Em D INV

COHSi(El, ey Em) 1 T2, Ta 75 T
cons;(E1,...,Em) >INV
f: (Tl,...,Tn) = Thres

VE1 :T1,...,En: Tn,£(B1,...,En) = VD INV

f>INV

Figure 5. Inferrence rules for the E > INV relation.

program typing. We therefore generate and prove corresponding
verification conditions and show termination for all inputs of the
given INV expression, thus intuitively ensuring both progress and
preservation in the corresponing refinement type system.

Unlike relevant function enumeration, our notion of ADT invari-
ants is not based on some need to relate terms resulting from the
transformation ~~ but on the expressions themselves. It is therefore
not so clear what the set of relevant instances of T actually consists
of. We clarify the notion through a holds relation on PureScala val-
ues where E > INV is defined in Figure 5. Given a set of inputs m
to a program P returned by Cas, we say INV holds on m iff for all
v € vars(P), we have m[v] > INV.

Let us consider the formula ¢ with v € vars(¢) where v has
sort o. For any term ¢ of sort o, we are naturally interested in all
subterms s C ¢ of sort o1 where o+ = S(T). We therefore extend
the definition of sort enumeration ¢o, t1, ... for sort o by adapting
the o¢-exhaustiveness condition to the ot sort:

or-exhaustiveness: for any value term ¢ of sort o with subterm
s C t of sort or, there exists j € N, s; C t; and some model
M suchthat M =t ~t;and M = s ~ s;.

We define the set S;(v) = {s | s C t;,5 < i A shassortor }
by analogy with E;(v) of all subterms in to, . .., t; that have sort
or. Note that 7;(v) ensures terms in S;(v) are bound as well as
those in E; (v). Proposition 17 trivially extends to enumerations with
or-exhaustiveness and we can further state the following lemma:

Lemma 23. Given a model M = n;(v), there is no term s C Mv]
with sort or such that M = s € S;(v).

As with function applications, the definition of ADT invariants
leads us to consider (br,INV) ~~ (inv, ¢, Ar, Fr) where by is
a fresh constant. Given the subterm s € S;(v) that comes from
enumeration term ¢;, we define the substitution 8, = { V(x) — s }.
Intuitively, as long as v ~ t;, the substitutions 0s[{inv} U ¢+],
0s[A+] and 6[F~] correspond to taking the transformation of
P && { x — Cas(s) }[INV]. This leads to the definition

PINV(S) = (99[[¢Tﬂ U{ br <— (U o~ tj),
bT — 05 [[’I/I’L’U]] }, 95 [[AT]]7 95 [[FTH )
Note that, again, we preserve the b = ¢ structure of the resulting
clause set. We require that b+ be fresh for each s € S;(v) as it is
fully defined by the resulting clause set. As in the relevant function
terms case, the set of all relevant or-sorted terms is given by

Sani(V, A) = UUEV Si(v) U UWEA S;(disp(app)).

Recall that our definition of Caz (¢, (T1, ..., Tn) = Tres) supposes
the ability to generate a value Vs of type Tres. As our goal is to
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produce inputs m such that INV holds on m, we must ensure that
Vres > INV for all first-class functions in Cas (vars(P)). The proof of
Theorem 20 shows that we can construct such a value by extending
up with ({br,inv} U é1, Ar, Fr). However, if —INV is valid,
namely no value Er exists such that { x — Et }[INV] = true,
then ¢; may be Unsat even though no value of type T is required
in m. Given v € vars(P), one can easily determine whether v.tpe
will require an instance Vr of type T inside of Cas (vars(P)). We say
vars(P) depend on T iff there exists a v € vars(P) such that v.tpe
requires an instance V.

Based on these considerations, we extend the U (P) procedure
to Uiy (P) = wo,u1, ... in the following way. Given uy € U(P)
and (bp, INV) ~~ (inv, ¢p, Ap, Fp), if (and only if) vars(P) depend
on T, we let ug = ug U ({inv} U ¢p, Ap, Fp) and add x to
vars(P). Furthermore, we extend Cas(t, (T1,...,Tn) = Tres)
such that Cas(x) is used when constructing Vs if Tres depends
on T. Otherwise, we have ug = uy and vars(P) are left unchanged.
Finally, u; is defined given w;—1 as

ui = ui—1 UZ(apps, fun;) U Usesa”‘i(vars@),m) Puxv(8)-
Clearly, given (¢;, Ai, F;) € Unw(P), the extension to ¢; Up; U p;
only adds constraints to potential models, giving us

Proposition 24. For (¢;, As, F;) € U (P) with associated 1, p;,
given M = ¢; U p; Uy, then Cas(vars(P))[P] — false.

The more interesting aspect of the updated procedure resides in the
kind of satisfying models that are produced. Indeed, Piv(s) for
s € Sp,; ensures that INV is considered for all relevant ADT terms,
thus leading to the following statements:

Theorem 25. For (¢s, As, Fy) € U (P) with associated s, pi, if
M = ¢; Ut U p;, then INV holds on Cas (vars(P)).

Theorem 26. If inputs m exist such that INV holds on m and
m[p] = false, then there exists (¢i, Ai, F3) € Uwnv(P) with
associated 1;, p; such that M = ¢; U ; U p; exists.

It is clear that the above results can be extended to an arbitrary set
INVy,...,INV,, of ADT invariants as all Py, are independent.
Furthermore, one can safely use Uposr in conjunction with Uixy as
both procedures are independent. Note that INV1, ..., INV,, cannot
introduce relevant non-termination as unsoundness will only arise if
POST4, ..., POST, are not post-terminating for all inputs.

8. Explicit First-Order Quantification

To specify assumptions and invariants about first-class functions,
we typically which to describe the behavior of these functions on
infinite families of inputs. For this purpose, we introduce explicit
universal first-order quantifiers in our specification language. Instead
of relying on SMT solvers to instantiate quantifiers, our system
performs quantifier instantiation internally. Thanks to this approach,
our system can report counterexamples for some of the queries
on which our SMT solvers return “Unknown” in their default
configuration. While we acknowledge that the use of quantifiers is
expensive, it is a price to pay for modular reasoning about first-class
functions. Note that our users need not rely on explicit quantifiers
as often as in some other verification approaches: constructs such
as recursion and ADT invariants can be thought as particularly
structured forms of quantification, which our system handles more
efficiently, as discussed in previous sections.

Consider the PureScala expression Vxi, . . . , x,, .PROP. Clearly,
no reasonable evaluation semantics can be attached to V, so
we define its semantics as follows: given inputs m, we say
VX1, . .., Xm.PROP holds on m iff for every mapping

Maquant = { xk — Bk | Eg @ xx.tpe, Eg ground, 1 < k <m},

we have (m U mquant) [PROP] — true. Now assume that x; to
xm only appear in argument position to function calls in PROP
and xi.tpe is first-order for 1 < k < m (i.e. no instance of
xi.tpe contains a function). Let (by, PROP) ~~ (p, ¢p, Ap, Fp).
Given function type T = (T1,...,Tn) = Tres, consider the set
Grt,j(Ap), 1 < j < nof tuples (bg,t) where bg corresponds to
the condition under which ¢ is a valid quantifier-free instantiation for
argument position j. Further consider the set X (4,),1 <k <m
of tuples (bx, s) where bx is the condition under which s is a valid
quantifier-free instantiation for the quantified variable xx. Given
(b, sk) € Xi(Ap),1 <k <m, we let

inst((b1,51),- - -, (b, Sm)) =
(by A Abm, { Vi) = se | 1<k <m}).

For each app € A, where app = (b,_, T,a") and argument
position 1 < j < n, consider the following set constraints

a; = V(Xk)
Gr,j(Ap) = Xi(A4p)

a; quantifier-free

INIT-X
(bya;) € Gr,j(Ap)

INIT-G

a; not quantifier-free
(b1,51) € X1(4p) (b, 5m) € Xm(4p)
(bs,0s) = inst((b1, 51), ..., (bm, Sm))
(b A bs,05]as]) € Gr,j(Ap)

One should note here that the sets G+ ;(Ap) and X} (A,) are not
necessarily finite. We let X' (A4,) = X1(4p) X -+ X X (A4p) and
given © € X(A,) where © = ((b1,s1),..., (bm,sm)), we write
inst(z) for inst((b1, 51), ..., (bm, Sm)).

Let us now define the sequence Q(A4,) = qo,q1,... Where
¢ = (X, A;) such that both X; and A; are finite. We define
Xir(Ap) as the set obtained using only the inferrence rules INIT-G
and INIT-X on A,. Note that Xwr(Ap) is guaranteed finite. We
therefore let go = (Xr(Ap), Ap). Let us now consider z; € X;_1
where (bs, 05) = init(z;). We define A; as

Ai = Aim1 U{(bAbs,0s[c], tpe, 0s[a”]) |
(b, ¢, tpe,a™) € A;_1,a” not quantifier-free }

EXPAND

and let X; = Xinr(A;). Note that this definition of X; corresponds
to applying a single time the EXPAND rule to the set X;_; and
computing the (finite) fixpoint with respect to INIT-G and INIT-X.

Lemma 27. For Q(A,) = (Xo,_), (X1,_),..., U, & = X(Ap).

Note that given (X;, A;) € Q(Ap), z € A, (bk,sk) € z and
some subterm ¢ = dispatch,, (...) C sk, there must always
exists a corresponding app € A; such that t = disp(app) and
= b <= (app)y as X does not introduce new terms.
This ensures that the different underlying U(-) procedures can
simply consider the set A; for their various use cases as it faithfully
represents the set of dispatches taking place in the formulas.

Given x € AX; and fresh constant by, consider the transforma-
tion (bg, PROP) ~~ (¢, ¢q, Aq, Fy) and (bs,0s) = inst(x). The
substituted sets 05 [{g} U ¢4, 0s[Aq] and 6, [ F,] correspond to the
instantiation of PROP with the quantifier-free terms s1 to s.,,. We
want this instantiation to be conditioned on b to b,, to ensure the
quantifier-free terms are well-formed. Based on this, we define

Povant () = (Os[dq] U { by <= bs,
by = 0s[q], 0s[Aq], 0s[Fq] )

We now define the sequence Uguant (PROP) = w1, uz, ... of triplets
u; = (¢i, As, Fy) where ug = ({by, ¢}Udq, Aq, Fy). Note that this
simply corresponds to introducing the quantifier-free instantiations
(true, V(xk)) into each X}, for 1 < k < m, a sound instantiation
for non-empty sort S(xx.tpe). For u;, we nondeterministically
chose one of the following:
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1. w; = ui—q UI(appi € Ai_l,funi c Fi_1),
2. up =ui—1 U PQUANT(iUz‘ S XINIT(A’L'))~

We assume a fair alternation between the two presented options and
fair selections of app;, fun,, ;. Note that for (X;, A;) € Q(A),
there exists (¢, A;, F;) € Uquant(PROP) such that A; C A; and
Xj g XINIT(A'L')-

Theorem 28. Given (i, Ai, F;) € Uqguant(PROP), if ¢; € Unsat,
then there exist no inputs m on which ¥xi, . . . , xm, .PROP holds.

Let us now discuss the parallel between our definition of X'(A4,)
and the work presented in [10]. Consider the clause set ¢, where
V(xx),1 < k < m are quantified. As our transformation introduces
a single uninterpreted function symbol for each function type T, our
set constraints correspond exactly to those discussed in [10], with
the addition of conditionals. Note that we do not consider clause-
indexed instantiations for the quantified variables as the notion
of clause is not so clear in PureScala, yet this simplification only
translates into extra (sound) instantiations in our procedure. The
conditional associated to each Pquanr instantiation corresponds to
a path condition under which each instantiation is relevant. As
long as PROP falls into a fragment that is covered in [10] (namely
only pseudo-macro function definitions), our preserves Theorem
1 from [10] as negated path conditions will translate into clause
satisfiability for any quantifier-free instantiation of a given clause,
therefore rendering the associated quantifier-free instantiations
irrelevant. Therefore, there are interesting fragments for which
Uquant constitutes a semi-decision procedure.

Remember from our definition of Uqguanr that there may exist
appq € Ao such that app is not quantifier-free. Now consider
u; = ui—1 UZ(appq, fun;) for some i € N; given our definition
of Xi = Xur(4i), if Z(appgq, fun;) introduces an app € A;
with argument a; such that a; = V(xi), &X; will satisfy the new
set constraint given by INIT-X. In other words, our instantiation
procedure will automatically account for the implicit universal
quantification given by the definition of (app):, namely

V1o, xn E(X1, ..oy xn) = { £.args — x™ H£.body].

Let us now extend the procedure to model finding. Consider
(X, As) € Q(A,) and model M. We say M finitely interprets X;
iff for each € X; with (bs, 05) = inst(z), we either have

1. M = —bs, or

2. for each appy € A; where app, = (bg, cq, tpeq, ay) such
that app, is not quantifier-free, there exists app, € A; where
appg = (bg,cq,tpey,ay) such that M |= b, <= by,
M = 0,]cq] = ¢y, tpeq = tpeg and M |= Os[ag] ~ ag .

Lemma 29. For (X;, A;) € Q(Ap) and model M, if M finitely
interprets X, then M finitely interprets X 1.

As X; and A; are finite, the above conditions can be encoded
into a clause set 7;. Note that given a model M = ~;, then for all
j > i, we have M = ;. For a given (¢:, Ai, F;) € Uquant (PROP),
we already had associated v;, p;, and we can now consider an
associated y; obtained from A; and Xiwir(A; ). These considerations
lead to the following theorem

Theorem 30. Given (i, Ai, Fi) € Uquant(PROP) with associated
Vi, pi,vi, and M ': (ﬁl U % U pi Ui, l'fV)(l7 ...y Xm .PROP is
in a semi-decidable fragment, then Vxi, ..., xm.PROP holds on
Car(vars(¥xi, . . ., Xm .PROP)).

One should note at this point that all first-class functions contained
within Cps(+) have finite range. As our exploration of relevant
arguments is complete for semi-decidable fragments, if inputs where
all first-class functions have finite range exists, then these ranges
will eventually be covered by the considered arguments, leading

to the following (conditional) completeness guarantee for model
finding

Theorem 31. [f there exist inputs m such that for each first-class
function £ € m, the set {Vv | £(E1,...,En) ==V } is finite and
VX1, ..., %Xm.PROP is in a semi-decidable fragment, then there exists
(i, A, F;) € Uquant(PROP) with associated s, pi, i, and model
M such that M |= ¢; U U p; U,

It is again trivial to extend Uquant () to multiple PROP1, . . ., PROP,;,.
Note that when considering Uquanr in conjunction with Uy, we
must ensure that our assumption on type inhabitance is satisfied,
thus conditionning soundness of validity proofs to satisfiability of
the relevant INV; expression.

It is also interesting to consider the procedure that takes a
quantifier-free program P as argument and shows that to inputs m
exist such that PROP1, . . . , PROP,, hold on m and m[p] — false.
Given the transformation (bp, P) ~~ (p, ¢», Ap, Fp), it suffices to let
(e U{bp,—p}, Ap, Fp) C g in Uguant ({ PROPy, ..., PROPy, }, P)
to obtain such a procedure. However, termination considerations
now appear, much as in the Uposr case. These are handled similarly
to Urost by extending the call-graph with new relevant edges and
showing that the considered measure remains strictly decreasing.

9. Implementation and Evaluation

We have implemented the techniques described in this paper as a
plugin for the scalac compiler that accepts a subset of Scala and
performs verification of such programs. We illustrate the behavior
of our verifier on a sample of benchmarks to indicate that our
techniques are of practical interest; a more detailed description
of implementation and evaluation is beyond the scope of this
anonymous submission.

Table 1 shows the results we choose to highlight. Most verifica-
tion benchmarks feature some use of higher-order functions and a
fair selection display useful interactions between ADT invariants
and first-order quantifiers. Our benchmarks present a non-trivial
List library with the usual higher-order operators which feature
verified contracts describing various properties such as associativ-
ity (map, flatMap), equivalence (exists, forall, folds, etc.), and the
monadic laws for flatMap. It is interesting to note that we can pro-
duce interface-like features by passing around first-class functions.
Consider for example the following signature

def mergeSort[T]|(list: List[T])(key: T = Z): List[T] = { ... }
ensuring { res =
isSorted(res)(key) && content(list)(key) == content(res)(key) }

where the key function provides a mapping into the well-ordered
domain of integers. Multiset contents and sortedness are then defined
with respect to the provided key function.

ADT invariants have enabled a significant decrease of the anno-
tation burden in certain involved benchmarks such as binary search
tree insertion verification (Tree). First-order quantifiers are featured
in the Tree, MergeSort (where they are used to encode higher-order
functional equality), ArraySearch and AssocCommut (various mathe-
matical properties of associative and commutative functions) bench-
marks. Note that although the performance of these benchmarks is
slower then those without quantifiers, such verification tasks remain
tractable and feature a very high degree of automation. In terms
of performance, our implementation of the quantifier instantiation
procedure is in many cases not as fast as implementations that would
use internal data structures of SMT solvers, but we have identified
cases where quantifier instantiation techniques in the solvers we use
(Z3 and CVC4) do not succeed in reporting models for quantified
conjectures, whereas our approach does.

Our termination prover shows termination of all listed verifi-
cation benchmarks, though it requires the introduction of ghost
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Table 1. Summary of evaluation results for verification, featuring
lines of code, (V)alid, (I)nvalid and (U)nknown verification condi-
tions, as well as running time of the procedure.

Operation LoC \'% I U Time (s)
List 820 242 0 O 6.85
Tree 95 15 0 1 1.10
StateMonad 212 19 0 O 0.50
OptionMonad 49 9 0 0 0.39
ExceptionMonad 61 6 0 0 0.36
FoldAssociative 104 24 0 O 1.40
BalancedBrackets 225 39 0 O 1.12
ArraySearch 166 29 2 0 20.64
MergeSort 67 13 0 O 11.64
AssocCommut 44 3 2 0 13.80
Total 1843 399 4 1 57.80

Table 2. Summary of evaluation results for termination checker,
featuring lines of code, (P)roved functions, (N)on-terminating inputs
reported and (U)nknown, as well as running time of our tool.

Operation LoC P N U Time/ (s)
NNF 101 14 0 O 13.49
Ackermann 10 2 0 O 1.54
QuickSort 62 10 0 0 8.48
RedBlackTree 60 8 0 O 1.25
LambdaCalculus 53 4 1 0 11.78
CyclicReasoning 30 1 30 8.13
HOTransformations 41 3 0 O 543
McCarthy91 10 0 0 1 (15043)
Total 357 42 4 1 50.10 |

variables to handle binary search and merge sort as the relevant
measures are entirely non-trivial. We further list certain interesting
termination benchmarks that showcase the flexibility of our tool.
The evaluation results for these can be found in Table 2. Our prover
can also report non-terminating inputs in certain classic cases of non-
termination. For example, out prover is able to show that evaluation
is non-terminating in the untyped lambda calculus (Appendix D.1)
and produces the non-terminating input (Az.zx)(Az.zz), namely
the well-known omega term. Our termination checker defers non-
termination checking until all positive techniques have failed to
produce a proof, contributing to larger execution times in non-
terminating cases. Overall, we obtain a good tradeoff between au-
tomation and performance by using a cascading model of termina-
tion checking that starts by invoking simple (and fast) procedures
and then discharges failed checks to more powerful techniques. In
practice, a significant portion (almost half) of our termination proofs
are constructed without requiring any solver interaction, justifying
this incremental approach.

10. Related Work

Verification of higher-order functional programs has gained recent
traction through different significant approaches.

Model checkers for higher-order programs. Dependent type sys-
tems with refinement types such as Liquid Types [32, 39] and ap-
proaches based on model checking higher-order recursion schemas
[15, 16, 27] are powerful verification techniques that elegantly

handle higher-order functions. These procedures can benefit from
counterexample-guided abstraction refinement (CEGAR) for high
levels of automation and even boast relative completeness results
for program typing [36]. It can however prove quite challenging to
identify the cause of proof failure [38]. Note that our ADT invariants
can be viewed as some form of refinement types [13, 37]. Recent
work has shown that shape analysis of symbolic execution traces
can prove effective at identifying contract violations in a (relatively)
complete manner [23, 24]. These techniques, although similar in
their aim to ours, use significantly different approaches and are
therefore adapted to orthogonal problems such as dynamically typed
languages and mutable state. Other techniques focus on unfolding
first-order recursive functions [34, 35] or treat the simpler case of
functions without datastructures or quantifiers [40].

Theorem provers and solvers. Automatic HOL theorem provers
such as LEO II [4] and Satallax [8] feature semi-decidability results
for certain HOL semantics. Given some suitable encoding, these
systems can automatically verify properties in the fragment we
discussed, however, their effectiveness on benchmarks with heavy
usage of data types and integers is expected to be limited [33].
Saturation-based first-order theorem provers [1, 25] can efficiently
handle first-order logic with equality [2, 17] but handling theories
and higher-order functions remains a difficulty despite progress
[29]. Interactive theorem provers such as Isabelle/HOL [26] and
Coq [5] enable large scale real world verification efforts at the cost
of automation. Partial automation [7], and counterexample finders
for higher-order functions [6, 22] further improve the usability of
these tools, though user interaction generally remains a require-
ment. Finally, SMT solvers such as Z3 feature powerful quantifier
instantiation procedures [10] (see Section 8). Considering quanti-
fiers at the source level (as in our case) can significantly improve
the performance of program verification [20].

Automated termination provers. Automated termination proving
for first-order programs has long existed in industrial-grade frame-
works such as ACL2 [9, 14, 21]. Recent work has introduced various
procedures that tackle the higher-order case as well [11, 12, 18]
through a combination of reachability analysis and upper-bounding
the call-graph path lengths (size-change termination [19] in our
case). Our procedure is able to automatically synthesize (and as-
sume) inductive invariants relevant to the considered measure, thus
significantly increasing its effectiveness in practice. We have found
our termination prover to suffice our needs when writting interesting
and applied benchmarks.

Finite model finders. All models reported by our procedure have
finite nature (they have a finite range in the case of first-class func-
tions). Techniques for finite model finding can be quite effective at
counterexample reporting by explicitly considering potential mod-
els [6], uses an underlying relational constraint solver to guarantee
completeness for bounded domains [22], or through incremental
model search where model size is increased at each step [3, 30]. Our
system uses specification execution to speed up model finding.

11.

Our system has been implemented by gradually enriching a verifier
for first-order programs with features that contribute to modular
specification and verification. The resulting design aims for simplic-
ity of the specification language: it uses the programming language
expressions for specifications, and builds on well-understood con-
cepts of contracts, invariants, and quantifiers. The system is effective
when used in fully automated mode, which makes it convenient for
concisely documenting and verifying algorithms and data structures.

Conclusions
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APPENDIX
A. Syntax of PureScala
B. Encoding Pattern Match Expressions

Consider pattern matching expressions that deconstruct algebraic
data type instances into their component fields. We require pattern
matches to cover all ADT constructors. Given a set of n cases where
pattern match case ¢ € {1,...,n} has shape

case; ::= case cons;(vi,1,...,Vim) = E;

and given pattern match expression
E ::= SCRUT match { case; ... case, },

the transformation of (b, E) closely resembles that of if-expressions.
For each case;, we define b; a fresh boolean-sorted constant. Given
E : T, we also define the fresh constant » with sort S(T). Given
(b,SCRUT) ~-t s, we consider for each case; the substitution
0; = {V(vi;) — fieldij(s) | 1 < j < m} and compute
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(bs, Ei) ~t e; for 1 < ¢ < n. This lets us define the clausal encod-
ing of pattern match expressions as

Osplic = { (bAisConsi(s)) <= b;i|1<i<n}
U{bl - (r:&z[[ez]])\lgzgn}

Note that unlike in the if-expression case for b; and b., we don’t
need to explicitly ensure b = —b; when i # j as this is
ensured by the ADT theory (isCons;(s) is mutually exclusive with
1sCons;(s)). This leads to our final inferrence rule

., by, fresh (b, SCRUT) ~~ (s, ¢s, As, Fs)
(Di, Ei) ~ (ei, i, Ai, Fi),1 < i <n

(b,E) ~ (r,

¢s U [d1] U+ Ubp[dn] U dspiit,
As U0 JAI]JU--- U0, [AR],
F,UO[F]U---UBL[F.])

We use 6;[] on all terms stemming from the transformation of E; to
ensure correspondence between the match deconstruction semantics
and the ADT theory axiomatization. Our transformation therefore
guarantees that field; ;(s) terms can only occur in positions where
1sCons;(s) must hold.

T,bl,..

MATCH

C. Proofs
Lemma 1. There exists model M |=b A ¢u A dy A e > v.

Proof. First note that v is not necessarily ground as it may con-
tain constants introduced by the transformation of first-class func-
tions in V. However, ¢y must be empty given the definition of
value expression V. Furthermore, given two expressions Ei, E2
and constant b with (b,E;) ~ (e, @s;,_,_), m[E;] == V;, and
(b, v;) ~tv; fori € {1,2}, we have vars(vi) Nvars(ve) = 0
as all introduced constants are fresh. Therefore, given models
M; = b A ¢s; Ne; ~ v,4 € {1,2}, there must exist a model
M = bA¢s, Ade, Ner > v Aea >~ vg. It is then trivial to
conclude the proof by induction over the structure of E. O

Lemma 3. There exists an M satisfying Lemma 1 such that
for Ec C E where Ec ::= C(Ei1,...,En) and for fun € Fy,
if M = Cp(Ec) A (fun)s, then M = Ci(C) ~ (fun)y iff
Cv(c) = Cv(Ce((fun)y)).

Proof. Follows directly from Lemma 1 and Proposition 2. Indeed,
if Cy(C) ~ (fun)s must hold, then C and Cg((fun)y) are one and

definition ::= abstract class id tdecls
| case class id tdecls ( decls ) extends id tdecls
| def id tdecls (decls) : type = expr
tdecls == €| [id(,id)"]
decls == € | id : type (,id : type)”
expr = true | false | id
| if (expr ) expr else expr
| id tparams ({expr {,expr)™)?)
| eapr ( {expr {, expr)* )7)
| (decls) = expr
| expr match {
(caseid ( (id (,id)*)?) = expr )T
}
tparams = € | [type (, type )"]
type = id tparams | Boolean
id = |IDENT

Figure 6. Syntax of PureScala

the same in m[E]. Otherwise, an arbitrary (different) value can be
chosen for the constant (fun) . O

Lemma 4. Given inputs m with m[P] == Vv and (bp, V) ~~t vp,
given Ec C P where C(Ec) = dispatchtpe (¢,a1y...,an) and
(Cy(Bc), Cv(Ec)) ~>t ve, there exists model M such that either

1. M Eby A dp Aer = vp AO:[ds] A Os[eg] = ve, or
2. M E by Ao Aep = vp A —ibs.

Proof. Follows from Lemma 3 and the correspondence between
the definition of the 0; substitution and the operational semantics
for both functions (closure substitution) and function applications
(argument substitution). O

Theorem 5. Given P : Boolean with ¢; from U (P), if ¢; € Unsat,
then no inputs m exist such that m[[p] — false.

Proof. Let us assume inputs m exist such that m[p] — false.
Lemma 1 tells us that there exists Mo = by A —ep A ¢pp. Lemma 4
then gives us a model M; = ¢1 and the proof follows through by
induction on M. O

Lemma 6. Given ¢; from Usost(Erost), if ¢; € Unsat and POST
terminates on all inputs, then there exist no inputs m such that
m[POST] - false.

Proof. First off, evaluation semantics of function application clearly
ensure a correspondance between inputs to POST and Eposr. Let
us assume there exist inputs m such that m[PosT] — false.
Consider the set S defined as the smallest fixpoint where

L. £(mfvi],...,m[vn]) € S,

2. if £(E1,...,En) € S, then for each £(E!, . .., E},) encountered
during evaluation of { v" — E™ }[POST], £(E},...,E;,) € S.
We assume m is selected such that for each £(E1,...,E,) € S,

either E; = m[v;],1 < i < n,or {v" — E" }[POST] = true.
Note that such inputs can be obtained by recursively selecting the
arguments of the offending application in S as inputs m. Further
note that termination of each { v"* — E™ }[POST] is ensured by the
condition on POST.

Lemma 1 ensures that for each £(E1,...,E,) € S with asso-
ciated bs, app;, fun; where (fun;): = £, given the clause set
obtained by (¢post,j,_,_) = Prosr(app;, fun;), there exists a
model M; = bs A ¢post,;j. Finally, we can adapt option No. 1 of
Lemma 4 to M |= by A ¢p A —ep A Ot [dp] A B¢ [p], thus concluding
our proof. O

Theorem 7. Given ¢; from Uposr(P), if ¢; € Unsat, POST is valid,
and POST terminate on all inputs, then there exist no inputs m such
that m[P] — false.

Proof. We assume inputs m exist such that m[p] — false. Valid-
ity and termination of POST, along with Lemma 6, ensure that there
exists M; = ¢post,; for each (¢reosr,j, _, _) = Prost(appj, fun;).
Theorem 5 then ensures there exists My = ¢5 5 from U(P) and
Lemma 4 finally guarantees that M, and all M can be unified into
a single model M |= ¢; from Uposr(P). O

Theorem 11. If for each E € | J; cp Ct there exists some ¢; from
U (DEC(E)) such that ¢; € Unsat, then P terminates for all inputs.

Proof. GivenE € C¢, Theorem 5 ensures that no inputs m exist such
that m[DEC(E)] — false, namely, either m[DEC(E)]| — true
or m[DEC(E)] diverges. However, if m[DEC(E)] does not termi-
nate, then there must exist an infinite sequence of function applica-
tion evaluations APPg, APP1, ... such that APPg ::= £(m[£f.args])
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and (APP;, APP; ;1) € R.Foreach APP; ::= £, 11(Ai1,..., Ain,)s
there exists by definition some £;41(Ei,1,...,Ein;) € Ct, and in-
puts m; such that m; [path(£;41(Es1,- - -, Ein, ))] — true and
mi[[Bi ;] = Aq; for 1 < j < n,. Given 3, size(Aqi;) —= Vi,

we therefore have an infinite sequence Vi > Vo > .-+ > 0 and
obtain a contradiction. Applying Proposition 10 then concludes our
proof. O

Theorem 13. For £ € P, if Posts(f) is post-terminating for all
inputs, Posts(£) are valid, and for each € € |, Cg there exists
some ¢; from Uposr (Posts(f), DEC(E)) such that ¢; € Unsat, then
P terminates for all inputs.

Proof. Follows from conditions of Uposr soundness begin satisfied
and similar arguments to Theorem 11. O

Lemma 16. For funi, funs € F where fun; = (_, f;,£5,_)
and £ is ground for j € {1,2}, we have £1 = £5 iff some model
M = fi ~ fo AN EQ:(F) exists.

Proof. Proposition 15 ensures that there is an M | EQ:(F). By
induction on the definition of eq, one sees that the only non-trivial
instance is case No. 1 when C¢(E1) or C¢(E2) contains some term
with sort o¢. However, as the £; are ground, the definition of EQs
ensures that there is a x < y clause in EQ¢(F') for such terms.
One then concludes the proof by induction on the set of first-class
functions in £ that satisfy the conditions of case No. 1. O

Lemma 18. Given a model M = n;(v), there is no term s C M[v]
with sort os such that M |= s € F;(v).

Proof. Trivial if o = o%. The clause n;(v) ensures there exists
tj,j < isuchthat M |= v ~ t;. The o¢-exhaustiveness constraint
on the enumeration of o ensures that there exists a model M2 and
term ¢, such that My = M[v] ~ t) and for any s C M [v] with
sort o, there exists s, C t such that My |= s ~ sg. Unicity
further guarantees that j = k and therefore M [v] = Ma[tx]. O

Theorem 20. Given a model M = ¢; U ¥; U p;, we have
Cas (vars(p))[[P] — false.

Proof. We start by defining C};, an extension to Cps with the
following extra rule
fun S F’Hfun: (—7f7f>cn)

E; = Cly (cs, f.closures;.tpe),1 <i<n

MEt~f
Ch(t, £.tpe) = { f.closures — E" }[£]

It is clear given the definition of C}; that there exists a left inverse
to Ch, which we will call Cj;, such that C3; (Cj, (¢, T)) = .

Consider the constant-expression pair b, E that was transformed
during U (P) and consider the corresponding (b, E) ~ (e, ¢, A, F).
Note that vars(E) — vars(P) is not necessarily empty due to term
substitutions in pattern-matching expression transformation and
Z(app:, fun;) dispatch. Although (e, ¢, A, F) may appear sub-
stituted in U(P), it is clear that one can determine the subset of
appj, fun; pairs in D; that are related to E. We therefore let ®;
consist of the unsubstituted portion of ¢; U 1); U p; that stems from
E (note that ¢ C ®;). We show by induction that if there exists
M = {b} U &y, then Cay, (vars(E))[E] == Ciy, (e, E.tpe).

Let us consider the case of pattern-matching expressions where

E == Smatch { ... casecons;(vj1,...,Vjm;) = R;j ... }.

By induction, we have Cyy, (vars(S))[S] — V and can assume
without loss of generality that v ::= cons; (Eq, ... s Em; ). Consider
the model My, = Me{ V(vjx) = Ciz, (Ex) | 1 < k < my } and

note that My |= {b} U @ implies that My; |= {Cb(R;)} U Py,
and Cjy, (e, E.tpe) = Ciy, (C(Rj), Rj.tpe).

Now consider the case of function application expressions where
E ::= C(E1,...,En), and consider (Cy(E), E) ~»t disp(app) where
app = (_,c,_,a™). We further consider the unsubstituted sets
Ag, Fr and T (app) that stem from E. We examine two mutually
exclusive cases:

Mz = ¢ € Ty (app) : consider fun € F; corresponding to ¢ where
fun = (L,_,£,¢™), as well as ¢; = Ciy,(cj,v;.tpe) for
v; € f.closures and Ay = Cy, (ak, vi.tpe) for vy € f.args.
Let us now define the following models

M: = Mg{V(vj) = Cir,(C;) | v; € f.closures },
M poay = Me{ V(i) = Car, (Ak) | vi € f.args}.

Since My | {c¢ € Ti(app),Cy(E)} U @z, we have that
Ms poay E {bs} U Pt .poay. Given (be, £.body) ~~t body, we
therefore have Cj, (e, E.tpe) = Cjwf_bodu (body, £.body.tpe).
Finally, Lemma 16 ensures consistency of the uninterpreted
function symbol applications disp(app) given the ground first-
class function { v; — C; | v; € f.closures }[f].

Mz = ¢ € Equ,i(vars(P), Az) : the v; clause set ensures that
M Eau,i(vars(P), Ag)] N M[Tx(app)] = 0, and therefore
Ciy, (¢, C.tpe) = Cas, (c, C.tpe). To conclude this case, it suf-
fices to note that Cpy, (vars(E))[E] —= Cj, (e, E.tpe) by defini-
tion of Car,.

The remaining cases for E follow trivially from the inductive
hypothesis. To conclude our proof, one notes that M = {bs} U ®p
where @, = ¢; U ¢; U p; and M |= —Cy(P), therefore we have
Ch;(Cy(P)) = false and Cps (vars(P))[P] — false. O

Theorem 21. Ifinputs m exist such that m[p]| — false, then there
exists i € N and model M such that M = ¢; U 1; U p;.

Proof. By Proposition 15, Proposition 17 and Proposition 19 along
with freshness of all relevant constants, we have M, = 1;
existence. Theorem 5 further ensures that My = ¢; exists and
the proof of Theorem 5 in combination with Lemma 16 ensures that
My |= ¢i Up; exists as well.

Let us now consider p;. We define the set A,, of all app tuples
corresponding to function applications encountered during evalua-
tion of m[P]. Similarly, let F}, the set of fun tuples corresponding
to encountered first-class functions that are defined within . Finally,
let F,,, the set of first-class functions defined in m that can appear
in caller position of app € A,,. Note that this restriction filters out
the first-class functions in equality positions of Cys outputs.

Our fairness requirement ensures that (app). € T;(app) will
eventually be satisfied for app € A,,, when (app). corresponds to
some fun € F,,.Forf € F,,, consider £ of the shape returned
by Cu such that £ and f2 agree on all relevant inputs given by
A,, and the shape of f; ensures distinctness from functions in
F,, (ensured by definition of Cps). As no equality predicate on
function types exists in P, given ma = { £ — £2 }[m], it is clear
that mg [P] — false. There must therefore exist some inputs my,
such that my, [P] — false and the associated F,,, contains only
functions of the shape returned by Cy, thus ensuring satisfiability
of ¢; U p; U p; for some ¢ € N. O

Lemma 23. Given amodel M = n;(v), there is no term s C M[v]
with sort ot such that M |= s & S;(v).

Proof. Consider the case where ¢ = o+. Unlike for Lemma 18,
this case is non-trivial as there may exist s C M [[v] with sort o.
Furthermore, given ¢; such that M |= v ~ t;, theory separation
doesn’t ensure that there is a corresponding s; C t; such that
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s = M[s;] as t; and s have the same sort or. However, ADT thery
axioms do ensure that such a correspondance exists, an observation
that is not clear for any arbitrary theory. The rest of the proof closely
follows the general case from Lemma 18. O

Theorem 25. For (¢i, As, Fi) € Unw(P) with associated 1, p;, if
M = ¢ Ui U ps, then INV holds on Cpz (vars(P)).

Proof. Given v € vars(P), it follows from Lemma 23 and induction
on > that for each E C Cas(v) such that E : T, there exists
s € Sau,i(vars(P), A;) such that Cs (s, T) = E. Furthermore, the
b constant corresponding to s must hold in M.

Consider the subsets of ¢; U ¢; U p;, A; and F; that de-
rive from Py (s) and note that they correspond to the sequence
U(—INV) where V(x) has been substituted by s. We can there-
fore construct a model M, = M{V(x) — M][s] } such that for
some (¢;, A;, Fj) € U(—INV) with associated 15, p;, we have
M = ¢; Up; U p;. The proof of Theorem 20 then ensures that
C, (vars(INV)) [INV] = true.

Finally, as x € vars(P) when an instance Vr is required for
Car(vars(P)), Cas(x) will produce a value on which INV holds. Note
that when no value V exists, either M doesn’t exist, or Cas (x) won’t
terminate, thus ensuring soundness of produced inputs. O

Theorem 26. If inputs m exist such that INV holds on m and
m[P] = false, then there exists (¢;, Ai, F;) € Unv(P) with
associated 1, p; such that M = ¢; U1; U p; exists.

Proof. Closely follows the proof of Theorem 21 where m is con-
verted into my, such that all first-class functions in my, correspond to
results of Cps. Note that as INV holds on m, any V..., that depends
on T can be obtained by evaluating the corresponding first-class
function in m at an arbitrary point. O

Lemma 27. For Q(Ap) = (Xo,_), (X1, ),.... U, &i = X(Ap).

Proof. Equivalence for INIT-G and INIT-X rules is given by definition.
For ExPAND rule to apply, there must exist app € Ao such that app
is not quantifier-free. The ExpaND rule application then corresponds
exactly to introducing (b A bs, 0s[c], tpe, 05[a™]) into A; for each
app € Ao that is not quantifier-free and applying INIT-G. The proof
then follows by induction on 4. O

Theorem 28. Given (¢pi, Ai, F;) € Uquant(PROP), if ¢; € Unsat,
then there exist no inputs m on which Vxi, . . . , xm, .PROP holds.

Proof. Follows from the Compactness Theorem as each Pquant(z:)
corresponds to a quantifier-free instantiation of PROP. O

Lemma 29. For (X;, A;) € Q(Ap) and model M, if M finitely
interprets A;, then M finitely interprets X 1.

Proof. Condition No. 1 clearly carries over to all x € X1 — A}
If condition No. 2 holds on z;11 € X; selected for A; 1, then
given (bi+1,si+1) S Xk(A¢+1), there exists (bi, Si) c Xk(Al)
such that M = biy1 <= b; and M |= si+1 =~ s;. Therefore, all
z € X1 — &; will satisfy condition No. 2. O

Theorem 30. Given (¢, Ai, F;) € Uquant(PROP) with associated
’([Ji,pi,’yi, and M ': ¢i U U pi Ui, l:fol, ..., Xm .PROP is
in a semi-decidable fragment, then ¥xi,...,xm.PROP holds on
Ca (vars(Vxa, . . ., Xm .PROP)).

Proof. Let us assume there exist no inputs m such that
VX1, .. .,%m.PROP holds on m. Semi-decidability then tells us there
exists j > 4 such that ¢; U; U p; Uy; € Unsat.

Let us consider u;+1 and @41 = ¢i+1 U WYit1 U pit1 U yiga.
We start by assuming w;+1 was obtained through Z. Note that if

M = (appi+1)o A (funit1)s A (appit1) s = (funit)y,

then all clauses introduced by Z are irrelevant and the tuples in
A1 — A; satisfy condition No. 1 of finite interpretation. Otherwise,
M = p; ensures that a corresponding inlining has already taken
place and there must therefore exist a mapping 6 from fresh variables
introduced by Z to variables in M such that OJu;+1] C u; and
M{mHM[[y]] ‘ CIZ”—)yEQ} 'ZCI)Z‘+1.

If w;41 was obtained through Pquant, then ¢it1,Vit1, pit1
are unchanged and Lemma 29 ensures that there exists model
M;11 |E ®i41. Finally, by induction on ¢ we have existence of
M}, |= @ for all & > ¢ and thus obtain a contradiction. Validity
of Car(vars(Vxi, ..., xm.PROP)) is then ensured by applying the
proof of Theorem 20. O

Theorem 31. [f there exist inputs m such that for each first-class
Sfunction £ € m, the set {Vv | £(E1,...,En) —>V } is finite and
VX1, ..., %m.PROP is in a semi-decidable fragment, then there exists
(s, A, F;) € Uquant(PROP) with associated s, pi, i, and model
M such that M = ¢; U U p; U,

Proof. Follows from semi-decidability and fair exploration of rele-
vant arguments to each £. O

D. Examples
D.1 Lambda Calculus Evaluator

object LambdaCalculus {
abstract class Term
case class Var(x: Biglnt) extends Term
case class Abs(x: BigInt, body: Term) extends Term
case class App(func: Term, arg: Term) extends Term

def fv(t: Term): Set[BigInt] = t match {
case Var(x) = Set(x)
case Abs(x, body) = fv(body) ++ Set(x)
case App(func, arg) = fv(func) ++ fv(arg)

// b=>ult

def subst(x: Biglnt, u: Term, t: Term): Term = t match {
case Var(y) = if (x ==y) uelse t
case Abs(y, body) = if (x == y) t else Abs(y, subst(x, u, body))
case App(f, a) = App(subst(x, u, f), subst(x, u, a))

// big step call—by—value evaluation
def eval(t: Term): Option[Term] = (t match {
case App(tl, t2) = eval(tl) match {
case Some(Abs(x, body)) = eval(t2) match {
case Some(v2) = eval(subst(x, v2, body))
case None() = None[Term]()

case _ = None[Term|() // stuck

case _ = Some(t) // Abs or Var, already a value
}) ensuring { res = res match {

case Some(t) = isValue(t)

case None() = true

bas

def isValue(t: Term): Boolean = t match {
case Var(x) = true
case Abs(x, body) = true
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case App(f, a) = false

¥

/* Termination checker (LoopProcessor) says:
Non—terminating for call:
eval(App(Abs(0, App(Var(0), Var(0))), Abs(0, App(Var(0), Var(0)))))
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