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Abstract

Classical pivots have frictional losses leading to the limited quality factor of oscillators used as time bases  in mechanical watches. 
Flexure pivots address these issues by greatly reducing friction. However, they have drawbacks such as gravity sensitivity and limited 
angular stroke. This paper analyses these problems for  the cross-spring flexure pivot and presents an improved version addressing 
these issues. We first show that the cross spring pivot cannot be both insensitive to gravity and have a long stroke. A 10 ppm sensitivity 
to gravity acceptable for watchmaking applications occurs only when the leaf springs cross at about 87.3 % of their length, but the 
stroke is only 30.88 % of the stroke of the symmetrical cross-spring pivot. For the symmetrical pivot, gravity sensitivity is of the order 
of 104 ppm. Our solution is to introduce the co-differential concept which we show to be gravity insensitive. We then use the co-dif-
ferential to build a gravity insensitive flexure pivot with long stroke. The design consists of a main rigid body, two co-differentials and a 
torsional beam. We show that our pivot is gravity insensitive and achieves 100 % of the stroke of symmetrical pivots.

Résumé

Les frottements dans les paliers lisses des oscillateurs utilisés comme bases de temps des montres mécaniques mènent à un facteur 
de qualité limité. Les guidages flexibles permettent de réduire ces pertes en éliminant le frottement. En revanche, ils ont des défauts 
en raison de leur sensibilité à la gravité et leur course limitée. Cet article analyse le pivot flexible à lames croisées et en présente une 
version améliorée. Dans un premier temps, nous démontrons que le pivot à lames croisées ne peut pas être à la fois insensible à la 
gravité et avoir une longue course. Une insensibilité de 10 ppm acceptable pour les montres se produit lorsque les lames-ressort se 
croisent à 87.3 % de leurs longueurs, mais la course n’est alors que 30.88 % de la course du pivot croisé symétrique. Pour le pivot 
symétrique, la sensibilité à la gravité est de l’ordre de 104 ppm. Notre solution est l’introduction du concept du codifférentiel que l’on 
démontre insensible à la gravité. On utilise le codifférentiel pour réaliser un pivot flexible à grande course. Le mécanisme est composé 
d’un corps rigide principal, de deux codifférentiels et d’une tige de torsion. Nous démontrons que notre pivot est insensible à la gravité 
et qu’il atteint 100 % de la course des pivots symétriques.
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(a) Modelization (b) Demonstrator.

Fig. 1 :	New gravity insensitive 
flexure pivot (GIFP).
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1. Introduction and statement of results

1.1 Mechanical watch oscillators

The time base used in all mechanical watches is a harmonic os-
cillator consisting of a spiral spring attached to a balance wheel 
having a rigid pivot rotating on jewelled bearings, see figure 2(a). 
The pivoting motion on bearings causes significant friction and 
decreases watch autonomy as well as oscillator quality factor 
to the order of several hundred, this quantity believed to be the 
most significant indicator of chronometric performance [4].

It is well-known that flexure pivots drastically reduce friction, see 
[5, 6], so flexure-pivot based oscillators could improve mechan-
ical watch time bases. In 2014, a flexure pivot was first used as 
mechanical watch time base, see figure 2(b), thereby increasing 
quality factor to several thousand and watch autonomy by an 
order of magnitude to approximately 30 days [3]. This flexure 
pivot has a special geometry designed to minimize the effect of 
gravity on stiffness.

In this paper, we describe a new flexure pivot minimizing the ef-
fect of gravity while retaining a long angular stroke, making it 
desirable as a time base for mechanical watches.

1.2 Oscillator flexure pivot specifications

Mechanical harmonic oscillators must obey Hooke’s Law so 
spring stiffness should be constant. Chronometric performance 
means constant frequency and since this depends on spring stiff-
ness, portable timekeepers such as watches must have oscillators 
whose spring stiffness is insensitive to outside influences such as 
temperature and the orientation of the force of gravity. Since me-
chanical watches are precise to within a few seconds per day, we 
will consider an effect to be negligible if it is of the order of 10 ppm 
(parts per million), in watchmaking terms, about a 1 s / d error.

In addition to being rotational bearings, flexure pivots provide an 
elastic restoring force so they can be used as springs for har-
monic oscillators. However, their application to time bases can 
be limited by the following factors :

•	 Limitation 1. Spring stiffness can be a non-linear function 
of rotation angle.

•	 Limitation 2. By construction, the kinematics of flexure 
pivots closely approximate rotational motion around a fixed 
axis but small translation can occur as angular rotation in-
creases, a so-called a parasitic shift.

•	 Limitation 3. Spring stiffness can be affected by the orien-
tation of gravity load.

•	 Limitation 4. Limited stroke makes it difficult to maintain 
and count oscillation using classical watch escapements.

Non-linearity of beam stiffness under bending has been studied 
extensively [2] including the case of flexure pivots [8], and para-
sitic shift has also been investigated in the literature [9], so we do 
not consider these issues here.

We will focus on gravity sensitivity as this issue has not received 
much attention. We will also consider the stroke for a given as-
pect ratio and admissible stress level of the beams making up 
the flexure pivots.

Definition. We apply the term gravity insensitive to an oscillator 
if the relative change in its period caused by the effect of gravity 
on its stiffness is of order 10 ppm. Otherwise, we will say that it 
is gravity sensitive.

Definition. We define stroke to be the rotation angle of the pivot 
which leads to a maximum stress level in the beams equal to the 
admissible value σadm, [9, p. 29]. The value of σadm is taken to be 
the same for all pivots considered in this paper. Stroke is essen-
tially the maximum amplitude of the oscillator.

We can now define design goals for our flexure pivots.

Goal 1. Gravity insensitivity.

Goal 2. Maximum angular stroke for a given beam aspect ratio and 
given admissible stress and Young’s modulus (material properties).

Since the main form of linear force affecting the chronometric 
performance of a portable timekeeper is gravity, we will use the 
term gravity to refer to any linear acceleration. The results of this 
paper apply to all linear accelerations.

1.3 The cross spring flexure pivot (CSFP)

(a) 3D view.

Fig. 2 : (a) Classical pivot watch time base [12], (b) Flexure pivot watch 
time base demonstrator.

(a)

(b)
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Our analysis begins with the study of the well-known cross-spring 
flexure pivot (CSFP) described by Wittrick [14] and applied to 
watchmaking in [3,10]. The CSFP consists of a rigid-body attached 
to the ground by two perpendicular leaf-spring beams, as illustrat-
ed in figure 3. The beam length is Lc and dc denotes the distance 
between their crossing and the mobile end, as shown in figure 3(b).

The beam geometry is such that the CSFP has one DOF (degree 
of freedom), a rotation with axis lying on the intersection of the 
beam mid-planes [9, p. 97], the x-axis in figure 3(a).

Tab. 1 :	Properties of the CSFP for special values of δc = dc / Lc.

δc
Specification

0 0.127 0.5 0.873 1

Stiffness error due to gravity [ppm] 103 10 104 10 103

Normalized angular stroke [%] 25 30.88 100 30.88 25

The performance of the CSFP is evaluated by varying the pa-
rameter δc = dc / Lc, with dc and Lc as in figure 3(b). Table 1 shows 
that choosing δc = 0.127 or δc = 0.873 minimizes gravity sensitiv-
ity to the order of 10 ppm, satisfying goal 1 of section 1.2, where 
stiffness error due to gravity is defined in section 2.5. On the 
other hand, the angular stroke is only 30.88 % of the maximum 
angular stroke occurring at δc = 0.5, so goal 2 of section 1.2 is 
not satisfied. On the other hand δc = 0.5 satisfies goal 2 but not 
goal 1, since gravity sensitivity is of order 104 ppm.

1.4 New gravity insensitive flexure pivot (GIFP)

In order to have a wider range of gravity insensitivity, we design 
a new flexure pivot which we name Gravity Insensitive Flexure 
Pivot (GIFP). Figure 1 illustrates the GIFP as compared to the 
CSFP. The design is based on the co-differential concept and will 
be described and analysed completely in section 2.

1.5 Performance of GIFP

Tab. 2 :	Properties of the GIFP for special values of δ = d / L.

δ
Specification

0 0.127 0.5 0.873 1

Stiffness error due to gravity [ppm] 10 10 10 10 10

Normalized angular stroke [%] 25 30.88 100 30.88 25

The performance of the GIFP is again evaluated by varying 
δ = d / L, with d and L as shown in figure 4, where stiffness error 
due to gravity is defined in section 2.5. Table 2 summarizes the 
performance of the GIFP for special values of δ. In particular, 
δ = 0.5 gives a long stroke gravity insensitive flexure pivot meet-
ing all the goals of section 1.2.

1.6 Comparison between GIPF and CSFP

Tab. 3 :	Comparison of CSFP with δc = 0.127 and GIFP with δ = 0.5.

Pivot type
Specification CSFP, δc = 0.127 GIFP, δ = 0.5

Stiffness error due to gravity [ppm] 10 10

Normalized angular stroke [%] 30.88 100

Table 3 compares GIFP with δ = 0.5 and CSFP with δc = 0.127 
and shows that GIFP is superior to CSFP in term of angular 
stroke while having the same order of gravity insensitivity.

2. Design and analysis of GIFP

Fig. 4 :	The gravity insensitive flexure pivot (GIFP).Fig. 3 : Cross-spring flexure pivot (CSFP).

(a) 3D view.

(b) Top view.



52 Gravity insensitive flexure pivots for watch oscillators

The GIFP is illustrated in figure 4 and will be completely described 
in this section. The design is based on a new flexure element we 
have called the co-differential.

2.1 The co-differential

2.2 Co-differential gravity insensitivity

We quantify gravity insensitivity by considering the behaviour of 
the stiffness matrix under axial load. In particular, the stiffness 
matrix K of a cantilever beam subject to an axial load P can be 
modeled by linear Euler-Bernoulli beam theory, see [1, 11], to give

	 (1)

where λ = PL2 / EI denotes the normalized axial load,

,

and 𝒪 represents the Landau notation: A(λ) = 𝒪(B(λ)) if there is 
a constant C such that ‖A(λ)‖ < C ‖B(λ)‖ for all small λ, see [7].

When the load P is taken to be gravity, the constant term K0 
represents the nominal stiffness, and the terms in K1, K2, rep-
resent the sensitivity to gravity. Therefore, gravity insensitivity is 
achieved by minimizing the non-constant terms in the stiffness 
power series expansion.

The geometry of the co-differential is such that when one beam 
is under tension, the other is under compression. We therefore 
compute the stiffness matrix of the co-differential Kcd by add-
ing the stiffness matrix K+ of the beam under tension and the 
stiffness matrix K− of the beam under compression. Going from 
tension to compression changes the sign of P and therefore the 
sign of λ, so that K−(λ) = K+(−λ). Substituting these values in 
equation (1) and adding gives

	 (2)

A cancellation of the λ term occurs in equation (2) showing 
that the co-differential improves gravity insensitivity since the 
deviation from the constant term has gone from first order to 
second order.

2.3 GIFP design

We use the co-differential concept to design our gravity insen-
sitive pivot. Since a pivot has one DOF and a rigid body has 
6 DOF, the simplest design consists of a rigid main body and 
five beams blocking all but one DOF. The five beams consist of 
two co-differentials having two beams each and a fifth torsional 
beam insensitive to axial load. Note that the two co-differentials 
share the same rigid mass.

The configuration of GIFP is depicted in figure 4. The design 
comprises a rigid-body (1) attached to the ground (0) by five 
beams : a co-differential in the y direction with beams (3) and (5), 
a co-differential in the z direction with beams (2) and (4), and a 
single torsional beam (6) in the x direction. The single degree of 
freedom is rotation around the x axis.

(a) 3D view.

(b) Side view under rotation θ about the u axis.

Fig. 5 :	The co-differential.

We define co-differential to mean the flexure element consisting 
of two identical beams subjected to the same kinematic bound-
ary conditions where the loading (due to gravity) is always such 
that their axial loads are opposite (have the same magnitude but 
opposite signs). In other words, when one beam is subjected to 
tensile axial load, the other one is subjected to compressive axial 
load with equal magnitude.

Figure 5(a) shows a co-differential consisting of two flexible 
beams of length L symmetrically positioned at a 180° rotation 
with respect to the point G (center of gravity) and in the x–z plane. 
Both beams have the same geometric properties and are made 
of the same material. The beam arrangement is such that there 
is one DOF, rotation about the axis u, see figure 5(a).

The total axial load applied to the co-differential at point G is denoted 
by 2P, as shown in figure 5(b). Since both beams are at distance 
H / 2 from the point G, the axial load on each beam is P. One beam 
is under tension and its coordinates at its base are xt, yt, zt and the 
other under compression the coordinates at its base are xc, yc, zc.

Both cantilever beams cross the rotation axis u at distance d and 
have the same kinematic boundary conditions at their mobile 
ends : deflection f and slope θ, as shown in figure 5(b).
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The mechanism is statically determinate (isostatic) as there 
is only one DOF and there are no redundant constraints. The 
co-differential beams have length L and cross the axis of rotation 
at distance d from their mobile ends.

2.4 GIFP vs CSFP rotational stiffness

Since axial load has no effect on stiffness of the torsional beam (6) 
of figure 4, the x-component of the gravity load has no effect on the 
rotational stiffness of the pivot. We therefore assume that the gravity 
load N is applied in the y–z plane at angle φ with respect to y–axis.

We will compute the rotational stiffness k of the GIFP using 
standard linear Euler-Bernoulli beam theory. In order to do this, 
we write E for Young’s modulus and I for the moment of inertia 
of each beam, and denote by N̄ = NL2 / EI the normalized gravity 
load, noting that N̄ < 1 holds.

Writing ka for the normalized torsional stiffness of the axial tor-
sional beam, then it is known that ka = GaJa /La, see [13], where 
La is the length of the torsional beam, Ga its shear modulus and Ja 
its polar area moment of inertia.

Applying linear Euler-Beam theory and neglecting the effect of 
parasitic shift then gives

 

         .	(3)

With the same assumptions, we estimate the stiffness kc of the 
CSFP. Once again, linear Euler-Bernoulli theory and neglecting 
parasitic shift gives

        

          ,	 (4)

where we have written δc for the ratio d/L of the CSFP. Equa-
tions (3) and (4) show that GIFP has improved gravity insensitivity 
as compared to CSFP since its stiffness k does not have a N̄ 
term for all values of δ. For CSFP, the N̄ term disappears only 
when δc = (3 ± √5)/6, that is, δc = 0.127 and δc = 0.873.

Even when δ = 0.127 or δ = 0.873, GIFP is, in principle, gravi-
ty insensitive for a wider range of rotational angles θ, since the 
𝒪 (N̄θ2) of equation (4) is replaced by 𝒪 (N̄2θ2) in equation (3), 
which has smaller order.

2.5 GIFP vs CSFP gravity insensitivity

In order to quantify the effect of the gravity force on the rotational 
stiffness of GIFP, we define a nominal stiffness

	

corresponding to the first two terms in equation (3). We then 
define the relative stiffness error ε due to gravity by

,	

expressed in ppm’s. We similarly define a nominal stiffness

	

(a)

(b)

Fig. 6 : Stiffness error due to gravity versus δ for normalized gravity loads 
N̄ : (a) GIFP, (b) CSFP.

for the CSFP and the relative stiffness error εc due to gravity by

.	

The error for GIFP is much less sensitive to δ and is in the or-
der of 10 ppm for all values of the design parameter. Figure 6(a) 
shows that the relative stiffness error ε is of the order of 10 ppm, 
so satisfies specification 2 of section 1.2 and is relatively insensi-
tive to the choice of δ.
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On the other hand, figure 6(b) shows that relative stiffness error 
εc of CSFP is not only three orders of magnitude larger, 104 ppm 
versus 10 ppm, but is also more sensitive to the choice of δc.

We note that θ∗ (0.5) = 1 and θ∗ (0.127) = θ∗ (0.873) = 0.309, 
so θ∗ at δ = 0.5, is 3.24 times the value of θ∗ at δ = 0.127 and 
δ = 0.873.

3. Conclusion

Classical mechanical watch oscillators have pivots on jewelled 
bearings and their frictional losses lead to low quality factor, re-
ducing autonomy and chronometric performance. A solution is 
to appeal to flexure pivots which greatly reduce friction. Howev-
er, they have drawbacks such as gravity sensitivity and limited 
stroke. For watch oscillator applications, flexure pivots must limit 
gravity sensitivity and maximize stroke according to the specifi-
cations given in section 1.2.

Our study of suitable flexure pivots begins with an analysis of the 
cross spring flexure pivot already used as a watch oscillator. In 
section 1.3, we show that its performance is dependent on the 
geometric parameter δc = dc/Lc, but that there is no value of δc 
which ensures both gravity insensitivity and long stroke.

We therefore designed a new flexure pivot which we named the 
gravity insensitive flexure pivot (GIFP). Its design is based on the 
concept of the co-differential, as described in section 2.1, which 
we show to be insensitive to gravity in section 2.2. The GIFP 
consists of a rigid mass, two co-differentials and a polar beam, 
as described in section 2.3. Since a rigid mass has 6 DOF and 
there are 5 beams, there is only 1 DOF, a rotation, and the design 
is statically determinate (isostatic), a desirable feature.

In section 2.4 we show that the GIFP improves the gravity insen-
sitivity of the CSFP by eliminating the first order effect of gravity 
on rotational stiffness. The GIFP also reduces the effect of gravity 
on stiffness from first order to second order for all rotational an-
gles so, in principle, the GIFP should be gravity insensitive for a 
wider range of rotational angles.

In section 2.5, we quantify the gravity insensitivity by showing 
that the effect of gravity on GIFP stiffness is on the order of 
10 ppm for all values of the geometric parameter δ = d/L. So, 
GIFP achieves the goal 1 of the paper given in section 1.2 for all 
values of δ. By comparison, we show that the effect of gravity on 
CSFP stiffness changes from the order of 10 ppm to the order of 
104 ppm, depending on the value of δc. The CSFP achieves the 
goal 1 of the paper only for δc = 0.127 and δc = 0.873.

Finally, section 2.6 provides an explicit formula for the stroke of 
the GIFP and CSFP and shows that the special value δ = δc = 0.5 
leads to maximum stroke which achieves the goal 2 of the pa-
per given in section 1.2. At this value, the effect of gravity on 
CSFP stiffness is in the order of 104 ppm showing that CSFP can 
not achieve both goals of the paper. On the other hand, GIFP 
achieves both goals of the paper since at δ = 0.5, it has gravity 
insensitivity and maximum stroke at the same time. Section 2.6 
shows that GIFP with δ = 0.5 has stroke 3.24 times that of CSFP 

Fig. 7 : Geometry of a cantilever beam.

2.6 GIFP vs CSFP angular stroke

Based on [14] and [9, formula (3.3), page 29], we derive the fol-
lowing formula for the angular stroke θs for both GIFP and CSFP

,	 (5)

where σadm is the maximum admissible stress of the 
beam [9, p. 29] and α is the aspect ratio of the beam. For a 
beam of rectangular cross-section with width b and thickness 
h as shown in figure 7, the aspect ratio is α = h/L, and for a 
beam of circular cross-section with diameter D, the aspect ratio 
is α = D/L. As given in section 1.2, we are seeking the maximum 

stroke assuming σadm, α and E have the same value for all the 
pivots under consideration. Formula (5) shows that for both GIFP 
and CSFP, the maximum stroke is achieved when δ = 0.5 while 
δ = 0 and δ = 1 have minimum stroke.

Based on equation 5, we normalize the stroke by the dimension-
less quantity

.	

Fig. 8 :	Normalized stroke for both GIFP 
and CSFP versus δ.
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with δc = 0.127 and δc = 0.873, the only values of δc providing 
gravity insensitivity for CSFP.

Our analysis shows that, with respect to gravity sensitivity and  
stroke, GIFP is theoretically superior to CSFP.
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