
CIRCULAR SECURITY RECONSIDERED

F. Betül Durak1 and Serge Vaudenay2

1 Rutgers University
Department of Computer Science

fbdurak@cs.rutgers.edu
2 Ecole Polytechnique Fédérale de Lausanne(EPFL)

Lausanne, Switzerland
serge.vaudenay@epfl.ch

Abstract. The notion of circular security of pseudorandom functions
(PRF) was introduced in Distance Bounding Protocols. So far, only a
construction based on a random oracle model was proposed. Circular
security stands between two new notions which we call Key Dependent
Feedback (KDF) security and Leak security. So far, only a construction
based on a random oracle was proposed. We give an algebraic construc-
tion based on a q-DDH assumpsion. We first prove that a small-domain
Verifiable Random Functions (VRF) from Dodis-Yampolskiy is a circular
secure PRF. We then use the extension to large-domain VRF by aug-
mented cascading by Boneh et. al. This gives the first construction in
the standard model.

1 Introduction

Pseudorandom functions (PRFs) were first introduced by Goldreich, Goldwasser,
and Micali [10]. They play a fundamental role in cryptography with many ap-
plications. They are used for encryption, authentication, signatures, and many
more cryptographic tools.

Briefly, a secure PRF is a deterministic function using a random secret key
which is not distinguishable from a truly random function when used as a black
box. They can be realized by random oracles. However, it is important to build
cryptosystems in the standard model, i.e. without using random oracle heuristics
since secure systems in the random oracle model can sometimes be trivially
insecure under the instantiation of the oracle [8].

Moreover, as shown in [4], we cannot solely rely on the normal secure PRF
assumption for Distance Bounding (DB) protocols, since the secret is often used
as a key of PRF and is also externally used outside the PRF. In DB protocols,
the circular secure PRF guarantees the normal security of PRF, even when we
encrypt some functions of the key. So far, only one construction based on random
oracle has been given and constructing a circular secure PRF without random
oracle was left as an open problem. We present an algebraic construction of
circular secure PRF in Section 4 without using random oracles. The security is
based on a stronger variant of the q-DDH assumption using a fixed generator

g. The construction demonstrates that a circular secure PRF can exist without
random oracles. However, making instances for DB protocols is still open.

2 Preliminaries

2.1 Pseudorandom Functions

Definition 1. Consider a security parameter k and a parameter n. Let fs be
a function from {0, 1}∗ → {0, 1}n, where s ← {0, 1}k is chosen uniformly at ran-
dom. Consider a function family F of all functions from {0, 1}∗ to {0, 1}n and a
function F chosen from that family uniformly at random. For an adversary A

limited to complexity T , we define the following Game:

PRF Security Game with bit b:
- The challenger picks a secret s and F ∈ F at random.
- A queries its oracle and gets either fs(x) (if b = 1) or F(x) (if b = 0).
- A returns a bit b ′.

The advantage is AdvPRFfs
(A) =

∣∣Pr[AOfs = 1] − Pr[AOF = 1]
∣∣. We say that

the function fs is a (ϵ, T)-secure PRF if for any distinguisher A limited to a
complexity T , the advantage of A in the PRF Game is bounded by ϵ.

The PRF Game is depicted on Fig. 1. We have AdvPRFfs
(A) = Pr[b ′ = 1|b =

0] − Pr[b ′ = 1|b = 1]|.

A PRF challenger

pick s→ {0, 1}k and F

x−−−−−−−−−→ y =

{
fs(x), if b = 1

F(x), if b = 0
y←−−−−−−−−−
b ′−−−−−−−−−→

Fig. 1. PRF Game

2.2 Circular Secure Pseudorandom Functions

Definition 2. Given a security parameter k, and some parameters m,n, con-
sider s ∈ {0, 1}k, a family L of functions L : {0, 1}k → Gm, the set F of all
functions F : {0, 1}∗ → Gn, where G is an additive group, and a function F cho-
sen from that family. We define an oracle Os,F(x,L,A,B) = A · L(s) + B · F(x)
using the dot product over G. We assume that L is taken from L and x ∈ {0, 1}∗,

2

A ∈ Gm, B ∈ Gn . Let (fs)s∈{0,1}k be a family of functions in F. For an adver-
sary A limited to complexity T , we define the following Game:

Circular-PRF Security Game with bit b:
- The challenger picks a secret s and F ∈ F at random.
- A queries its oracle and gets either A·L(s)+B·fs(x) (if b = 1) or A·L(s)+B·F(x)
(if b = 0).
- A returns a bit b ′.

The advantage is Advcircular
fs

(A) =
∣∣Pr[AOs,fs = 1] − Pr[AOs,F = 1]

∣∣.
We say that the family fs is an (ϵ, T)-circular-PRF with respect to L if for

any distinguisher limited to a complexity T, the advantage of distinguishing Os,fs

from Os,F is bounded by ϵ.
We require 2 conditions:

- for any pair of queries (x,L,A,B) and (x ′,L ′,A ′,B ′), if x = x ′, then L = L ′;
- for any x ∈ {0, 1}∗, if (x,L,Ai,Bi), i = 1, ..., ℓ is a list of queries using this
value x, then
∀λ1, ..., λℓ ∈ G,

∑ℓ
i=1 λiBi = 0 ⇒

∑ℓ
i=1 λiAi = 0

We depict the circular-PRF Game in Fig. 2.

A circular challenger

pick s→ {0, 1}k and F

(x,L,A,B)−−−−−−−−−→ y =

{
A · L(s) +B · fs(x), if b = 1

A · L(s) +B · F(x), if b = 0
y←−−−−−−−−−
b ′−−−−−−−−−→

Fig. 2. circular-PRF Game

Note that the last condition implies that B = 0⇒ A = 0 for each query.
Def. 2 is equivalent to the circular security definition in [6] and [5], if we take

for L the set of all linear functions. On the other hand, if L is a set of all functions
with “polynomially bounded representation”, the definition is equivalent to the
circular security defined in [7]. In [7], the function L could indeed be some non-
linear function. We define that Lµ(s) = map(µ · s) using the dot product over
Zk
2 , where µ is a chosen vector and map is a given mapping from Z2 to G. In

the construction from [7], however, we only need the set L of the Lµ functions
for all µ vectors and map is fixed.

For simplicity, we later on assume that L has a single element L.
For n = 1, we can always reduce to B = 1 and no x repetition, and obtain

Os,F(x,L,A) = A · L(s) + F(x).

3

We note that there exists no circular security if the adversary can set L to
fs(without knowing the secret s). Indeed, we let (fs)s∈{0,1}k be a pseudoran-
dom family. We define an adversary A who queries the oracle with a tuple of
(x,L(s),A,B), where x = 1, L(s) = fs(1), and B = −A. The Os,fs oracle returns
A ·fs(1)−A ·fs(1) = 0 if it is real oracle. Therefore, A outputs 1 in circular secu-
rity Game, if the oracle responds with zero, and it outputs 0 otherwise. Clearly,
the oracle replies the query with zero if it is the real oracle, then A outputs
1 with probability 1. On the other hand, if it is the ideal oracle, the response
from the oracle is non-zero and A outputs 1 with probability bounded by 1

p
.

Therefore, Advcircular
fs

(A) ⩾ 1− 1
p
where p is the cardinality of G.

3 Derived PRF Notions

3.1 Secure Key-dependent Feedback PRF

Consider a security parameter k, and the parameters n and m. Let G be a
group. Given a secret s ←$ {0, 1}k, and an arbitrary function L : {0, 1}k → Gm

producing column vectors with elements in G, we let F be a function chosen from
the function family F : {0, 1}∗ → Gn uniformly at random. Let (fs)s∈{0,1}k be
a family of functions from {0, 1}∗ → Gn. We define an oracle Os,· such that for
a matrix M ∈ Zn×m and an input x ∈ {0, 1}∗, Os,F(x,M) = ML(s) + F(x) and
Os,fs(x,M) = ML(s)+fs(x) using the matrix product defined from Zn×m×Gm

to a column vector in Gn, where each element in Gn is output of matrix product
multiplication of each row of M ∈ Zm with Gm. The above is when G has
additive notations. With multiplicative ones, we write Os,fs = L(s)Mfs(x)

The condition for using Os,fs or Os,F is that for any pair of queries (x,M) and
(x ′,M ′), if x = x ′, then M = M ′. Equivalently, since fs and F are deterministic
functions, we can require that x never repeats in queries. Then, we can define an
oracle OF(x,M) = F(x) which does not use M. Clearly, if x does not repeat in
queries, Os,F is indistinguishable from OF. This motivates the definition below.

Definition 3. Given a security parameter k, let fs be a function from {0, 1}∗ →
G. Let L : {0, 1}k → Gm be a function. For an adversary A limited to complexity
T , we define the following Game:

KDF-PRF Security Game with bit b:
- The challenger picks a secret s and F ∈ F at random.
- A queries its oracle and gets either ML(s) + fs(x) (if b = 1) or ML(s) + F(x)
(if b = 0).
- A returns a bit b ′.

The advantage is AdvKDF
fs

(A) = |Pr(b ′ = 1|b = 0) − Pr(b ′ = 1|b = 1)|.
We say that the family (fs)s∈{0,1}k is a (ϵ, T) Key-dependent Feedback se-

cure (KDF-secure) PRF with respect to L if for any distinguisher limited to a
complexity T , the advantage of A in the KDF-PRF Game is bounded by ϵ.

4

A KDF challenger

pick s→ {0, 1}k and F

(x,M)−−−−−−−−−→ y =

{
ML(s) + fs(x), if b = 1

ML(s) + F(x), if b = 0
y←−−−−−−−−−
b ′−−−−−−−−−→

Fig. 3. KDF-PRF Game

The corresponding KDF-PRF Game is depicted in Fig. 3.

Lemma 1. (Circular security implies KDF security) Let fs be any PRF to Gm

where G is a group. For any KDF adversary A for fs of complexity T , there
exists a circular adversary B for fs of complexity T + O(nmQ), where Q is the
number of queries made by A such that:

AdvKDF
fs

(A) = Advcircular
fs

(B)

Proof. Given an adversary A playing against KDF-secure oracle, we build an-
other adversary B that plays against circular-secure oracle. Let (xi,Mi) be a
query made by an adversary A against its KDF-secure oracle. We define the
adversary B simulating A by taking its queries, and transforming each (xi,Mi)
into (xi,L,Ai,j,Bi,j) queries. For each (xi,Mi), the adversary B sets Ai,j as the
jth row of Mi, where 1 ⩽ j ⩽ n, and set Bi,j to the jth row of the n×n identity
matrix. Notice that, since the linear combinations of Bi,js do not vanish (they
are the rows of identity matrix), we do not have any problem with the condition
that for the queries (xi,L,Ai,j,Bi,j), the linear combinations of Ai,j vanishes
with same xi whenever the linear combination of Bi,js vanishes in B’s queries.
B uses these queries to query its circular secure oracle and responds them with
the replies it gets from its oracle. When A is done with its queries, it returns its
output. Then, B uses the same output to return its oracle as its output. Hence,
the advantage of A is equal to the advantage of B. If the simulation of A wins,
so is B. Therefore, any PRF which is (ϵ,Q)-circular secure is also KDF-secure.

⊓⊔

Lemma 2. (KDF security implies non-adaptive circular security) Let fs be any
PRF. Let G be a group in KDF-security Game. For any circular adversary B

of complexity T making non-adaptive queries on the same x, there exists a KDF
adversary A of complexity T + O((n2 +m2 + n3)Q) such that:

Advcircular
fs

(B) = AdvKDF−secure
fs

(A)

Proof. Given a non-adaptive adversary B playing with a circular-secure oracle,
we build another adversary A that plays with the KDF-secure oracle. We take
all Q non-adaptive queries as (Ai,Bi) for each x, where 1 ⩽ i ⩽ Q, Ai ∈ Zm and
Bi ∈ Zn made by circular adversary B, we transform the queries (Ai,Bi) made

5

by circular adversary B into a pair of matrix (A,B) of size Q ×m and Q × n

respectively. We define the matrices A = (A1 · · ·AQ)T and B = (B1 · · ·BQ)T

formed by rows of Ai and Bi respectively. We know that for any row λ, λ ·B = 0
implies λ ·A = 0. So, if we take a vector X of n undeterminates, any combination
λ · BX vanishing implies λ · A = 0. So, the equation BM = A has a solution M

in Zn×m. We make the KDF query (x,M) to get y = M × L(s) + f(x). Then,
by BM · L(s) + B × f(x) = A × L(s) + B × f(x) so we obtain the answer of the
circular oracle.

Hence, if B wins against its circular security oracle, A wins with the same
advantage and with complexity T + O((n2 +m2 + n3)Q).

⊓⊔
Let fs be any PRF. When we define the adversaries as non-adaptive adver-

saries, the previous two lemmas imply that fs is non-adaptive circular-secure if
and only if it is non-adaptive KDF-secure.

For n = 1, since x never repeats, we can see that the circular security and
KDF security are equivalent.

We start our attempt to construct a KDF-secure PRF with 2 negative ex-
amples. In the first example, we define fs(x) = xs, which is shown to be not
secure PRF based on Def. 1. Similarly, in the second negative example, we de-
fine fs(x) = gxhs, and show that it is an insecure PRF under Def. 1.

Example 1. Let fs(x) be a function from Z→ Z∗p for a prime number p defined
as fs(x) = xs. fs(x) is not a secure PRF.

Let us make a single query with x = 1 to normal-secure PRF oracle. If we
interact with the real oracle, the oracle returns Os,fs(x) = xs. Clearly, the result
we will get is 1, if the oracle is real, and we get a random integer if the oracle is
random. It allows us to distinguish between Os,fs and Os,F

Example 2. Let fs(x) be a function from Z to G for a group G, where g,h ∈ G

are arbitrary, defined as fs(x) = gxhs. fs(x) is not a secure PRF.

Let us make two queries as 2x, x to normal-secure PRF oracle. If we interact
with the real oracle, the oracle returns Os,fs(2x) = g2xhs and Os,fs(x) = gxhs

respectively. Clearly, when we divide the results, we get gx, which does not de-
pend on the secret s, if the oracle is real, and we get a random string if the oracle
is random. It allows us to distinguish between Os,fs and Os,F.

3.2 Leak-PRF security

Definition 4. Given a security parameter k, let fs be a function from {0, 1}∗ →
G. Let L : {0, 1}k → Gm be a function respectively let Lg : {0, 1}k → Gm be a
function for all g in a given set. For an adversary A limited to complexity T , we
define the Leak-PRF game (respectively the rnd-Leak-PRF Game) as follows:

6

Leak-PRF (respectively rnd-Leak-PRF) Security Game with bit b:
- The challenger picks a secret s, F ∈ F (and g in a given set) at random.
- The challenger computes L(s) (respectively Lg(s) corresponding to random g)
and gives it (and g) to A.
- A queries its oracle and gets either y1 = fs(x) (if b = 1) or y0 = F(x) (if
b = 0).
- If A repeats a query x, the game aborts.
- A returns a bit b ′.

The advantage is AdvLeakfs
(A)(= Advrnd−Leak

fs
(A)) = |Pr(b ′ = 1|b = 0) −

Pr(b ′ = 1|b = 1)|.
The function fs is a (ϵ, T)-secure Leak-PRF (respectively rnd-Leak-PRF)

with respect to L if for any adversary A limited to the complexity T , the advantage
of A in the Leak-PRF Game is bounded by ϵ.

The Leak-PRF (respectively rnd-Leak-PRF) Game is depicted in Fig. 4 (re-
spectively in Fig. 5).

A Leak-PRF challenger

pick s→ {0, 1}k and F

L(s)←−−−−−−−−− compute L(s)

x−−−−−−−−−→ y =

{
fs(x), if b = 1

F(x), if b = 0
y←−−−−−−−−−
b ′−−−−−−−−−→

Fig. 4. Leak-PRF Game

A rnd-Leak-PRF challenger

pick s→ {0, 1}k, g and F

g,Lg(s)
←−−−−−−−−− compute Lg(s)

x−−−−−−−−−→ y =

{
fs(x), if b = 1

F(x), if b = 0
y←−−−−−−−−−
b ′−−−−−−−−−→

Fig. 5. rnd-Leak-PRF Game

Theorem 1. (Leak-PRF implies KDF-security) Let fs from {0, 1}∗ → G be any
PRF. We define Leak(s) = L(s) in Leak-PRF Game. For any (ϵ, T)-secure KDF
adversary for L, there exists a Leak adversary B complexity T +O(Q), where Q

is the number of queries made by A s.t.

AdvKDF
fs

(A) = AdvLeakfs
(B)

Proof. Given an adversary A playing against KDF-secure oracle with L(s), we
build another adversary B that plays against Leak-PRF Game where Leak(s) =
L(s). In this Game B obtains L(s) from its challenger as an output to its Leak
function. B simulates A’s queries (Mi, xi) for i = 1..Q as following: B queries its
oracle with xi and receives either y = fs(xi) or y ←$ G. B adds y with ML(s)
using the leak of the secret to send ML(s) + y to A. A outputs a bit and B

outputs its Leak-challenger with the same bit as A. Hence if A wins against its
oracle, B wins with the same advantage and with the complexity T +Q.

7

⊓⊔

4 Algebraic Construction

4.1 The Dodis-Yampolskiy Construction

The q- decisional Diffie-Hellman problem is defined in [3] as follows:
Let G be a group of prime order p. For a ←$ Zp and g ∈ G picked uniformly

at random, given a q-tuple (g,ga,ga2
, · · ·gaq−1

), the q-DDH assumption states

that g
1
a is indistinguishable from a random element in G. More precisely, for

any adversary A, the advantage of distinguishing g
1
a from a random element in

G is bounded by ϵ.

Definition 5. For q > 1, given a group G of prime order p, we define AdvDDH
q [A,G]

= Pr[A(g,ga, · · · ,gaq−1
,g

1
a) = 1] − Pr[A(g,ga, · · · ,gaq−1

,h) = 1] ⩽ ϵ where
the probability is over random choice of g, h, and a. We say that the (T ,q, ϵ)-
DDH assumption holds in G, if for all poly-time T adversary A, the AdvDDH

q [A,G]
advantage is at least ϵ.

When we let g be a generator of the group G and fix it, we define the (g,q)-
DDH assumption as follows:

Definition 6. For q > 1, we define AdvDDH
g,q similarly for g fixed and a prob-

ability over the random choice of h and a. We say that the (t,g,q, ϵ)-DDH
assumption holds in G, if for all poly-time T adversary A, the AdvDDH

g,q [A,G]
advantage is at least ϵ.

The q-DDH assumption is defined with a random generator while we fix
the generator g in the (g,q)-DDH assumption. Clearly, any poly-time q-DDH
adversary A has the same advantage of some poly time (g,q)-DDH adversary by
using some randomization tricks. We state that (g,q)-DDH assumption implies
q-DDH assumption. However, the other direction does not seem to hold.

Surprisingly, we have the implication for both directions for the computational-
DH (CDH) problem.

Theorem 2. (Leak-PRFness of the Dodis-Yampolskiy function [9]) Let k be
a security parameter and G be a group of prime order p generated by some
g. Assume that (T + Qq.poly(k),g,q, ϵ)-DDH assumption holds in G. Then,

fs,h(x) = h
1

x+s where h ∈ G, s ∈ Zp and x is in a domain D defined as a

subset of Zp of size Q where Q ⩽ q, is an (ϵQ + Q2

p
, T)-secure Leak-PRF for

Lg(s,h) = (g,gs, ...,gsq−1
,h,hs, ...,hsq−Q

) over D. More precisely,

AdvLeakfs,h
(A) ⩽

∑Q−1
i=0 AdvDDH

g,q (Bi,G) + Q2

p

for some distinguisher Bi, where i = 0, ...,Q− 1.
We have the same statements with q-DDH and rnd-Leak-PRF security but

Lg defined on a random g. And, the proof follows as same.

8

Proof. Suppose there exists an adversary A that plays Leak-PRF security Game
to distinguish between fs,h(x) = h

1
x+s and a random element in G. Let D =

{x1, ..., xQ}. We design a sequence of games Gamei for i = 0, ...,Q between a
challenger and the Leak-PRF adversary A. We define the probability pi to out-
put 1 of A in Gamei, where Gamei is defined as:
- The challenger picks a secret (s,h) at random and reveals Leak(s,h) = (g,gs, ...,

gsq−1
,h,hs, ...,hsq−Q

) to A.
- The challenger also picks a random function F to answer the queries xj from A

with:
- if j ⩽ i, the challenger answers by F(xj).
- if j > i, the challenger answers by fs,h(xj).

Note that the way to answer depends on the value xj of the query and not
on the sequence number of the query in time.

It is clear that Game0 is the Leak-PRF Game with real function fs,h and
GameQ is the Leak-PRF Game with random function F. Hence, the advantage of

A to distinguish between fs,h(x) = h
1

x+s and a random element in G is |p0−pQ|.
We like to show that |p0 − pQ| is negligible. Given the sequence of games, we

build an adversary called Bi such that |pi − pi+1| = AdvDDH
g,q (Bi,G) + Q

p
for

0 ⩽ i ⩽ Q − 1. Then, we achieve that |p0 − pQ| =
∑

i AdvDDH
g,q (Bi,G) + Q2

p
.

Thus, we only need to prove that Gamei is indistinguishable from Gamei+1.

We build our adversary Bi that uses A to break the (t,q, ϵ)-DDH assumption
in group G. In other words, when an adversary Bi is given a challenge tuple
(g,ga, ...,gaq−1

, Γ) ∈ Gq+1, where Γ is either g
1
a or a random element in G, B

can distinguish Γ by using A.

We start with Bi given its challenge tuple to simulate the queries made by
A to its oracle. The adversary Bi simulates A by taking its challenge query and
responding it using its own challenge tuple (g,ga, ...,gaq−1

, Γ) as follows:

Bi sets s = a − xi to generate a private key for adversary A and selects a
random r ∈ Z∗p. It does not know what s is because a is not known. Using Bino-

mial Theorem, Bi computes (g,gs,gs2
, ...,gsq−1

) from (g,ga, ...,gaq−1
). Define

the function f(z) = r × Πy∈D−{xi}(z + y) =
∑Q−1

j=0 cjz
j, where y ̸= xi. Since B

knows gsj

, where 1 ⩽ j ⩽ q− 1 and Q ⩽ q, it computes h = gf(s) as follows:

gf(s) = g
∑q−1

j=0 (cjs
j) = Π

q−1
j=0 (g

sj

)cj

Bi can further compute hs, ...hsq−Q

similarly.

In the (g,q)-DDH challenge, we pick a ∈ Zp uniformly at random. We know
that g is a generator and that r ̸= 0 is random. If f(s) ̸= 0, or equivalently,
a ̸= xi − xj for all j ̸= i, we have that (s,h) is uniformly distributed among
pairs such that h ̸= 1 and s ̸= −xj for all j ̸= i. So, (s,h) follows a distribution
which is indistinguishable from the one in Gamei to Gamei+1. More precisely,
the failure probability that a is some xj−xi is

Q−1
p

. The failure probability that

9

h = 1 is 1
p
. So, the cumulated failure probability between the (g,q)-DDH game,

Gamei and Gamei+1 is bounded by Q
p
.

Then, Bi gives the tuple Leak(s,h) = (g,gs, ...,gsq−1
,h,hs, ...,hsq−Q

) to A.
Let (xj) be a query made by A to its Leak-secure PRF oracle, where 1 ⩽ j ⩽ Q.
Wherever A queries the challenger Bi with xj
- if j < i, Bi simulates the answer to A with F(xj) by lazy sampling.
- if j > i, Bi simulates the answer to A with fs,h(xj) as follows:

Let fj(s) be a function defined as:

fj(s) =
f(s)
s+xj

=
∑q−2

j=0 djs
j

where it is polynomial of degree q − 2. Notice that fs,h(xj) = h
1

s+xj = gfj(s) is

computable by Bi from the tuple (g,gs,gs2
, ...,gsq−1

).
- if j = i, Bi answers as following:

Let fi(s) be another function defined as:

fi(s) =
f(s)
s+xi

=
∑q−2

i=0 γis
i + γ

a

Notice that f(s) is not divisible by (s+xi), so γ ̸= 0. Bi replies the challenge

query (xi) by computing y = (Γ)γg
∑q−2

i=0 γis
i

.

If Γ = g
1
a = g

1
s+xi , then y is gfi(s) = fs,h(xi). If Γ is random, since γ ̸= 0, y

is random as well.
Clearly, if Γ in Bi’s challenge tuple is g

1
a , then we are in Gamei+1. Otherwise,

we are in Gamei. Hence, |pi − pi+1| ⩽ AdvDDH
g,q (Bi,G) + Q

p
.

Therefore, we have |p0 − pQ| ⩽ Qε+ Q2

p
.

The running time of the reduction is upper bounded by simulating oracle
queries by Bi. Per query, Bi performs 3q−2 multiplications and exponentiations
which take (3q− 2).poly(k). Since A can make at most Q queries, the running
time of A is bounded by Qq.poly(k) = t. Hence, fs,g(x) is a (ϵq,Qq.poly(k))-
secure Leak-PRF.

⊓⊔

4.2 Extension to KDF-Security and Circular Security

We have just shown that a function fs,h(x) = h
1

s+x defined from [Z×G]×D to
G, where D is a subset of Zp of size q, is a Leak-secure pseudorandom function
for a small domain size q under (g,q)-DDH assumption.

Theorem 3. (KDF security of the Dodis-Yampolskiy function) Let k be a se-
curity parameter and G be a group of prime order p generated by some g.
Assume that (T + q2.poly(k),g,q, ϵ)-DDH assumption holds in G. We define

10

L(s,h) = (gs,h). Then, fs,h(x) = h
1

x+s where h ∈ G, s ∈ Zp and x is in a do-

main D defined as a subset of Zp of size q, is a (qϵ+ q2

p
, T)-secure KDF-secure

PRF for L(s,h) when the real oracle defined as Os,h,f(x,M) = L(s,h)Mf(x) =
gαshβfs,h(x) for M = (α,β).

The proof follows from Thm. 1 and 2.
For the parameter n = 1, KDF-security is equivalent to circular security.

So, fs,h is both KDF-secure and circular-secure for L under the (g,q)-DDH
assumption.

4.3 Parallel Leak security

Definition 7. Consider a security parameter k, a set K, an integer t, a group
G and a secure PRF fs,h : [Z×G]×D→ G, where the domain D ⊂ Zp is of size
q and the secret consists of s ∈ Z and h ∈ K. We let L(s,hi) be a leak function
for 1 ⩽ i ⩽ t. We define t related keys as (s,h1), ..., (s,ht), where hi ∈ K. We
define Leak(s,h1, ...,ht) = (L(s,h1), ...,L(s,ht)) and fts,h1,...,ht

(x, i) = fs,hi
(x).

We say that the function fs,h is a t-parallel Leak secure for L if the function
fts,h1,...,ht

is Leak-secure for Leak.

We state that if the function fs,h defined in Thm. 3 is a Leak-secure PRF and
(g,q)-DDH assumption holds in G, then fts,h1,...,ht

is a t-parallel Leak secure
PRF for all q polynomial with the following Lemma.

Lemma 3. (Parallel Leak security of the Dodis-Yampolskiy function) We let

fs,h(x) = h
1

x+s be a function in G generated by some g, in which the (g,q)-DDH
assumption holds. The input x is defined as an element of a domain D of size
Q, where Q ⩽ q. For every t-parallel Leak secure adversary A for Lg(s,hi) =

(g,gs, ...,gsq−1
,hi,h

s
i , ...,h

sq−Q

i), there exists a Leak adversary B0 for Lg and
(g,q)-DDH adversary B1 such that

AdvLeak
fts,h1,...,ht

(A) ⩽ AdvLeakfs,h
(B0) + t.AdvDDH

g,q (B1,G)

We can state a same Lemma with q-DDH assumption and rnd-Leak-PRF
security but Lg depends on a random g. The proof follows as same.

Proof. The proof uses a sequence of three Games between a challenger and a
parallel Leak secure PRF adversary A that attacks fts,h1,...,ht

. For i = 0, 1, 2, 3,
we define the probability to win for A as pi at the end of Game i.

Game 0. (Fig. 6) The challenger picks a random key as (s,h1, ...,ht). The
t-parallel Leak adversary A receives Lg(s,hi) for 1 ⩽ i ⩽ t and queries its
challenger with (x, i). The challenger behaves as a real oracle for fts,h1,...,ht

,

meaning that it replies the query with h
1

x+s

i .
Game 1. (Fig. 7) The challenger picks a random function u : D→ G, random

exponents r1, ..., rt in Zp, and s,h. It sets hi = hri . An adversary A receives

11

A Leak-PRF challenger

pick (s,h1, ...,ht)

Leak(s,h1,...,ht)
←−−−−−−−−−−−− set Leak(s,h1, ...,ht) to

(Lg(s,hi))i=1,...,t
(x,i)−−−−−−−−−−−−→

y←−−−−−−−−−−−− y = h
1

x+s
i

b−−−−−−−−−−−−→ b

Fig. 6. Game 0.

A Leak-PRF challenger

pick (u, r1, ..., rt,s,h)
set hi = hri

Leak(s,h1,...,ht)
←−−−−−−−−−−−− set Leak(s,h1, ...,ht) to

(Lg(s,hi))i=1,...,t
(x,i)−−−−−−−−−−−−→

y←−−−−−−−−−−−− y = u(x)ri

b−−−−−−−−−−−−→ b

Fig. 7. Game 1.

Lg(s,hi) for 1 ⩽ i ⩽ t and queries its challenger with (x, i). The challenger
replies the query with u(x)ri .

We show that Game 0 and Game 1 are indistinguishable if fs,h is a Leak

secure PRF. We construct a Leak-secure adversary B0 whose running time is
same as A and such that

|p1 − p0| = AdvLeakfs,h
(B0) (1)

The Leak adversary B0 interacts with its Leak oracle and simulates the
fts,h1,...,ht

challenger for A. More precisely, B0 receives its Lg(s,h) = (g,gs, ...,

gsq−1
,h,hs, ...,hsq−Q

) from its challenger and chooses random r1, ..., rt ∈ Zp.

Then, B0 computes Leak(s,hi) = (g,gs, ...,gsq−1
,hi,h

s
i , ...,h

sq−Q

i), where hi =
hri for 1 ⩽ i ⩽ t. Whenever A issues a query with (x, i), B0 queries its Leak

oracle with (x) to obtain its response y and B0 responds A with yri . Finally, B0

outputs same as A’s output.
When Leak oracle responds B0’s query, y = h

1
x+s with random key (s,h),

then B0 response to A is yri = h
1

x+s

i , where we define hi = hri . Hence, in this
case, B0 simulates Game 0. See Fig. 8.

When Leak oracle responds B0’s query with a random function y = u(x),
then B0 response to A is yri = u(x)ri . Hence, in this case, B0 simulates Game
1. See Fig. 9.

Thus, we prove the equation (1).

B0 Leak-PRF challenger
A picks (r1, ..., rt)

Leak(s,h1,...,ht)
←−−−−−−−−−−−− compute Leak(s,h1, ...,ht)

Lg(s,h)
←−−−−−− pick (s,h)

(x,i)−−−−−−−−−−−−→ x−−−−−−→
yri

←−−−−−−−−−−−− y←−−−−−− y = h
1

x+s

b−−−−−−−−−−−−→ b−−−−−−→

Fig. 8. Leak-PRF Game (real)

12

B0 Leak-PRF challenger
A picks (r1, ..., rt)

Leak(s,h1,...,ht)
←−−−−−−−−−−−− compute Leak(s,h1, ...,ht)

Lg(s,h)
←−−−−−− pick (u,s,h)

(x,i)−−−−−−−−−−−−→ x−−−−−−→
yri

←−−−−−−−−−−−− y←−−−−−− y = u(x)

b−−−−−−−−−−−−→ b−−−−−−→

Fig. 9. Leak-PRF Game (ideal)

Game 2. The challenger picks a random function ω : D × [t] → G and
some h1, ...,ht. The adversary A receives Lg(s,hi) for 1 ⩽ i ⩽ t and queries its
challenger with (x, i). The challenger replies the query with ω(x, i).

The proof for indistinguishability of Game 1 and Game 2 follows from [2,
Lemma 1], where we have |p1 − p2| ⩽ t.AdvDDH

g,q (B1,G) with a (g,q)-DDH
adversary B1.

The advantage of AdvKDF
fts,h1,...,ht

(A) which is equal to |p0 − p2| is bounded by

AdvKDF
fs,h

(B0) + t.AdvDDH
g,q (B1,G) as it is claimed. This completes the proof.

⊓⊔

4.4 The Boneh-Montgomery-Raghunathan Augmentation

In [1], a classical cascade function constructs a PRF with a large domain from
a PRF with a small domain by cascading. Given that, in [3], an algebraic PRF
structure is constructed based on the extended results of this classical cascade
function. However, as stated in [3], the classical cascade construction requires
the output of the underlying PRF to be at least as long as its secret key. Boneh
et al. eliminates the requirement by injecting a supplemental secret. Therefore,
we will use Boneh-Montgomery-Raghunathan’s augmented cascade result.

The augmented cascade pseudorandom function, defined in [3], gives a secure
PRF with domain Dn from a secure PRF with domain D, where D ⊂ Zp of size
q. More precisely, let fs,h : [Z×G]×D→ G be a secure PRF. The augmented
cascade PRF of fs,h, denoted as f∗ns1,...,sn,h : [Zn × G] × Dn → G is defined on
input key (s1, ..., sn,h) ∈ [Zn ×G] and value (x1, ..., xn) ∈ Dn as:

h0 = h

for i = 1, ...,n do
hi ← fsi,hi−1

(xi)
output hn.

If we plug fs,h(x) = h
1

s+x in an augmented cascade, we obtain a secure

pseudorandom function f∗ns1,...,sn,h(x1, ..., xn) = h
1

(s1+x1)...(sn+xn) in exponential
domain size qn.

13

Theorem 4. Let G be a group of prime order p generated by some g. Assume
that (t,g,q, ϵ)-DDH assumption holds in G. Let Lg(s1, ..., sn,h) = (gs1 , ...,gsn ,h).
We define f∗ns1,...,sn,h as in Boneh-Montgomery-Raghunathan augmentation over

Dn where D is size of q. The augmented cascade f∗ns1,...,sn,h = h
1

(s1+x1)...(sn+xn)

is a Leak-secure PRF. More precisely,

AdvLeakf∗ns1,...,sn,h
(A) =

∑n
i=1 AdvLeak

fts,h1,...,ht

(Bi)

for some t-parallel Leak adversary Bi.

Proof. The proof uses a hybrid argument where we define the hybrids as fol-
lowing: Let A be a Leak-PRF adversary playing against augmented cascade
function. We construct hybrid game Hi for 0 ⩽ i ⩽ n (shown in Fig. 10). The
challenger picks a random function F : Di 7→ G and random keys (s1, ..., sn,h) ∈
Zn×G. A gets its Lg(s1, s2, ..., sn,h) function and plays the regular PRF Game:
he submits a query (x1, ..., xn). The challenger applies the function F to obtain
hi and then iteratively computes hn:

hi = F(x1, ..., xi)
for j = i+ 1, ...,n do

hj ← fsj,hj−1
(xj)

output hn.

A Leak-PRF challenger

pick (s1, ...,sn,h)

(gs1 ,...,gsn ,h)←−−−−−−−−−−−− set Lg(s1, ...,sn,h) to
(gs1 , ...,gsn ,h)

(x1,...,xt)
−−−−−−−−−−−−→

y←−−−−−−−−−−−− hi = F(x1, ...,xi)

for j = i+ 1, ...,n do
hj ← fsj,hj−1

(xj)

y = hn
b−−−−−−−−−−−−→

Fig. 10. Hi Game against cascade function.

The challenger returns hn to A. Let pi be the probability that A returns 1
in Hi. It is clear that in H0, the adversary A interacts with f∗n while in Hn,
it interacts with a random function F : Dn 7→ G. Therefore, the Leak-PRF
advantage of A is AdvLeakf∗n (A) = |pn − p0| =

∑
i(pi − pi−1).

We construct a t-parallel Leak adversary Bi such that AdvLeak
fts,h1,...,ht

(Bi) =

|pi+1−pi| (in Fig. 11, we show the construction where the Leak-PRF challenger
replied with real function). The adversary Bi simulates the challengers in Hi or

14

Hi+1. To do that, Bi needs to simulate a random function F : Di 7→ G. For this
purpose, Bi defines an injection Index : Di−1 7→ {1, ..., t}.

Bi Leak-parallel challenger
A

picks (h,s1, ...,si−1,si+1

, ...,sn) at random.

Define Index : Di−1 7→ {1, ..., t}

(gs1 ,...,gsn ,h)←−−−−−−−−−−−− compute Lg(s1, ...,sn,h)
Lg(s,h1,...,ht)
←−−−−−−−−−−−− pick (s,h1, ...,ht)

(x1,...,xn)
−−−−−−−−−−−−→ ℓ = Index(x1, ...,xi−1)

(xi,ℓ)−−−−−−−−−−−−→
y←−−−−−−−−−−−− y←−−−−−−−−−−−− y = h

1
s+xi
ℓ

b−−−−−−−−−−−−→ b−−−−−−−−−−−−→

Fig. 11. Leak-PRF Game (real)

Now, Bi receives Leak(s,h1, ...,ht) = (g,gs, ...,gsq−1
,hs

k, ...,h
sq−Q

k) for each
1 ⩽ k ⩽ t from its t-parallel Leak secure challenger. Then,Bi picks (h, s1, ..., si−1,
si+1, ..., sn) at random and sets si = s (Bi does not know what s is). Given

the Leak(s,h1, ...,ht) = (g,gs, ...,gsq−1
,hk, ...,h

sq−Q

k) for each 1 ⩽ k ⩽ t, B
can compute Lg(s1, ..., sn,h) from his selection. Bi simulates A by sending him
Lg(s1, ..., sn,h).

When A queries (x1, ..., xn), Bi computes ℓ = Index(x1, ..., xi−1). If ℓ is not
defined, it takes the next available index in {1, ..., t} to define it. Bi queries its
t-parallel Leak challenger with (xi, ℓ) and obtains a hi ∈ G. Note that hi is

either random or is equal to y = fs,hℓ
= h

1
s+xi

ℓ for some random key (s,hℓ). Bi

finishes the cascade as:
hi = y

for j = i+ 1, ...,n do
hi ← fsi,hi−1

(xi)

output hn.

Finally Bi returns hn A. Eventually A outputs a bit b ∈ {0, 1}. Bi outputs
the same b to its challenger.

The Index function together with the random selection of the hℓ simulates
well a random function on (x1, ..., xi−1). So, pi−1 is the probability that Bi

returns b = 1 in the game with the real function.
When Bi’s challenger responds with an ideal function, the random selec-

tion of the function Index together with the random selection of the hℓ makes
(x1, ..., xi) → hi simulates well a random function. So, pi−1 is the probability
that Bi returns b = 1 in the game with the ideal function.

Hence, |pn−p0| =
∑

i AdvLeak
fts,h1,...,ht

(Bi), which is what we claim. Hence, due

to Leak-parallel security, we obtain the result.

15

⊓⊔

4.5 Related Key Secure PRF

Let us define the following game using a bit b for an adversary A playing against
a challenger:

-Pick K in K at random.
-Let A make queries to GEN(ϕ, x) with ϕ ∈ Φ

-A outputs b ′

proc GEN(ϕ, x)

K ′ ← ϕ(K) ;
If K ′ = ⊥ then return ⊥ ;
If T [K ′] = ⊥ then

if b = 1 then T [K ′]← F(K, x);
if b = 0 then T [K ′]← {0, 1}r;

Return T [K ′]
For all ppt adversary A, a pseudorandom function F is a RKA secure PRF

with respect to a function family Φ if AdvA,Φ = |Pr(b ′ = 1|b = 1) − Pr(b ′ =
1|b = 0)| is bounded by ϵ.

Example 3. fs,h(x) = h
1

x+s is not RKA secure PRF for ϕ(s,h) = (s+ ∆,h).

Let the adversary make two queries to GEN with ((s,h), x) and ((s,h), x−∆).

If we are in real world (b = 1), then the outputs are h
1

x+s for both queries.
Clearly, these two outputs are same if we are in real world. We get two random
strings if we are in ideal world (b = 0). It allows us to correctly guess bit b.

5 Conclusion

We define a new security notion called Key Dependent Feedback(KDF) security
inspired from circular security of pseudorandom functions introduced in Distance
Bounding Protocols. We give an algebraic structure of PRF under KDF security.
We prove that a small-domain Verifiable Random Functions(VRF) from Dodis-
Yampolskiy is a circular secure PRF which easily extends to efficiently large-
domain VRF by augmented cascading by Boneh et. al.

We have constructed a circular-secure PRF function with no random oracle
and under (g,q)-DDH assumption. Unfortunately, we proved circular security
from Leak security. For this reason, this construction is not well suited to dis-
tance bounding. Indeed, the construction of DB protocols using circular-secure
PRF rely on the fact that leaking L would leak the entire secret, so, cannot be
Leak-secure. Hence, the problem of making a circular-secure PRF which is not
Leak-secure is still an open problem.

16

Acknowledgments.
The first author was supported in part by NSF grant CNS-1453132.
We thank Dr. Reza Reyhanitabar for helpful discussions and valuable comments.

References

1. M. Bellare, R. Canetti, and H. Krawczyk. Pseudorandom functions revisited: the
cascade construction and its concrete security. In Foundations of Computer Sci-
ence, 1996. Proceedings., 37th Annual Symposium on, pages 514–523, Oct 1996.

2. Dan Boneh, Shai Halevi, Mike Hamburg, and Rafail Ostrovsky. Advances in Cryp-
tology – CRYPTO 2008: 28th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2008. Proceedings, chapter Circular-Secure En-
cryption from Decision Diffie-Hellman, pages 108–125. Springer Berlin Heidelberg,
2008.

3. Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. Algebraic
pseudorandom functions with improved efficiency from the augmented cascade.
In Proceedings of the 17th ACM conference on Computer and communications
security, CCS ’10, pages 131–140. ACM, 2010.

4. Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. Progress in Cryptol-
ogy – LATINCRYPT 2012: 2nd International Conference on Cryptology and Infor-
mation Security in Latin America, Santiago, Chile, October 7-10, 2012. Proceed-
ings, chapter On the Pseudorandom Function Assumption in (Secure) Distance-
Bounding Protocols, pages 100–120. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2012.

5. Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. Information Secu-
rity: 16th International Conference, ISC 2013, Dallas, Texas, November 13-15,
2013, Proceedings, volume 7807, chapter Practical and Provably Secure Distance-
Bounding, pages 248–258. Springer International Publishing, 2015.

6. Ioana Boureanu, Aikaterini Mitrokotsa, and Serge Vaudenay. Practical and prov-
ably secure distance-bounding. Journal of Computer Security, 23(2):229–257, 2015.

7. Ioana Boureanu and Serge Vaudenay. Information Security and Cryptology: 10th
International Conference, Inscrypt 2014, Beijing, China, December 13-15, 2014,
Revised Selected Papers, volume 8957, chapter Optimal Proximity Proofs, pages
170–190. Springer International Publishing, 2015.

8. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. Journal of The ACM (JACM), 51:557–594, 2004.

9. Yevgeniy Dodis and Aleksandr Yampolskiy. Public Key Cryptography - PKC 2005:
8th International Workshop on Theory and Practice in Public Key Cryptography,
Les Diablerets, Switzerland, January 23-26, 2005. Proceedings, volume 3386, chap-
ter A Verifiable Random Function with Short Proofs and Keys, pages 416–431.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

10. Oded Goldreich, Shafi Goldwasser, and S Silvio Micali. How to construct random
functions. Journal of The ACM (JACM), 33:792–807, 1986.

17

