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Abstract. The Data Encryption Standard (DES) is a cryptographic algorithm, designed by IBM, that was

selected to be the national standard in 1977 by the National Bureau of Standards. The algorithm itself was entirely

published but the design criteria were kept secret until 1994 when Coppersmith, one of the designers of DES,

published them. He states that the IBM team already knew about the attack called Differential cryptanalysis

during the design of the algorithm and that it had an effect on choosing the S-boxes. To be more specific, he

mentions eight design criteria that all the S-boxes of DES are based on. How the S-boxes were generated is a

mystery, as the legend says this was outsourced to the NSA. Indeed, building a set of S-boxes respecting these

criteria is a non-trivial task.

In this paper we present an efficient S-box generator respecting all criteria and even more. Coppersmith’s design

criteria served as a basis but were strengthened for better resistance to Linear Cryptanalysis.

While other researchers have already proposed S-box generators for DES satisfying either non-linearity or good

diffusion, our generator offers both. Moreover, apart from suggesting a new set of 8 S-boxes, it can also very

quickly produce a large pool of S-boxes to be used in further research.
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1 Introduction

When IBM published the DES-algorithm [5] without revealing the design considerations, many

people speculated there to be a hidden weakness in the algorithm. This was mostly due to the

presence of mysterious S-boxes without any reference on how they were generated. However,

when Biham and Shamir [1] demonstrated an attack against DES in 1989 using a technique

called differential cryptanalysis, IBM claimed that this attack was known to the designers of DES
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and that the design criteria for the DES S-boxes contributed to the defense against ‘differential

cryptanalysis’. Biham and Shamir further noticed that any variation in the set of S-boxes (even

the same ones in a different order) led to a much lower attack complexity.

In 1994, one of the designers of the algorithm, Coppersmith, released a paper [3, p.247], in

which he presented a list of eight criteria for the S-boxes, claiming that these criteria were used

for the creation of the eight original DES S-boxes. An S-box is a substitution box and it is the

only non-linear component in the cipher. Its main purpose is to obscure the relationship between

the key, the plaintext, and the ciphertext.

In related works, other sets of DES-like S-boxes have been proposed. In [6, p.71-72], Kim

incrementally constructs each output bit of an S-box as a new Boolean function. The proposed

S-boxes in his set s2DES have good differential and linear properties but don’t satisfy the other

DES diffusion criteria, even though they are mentioned in the paper. For instance, S1(001000) = B

and S1(001001) = 9 therein criterion (S-4) (as later defined) is not satisfied: The Hamming

distance between both the outputs and the inputs is 1. The other proposed set s5DES in [7,

p.157] does comply with the diffusion criteria but instead, the differential and linear properties

are not satisfactory. For instance, DPS1(20,6) = 9
32 therein criterion (S-7) (as later defined) is

not satisfied. Indeed, both the diffusion and non-linearity criteria are quite demanding and it is

difficult to satisfy both at the same time.

This paper describes in detail the development of an algorithm that can produce S-boxes

satisfying all design criteria of IBM and even more. The main idea is to use graphs with adjacencies

based on the DES criteria. Building each graph based on the result from a previous one, we

repeatedly combine smaller components to produce bigger ones. Typically, we construct classes

of functions mapping 2, 4, then 6 bits to 4 bits. This approach is substantially different from that

of Kim in [6, p.66] but makes the algorithm very efficient. Our method produces a complete set of

S-boxes on a computer in roughly 1 minute, using less than 17MB of memory. The results show

how the DES S-boxes may have been generated with computational resources in the 1970’s.
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This paper starts with a discussion of Coppersmith’s design criteria in Section 2. Here, we

also define a set of criteria for the smaller S-boxes. In Section 3, the methodology and structure of

the algorithm is described in detail and finally, we mention implementation details in Section 4.

2 On the Data Encryption Standard

The Data Encryption Standard is a Feistel cipher, in which the round function consists of an

expansion, a bitwise XOR-operation with the round key, an S-box layer and a permutation. This

research concentrates on the S-box layer, which consists of 8 different parallel S-boxes. Every

S-box transforms 6 bits of input to an output of 4 bits:

S : {0,1}6 →{0,1}4 : x → S(x)

The 8 Standard DES-Sboxes of IBM were published together with the algorithm in 1977, but the

criteria were only disclosed 15 years after.

2.1 The S-box Design Criteria

The design criteria for S-boxes as described in [3, p.247] are as follows:

(S-1) Each S-box has six bits of input and four bits of output.

(S-2) No output bit of an S-box should be too close to a linear function of the input bits. (That is,

if we select any output bit position and any subset of the six input bit positions, the fraction

of inputs for which this output bit equals the XOR of these input bits should not be close to 0

or 1, but rather should be near 1/2.)

(S-3) If we fix the leftmost and rightmost input bits of the S-box and vary the four middle bits,

each possible 4-bit output is attained exactly once as the middle four input bits range over

their 16 possibilities.
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(S-4) If two inputs to an S-box differ in exactly one bit, the outputs must differ in at least two

bits. (That is, if h(∆Ii, j) = 1, then h(∆Oi, j)≥ 2 , where h(x) is the Hamming weight of x.)

(S-5) If two inputs to an S-box differ in the two middle bits exactly, the outputs must differ in at

least two bits. (If ∆Ii, j = 001100, then h(∆Oi, j)≥ 2.)

(S-6) If two inputs to an S-box differ in their first two bits and are identical in their last two bits,

the two outputs must not be the same. (If ∆Ii, j = 11xy00, where x and y are arbitrary bits,

then ∆Oi, j ̸= 0.)

(S-7) For any nonzero 6-bit difference between inputs, ∆Ii, j, no more than eight of the 32 pairs

of inputs exhibiting ∆Ii, j may result in the same output difference ∆Oi, j.

(S-8) Similar to (S-7), but with stronger restrictions in the case ∆Oi, j = 0, for the case of three

active S-boxes on round i: Define

q0, j = max
c,d

(Pr[∆Oi, j = 0|∆Ii, j = 00cd11]),

q1, j = max
g,h

(Pr[∆Oi, j = 0|∆Ii, j = 11gh10]),

q2, j = max
k,m

(Pr[∆Oi, j = 0|∆Ii, j = 10km00]).

Arrange S-boxes so as to minimize max j∈{1,2,...,8}(q0, jq1, j+1q2, j+2).

In this description from [3, p.247], ∆Ii, j (∆Oi, j) is the input difference (resp. output difference)

of S-box S j in round i.

We remark that criterion (S-7) hardens DES against Differential Cryptanalysis [1]. We recall

the definition of the Differential Property of a function f (with notations from [11, p.56]):

Definition 1 (Differential Property). Given a function f , we define

DP f (a,b) = Pr[ f (X ⊕a)⊕ f (X) = b]

DP f
max = max

a̸=0,b
DP f (a,b)
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Therefore, another way to define (S-7) is

(S-7) DPS
max ≤ 16

64

Coppersmith doesn’t mention a criterion regarding Linear Cryptanalysis [9]. (As shown

below, (S-2) partially covers it.) Therefore, we add an extra criterion (S-9) to make sure our

S-boxes’ linear properties are satisfactory and to make the program’s execution more efficient.

Definition 2 (Linear Property). Given a function f , we define

LP f (a,b) = (2Pr[a ·X = b · f (X)]−1)2

LP f
max = max

a,b ̸=0
LP f (a,b)

(S-9) LPS
max ≤ (28

64)
2

This bound is the lowest from the existing 8 DES Sboxes’ LPmax values (see Table 4). Only one

of the standard DES S-boxes satisfies this bound.

Given that in Def. 2: a ·X =⊕5
i=0 aiXi, note that (S-2) can also be written as follows:

∀a ∈ {0,1}6,∀b ∈ {0,1}6,h(b) = 1 : minimize |Pr[a ·X = b ·S(X)]− 1
2
|

which is equivalent to minimizing LPS(a,b) when h(b) = 1. Thanks to (S-9), we know this value

will at least be smaller than (28
64)

2. However we will try to minimize it further by requiring

maxa,h(b)=1 LPS(a,b) ≤ (26
64)

2. Therefore, (S-2) can be rewritten as follows, with the bound

explicitely set to (26
64)

2:

(S-2) LPS
max(1) ≤ (26

64)
2

where

LPS
max(1) = max

a,h(b)=1
LPS(a,b) (1)
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From the standard S-boxes, only 3 satisfy this criterion so it is more severe than the one proposed

by Coppersmith (see Table 4).

2.2 The Permutation Design Criteria

Due to (S-3), each 6×4 S-box can be naturally split into four 4×4 S-boxes (rows), where the

leftmost and rightmost input bits of the big S-box are used to select one of the 4 smaller S-boxes.

Therefore, we can make a distinction between criteria that are already applicable on these smaller

S-boxes and those that can only be evaluated for 6×4 S-boxes.

A 4×4 S-box is a 4-bit permutation as prescribed by criterion (S-3). In the further discussion,

this criterion will not be given special attention, since creating a 4×4 S-box will imply it being

a permutation. As mentioned earlier, the leftmost and rightmost input bits a and b of a 6×4

S-box select one of the 4×4 S-boxes for which the four middle bits x are the input. I.e., Pa,b(x) =

S(a∥x∥b). Since only the two middle input bits are varied in (S-5), this criterion can be completely

verified for 4×4 S-boxes. If all permutations that are used to generate a 6×4 S-box comply with

this criterion, then it is not necessary to test the generated 6×4 S-box for this criterion.

We can now try to establish the criteria for 4×4 S-boxes. Some of the criteria (like (S-4) and

(S-5)) automatically imply a criterion for a permutation. We will also attempt to find criteria for

permutations equivalent to (S-7) and (S-9).

Criterion (S-2) requires that no output bit should be too close to a linear combination of any

subset of the six input bits. As the four input bits of a permutation are a subset of the six input bits

of the S-box, we can demand the same for any subset of these four input bits for the permutation.

Again, the nonlinearity of these output bits is related to the permutation’s Linear Property.

To define equivalent criteria to (S-7) and (S-9), we need to choose upper bounds for the

permutation’s DPmax and LPmax. Leander and Poschmann [8, p.163] have defined the following

conditions for an Optimal 4-bit Sbox S:

1. S is a bijection
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2. LPS
max = ( 8

16)
2

3. DPS
max =

4
16

Unfortunately, there exist no S-boxes that satisfy these bounds while also suiting the DES criteria.

Therefore we choose our own bounds such that there exists a sufficient number of permutations

that also satisfy Coppersmith’s criteria. The criteria for differential and linear properties are

defined in (P-2) and (P-6):

(P-1) Each permutation has four bits of input and four bits of output. (implied by (S-1))

(P-2) LPmax ≤ (12
16)

2

(P-3) If we vary the four input bits, each possible 4-bit output is attained exactly once. (implied

by (S-3))

(P-4) If two inputs to a permutation differ in exactly one bit, the outputs must differ in at least

two bits: If h(∆x) = 1, then h(∆P(x))≥ 2 , where h(x) is the Hamming weight of x. (Implied

by (S-4))

(P-5) If two inputs to a permutation differ in the two middle bits exactly, the outputs must differ

in at least two bits: If ∆x = 0110, then h(∆P(x))≥ 2. (Implied by (S-5))

(P-6) For any nonzero 4-bit difference between inputs, ∆x, no more than three of the 8 pairs of

inputs exhibiting ∆x may result in the same output difference ∆P(x): DPmax ≤ 6
16

Note that the standard S-boxes’ permutations satisfy (P-2) (see Table 2) but only S4 satisfies (P-6)

(see Table 1).

Theorem 1. Let S be a 6×4 S-box and let P0,0, P0,1, P1,0, P1,1, be the corresponding permutations

defined by Pa,b(x) = S(a∥x∥b).

– S satisfies (S-1) is equivalent to P0,0, P0,1, P1,0, and P1,1 satisfy (P-1).

– S satisfies (S-3) is equivalent to P0,0, P0,1, P1,0, and P1,1 satisfy (P-3).

– S satisfies (S-4) implies that P0,0, P0,1, P1,0, and P1,1 satisfy (P-4).
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– S satisfies (S-5) is equivalent to P0,0, P0,1, P1,0, and P1,1 satisfy (P-5).

There is no equivalence between (S-4) and (P-4), but (P-4) is a necessary condition. There is no

direct link between (S-2) (or (S-9)) and (P-2), and neither between (S-7) and (P-6). However,

(P-4) and (P-6) increase the chances to build S-boxes satisfying these criteria. In what follows,

we present an algorithm to give an exhaustive list of permutations satisfying (P-1), (P-3), (P-4),

(P-5). Then, it is easy to filter this list based on (P-2) and (P-6). The remaining task consists of

assembling these permutations by quadruplet in order to build an S-box.

Proof. The properties for (P-1) and (P-3) are trivial.

For (P-4), we observe that with a and b fix, if h(∆x)) = 1, then h(∆(a∥x∥b)) = 1. So, we must

have h(∆S(a∥x∥b))≥ 2 due to (S-4). This can be written h(∆Pa,b(x))≥ 2. So, (P-4) is satisfied.

The proof for (P-5) is similar. ⊓⊔

3 Our Generator

3.1 Finding 4×4 S-boxes

In order to create permutations in an efficient way we make use of 3 graphs. When vertices

are connected by an edge, we say they are compatible. The compatibility criteria are based on

Permutation design criteria (P-4) and (P-5). These criteria imply that for a valid permutation P:

∀x ∈ {0,1}4 ∀∆ ∈ {1,2,4,6,8} h(P(x)⊕P(x⊕∆))≥ 2. (2)

Step 1. G1 is a graph of size 24 = 16, containing all nibbles who are compatible if their distance

is 1. I.e., the hypercube of dimension 4 in which we additionally connect all pairs of nibbles that

have a xor equal to 6 (which is important for criterion (P-5)). The result is a graph shown in

Table 1. Note that nibbles connected by borders are also compatible. For example, 0 is connected

to {1,2,4,6,8} as 15 is connected to {7,9,11,13,14}. So, each row of G1 is a 4-clique and each

column is a 4-cycle.
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Middle bits:

Outer bits:

00 01 11 10

00

01

11

10

0 2 6 4

1 3 7 5

9 11 15 13

8 10 14 12

Fig. 1: Graph G1

Step 2. To find a permutation P we create a second graph, G2. The vertices of this graph are also

nibbles (so, G2 has 16 vertices) but in this case, they are connected if their Hamming distance is

at least 2. We recall the definition of a graph homomorphism.

Definition 3 (Graph homomorphism). A graph homomorphism f : G → G′ from a graph G = (V,E)

to a graph G′ = (V ′,E ′) is a mapping f : V →V ′ from the vertex set of G to the vertex set of G′

such that (u,v) ∈ E implies ( f (u), f (v)) ∈ E ′.

Due to (2), the permutations are graph homomorphisms from G1 to G2. Since they are 1-to-1

functions, they map each row of G1 (corresponding to 2 outer bits) to a 4-vertex clique of G2. By

analyzing G2, we find 228 such 4-cliques.

Given a permutation P, for a,b ∈ {0,1}, we introduce the mapping fab :

fab : {0,1}2 7→Cab : fab(x,y) = P(a,x,y,b) (3)

Note that Cab is a 4-clique of G2. A 4-clique of G2 is thus a class of functions from {0,1}2 to

{0,1}4 having the same output set and to which fab belongs: we map the two middle bits of the

S-box’ input to the output.
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Step 3. We create G3, a graph with the 4-cliques of G2 as vertices. This graph has thus 228

vertices. We define two vertices C and C′ to be compatible if and only if they are disjoint and

there exists a one-to-one mapping π : C 7→ C′ such that ∀x ∈ C the Hamming distance between

x and π(x) is at least 2. I.e., there is a perfect matching between C and C′ in G2. Note that

given a permutation P, the permutation πaba′b′ = fa′b′ ◦ f−1
ab from Cab to Ca′b′ is such a one-to-one

mapping from Cab to Ca′b′ when h(ab⊕a′b′) = 1 due to (2):

∀x ∈ {0,1}2 ∀a,b,a′,b′ ∈ {0,1} h(x⊕πaba′b′(x))≥ 2 when h(ab⊕a′b′) = 1

As the existence of such a mapping indicates adjacency in the graph, a permutation P defines

a 4-vertex cycle in G3 as in Fig. 2. A 4-cycle of G3 is thus a class of permutations. This is

summarized as follows.

Theorem 2. If P is a 4×4-permutation satisfying (P-1), (P-3), (P-4), and (P-5), then (C00,C01,C11,C10)

is a 4-cycle of G3, where Cab = {P(a∥x∥b);x ∈ {0,1}2}.

C10 C11

C00 C01

Fig. 2: DES Permutation as a cycle in G3

By analyzing the graph G3, we find 6 281 4-vertex cycles {C1,C2,C3,C4} that can represent

a 4-cycle of a permutation P(a,x,y,b) = Cab(x,y). To find these permutations, the 4-cycles still

have to be mapped in the right way. Each cycle can correspond to 8 assignments of {C00,C01,C11,C10}.

Each vertex Cab = {x0,x1,x2,x3} in the cycle can be permuted 4! = 24 times. Therefore, every
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4-cycle in G3 can define 8× (4!)4 4-bit permutations, but not all of them satisfy (P-4) and (P-5).

We exhaustively check all arrangements and all permutations. If there exists a valid sequence of

mappings C00 → C01 → C11 → C10 → C00, we construct the permutation P defining this cycle.

This way, we find 60 834 432 4-bit permutations that comply with criteria (P-1), (P-3), (P-4) and

(P-5). This is an exhaustive list.

Step 4. For the resulting permutations, criteria (P-2) and (P-6) still need to be verified.

First, criterion (P-6) limits the number of times one input difference can lead to the same

output difference for differential properties. To verify this we create a permutation’s XOR table

(or Differential Distribution table) and check its maximum value. For the permutations, we

derived an initial DPmax value 10
16 from the DES permutations’ DPmax values. (Table 1). However,

we decided to make the criterion more severe and to require DPmax ≤ 6
16 . 3

Permutations in DPmax Permutations in DPmax

S1
8
16 ,

8
16 ,

8
16 ,

8
16 S5

8
16 ,

6
16 ,

6
16 ,

6
16

S2
6
16 ,

8
16 ,

8
16 ,

6
16 S6

4
16 ,

8
16 ,

6
16 ,

6
16

S3
8
16 ,

8
16 ,

8
16 ,

8
16 S7

8
16 ,

8
16 ,

6
16 ,

8
16

S4
6
16 ,

6
16 ,

6
16 ,

6
16 S8

6
16 ,

10
16 ,

6
16 ,

8
16

Table 1: DPmax values of the standard DES permutations

Finally, we use the permutations’ Linear Approximation Tables to check their Linear Property

(P-2). Since we already constructed the Difference Distribution Tables and because we only need

the magnitude of the entries of the Linear Approximation Table, we may use the Walsh-Hadamard

Transform to obtain it [2, p.359]. The permutation is deemed valid if the maximum in this

table doesn’t exceed (12
16)

2. This value was again derived from the LPmax values of the DES

3 We tried using the optimal DPmax bound 4
16 and while it is possible to generate S-boxes this way, the number of resulting

S-boxes is much lower and their differential properties are not better. For more information, see appendix B
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permutations, as for all 32 standard permutations we have LPmax = (12
16)

2 (see Table 2). Moreover,

there are no permutations found with a lower bound that also satisfy the other criteria.

Permutations in LPmax Permutations in LPmax

S1 (12
16)

2,(12
16)

2,(12
16)

2,(12
16)

2 S5 (12
16)

2,(12
16)

2,(12
16)

2,(12
16)

2

S2 (12
16)

2,(12
16)

2,(12
16)

2,(12
16)

2 S6 (12
16)

2,(12
16)

2,(12
16)

2,(12
16)

2

S3 (12
16)

2,(12
16)

2,(12
16)

2,(12
16)

2 S7 (12
16)

2,(12
16)

2,(12
16)

2,(12
16)

2

S4 (12
16)

2,(12
16)

2,(12
16)

2,(12
16)

2 S8 (12
16)

2,(12
16)

2,(12
16)

2,(12
16)

2

Table 2: LPmax values of the standard DES permutations

We can classify the 60 834 432 permutations satisfying (P-1),(P-3),(P-4) and (P-5) according

to their DPmax and LPmax values. Table 3 shows the number of permutations that can be found

satisfying each combination of DPmax and LPmax. The permutations used in regular DES S-boxes

are all situated in the first four rows of column one. Our generator will only consider the permutations

from the first two rows. We then obtain an exhaustive list P of 1 069 056 permutations satisfying

(P-1) to (P-6).

LPmax→
DPmax↓ (12

16)
2 (16

16)
2

4
16 36 864 0
6
16 1 032 192 0
8
16 1 732 608 25 092 096
10
16 368 640 11 599 872
12
16 73 728 14 991 360
16
16 49 152 5 857 920

Table 3: Number of permutations for each combination of (DPmax, LPmax)
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3.2 Creating 6×4 S-boxes

In the previous section, we found the set of all possible 4×4 S-boxes P . We proceed by combining

compatible permutations to form S-boxes {P00,P01,P10,P11} such that S(a∥x∥b) = Pab(x) and

verifying the remaining criteria. Therefore, we make other graphs G4 an G′
4, in which vertices

are permutations. We can define two compatibility criteria, namely based on (S-4) (we have seen

in Th. 1 that (P-4) is a necessary but not sufficient condition for (S-4), so (S-4) is not fully

guaranteed so far) and based on (S-6) (which is independent from (P-1)–(P-6)).

In G′
4, we define compatibility between P and P′ as follows:

∀x ∈ {0,1}4 h(P(x)⊕P′(x))≥ 2 (4)

Pairs of permutations for which this is the case are connected by an edge in G′
4.

We also consider the following property between P and P′:

∀x ∈ {0,1}4 ∀y ∈ {0,1}2 P(x) ̸= P′(x⊕ (1∥y∥0)) (5)

Edges of G′
4 satisfying this property are edges in G4.

We have the following results.

Lemma 1 Let S be a 6×4 S-box and let P0,0, P0,1, P1,0, P1,1, be the corresponding permutations

defined by Pa,b(x) = S(a∥x∥b). S satisfies (S-4) is equivalent to P0,0, P0,1, P1,0, and P1,1 satisfying

(P-4) with (P0,0,P0,1,P1,1,P1,0) a 4-cycle of G′
4.

Proof. Clearly, (S-4) is equivalent to the two following conditions:

– for all a,b, Pa,b satisfies (P-4);

– for all a,b,a′,b′ such that h(ab⊕a′b′) = 1, we have that Pa,b and Pa′,b′ satisfy (4).

The latter condition is equivalent to (P0,0,P0,1,P1,1,P1,0) being a 4-cycle of G′
4.
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Lemma 2 Let S be a 6×4 S-box and let P0,0, P0,1, P1,0, P1,1, be the corresponding permutations

defined by Pa,b(x) = S(a∥x∥b). S satisfies (S-6) is equivalent to the pairs of permutations {P0,0,P1,0}

and {P0,1,P1,1} satisfying relation (5).

Proof. Clearly, (S-6) is equivalent to that for all a and b, Pa,b and Pā,b satisfy (5). ⊓⊔

We depict edges in G4 by a double line and edges in G′
4 by a simple line. Fig. 3 represents

how the four permutations of an S-box are connected in G4 and G′
4. So, we conclude as follows.

Theorem 3. We consider the S ↔ (P0,0,P0,1,P1,1,P1,0) correspondence defined by Pa,b(x) =

S(a∥x∥b). The 6 × 4-S-box S satisfies (S-1), (S-3), (S-4), (S-5), and (S-6) if and only if P0,0,

P0,1, P1,1, and P1,0 satisfy (P-1), (P-3), (P-4), and (P-5), and are vertices of G4 and G′
4 connected

as on Fig. 3.

Proof. If S satisfies (S-1), (S-3), (S-4), (S-5), and (S-6), by Th. 1, every Pa,b satisfies (P-1), (P-3),

(P-4), and (P-5). Furthermore, (4) and (5) are satisfied due to Th. 1. So, the Pa,b are connected as

on Fig. 3, by definition of G4 and G′
4.

If now every Pa,b satisfies (P-1), (P-3), (P-4), and (P-5), by Th. 1, S satisfies (S-1), (S-3), and

(S-5). If they are connected as on Fig. 3, (4) and (5) are satisfied. So, due to Th. 1, S further

satisfies (S-4) and (S-6). ⊓⊔

P10 P11

P00 P01

Fig. 3: DES Sbox

Edges of G4 are pairs of permutations. These pairs represent either {P00,P10} or {P01,P11}

and will be the vertices of the last graph G5. In this graph, adjacency means the existence of a
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connection as in Fig. 3. More formally, two vertices τ and τ′ of G5 are connected if and only if

τ and τ′ are non-intersecting edges of G′
4 and there exists a perfect matching between τ and τ′.

Finally, an edge of G5 defines 4 possible S-boxes due to the possible permutations of the elements

(P00,P01,P11,P10). Since these 4 S-boxes are quite similar and because given one S-box, the other

3 can easily be constructed (by changing the row order), the generator only returns one of them.

While the preceding methods were deterministic, the remaining part of the algorithm is

non-deterministic, as the total number of permutations is too large to put in a graph. Therefore

we only create a subgraph Σ4 of G4 by choosing random permutations in P until we find m edges

in Σ4 (i.e., pairs of permutations that are connected with a double line). Then, we use the m edges

from Σ4 to define m vertices of the subgraph Σ5 of G5. Note that m is a parameter that can be

chosen arbitrarily. The higher this parameter, the more S-boxes you can find and the more time

the program needs to complete. We will see that the value m = 10000 is a good choice if you

want to obtain 8 S-boxes.

Sbox DPmax LPmax LPmax(1)

S1
16
64 (36

64)
2 (28

64)
2

S2
16
64 (32

64)
2 (28

64)
2

S3
16
64 (32

64)
2 (28

64)
2

S4
16
64 (32

64)
2 (20

64)
2

S5
16
64 (40

64)
2 (28

64)
2

S6
16
64 (28

64)
2 (24

64)
2

S7
16
64 (36

64)
2 (36

64)
2

S8
16
64 (32

64)
2 (24

64)
2

Table 4: Properties of the standard DES S-boxes
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Now all that is left is to verify the resulting S-boxes with (S-2), (S-7) and (S-9) as (S-1)

and (S-3) to (S-6) are satisfied by construction, due to Th. 3. Table 4 shows the corresponding

properties for the 8 DES S-boxes. According to our criterion (S-9) we decide that an S-box is

rejected when its LPmax exceeds (28
64)

2, which is thus more severe than for DES. The differential

criterion is identical to that of Coppersmith: We require DPmax ≤ 16
64 . Finally, we check that

LPmax(1) ≤ (26
64)

2 for (S-2) as defined by (1).

How many valid S-boxes would we find if we could create G4 and G5 completely? We try to

find this number by approximating the number of edges in G4 and G5.

Firstly, note that Pr[h(∆)≥ 2|∆∈{0, . . . ,15}] = 11
16 and Pr[P(x) ̸=P′(x′)]= 15

16 . The probability

that two permutations P and P′ ∈ P form an edge in G′
4 is the probability that the pair satisfies

(4):

p′4 = Pr[(P,P′) ∈ E(G′
4)]≈

(
11
16

)24

≈ 2−8.6

This is for a random function. We can check that it is also correct for random permutations.

But P and P′ are taken from a special list of permutations and we observe in practice a larger

p′4 = 2−6.74. The probability that two permutations P and P′ ∈ P form an edge in G4 is the

probability that the pair satisfies (4) and (5):

p4 = Pr[(P,P′) ∈ E(G4)]≈ p′4 ·
(

15
16

)24+2

≈ 2−12.7

but we observe a larger p4 = 2−10.97 in practice. The probability that two vertices {P1,P2} and

{P′
1,P

′
2} in G5 are adjacent is the probability that either {P1,P′

1} and {P2,P′
2} or {P1,P′

2} and

{P2,P′
1} are edges of G′

4:

p5 = Pr[({P1,P2},{P′
1,P

′
2}) ∈ E(G5)]≈ 2 · (p′4)

2 ≈ 2−12.5
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but we observe a larger p5 = 2−10.3 in practice. Finally, we experimentally found that an edge in

G5 forms a valid DES S-box with probability around ps = 2−11.74. Table 5 shows the resulting

approximations for the number of graph edges and valid DES S-boxes.

# Vertices G′
4 = # Vertices G4 n 1 069 056

# Edges G′
4

n2

2 · p′4 ≈ 232.32 p′4 = 2−6.74

# Edges G4 = # Vertices G5 m = n2

2 · p4 ≈ 228.09 p4 = 2−10.97

# Edges G5 e = m2

2 · p5 ≈ 244.87 p5 = 2−10.3

# DES S-boxes ≈ e · ps ≈ 233.13 ps = 2−11.74

Table 5: Analysis of the total number of valid DES S-boxes

3.3 Ordering the S-boxes

By implementing Coppersmith’s last criterion, we can obtain for 8 S-boxes the optimal order to

use them in the DES round function. Let’s recall criterion (S-8):

(S-8) Define

q0, j = max
c,d

(Pr[∆Oi, j = 0|∆Ii, j = 00cd11]),

q1, j = max
g,h

(Pr[∆Oi, j = 0|∆Ii, j = 11gh10]),

q2, j = max
k,m

(Pr[∆Oi, j = 0|∆Ii, j = 10km00]).

Arrange S-boxes so as to minimize max j∈{1,2,...,8}(q0, jq1, j+1q2, j+2).

The probabilities in this expression can be found in an S-box’ difference distribution table.

Therefore, for each valid S-box i, we already store the three quantities q0,i, q1,i and q2,i when

checking Criterion (S-7).

Given 8 unordered S-boxes, we recursively calculate the above quantity for every order of

the S-boxes. We update the current ordering whenever we find a better one.
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4 Implementation

A summary of the algorithm can be seen below and a recap of the structure of all graphs in

Table 6.

Construct G2
Find all 4-cliques in G2
Construct G3
Find all 4-cycles in G3
for each 4-cycle in G3: do

for each permutation that maps to this 4-cycle: do
% By construction, the permutation satisfies (P-1), (P-3), (P-4) and (P-5)
if criteria (P-2) and (P-6) satisfied: then

Store permutation in P
end

end
end
Construct a subgraph Σ4 of G4 as follows:
while # Edges in Σ4 < 10 000: do

Pick random pair in P
if pair adjacent in G4: then

Add pair as a new edge in Σ4
end

end
Construct the subgraph Σ5 of G5 from Σ4
for each edge in Σ5: do

Build S-box corresponding to edge
% By construction, the S-box satisfies (S-1), (S-3), (S-4), (S-5) and (S-6)
Verify criteria (S-2), (S-7) and (S-9)

end
if Goal = a set of 8: then

Pick 8 S-boxes and order them to satisfy (S-8)
end

Algorithm 1: Summary of the algorithm

Although finding large cliques in a graph is a hard problem, finding 4-cliques in G2 can be

done in time O(n4), where n is the number of vertices in G2. (Here, n = 16.)

Finding cycles is done in polynomial time, but the trivial algorithm to find 4-cycles in G3 with

complexity O(n4) (where n is the number of vertices in G3) is good as well. (Here, n = 228.)
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Graph Vertices Edge

G1 vi = nibble Ei j: h(vi ⊕ v j) = 1 or vi ⊕ v j = 6

G2 vi = nibble Ei j: h(vi ⊕ v j)≥ 2

G3 Ci = 4-Clique from G2 Ei j: ∃π : Ci →C j : ∀x : h(x⊕π(x))≥ 2

G′
4 Pi = permutation Ei j: (4) satisfied for (Pi,Pj)

G4 Pi = permutation Ei j: (4) and (5) satisfied for (Pi,Pj)

G5 {P1
i ,P

2
i } = Edge from G4 Ei j: (4) satisfied for (P1

i ,P
1
j ) and (P2

i ,P
2
j )

Table 6: Summary of graphs

The iterations are of course pruned by disconnected vertices, so the complexity might sooner be

O(nd3) with d the degree of the graph. In G3, the mean degree is about 77.5.

Given a 4-cycle in G3, we have to explore 8× (4!)4 possible permutations. Not all of them

satisfy criteria (S-4) and (S-5). Given that we have 6281 cycles, this gives about 234 permutations

to explore. Again, the exact number of iterations is much less because there are often less than

4! possible mappings π between two cycles. After this, we are left with an exhaustive list of

60834432 ≈ 225.8 permutations that satisfy (P-1), (P-3), (P-4), and (P-5).

To check (P-6), we build a table of differences with a loop of (24)2 steps. Then, to check

(P-2), the Walsh transform takes 4× 24 more steps. Therefore, to obtain our final list of valid

permutations, we need another 226 ×28 = 234 iterations.

To find edges in G4, we observe experimentally that a random pair of permutation from P is

an edge of G4 with probability p4 as given in Table 5. Therefore, to obtain m edges in Σ4, we

must iterate over approximately m
p4

pairs.

Then, from m edges in G4, constructing G5 can be done in O(m2). Experimentally, we observe

that two random edges in Σ4 form an edge of G5 with probability p5 as given in Table 5. So, with

m edges in Σ4 we obtain a graph Σ5 of m vertices and approximately e = m2

2 p5 edges.
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Finally, we observe that we can obtain eps =
m2

2 p5 ps S-boxes from the edges in Σ5 satisfying

the non-linearity criteria (see Table 5). Our algorithm uses m = 10000 edges in Σ4. On the one

hand, this choice always resulted in at least 8 S-boxes in our experiments. On the other hand, it

is justified by our probability analysis that predicts around eps = 11 S-boxes at the output. An

additional O(8! = 215.3) iterations for (S-8) ensures optimal ordering.

This algorithm was implemented in C, compiled with gcc with the optimization option -O3

and executed on a 2,2GHz Intel Core i7 processor running OS X. Generating all S-boxes from

10000 pairs once (executing Algorithm 1 completely) takes approximately 1 minute 5 seconds

with a memory usage of 16.7MB. More precisely, generating the list of permutations P takes

roughly 1 minute, constructing Σ4 lasts about 5 seconds and the time to construct Σ5 is negligible.

The number of resulting S-boxes varies around 10.

To get more S-boxes, we can generate a pool of permutation pairs multiple times, without

repeating the generation of the permutations P . This way we can for example get around 350

S-boxes in 4 minutes with the same memory usage by generating P once and constructing Σ4

and Σ5 25 times.

We also implemented Coppersmith’s last criterion (S-8), to obtain for 8 S-boxes the ideal

order that they should be used in. Generating 8 S-boxes and printing them in the ideal order takes

1 minute 5 seconds and 16.3MB of memory. This duration includes the making of P . An example

of an S-box set generated with our method can be found in Appendix A. Non-linearity measures

are shown in Table 7 and Table 8 provides the best differential and linear characteristics, calculated

with Matsui’s algorithm [10]. Note that these are all smaller than the best characteristics obtained

with the standard DES S-boxes as reported in [10] and [9].
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Sbox DPmax LPmax LPmax(1)

S∗1
16
64 (28

64)
2 (24

64)
2

S∗2
16
64 (28

64)
2 (24

64)
2

S∗3
14
64 (28

64)
2 (24

64)
2

S∗4
16
64 (28

64)
2 (24

64)
2

S∗5
16
64 (28

64)
2 (20

64)
2

S∗6
16
64 (28

64)
2 (24

64)
2

S∗7
16
64 (28

64)
2 (24

64)
2

S∗8
16
64 (28

64)
2 (24

64)
2

Table 7: Properties of the new S∗-boxes

DPDES
max LPDES

max

Standard New Standard New

13 Rounds 2−47.22 2−52.98 2−34.85 2−40.42

14 Rounds 2−54.10 2−60.49 2−39.49 2−44.42

15 Rounds 2−55.10 2−61.81 2−41.49 2−47.25

16 Rounds 2−61.97 2−69.32 2−44.85 2−50.80

Table 8: Best characteristics of the standard S-boxes and new S∗-boxes

5 Conclusion

We now have an algorithm that can generate either a large pool of DES-like S-boxes or a group of

8 S-boxes in the order in which they should be used for DES. Thanks to the use of several graphs,

the generator is very efficient. Moreover, it generates very quickly all 4×4 S-boxes that we want

to start from. Therefore, the methodology can serve as a basis for other S-box generators.

The algorithm can be extended to include criteria that protect against other attacks such as

Murphy’s attack [4]. Finally, those who still use DES, could generate their own set of S-boxes.
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A Example of 8 DES-like S-boxes

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 7 C 2 5 8 B E 0 9 6 F A 4 1 3 D

1 9 2 4 8 E 7 3 D C 5 A 6 1 B F 0

2 B 5 D 0 2 E 8 3 C A 6 9 1 7 F 4

3 2 C B 7 4 1 D A F 3 5 0 8 E 6 9

Table 9: S∗1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 B 4 0 A 6 3 5 9 D 1 7 C 8 F E 2

1 5 F A 9 3 4 C 2 A 8 0 6 E 1 7 D

2 6 D A 7 9 0 3 E 1 2 4 B F C 8 5

3 3 4 6 A C 7 5 9 8 D F 0 1 B 2 E

Table 10: S∗2

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 2 B 4 1 F C 8 6 E 5 7 A 0 9 D 3

1 C 6 F 8 9 5 2 B 1 A 4 3 E 0 7 D

2 F 2 A C 9 7 6 1 5 8 0 3 E 4 B D

3 A C 0 7 5 9 F 2 6 3 B D 8 E 1 4

Table 11: S∗3

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 6 5 A 0 C 9 3 E 8 B 1 D F 2 4 7

1 0 F 7 C 9 5 E 2 3 4 A 1 6 8 D B

2 0 6 3 F A C D 1 5 8 E 4 9 7 2 B

3 9 C 4 A F 0 2 7 6 B 3 D 5 E 8 1

Table 12: S∗4

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 D 6 7 C B 5 0 A 3 8 E 1 4 2 9 F

1 6 A 0 9 5 3 B C D 1 7 4 8 F E 2

2 A 0 C 3 1 E 6 D 9 7 5 8 2 B F 4

3 0 D 5 6 F 8 C B 3 E A 1 4 2 9 7

Table 13: S∗5

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 2 4 F 9 5 E C 3 8 D 1 6 B 0 7 A

1 8 7 3 0 F 9 5 C 2 1 E D 4 A B 6

2 4 2 9 7 F 8 3 E 1 B A C 6 5 D 0

3 7 E C B A 5 9 0 4 8 1 6 D 3 2 F

Table 14: S∗6

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 B 1 0 6 E D 7 8 2 C F A 4 3 9 5

1 2 B 9 5 7 8 4 E D 0 6 C 1 F A 3

2 5 8 6 D B 2 0 7 C 3 A 4 1 E F 9

3 9 7 5 2 E D 3 8 6 A C 1 B 4 0 F

Table 15: S∗7

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 1 C 8 3 6 5 D A 7 2 B 4 0 F E 9

1 C 0 6 D 5 A B 7 1 F 8 3 E 9 2 4

2 C 3 1 E F 8 6 5 0 D 7 B A 4 9 2

3 5 E B 8 6 1 C 2 A 3 D 4 0 F 7 9

Table 16: S∗8
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B Working with optimal 4×4 S-boxes

As the classification in Table 3 shows, we can find 36 864 optimal permutations that satisfy (P-1),

(P-3), (P-4), and (P-5), with DPP
max =

4
16 and LPP

max = (12
16)

2. Performing Algorithm 1 using this

smaller list of permutations leads to a smaller number of S-boxes in the end. This can be resolved

by increasing the number of edges in Σ4. However, since the differential and linear properties of

these S-boxes are not different from those obtained with the complete list P of permutations, we

decided to keep criterion (P-6) as described in section 2.2.

As an alternative, we perform the second part of the algorithm deterministically, by generating

graphs G′
4 and G4 completely. We observe that G′

4 and G4 have respectively 10 321 920 and

1 483 776 edges. Using these totals and with n = 36864, we derive new probabilities p′4 and p4:

p′4 = Pr[(P,P′) ∈ E(G′
4)]≈

10321920
(n2)/2

= 2−6.04

p4 = Pr[(P,P′) ∈ E(G4)]≈
1483776
(n2)/2

= 2−8.84

To find all edges in G5, we would have to iterate over O(m2) pairs. Instead, we predict the number

of edges using the same procedure as before. Experimentally, we observe that

p5 = Pr[({P1,P2},{P′
1,P

′
2}) ∈ E(G5)]≈ 2−8.91

and that an edge from G5 is a valid S-box with probability ps = 2−13.76.

Interestingly, p4 and p′4 are higher than the ones we had with DPP
max ≤ 6

16 but ps is lower. So,

the non-linearity criteria have an important impact on these probabilities.

Table 17 shows the resulting analysis of the number of valid S-boxes.
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# Vertices G′
4 = # Vertices G4 n 36 864

# Edges G′
4

n2

2 · p′4 223.30 p′4 = 2−6.04

# Edges G4 = # Vertices G5 m = n2

2 · p4 220.50 p4 = 2−8.84

# Edges G5 e = m2

2 · p5 ≈ 231.09 p5 = 2−8.91

# DES S-boxes ≈ e · ps ≈ 217.33 ps = 2−13.76

Table 17: Analysis of the amount of valid DES S-boxes when DPP
max =

4
16 .
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