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In this paper, we investigate the limiting absorption principle associated to and the 
well-posedness of the Helmholtz equations with sign changing coefficients which are 
used to model negative index materials. Using the reflecting technique introduced in 
[26], we first derive Cauchy problems from these equations. The limiting absorption 
principle and the well-posedness are then obtained via various a priori estimates 
for these Cauchy problems. Three approaches are proposed to obtain the a priori 
estimates. The first one follows from a priori estimates of elliptic systems equipped 
with complementing boundary conditions due to Agmon, Douglis, and Nirenberg 
in their classic work [1]. The second approach, which complements the first one, 
is variational and based on the Dirichlet principle. The last approach, which 
complements the second one, is also variational and uses the multiplier technique. 
Using these approaches, we are able to obtain new results on the well-posedness of 
these equations for which the conditions on the coefficients are imposed “partially” 
or “not strictly” on the interfaces of sign changing coefficients. This allows us to 
rediscover and extend known results obtained by the integral method, the pseudo 
differential operator theory, and the T-coercivity approach. The unique solution, 
obtained by the limiting absorption principle, is not in H1

loc(Rd) as usual and possibly
not even in L2

loc(Rd). The optimality of our results is also discussed.
© 2016 Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cet article, on étudie le principe d’absorption limite et le caractère bien 
posé des équations de Helmholtz avec changements de signe des coefficients, ce 
qui modélise des matériaux d’indice négatif. En utilisant la technique de réflexion 
introduite dans [26], on dérive d’abord des problèmes de Cauchy. Le principe 
d’absorption limite et le caractère bien posé sont ensuite obtenus grâce à des 
estimations a priori pour ces problèmes. Trois approches sont proposées pour obtenir 
ces estimations. La première utilise les estimations a priori des systèmes elliptiques 
pour des conditions aux limites complémentaires dans l’ouvrage classique [1]
d’Agmon, Douglis et Nirenberg. La deuxième approche, qui complète la première, est 
variationnelle et utilise le principe de Dirichlet. La dernière approche, qui complète 
la seconde, est également variationnelle et utilise la technique du multiplicateur. 
Utilisant ces approches, on peut obtenir des nouveaux résultats sur le caractère 
bien posé de ces équations, pour lesquelles les conditions sur les coefficients sont 
imposées “partiellement” ou “pas strictement” sur les interfaces où les coefficients 
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changent la signe. Cela permet de redécouvrir et d’étendre les résultats connus 
obtenus par la méthode intégrale, la théorie des opérateurs pseudo differentiels, et 
l’approche T-coercivité. La solution unique, obtenue par le principe d’absorption 
limite, n’est pas dans H1

loc(Rd) comme d’habitude et n’est peut-être même pas dans 
L2

loc(Rd). L’optimalité de nos résultats est également discutée.
© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

This paper deals with the Helmholtz equation with sign changing coefficients which are used to model 
negative index materials (NIMs). NIMs were first investigated theoretically by Veselago in [44]. The existence 
of such materials was confirmed by Shelby, Smith, and Schultz in [42]. The study of NIMs has attracted a 
lot of attention in the scientific community thanks to their many possible applications such as superlensing 
and cloaking using complementary media, and cloaking a source via anomalous localized resonance.

We next mention briefly these three applications of NIMs. Superlensing using NIMs was suggested by 
Veselago in [44] for a slab lens (a slab of index −1) using the ray theory. Later, cylindrical lenses in the 
two dimensional quasistatic regime, the Veselago slab lens and cylindrical lenses in the finite frequency 
regime, and spherical lenses in the finite frequency regime were studied by Nicorovici, McPhedran, and 
Milton in [36], Pendry in [38,39], and Pendry and Ramakrishna in [41] respectively for constant isotropic 
objects. Superlensing using NIMs (or more precisely using complementary media) for arbitrary objects in 
the acoustic and electromagnetic settings was established in [27,31] for schemes inspired by [36,39,41] and 
guided by the concept of reflecting complementary media introduced and studied in [26]. Cloaking using 
complementary media was suggested and investigated numerically by Lai et al. in [18]. Cloaking an arbitrary 
inhomogeneous object using complementary media was proved in [30] for the quasi-static regime and later 
extended in [35] for the finite frequency regime. The schemes used there are inspired by [18] and [26]. Cloaking 
a source via anomalous localized resonance was discovered by Milton and Nicorovici for constant symmetric 
plasmonic structures in the two dimensional quasistatic regime in [22] (see also [24,36]) for dipoles. Cloaking 
an arbitrary source concentrated on a manifold of codimension 1 in an arbitrary medium via anomalous 
localized resonance was proposed and established in [28,29,33]. Other contributions are [3,4,11,17,34] in 
which special structures and partial aspects were investigated. A survey on the mathematics progress of 
these applications can be found in [32]. It is worthy noting that in the applications of NIMs mentioned 
above, the localized resonance, i.e., the field blows up in some regions and remains bounded in some others 
as the loss goes to 0, might appear.

In this paper, we investigate the well-posedness of the Helmholtz equation with sign changing coefficients: 
the stability aspect. To ensure to obtain physical solutions, we also study the limiting absorption principle 
associated to this equation. Let k > 0 and let A be a (real) uniformly elliptic symmetric matrix defined in 
R

d (d ≥ 2), and Σ be a bounded real function defined in Rd (hence Σ can take both positive and negative 
values). Assume that

A(x) = I in R
d \BR0 , A is piecewise C1, 1

and

Σ(x) = 1 in R
d \BR0 ,

for some R0 > 0. Here and in what follows, for R > 0, BR denotes the open ball in Rd centered at the origin 
and of radius R. Let D ⊂⊂ BR0 be a bounded open subset in Rd of class C2. Set, for δ ≥ 0,

1 The smoothness assumption of A is only used in the proof of the uniqueness where the unique continuation is applied.
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sδ(x) =
{

−1 − iδ in D,

1 in R
d \D.

(1.1)

We are interested in the well-posedness in the class of outgoing solutions of the following equation

div(s0A∇u0) + k2s0Σu0 = f in R
d, (1.2)

and the limiting absorption principle associated with it, i.e., the convergence of uδ to u0 (in an appropriate 
sense) under various conditions on A and Σ as δ → 0+. Here uδ ∈ H1(Rd) (δ > 0) is the unique solution of 
the equation

div(sδA∇uδ) + k2s0Σuδ + iδuδ = f in R
d. (1.3)

Recall that a solution v ∈ H1
loc(Rd \BR) of the equation

Δv + k2v = 0 in R
d \BR,

for some R > 0, is said to satisfy the outgoing condition if

∂rv − ikv = o(r−
d−1
2 ) as r = |x| → +∞.

Physically, k is the frequency, (sδA, s0Σ) is the material parameter of the medium, and δ describes the loss 
of the material. We denote

Γ = ∂D,

and, for τ > 0,

Dτ =
{
x ∈ D; dist(x,Γ) < τ

}
(1.4)

D−τ =
{
x ∈ R

d \ D̄; dist(x,Γ) < τ
}
. (1.5)

As usual, D̄ denotes the closure of D for a subset D of Rd.
The well-posedness of the Helmholtz equation with sign changing coefficients was first established by 

Costabel and Stephan in [15]. They proved, by the integral approach, that (1.2) is well-posed if A = I in 
R

d \D and A = λI in D provided that λ is a positive constant not equal to 1. Later, Ola in [37] proved, 
using the integral method and the pseudo-differential operators theory, that (1.2) is well-posed in three and 
higher dimensions if Γ is strictly convex and connected even though λ = 1, i.e., A = I in Rd. His result 
was extended for the case, where Γ has two strictly convex connected components by Kettunen, Lassas, 
and Ola in [16]. Recently, the well-posedness was extensively studied by Bonnet-Ben Dhia, Ciarlet, and 
their coauthors in [5–10,13] by T-coercivity approach. This approach was introduced by Bonnet-Ben Dhia, 
Ciarlet, and Zwölf in [9] and is related to the (Banach–Necas–Babuska) inf-sup condition. The sharpest 
result for the acoustic setting in this direction, obtained by Bonnet-Ben Dhia, Chesnel, and Ciarlet in [5], 
is that (1.2) is well-posed in the Fredholm sense in H1 (this means that the compactness holds2), if A is 
isotropic, i.e., A = aI for some positive function a, and roughly speaking the contrast a+/a− is not 1 on Γ.

In this paper, we are interested in the limiting absorbtion principle and the well-posedness of (1.2) for 
solutions obtained by the limiting absorption process. Our starting point is to obtain Cauchy’s problems 
using the reflecting technique introduced in [26]. To this end, we introduce

2 They considered the bounded setting and the uniqueness is not ensured in general and is not a consequence of the compactness.
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Definition 1. Let τ > 0 and U be a smooth open subset of Rd such that D̄ ⊂ U . A transformation 
F : U \ D̄ → Dτ is said to be a reflection through Γ if and only if F is a diffeomorphism and F (x) = x on Γ.

Here and in what follows, when we mention a diffeomorphism F : Ω → Ω′ for two open subsets Ω, Ω′

of Rd, we mean that F is a diffeomorphism, F ∈ C1(Ω̄), and F−1 ∈ C1(Ω̄′).
The idea is simple as follows. Let F : U \ D̄ → Dτ be a reflection through Γ for some smooth open subset 

U of Rd such that D̄ ⊂ U and for some τ > 0. Set vδ = uδ ◦ F−1. By a change of variables (see Lemma 4), 
it follows from (1.1) that

div(F∗A∇vδ) + k2F∗Σvδ = F∗f + O(δvδ) in Dτ ,

div(A∇uδ) + k2Σuδ = s−1
0 f + O(δuδ) + O(δf) in Dτ ,

vδ − uδ = 0 on Γ and F∗A∇vδ · ν −A∇uδ

∣∣
D
· ν = iδA∇uδ

∣∣
D
· ν on Γ.

Here and in what follows, for a matrix a, a function σ, and a diffeomorphism T , the following standard 
notations are used:

T∗a(y) = DT (x)a(x)DTT (x)
J(x) and T∗σ(y) = σ(x)

J(x) , (1.6)

where

J(x) = | detDT (x)| and x = T−1(y),

and on the boundary of a smooth bounded open subset of Rd, ν denotes the normal unit vector directed 
to its exterior unless otherwise specified. Here O(v) denotes a quantity whose L2-norm is bounded by 
C‖v‖L2 for some positive constant C independent of δ and v for 0 < δ < 1. We hence obtain Cauchy’s 
problems for (uδ, vδ) in Dτ by considering O(δvδ), O(δuδ), O(δf), and iδA∇uδ · ν like given data which are 
formally 0 if δ = 0. The use of reflections to study NIMs was also considered by Milton et al. in [23] and by 
Bonnet-Ben Dhia, Ciarlet, and their coauthors in their T-coercivity approach. However, there is a difference 
between the use of reflections in [23], in the T-coercivity approach, and in our work. In [23], the authors 
used reflections as a change of variables to obtain a new simple setting from an old more complicated one 
and hence the analysis of the old problem becomes simpler. In the T-coercivity approach, the authors used a 
standard reflection to construct test functions for the inf-sup condition to obtain an a priori estimate for the 
solution. Our use of reflections is to derive the Cauchy problems. This can be done in a very flexible way via 
a change of variables formula stated in Lemma 4 as observed in [26]. The limiting absorption principle and 
the well-posedness of (1.2) are then based on a priori estimates for these Cauchy problems under various 
conditions on A, Σ, F∗A, and F∗Σ in Dτ . Appropriate choices of reflections are important in the applications 
and discussed later (Corollaries 2, 3, and 4).

In this paper, we introduce three approaches to obtain a priori estimates for the Cauchy problems. The 
first one follows from a priori estimates for elliptic systems imposing complementing boundary conditions
(see Definition 2) due to Agmon, Douglis, and Nirenberg in their classic work [1]. Applying their result, we 
can prove in Section 2:

1. Assume that A+ := A
∣∣
Rd\D ∈ C1(D̄−τ ) and A− := A

∣∣
D

∈ C1(D̄τ ) for some small positive constant τ , 
and A+ and A− satisfy the (Cauchy) complementing boundary condition on Γ. Then the limiting 
absorption principle and the well-posedness in H1

loc(Rd) for (1.2) hold (Theorem 1 in Section 2).

In fact, we establish that the conclusions hold if F∗A+ and A− satisfy the (Cauchy) complementing boundary 
condition on Γ where F is the standard reflection in (2.17). Using the characterization of the complementing 
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boundary condition established in Proposition 1, we can prove that F∗A+ and A− satisfy the (Cauchy) 
complementing boundary condition on Γ if and only if A+ and A− do; this implies the first result. Using the 
first result, one obtains new conditions for which the well-posedness and the limiting absorption principle 
hold. In particular, the condition A+ > A− or A− > A+ on each connected component of Γ is sufficient 
for the conclusion (see Corollary 1). Here and in what follows, we use the following standard notation 
for a matrix M : M > 0 means that 〈Mx, x〉 > 0 for all x �= 0 where 〈·, ·〉 denotes the Euclidean scalar 
product in Rd. To our knowledge, Corollary 1 is new and cannot be obtained using the known approaches 
mentioned above. Corollary 1 is in the same spirit of the one of Bonnet-Ben Dhia, Chesnel, and Ciarlet in [5]; 
nevertheless, A+ and A− are not assumed to be isotropic here. Theorem 1 also implies the well-posedness 
in the case where neither A+ > A− nor A− > A+ holds (see Proposition 1 and Remark 2). One can verify 
that if F∗A+ = A− on Γ then the complementing boundary condition is not satisfied (see Proposition 1). To 
deal with this situation, we develop a second approach to obtain a priori estimates for the Cauchy problems 
in Section 3. This approach is variational and based on the Dirichlet principle. Using this approach, we can 
establish:

2. Assume that there exist τ > 0 (small), a smooth open subset U of Rd with D̄ ⊂ U , and a reflection 
F : U \D → Dτ such that, on every connected component of Dτ ,

either A− F∗A � dist(x,Γ)αI or F∗A−A � dist(x,Γ)αI, (1.7)

for some 0 ≤ α < 2. Then the limiting absorption principle and the well-posedness for (1.2) hold 
(Theorem 2 in Section 3).

The unique solution, which is obtained by the limiting absorption principle, might not be in H1
loc(Rd)

in this case; the proof of the uniqueness is nonstandard. The appropriate space in which the solution is 
defined is revealed by the limiting absorption principle; more precisely, by a priori estimates obtained for 
uδ defined in (1.3). Once the uniqueness is obtained, the stability is based on a compactness argument. 
A new compactness criterion in L2 (Lemma 7) is established in this process and the condition α < 2 is 
required there. Various consequences of this result are given in Section 3 (Corollaries 2 and 3). The choice of 
the reflections is crucial in deriving these consequences. Theorem 2 implies, unifies, and extends the known 
results mentioned above. In particular, a variant of the result of Ola in [37] in two dimensions holds and is 
contained in Theorem 2.

Similar conclusion still holds in the case F∗A = A in Dτ under additional assumptions on Σ and F∗Σ
in Dτ . To reach the conclusion in this case, we propose a third approach to deal with the Cauchy problems 
in Section 4. It is variational and based on the multiplier technique, i.e., based on the use of appropriate 
test functions. In this direction, we can prove the following result:

3. Assume that there exist τ > 0 (small), a smooth open subset U of Rd with D̄ ⊂ U , and a reflection 
F : U \D → Dτ such that either

F∗A−A ≥ 0 and Σ − F∗Σ � dist(x,Γ)β (1.8)

or

A− F∗A ≥ 0 and F∗Σ − Σ � dist(x,Γ)β , (1.9)

in each connected component of Dτ for some β > 0. Then the limiting absorption principle and the 
well-posedness for (1.2) hold (Theorem 3 in Section 4).
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The unique solution, in this case, is not even in L2
loc(Rd) and f is assumed to be 0 near Γ. The appropriate 

space for which the solution is defined is again revealed by the limiting absorption principle. Once the 
uniqueness is established, the stability is based on a compactness argument. Due to the lack of L2-control, 
the compactness argument used in this case is non-standard and different from the one used in the second 
setting (see the proofs of Theorem 2 and Theorem 3). A simple application of this result is given in Corollary 4
which is a complement to Corollary 3 in two dimensions. As far as we know, Theorem 3 is the first result 
on the limiting absorption principle and the well-posedness for the Helmholtz equations with sign changing 
coefficients where the conditions on the coefficients contain the zero order term Σ.

It is known that in the case (F∗A, F∗Σ) = (A, Σ) in Dτ , the localized resonance might appear. Media with 
this property are roughly speaking called reflecting complementary media introduced and studied in [26,31]
for the Helmholtz and Maxwell equations respectively. The notion of reflecting complementary media plays 
an important role in various applications of NIMs mentioned previously as was discussed in [27–31,34,35]. 
The results obtained in this paper, in particular from the second and the third results, showed that the 
reflecting complementary property of media is necessary for the occurrence of the resonance. In Section 5, 
we show that even in the case (F∗A, F∗Σ) = (A, Σ) in B(x0, r0) ∩Dτ for some x0 ∈ Γ and r0 > 0, the system 
is resonant in the following sense (see Proposition 2): There exists f with supp f ⊂⊂ BR0 \ Γ such that 
lim supδ→0 ‖uδ‖L2(K) = +∞ for some K ⊂⊂ BR0 \ Γ. Here and in what follows B(x, r) denotes the open 
ball centered at x and of radius r. This result implies the optimality of the second and the third results 
mentioned above. The proof of Proposition 2 is based on a three sphere inequality and has roots from [29].

The paper is organized as follows. Sections 2, 3, and 4 are devoted to the proof of the three main results 
mentioned above and their consequences respectively. In Section 5, we discuss the optimality of these results.

2. An approach via a priori estimates of elliptic systems imposed complementing boundary conditions

A useful simple technique suggested to study the Helmholtz equations with sign changing coefficients is the 
reflecting one introduced in [26]. Applying this technique, we obtain Cauchy problems from the Helmholtz 
equations with sign changing coefficients. An important part in the investigation of the well-posedness and 
the limiting absorption principle is then to obtain appropriate a priori estimates for these Cauchy problems. 
In this section, these follow from an estimate near the boundary of solutions of elliptic systems imposed 
Cauchy data due to Agmon, Douglis, and Nirenberg in their classic work [1] (see also [19]). Before stating 
the result, let us recall the notation of complementing boundary condition with respect to the Cauchy data 
derived from [1].

Definition 2. (See Agmon, Douglis, Nirenberg [1].) Two constant positive symmetric matrices A1 and A2
are said to satisfy the (Cauchy) complementing boundary condition with respect to direction e ∈ ∂B1 if 
and only if for all ξ ∈ R

d
e,0 \ {0}, the only solution (u1(x), u2(x)) of the form 

(
ei〈y,ξ〉v1(t), ei〈y,ξ〉v2(t)

)
with 

x = y + te where t = 〈x, e〉, of the following system
{

div(A1∇u1) = div(A2∇u2) = 0 in R
d
e,+,

u1 = u2 and A1∇u1 · e = A2∇u2 · e on R
d
e,0,

which is bounded in Rd
e,+ is (0, 0).

Here and in what follows, for a unit vector e ∈ R
d, the following notations are used

R
d
e,+ = {ξ ∈ R

d; 〈ξ, e〉 > 0} and R
d
e,0 = {ξ ∈ R

d; 〈ξ, e〉 = 0}. (2.1)

Recall that 〈·, ·〉 denotes the Euclidean scalar product in Rd.
We are ready to state the main result of this section:
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Theorem 1. Let f ∈ L2(Rd) with supp f ⊂⊂ BR0 , and let uδ ∈ H1(Rd) (0 < δ < 1) be the unique solution 
of (1.3). Assume that A+ := A

∣∣
Rd\D̄ ∈ C1(D̄−h) and A− := A

∣∣
D

∈ C1(D̄h), and A+(x), A−(x) satisfy the 
(Cauchy) complementing boundary condition with respect to ν(x) for all x ∈ Γ. Then

‖uδ‖H1(BR) ≤ CR‖f‖L2(Rd) ∀R > 0, (2.2)

for some positive constant CR independent of δ and f . Moreover, (uδ) converges to u0 weakly in H1
loc(Rd)

and strongly in L2
loc(Rd), as δ → 0, where u0 ∈ H1

loc(Rd) is the unique outgoing solution of (1.2). We also 
have

‖u0‖H1(BR) ≤ CR‖f‖L2(Rd) ∀R > 0. (2.3)

We next give an algebraic characterization of the complementing boundary condition.

Proposition 1. Let e be a unit vector in Rd and let A1 and A2 be two constant positive symmetric matrices. 
Then A1 and A2 satisfy the (Cauchy) complementing boundary condition with respect to e if and only if

〈A2e, e〉〈A2ξ, ξ〉 − 〈A2e, ξ〉2 �= 〈A1e, e〉〈A1ξ, ξ〉 − 〈A1e, ξ〉2 ∀ ξ ∈ P \ {0}, (2.4)

where

P :=
{
ξ ∈ R

d; 〈ξ, e〉 = 0
}
.

In particular, if A2 > A1 then A1 and A2 satisfy the (Cauchy) complementing boundary condition with 
respect to e.

Remark 1. If A1 and A2 satisfy the (Cauchy) complementing boundary condition with respect to e then 
they satisfy the (Cauchy) complementing boundary condition with respect to −e.

Remark 2. Assume that A1 is isotropic, i.e., A1 = λI for some λ > 0, and d = 2. Then A1 and A2 satisfy 
the complementing boundary condition with respect to e if and only if detA2 �= λ2. In general, (2.4) is only 
required on a subset of P, which is of co-dimension 1.

Using Theorem 1 and Proposition 1, one obtains new conditions for which the well-posedness and the 
limiting absorption principle hold. In particular, one can immediately derive the following result:

Corollary 1. Let f ∈ L2(Rd) with supp f ⊂⊂ BR0 , and let uδ ∈ H1(Rd) (0 < δ < 1) be the unique 
solution of (1.3). Assume that A+ := A

∣∣
Rd\D̄ ∈ C1(D̄−τ ) and A− := A

∣∣
D

∈ C1(D̄τ ) for some τ > 0, and 
A+(x) > A−(x) or A−(x) > A+(x) for all x ∈ Γ. Then

‖uδ‖H1(BR) ≤ CR‖f‖L2(Rd) ∀R > 0,

for some positive constant CR independent of δ and f . Moreover, uδ → u0 weakly in H1
loc(Rd), as δ → 0, 

where u0 ∈ H1
loc(Rd) is the unique outgoing solution of (1.2). We also have

‖u0‖H1(BR) ≤ CR‖f‖L2(Rd) ∀R > 0.

To our knowledge, Corollary 1 is new and cannot be obtained using the known approaches mentioned 
in the introduction. Corollary 1 is in the same spirit of the one of Bonnet-Ben Dhia, Chesnel, and Ciarlet 
in [5]; nevertheless, A+ and A− are not assumed to be isotropic here. Using Proposition 1 and applying 
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Theorem 2, one can also obtain the well-posedness for the case, where neither A+ > A− nor A− > A+ holds 
(see Remark 2).

The rest of this section contains three subsections. In the first one, we present some lemmas which are 
used in the proof of Theorem 1. The proof of Theorem 1 is given in the second subsection. In the third 
subsection, we present the proof of Proposition 1.

2.1. Preliminaries

In this section, we present some lemmas used in the proof of Theorem 1. The first one is on an estimate 
for solutions to the Helmholtz equation. The proof is based on the unique continuation principle via a 
compactness argument.

Lemma 1. Let d ≥ 2, Ω be a smooth bounded open subset of Rd, f ∈ L2(Ω), and let a be a real uniformly 
elliptic matrix-valued function and σ be a bounded complex function defined in Ω. Assume that a is piecewise 
Lipschitz and v ∈ H1(Ω) is a solution to

div(a∇v) + σv = f in Ω.

We have

‖v‖H1(Ω) ≤ C
(
‖f‖L2(Ω) + ‖v‖H1/2(∂Ω) + ‖a∇v · ν‖H−1/2(∂Ω)

)
, (2.5)

for some positive constant C independent of f and v.

Proof. We first establish

‖v‖L2(Ω) ≤ C
(
‖f‖L2(Ω) + ‖v‖H1/2(∂Ω) + ‖a∇v · ν‖H−1/2(∂Ω)

)
, (2.6)

by contradiction. Here and in what follows in this proof, C denotes a positive constant independent of f , 
v, and n. Assume that there exist a sequence (fn) ⊂ L2(Ω) and a sequence (vn) ⊂ H1(Ω) such that

‖vn‖L2(Ω) = 1, ‖fn‖L2(Ω) + ‖vn‖H1/2(∂Ω) + ‖a∇vn · ν‖H−1/2(∂Ω) ≤ 1/n (2.7)

and

div(a∇vn) + σvn = fn in Ω. (2.8)

Multiplying the equation of v̄n (the conjugate of vn) and integrating on Ω, we obtain

‖∇vn‖L2(Ω) ≤ C
(
‖vn‖L2(Ω) + ‖fn‖L2(Ω) + ‖vn‖H1/2(∂Ω) + ‖a∇vn · ν‖H−1/2(∂Ω)

)
(2.9)

which implies

‖vn‖H1(Ω) ≤ C.

Without loss of generality, one might assume that (vn) converges to v weakly in H1(Ω) and strongly in 
L2(Ω). It follows from (2.7) and (2.8) that

div(a∇v) + σv = 0 in Ω
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and v = A∇v ·ν = 0 on ∂Ω. By the unique continuation principle, see e.g., [40], v = 0 in Ω. This contradicts 
the fact, by (2.7),

‖v‖L2(Ω) = 1.

Hence (2.6) holds. The conclusion now follows from (2.9) where vn is replaced by v. �
Remark 3. Assume that a ∈ C1(Ω̄). Using a three spheres inequality, see e.g., [2,35], one can choose the 
constant C depending only on Ω, the elliptic and Lipschitz constants of a, the boundedness of a and σ.

The following lemma is used to obtain an a priori estimate for uδ defined in (1.3).

Lemma 2. Let f ∈ L2(Rd) with supp f ⊂⊂ BR0 and let uδ ∈ H1(Rd) be the unique solution of (1.3). Then

‖uδ‖2
H1(Rd) ≤ C

(1
δ

∣∣∣ ∫
Rd

fūδ

∣∣∣ + ‖f‖2
L2(Rd)

)
, (2.10)

for some positive constant C independent of f and δ. Consequently,

‖uδ‖H1(Rd) ≤
C

δ
‖f‖L2(Rd).

Proof. Multiplying the equation of uδ by ūδ and integrating on Rd, we have

−
∫
Rd

〈sδA∇uδ,∇uδ〉 +
∫
Rd

k2s0Σ|uδ|2 + iδ|uδ|2 =
∫
Rd

fūδ. (2.11)

Considering the imaginary part of (2.11), we obtain

∫
D

|∇uδ|2 +
∫
Rd

|uδ|2 ≤ C

δ

∣∣∣ ∫
Rd

fūδ

∣∣∣.

This implies

‖uδ‖2
H1/2(∂D) + ‖A∇uδ · ν‖2

H−1/2(∂D) ≤
C

δ

∣∣∣ ∫
Rd

fūδ

∣∣∣ + C‖f‖2
L2(Rd).

Let Ω be the complement of the unbounded connected component of Rd \D. Applying Lemma 1, we have

‖uδ‖2
H1(Ω) ≤

C

δ

∣∣∣ ∫
Rd

fūδ

∣∣∣ + C‖f‖2
L2(Ω). (2.12)

Considering the real part of (2.11) and using (2.12), we obtain

‖uδ‖2
H1(Rd) ≤ C

(1
δ

∣∣∣ ∫
Rd

fūδ

∣∣∣ + ‖f‖2
L2(Rd)

)
.

The proof is complete. �
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The following lemma on the stability of the outgoing solution is standard (see, e.g., [20]3).

Lemma 3. Let Ω ⊂ BR0 be a smooth open subset of Rd, and let f ∈ L2(Rd \ Ω) and g ∈ H
1
2 (∂Ω). Assume 

that Rd \ Ω is connected, supp f ⊂ BR0 , and v ∈ H1
loc(Rd) is the unique outgoing solution of

{
Δv + k2v = f in R

d \ Ω,

v = g on ∂Ω.

Then

‖v‖H1(Br\Ω) ≤ Cr

(
‖f‖L2(Rd\Ω) + ‖g‖

H
1
2 (∂Ω)

)
∀ r > 0,

for some positive constants Cr = C(r, k, Ω, R0, d).

We next recall the following result [26, Lemma 2], a change of variables formula, which is used repeatedly 
in this paper.

Lemma 4. Let Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 be three smooth bounded open subsets of Rd. Let a ∈ [L∞(Ω2 \ Ω1)]d×d, 
σ ∈ L∞(Ω2 \ Ω1) and let T be a diffeomorphism from Ω2 \ Ω̄1 onto Ω3 \ Ω̄2 such that T (x) = x on ∂Ω2. 
Assume that u ∈ H1(Ω2 \ Ω1) and set v = u ◦ T−1. Then

div(a∇u) + σu = f in Ω2 \ Ω1,

for some f ∈ L2(Ω2 \ Ω1), if and only if

div(T∗a∇v) + T∗σv = T∗f in Ω3 \ Ω2. (2.13)

Moreover,

v = u and T∗a∇v · ν = −a∇u · ν on ∂Ω2. (2.14)

Recall that T∗a, T∗σ, and T∗f are given in (1.6).

2.2. Proof of Theorem 1

We first establish the uniqueness for (1.2). Assume that f = 0. We prove that u0 = 0 if u0 ∈ H1
loc(Rd) is 

an outgoing solution of (1.2). The proof is quite standard as in the usual case, in which the coefficients are 
positive. Multiplying the equation by ū0, integrating on BR, and considering the imaginary part, we have, 
by letting R → +∞,

lim
R→+∞

∫
∂BR

|u0|2 = 0.

Here the outgoing condition is used. By Rellich’s lemma (see, e.g., [14]), u0 = 0 in Rd \BR0 . It follows from 
the unique continuation principle that u0 = 0. The uniqueness is proved.

3 In [20], the proof is given only for d = 2, 3. However, the proof in the case d > 3 is similar to the case d = 3.
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We next establish (2.2). Applying Lemma 2, we have

‖uδ‖H1(Rd) ≤
C

δ
‖f‖L2(Rd). (2.15)

In this proof, C denotes a positive constant independent of δ and f . Using the difference method due to 
Nirenberg (see, e.g., [12]), one has4

uδ ∈ H2(D−τ ∪Dτ ). (2.16)

For τ > 0 small, define F : D−τ → Dτ as follows

F (xΓ + tν(xΓ)) = xΓ − tν(xΓ) ∀xΓ ∈ Γ, t ∈ (−τ, 0). (2.17)

Let vδ be the reflection of uδ through Γ by F , i.e.,

vδ = uδ ◦ F−1 in Dτ .

By Lemma 4, we have

div(F∗A∇vδ) + k2F∗Σvδ + iδF∗1vδ = F∗f in Dτ ,

and

vδ − uδ

∣∣
D

= 0, F∗A∇vδ · ν −A∇uδ

∣∣
D
· ν = iδA∇uδ

∣∣
D
· ν on Γ.

Recall that

div(A∇uδ) + k2Σuδ + k2(s−1
δ s0 − 1)Σuδ + iδs−1

δ uδ = s−1
δ f in Dτ .

Note that A+ and A− satisfy the complementing boundary condition on Γ if and only if F∗A+ and A−
satisfy the complementing boundary condition on Γ by (2.4) in Proposition 1. Applying the result of Agmon, 
Douglis, and Nirenberg [1, Theorem 10.2], we have

‖uδ‖H2(Dτ/2) + ‖vδ‖H2(Dτ/2)

≤ C
(
‖uδ‖H1(Dτ ) + ‖vδ‖H1(Dτ ) + ‖iδA∇uδ

∣∣
D
· ν‖H1/2(Γ) + ‖f‖L2(Rd)

)
. (2.18)

Since

‖A∇uδ

∣∣
D
· ν‖H1/2(Γ) ≤ C

(
‖uδ‖H2(Dτ/2) + ‖f‖L2(Rd)

)
,

it follows that, for small δ,

‖uδ‖H2(Dτ/2) + ‖vδ‖H2(Dτ/2) ≤ C
(
‖uδ‖H1(Dτ ) + ‖vδ‖H1(Dτ ) + ‖f‖L2(Rd)

)
. (2.19)

Using the inequality, for λ > 0,

‖ϕ‖H1(Dτ/2) ≤ λ‖ϕ‖H2(Dτ/2) + Cλ‖ϕ‖L2(Dτ/2),

4 We do not claim that u ∈ H2
loc(R

d); this fact is not true in general.
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we derive from Lemmas 1 and 3 that, for small δ,

‖uδ‖H2(Dτ/2) + ‖vδ‖H2(Dτ/2) + ‖uδ‖H1(BR) ≤ CR

(
‖uδ‖L2(D−τ∪Dτ ) + ‖f‖L2(Rd)

)
∀R > 0. (2.20)

The proof now follows by a standard compactness argument. We first claim that

‖uδ‖L2(BR0 ) ≤ C‖f‖L2(Rd). (2.21)

Indeed, assume that this is not true. By (2.15), there exist a sequence (δn) → 0+ and a sequence (fn) such 
that supp fn ⊂ BR0 ,

‖uδn‖L2(BR0 ) = 1, and ‖fn‖L2(Rd) → 0.

We derive from (2.20) that (uδn) is bounded in H1
loc(Rd). Without loss of generality, one might assume that 

(uδn) converges to u0 weakly in H1
loc(Rd) and strongly in L2

loc(Rd). Then u0 ∈ H1
loc(Rd),

div(s0A∇u0) + k2s0Σu0 = 0 in R
d,

and u0 satisfies the outgoing condition by the limiting absorption principle. It follows that u0 = 0 in Rd by 
the uniqueness. This contradicts the fact ‖u0‖L2(BR0 ) = limn→+∞ ‖uδn‖L2(BR0 ) = 1. Hence (2.21) holds.

A combination of (2.15), (2.20), and (2.21) yields

‖uδ‖H1(BR) ≤ CR‖f‖L2(Rd). (2.22)

Hence for any sequence (δn) → 0, there exists a subsequence (δnk
) such that (uδnk

) converges to u0 weakly 
in H1

loc(Rd) and strongly in L2
loc(Rd). Moreover, u0 ∈ H1

loc(Rd),

div(s0A∇u0) + k2s0Σu0 = f in R
d,

and u0 satisfies the outgoing condition. Since the limit u0 is unique, (uδ) converges to u0 weakly in H1
loc(Rd)

and strongly in L2(Rd) as δ → 0. The proof is complete. �
2.3. Proof of Proposition 1

Using a rotation if necessary, without lost of generality, one may assume that e = ed := (0, · · · , 0, 1). 
Denote x = (x′, t) ∈ R

d−1 × R. Fix a non-zero vector ξ′ = (ξ1, · · · , ξd−1) ∈ R
d−1 and denote ξ = (ξ′, 0). 

Since uj(x) = ei〈x,ξ〉vj(t) (j = 1, 2) is a solution to the equation

div(Aj∇uj) = 0 in R
d−1 × (0,+∞),

it follows that, for j = 1, 2,

ajv
′′
j (t) + 2ibjv′j(t) − cjvj(t) = 0 for t > 0,

where

aj = (Aj)d,d, bj =
d−1∑

(Aj)d,kξk, and cj =
d−1∑ d−1∑

(Aj)k,lξkξl.

k=1 k=1 l=1
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Here (Aj)k,l denotes the (k, l) component of Aj for j = 1, 2 and the symmetry of Aj is used. Define, for 
j = 1, 2,

Δj = −b2j + ajcj .

Since Aj is symmetric and positive, it is clear that, for j = 1, 2,

aj = 〈Ajed, ed〉 > 0, bj = 〈Ajξ, ed〉, and Δj = 〈Ajed, ed〉〈Ajξ, ξ〉 − 〈Ajed, ξ〉2 > 0.

Since vj is required to be bounded, we have

vj(t) = αje
ηjt,

for some αj ∈ C, where

ηj = (−ibj −
√

Δj)/aj .

Using the fact that u1 = u2 and A1∇u1 · ed = A2∇u2 · ed, we have

α1 = α2 and α1

(
〈iA2ξ + η2A2ed, ed〉 − 〈iA1ξ + η1A1ed, ed〉

)
= 0.

The complementing boundary condition is now equivalent to the fact that

Δ2 �= Δ1,

for all non-zero ξ = (ξ′, 0) ∈ R
d. Condition (2.4) is proved.

It remains to prove that if A2 > A1 then (2.4) holds. Define M = A2 −A1, fix ξ ∈ P \ {0}, and set

Δ = 〈A2e, e〉〈A2ξ, ξ〉 − 〈A2e, ξ〉2 −
(
〈A1e, e〉〈A1ξ, ξ〉 − 〈A1e, ξ〉2

)
.

Using the fact A2 = A1 + M , after a straightforward computation, we obtain

Δ = 〈Me, e〉〈A1ξ, ξ〉 + 〈Mξ, ξ〉〈A1e, e〉 + 〈Me, e〉〈Mξ, ξ〉 − 2〈Me, ξ〉〈A1e, ξ〉 − 〈Me, ξ〉2. (2.23)

We have, by Cauchy’s inequality,

〈Me, e〉〈A1ξ, ξ〉 + 〈Mξ, ξ〉〈A1e, e〉 ≥ 2
(
〈Mξ, ξ〉〈Me, e〉〈A1e, e〉〈A1ξ, ξ〉

)1/2
. (2.24)

Since M and A1 are symmetric and positive and 〈ξ, e〉 = 0, we obtain, by Cauchy–Schwarz’s inequality,

〈Me, e〉〈Mξ, ξ〉〈A1e, e〉〈A1ξ, ξ〉 > 〈Me, ξ〉2〈A1e, ξ〉2 (2.25)

and

〈Me, e〉〈Mξ, ξ〉 > 〈Mξ, e〉2. (2.26)

A combination of (2.23), (2.24), (2.25), and (2.26) yields

Δ > 0.

The proof is complete. �
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3. A variational approach via the Dirichlet principle

In this section, we develop a variational method, which complements the one in Section 2, to deal with 
a class of A in which F∗A+ might be equal to A− on Γ and A+ and A− are not supposed to be smooth 
near Γ; this is not covered by Theorem 1. One motivation comes from the work of Ola in [37]. The other is 
from the work of Bonnet-Ben Dhia, Chesnel, and Ciarlet in [5], where the smoothness of the coefficients is 
not required.

The following result is the main result of this section.

Theorem 2. Let f ∈ L2(Rd) with supp f ⊂ BR0 , and let uδ ∈ H1(Rd) (0 < δ < 1) be the unique solution 
of (1.3). Assume that there exists a reflection F from U \D onto Dτ for some τ > 0 and for some smooth 
open subset U of Rd with D̄ ⊂ U such that

either A− F∗A ≥ cdist(x,Γ)αI or F∗A−A ≥ cdist(x,Γ)αI, (3.1)

on each connected component of Dτ , for some c > 0, and for some 0 < α < 2. Set vδ = uδ ◦ F−1 in Dτ . 
Then

‖uδ‖L2(BR) + ‖uδ − vδ‖H1(Dτ ) +
(∫
Dτ

∣∣〈(A− F∗A)∇uδ,∇uδ〉
∣∣)1/2

≤ CR‖f‖L2(Rd). (3.2)

Moreover, (uδ) converges to u0 weakly in H1
loc(Rd \ Γ) and strongly in L2

loc(Rd) as δ → 0, where u0 ∈
H1

loc(Rd \ Γ) ∩ L2
loc(Rd) is the unique outgoing solution of (1.2) such that the LHS of (3.3) is finite, where 

v0 := u0 ◦ F−1 in Dτ . Consequently,

‖u0‖L2(BR) + ‖u0 − v0‖H1(Dτ ) +
(∫
Dτ

∣∣〈(A− F∗A)∇u0,∇u0〉
∣∣)1/2

≤ CR‖f‖L2(Rd). (3.3)

Here CR denotes a positive constant independent of f and δ.

Remark 4. We only make the assumption on the lower bound of F∗A − A or A − F∗A in (3.1), not on the 
upper bound.

The solution u0 in Theorem 2 is not in H1
loc(Rd) as usual. The meaning of the solution is given in the 

following definition:

Definition 3. Let f ∈ L2(Rd) with compact support and let F be a reflection from U \ D to Dτ for 
some τ > 0 (small) and for some smooth open set U with D̄ ⊂ U such that (3.1) holds. A function 
u0 ∈ H1

loc(Rd \ Γ) ∩ L2
loc(Rd) such that the LHS of (3.3) is finite is said to be a solution of (1.2) if

div(s0A∇u0) + k2s0Σu0 = f in R
d \ Γ, (3.4)

u0
∣∣
D
− v0 = 0 and (F∗A∇v0 −A∇u0

∣∣
D

) · ν = 0 on Γ, (3.5)

and

lim
t→0+

∫
∂Dt\Γ

(
F∗A∇v0 · νv̄0 −A∇u0 · νū0

)
= 0. (3.6)
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Remark 5. Since u0 − v0 ∈ H1(Dτ ) and div(F∗A∇v0 − A∇u0) ∈ L2(Dτ ) (the LHS of (3.3) is finite), it 
follows that u0

∣∣
D
− v0 ∈ H1/2(Γ) and (F∗A∇v0 −A∇u0

∣∣
D

) · ν ∈ H−1/2(Γ). Hence requirement (3.5) makes 
sense. It is clear that the definition of weak solutions in Definition 3 coincides with the standard definition 
of weak solutions when α = 0 by Lemma 4. Requirements in (3.5) can be seen as generalized transmission 
conditions.

The proof of Theorem 2 is based on the Dirichlet principle. The key observation is that the Cauchy 
data provides the energy of a solution to an elliptic equation (Lemma 5). The proof is also based on a new 
compactness criterion in L2 (Lemma 7). The requirement α < 2 is used in the compactness argument; we 
do not know if this condition is necessary. As a direct consequence of Theorem 2 with α = 0, we obtain the 
following result:

Corollary 2. Let f ∈ L2(Rd) with supp f ⊂ BR0 , and let uδ ∈ H1(Rd) (0 < δ < 1) be the unique solution of 
(1.3). Assume that A ◦ F−1(x) or A(x) is isotropic for every x ∈ Dτ , and

either A ◦ F−1(x) −A(x) ≥ cI or A(x) −A ◦ F−1(x) ≥ cI (3.7)

in each connected component Dτ for some small τ > 0 and for some c > 0, where F
(
xΓ + tν(xΓ)

)
:=

xΓ − tν(xΓ) for xΓ ∈ Γ and t ∈ (−τ, τ). Then

‖uδ‖H1(BR) ≤ CR‖f‖L2(Rd).

Moreover, uδ → u0 weakly in H1
loc(Rd) as δ → 0, where u0 ∈ H1

loc(Rd) is the unique outgoing solution of 
(1.2) and

‖u0‖H1(BR) ≤ CR‖f‖L2(Rd).

Remark 6. Applying Corollary 2, one rediscovers and extends the result obtained by Bonnet-Ben Dhia, 
Chesnel, and Ciarlet in [5] where A+ and A− are both assumed to be isotropic.

We next present another consequence of Theorem 2 for the case α = 1. The following notation is used.

Definition 4. The boundary Γ of D is called strictly convex if all its connected components are the boundary 
of strictly convex sets.

We are ready to present

Corollary 3. Let d ≥ 3, f ∈ L2(Rd) with supp f ⊂ BR0 , and let uδ ∈ H1(Rd) (0 < δ < 1) be the unique 
solution of (1.3). Assume that D is of class C3, A is isotropic and constant in the orthogonal direction of 
Γ in a neighborhood of Γ, i.e., A(xΓ + tν(xΓ)) is independent of t ∈ (−τ0, τ0) for xΓ ∈ Γ and for some 
small positive constant τ0, and Γ is strictly convex. There exist c > 0, τ > 0, a smooth open set U ⊃⊃ D, 
a reflection F : U \D → Dτ such that F∗A −A ≥ c dist(x, Γ)I or A −F∗A ≥ c dist(x, Γ)I on each connected 
component of Dτ . As a consequence, uδ satisfies (3.2) with α = 1. Moreover, uδ → u0 weakly in H1

loc(Rd \Γ)
as δ → 0, where u0 ∈ H1

loc(Rd \ Γ) ∩L2
loc(Rd) is the unique outgoing solution of (1.2) and u0 satisfies (3.3).

Remark 7. In particular, if A is isotropic and constant in each connected component of a neighborhood of Γ, 
then the conclusion of Corollary 3 holds.

Remark 8. Applying Corollary 2, one rediscovers and extends the well-posedness result obtained by Ola [37]
and Kettunen, Lassas, and Ola in [16] where A = I in D and Γ has one or two connected components.
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Remark 9. Corollary 3 does not hold in two dimensions. The strict convexity of Γ is necessary in three 
dimensions. In four or higher dimensions, the strict convexity of Γ can be relaxed (see Remark 11).

The rest of this section containing three subsections is organized as follows. In the first subsection, we 
present some lemmas used in the proof of Theorem 2. The second and the third subsections are devoted to 
the proof of Theorem 2 and Corollary 3 respectively.

3.1. Some useful lemmas

We begin with the following lemma which plays an important role in the proof of Theorem 2.

Lemma 5. Let Ω be a smooth bounded open subset of Rd, and A1 and A2 be two symmetric uniformly elliptic 
matrices defined in Ω. Let f1, f2 ∈ L2(Ω), h ∈ H−1/2(∂Ω) and let u1, u2 ∈ H1(Ω) be such that

− div(A1∇u1) = f1 and − div(A2∇u2) = f2 in Ω, (3.8)

u1 = u2 and A1∇u1 · ν = A2∇u2 · ν + h on ∂Ω. (3.9)

Assume that

A1 ≥ A2 in Ω. (3.10)

Then
∫
Ω

〈(A1 −A2)∇u1,∇u1〉 +
∫
Ω

|∇(u1 − u2)|2

≤ C
(
‖(f1, f2, u1, u2)‖2

L2(Ω) + ‖h‖H−1/2(∂Ω)‖(u1, u2)‖H1/2(∂Ω)

)
. (3.11)

Proof. By considering the real part and the imaginary part separately, without loss of generality, one may 
assume that all functions in Lemma 5 are real. Set

M = ‖(f1, f2, u1, u2)‖2
L2(Ω) + ‖h‖H−1/2(∂Ω)‖(u1, u2)‖H1/2(∂Ω).

Multiplying the equation of uj by uj (for j = 1, 2) and integrating on Ω, we have

∫
Ω

〈Aj∇uj ,∇uj〉 =
∫
Ω

fjuj +
∫
∂Ω

Aj∇uj · ν uj . (3.12)

Using (3.8) and (3.9), we derive from (3.12) that

∫
Ω

〈A1∇u1,∇u1〉 − 〈A2∇u2,∇u2〉 ≤ CM. (3.13)

Here and in what follows, C denotes a positive constant independent of fj, h, uj for j = 1, 2. By the Dirichlet 
principle, we have
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1
2

∫
Ω

〈A2∇u2,∇u2〉 −
∫
Ω

f2u2 −
∫
∂Ω

A2∇u2 · ν u2

≤ 1
2

∫
Ω

〈A2∇u1,∇u1〉 −
∫
Ω

f2u1 −
∫
∂Ω

A2∇u2 · ν u1. (3.14)

A combination of (3.8), (3.9), and (3.14) yields
∫
Ω

〈A2∇u2,∇u2〉 − 〈A2∇u1,∇u1〉 ≤ CM. (3.15)

Adding (3.13) and (3.15), we obtain
∫
Ω

〈(A1 −A2)∇u1,∇u1〉 ≤ CM. (3.16)

Set

w = u1 − u2 in Ω.

We have, in Ω,

div(A2∇w) = div(A2∇u1) − div(A2∇u2) = div(A1∇u1) − div(A2∇u2) + div([A2 −A1]∇u1)

= − f1 + f2 + div([A2 −A1]∇u1).

Multiplying this equation by w, integrating on Ω, we obtain, by (3.8) and (3.9),
∫
Ω

|∇w|2 ≤
∫
Ω

C|〈(A1 −A2)∇u1,∇w〉| + CM. (3.17)

Since A1 > A2 and A1 and A2 are symmetric, we have, for any λ > 0,
∫
Ω

|〈(A1 −A2)∇u1,∇w〉| ≤ λ

∫
Ω

|〈(A1 −A2)∇u1,∇u1〉| +
1
4λ

∫
Ω

|〈(A1 −A2)∇w,∇w〉|.

It follows from (3.16) and (3.17) that
∫
Ω

|∇w|2 ≤ CM. (3.18)

The conclusion now follows from (3.16) and (3.18). The proof is complete. �
We next recall Hardy’s inequalities (see, e.g., [21]).

Lemma 6. Let Ω be a smooth bounded open subset of Rd. Then, for all u ∈ H1(Ω), and for α > 1,
∫
Ω

dist(x, ∂Ω)α−2|u(x)|2 dx ≤ Cα,Ω

∫
Ω

(
dist(x, ∂Ω)α|∇u(x)|2 + |u(x)|2

)
dx. (3.19)

Here Cα,Ω is a positive constant independent of u.



H.-M. Nguyen / J. Math. Pures Appl. 106 (2016) 342–374 359
Remark 10. Lemma 6 also holds for Lipschitz domains, see [25, Theorem 1.5].

Using Lemma 6, we can prove the following compactness result which is used in the compactness argument 
in the proof of Theorem 2.

Lemma 7. Let 0 ≤ α < 2, Ω be a smooth bounded open subset of Rd, and (un) ⊂ H1(Ω). Assume that

sup
n

∫
Ω

(
dist(x, ∂Ω)α|∇un(x)|2 + |un|2

)
dx < +∞. (3.20)

Then (un) is relatively compact in L2(Ω).

Proof. Without loss of generality, one can assume that α > 1. By Lemma 6, we have
∫
Ω

dist(x, ∂Ω)α−2|un(x)|2 dx ≤ Cα,Ω

∫
Ω

(
dist(x, ∂Ω)α|∇un(x)|2 + |un(x)|2

)
dx. (3.21)

In this proof, Cα,Ω denotes a positive constant depending only on α and Ω and can be changed from one 
place to another. We derive from (3.20) and (3.21) that, for τ > 0 small,

∫
Ωτ

|un(x)|2 dx ≤ τ2−α

∫
Ω

(
dist(x, ∂Ω)α|∇un(x)|2 + |un|2

)
dx ≤ Cα,Ωτ

2−α. (3.22)

Fix ε > 0 arbitrary. Let τ > 0 (small) be such that

‖un‖L2(Ωτ ) ≤ ε/2 ∀n ∈ N. (3.23)

Such a τ exists by (3.22). From (3.20) and Rellich–Kondrachov’s compactness criterion, see, e.g., [12], there 
exist un1 , · · · , unk

such that

{
un ∈ L2(Ω \ Ωτ ); n ∈ N

}
⊂

k⋃
j=1

{
u ∈ L2(Ω \ Ωτ ); ‖u− unj

‖L2(Ω\Ωτ ) ≤ ε/2
}
. (3.24)

A combination of (3.23) and (3.24) yields

{
un ∈ L2(Ω); n ∈ N

}
⊂

k⋃
j=1

{
u ∈ L2(Ω); ‖u− unj

‖L2(Ω) ≤ ε
}
.

Therefore, (un) is relatively compact in L2(Ω). �
We end this section with the following lemma which implies the uniqueness statement in Theorem 2.

Lemma 8. Let F be a reflection from U \D to Dτ for some small τ > 0 and for some smooth open subset 
U of Rd with D̄ ⊂ U . Assume that u0 ∈ H1

loc(Rd \ Γ) ∩ L2
loc(Rd) is an outgoing solution to

div(s0A∇u0) + k2s0Σu0 = 0 in R
d \ Γ, (3.25)

such that the LHS of (3.3) is finite with v0 := u0 ◦ F−1 in Dτ ,

u0 − v0 = 0 and (F∗A∇v0 −A∇u0
∣∣ ) · ν = 0 on Γ (3.26)

D
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and

lim
t→0+

�
{ ∫
∂Dt\Γ

(
F∗A∇v0 · νv̄0 −A∇u0 · νū0

)}
= 0. (3.27)

Then u0 = 0 in Rd.

Proof. Fix R > R0. Multiplying (3.25) by ū0 and integrating on BR\
(
D∪F−1(Dt)

)
and D\Dt respectively, 

one has, for 0 < t < τ ,

−
∫

BR\
(
D∪F−1(Dt)

) 〈A∇u0,∇u0〉 + k2
∫
BR

Σ|u0|2 +
∫

∂BR

∂ru0ū0 +
∫

[
∂F−1(Dt)

]
\Γ

A∇u0 · ν ū0 = 0 (3.28)

and
∫

D\Dt

〈A∇u0,∇u0〉 − k2
∫

D\Dt

Σ|u0|2 −
∫

∂Dt\Γ

A∇u0 · ν ū0 = 0. (3.29)

Here ν denotes the normal unit vector directed to the exterior of the set in which one integrates. Set

v0 = u0 ◦ F−1 in Dτ .

Then, by [26, Lemma 2],

∫
∂F−1(Dt)\Γ

A∇u0 · ν ū0 = −
∫

∂Dt\Γ

F∗A∇v0 · ν v̄0.

It follows from (3.27) that

lim
t→0

�

⎡
⎢⎣ ∫
∂F−1(Dt)\Γ

A∇u0 · ν ū0 +
∫

∂Dt\Γ

A∇u0 · ν ū0

⎤
⎥⎦ = 0. (3.30)

Subtracting (3.29) from (3.28), letting t → 0, and using (3.30), we obtain

�
{ ∫
∂BR

∂ru0ū0

}
= 0.

This implies, by Rellich’s lemma,

u0 = 0 in R
d \BR0 .

Using (3.26) and the unique continuation principle, we reach

u0 = 0 in BR0 .

Hence u0 = 0 in Rd. The proof is complete. �
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3.2. Proof of Theorem 2

The uniqueness of u0 follows from Lemma 8. We next estimate uδ. By Lemma 2,

‖uδ‖H1(Rd) ≤
C

δ
‖f‖L2(Rd). (3.31)

We prove by contradiction that

‖uδ‖L2(BR0 ) ≤ C‖f‖L2(Rd). (3.32)

Suppose that this is not true. There exist δn → 0+, fn ∈ L2(Rd) with supp fn ⊂⊂ BR0 such that

‖uδn‖L2(BR0 ) = 1 and ‖fn‖L2(Rd) → 0. (3.33)

Here uδn ∈ H1(Rd) is the unique solution of (1.3) with δ = δn and f = fn. Using (2.10) in Lemma 2, we 
have

‖uδ‖H1(Rd) ≤ Cδ−1/2
n . (3.34)

We derive from Lemma 4 that

div(F∗A∇vδn) + k2F∗Σvδn + iδnF∗1vδn = F∗fn in Dτ ,

and

vδn = uδn and F∗A∇vδn · ν = (1 + iδn)A∇uδn

∣∣
D
· ν on Γ. (3.35)

We also have

div(A∇uδn) + k2Σuδ + (s−1
δ s0 − 1)k2Σuδn + s−1

δ iδnuδn = s−1
δ f in Dτ .

From (3.33), we derive that

‖
(
uδn , vδn

)
‖H1/2(∂Dτ/2\Γ), ‖

(
A∇uδn · ν, F ∗A∇vδn · ν

)
‖H−1/2(∂Dτ/2\Γ) are bounded. (3.36)

Applying Lemma 5 with D = Dτ/2 and using (3.33), (3.34), and (3.36), we obtain

sup
n

∫
Dτ/2

|〈(A− F∗A)∇uδn ,∇uδn〉| + |∇(uδn − vδn)|2 < +∞.

By Lemma 7,

(uδn), (vδn) are relatively compact in L2(Dτ/2).

This implies

‖
(
uδn , vδn

)
‖H1/2(∂Dτ/4\Γ), ‖

(
A∇uδn · ν, F ∗A∇vδn · ν

)
‖H−1/2(∂Dτ/4\Γ) are bounded.

From Lemmas 1 and 3, one may assume that

(uδn) converges in L2
loc(Rd),
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and (uδn) and (vδn) converge almost everywhere. Let u0 be the limit of 
(
uδn

)
in L2

loc(Rd) and v0 be the 
limit of 

(
vδn

)
in L2(Dτ ). Then u0 ∈ H1

loc(Rd \ Γ) ∩ L2
loc(Rd) is a solution to

div(s0A∇u0) + k2s0Σu0 = 0 in R
d \ Γ,

u0 satisfies the outgoing condition by the limiting absorption principle, and v0 = u0 ◦ F−1 in Dτ . From 
(3.31) and (3.35), we obtain

u0 − v0 = 0 and (A∇u0
∣∣
D
− F∗A∇v0) · ν = 0 on Γ,

and

‖u0‖L2(BR) + ‖u0 − v0‖H1(Dτ ) +
(∫
Dτ

∣∣〈(A− F∗A)∇u0,∇u0〉
∣∣)1/2

< +∞.

Multiplying the equation of vδ and uδ by v̄δ and ūδ respectively, integrating on Dτ , and considering the 
imaginary part, we have

�
{ ∫
∂Dt\Γ

(
F∗A∇vδ · νv̄δ − (1 + iδ)A∇uδ · νūδ

)
+

∫
Dτ

iδ
(
F∗1|vδ|2 + 〈A∇uδ,∇uδ〉 + |uδ|2

)}

= �
{∫
Dt

F∗fv̄δ +
∫
Dt

fūδ

}
.

Letting δ → 0, we obtain

�
{ ∫
∂Dt\Γ

(
F∗A∇v0 · νv̄0 −A∇u0 · νū0

)}
= �

{∫
Dt

F∗fv̄0 +
∫
Dt

fū0

}
.

It follows that

lim
t→0

�
{ ∫
∂Dt\Γ

(
F∗A∇v0 · νv̄0 −A∇u0 · νū0

)}
= 0. (3.37)

Hence u0 = 0 by Lemma 8; this contradicts the fact ‖u0‖L2(BR0 ) = 1 by (3.33). Estimate (3.32) is proved. 
Estimate (3.2) now follows from Lemma 5. Hence, as above, for any sequence (δn) → 0, there exists a 
subsequence (δnk

) such that (uδnk
) converges to u0 weakly in H1

loc(Rd \ Γ) and strongly in L2
loc(Rd). It is 

clear that u0 ∈ H1
loc(Rd \ Γ) ∩ L2

loc(Rd), u0 − v0 ∈ H1(Dτ ), and u0 is the unique outgoing condition to

div(s0A∇u0) + k2s0Σu0 = f in R
d.

Since the limit u0 is unique, the convergence holds as δ → 0. It is clear that estimate (3.3) is a direct 
consequence of (3.2). The proof is complete. �
3.3. Proof of Corollary 3

The proof of Corollary 3 is based on a reflection which is different from the standard one used in 
Corollary 2. Let F be defined as follows:

xΓ − tν(xΓ) �→ xΓ + t
[
1 + tc(xΓ)

]
ν(xΓ),
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for xΓ ∈ Γ and t > 0 (small). Here c(xΓ) = βtraceΠ(xΓ) where Π(xΓ) is the second fundamental form of 
Γ at xΓ and β is a constant defined later. In this proof, ν(xΓ) denotes the unit normal vector of Γ at xΓ
directed into D. Fixing xΓ ∈ Γ, we estimate F∗A − A at xΓ + t

[
1 + tc(xΓ)

]
ν(xΓ) for small positive t. To 

this end, we use local coordinates. Without loss of generality, one may assume that xΓ = 0 and around 
xΓ = 0, Γ is presented by the graph of a function ϕ : (−ε0, ε0)d−1 → R with ϕ(0) = 0, and {(x′, xd) ∈
(−ε0, ε0)d; xd > ϕ(x′)} ⊂ D. We also assume that ∇′ϕ′(0) := (∂x1ϕ, · · · , ∂xd−1ϕ)(0) = 0 ∈ R

d−1 and 
∇′2ϕ(0) = λ1e1 ⊗ e1 + · · ·λd−1ed−1 ⊗ ed−1 where λ1, · · · , λd−1 are the eigenvalues of Π(xΓ). Here e1, · · · , ed
is an orthogonal basis of Rd. Since Γ is strictly convex, one can assume that ϕ is strictly convex or strictly 
concave. We only consider the case ϕ is strictly convex; the other case can be proceeded similarly. Hence, 
in what follows, we assume that λi > 0 for 1 ≤ i ≤ d − 1. Set

ϕ(x′, t) = ϕ(x′, 0).

Define

G1(x′, t) = (x′, ϕ(x′)) +
t
[
1 + tc(x′)

]
√

1 + |∇x′ϕ(x′)|2
(
−∇x′ϕ(x′), 1

)
.

A computation yields

∇G1(0, t) = I − t∇2ϕ(0) + 2tc(x′)ed ⊗ ed + O(t2). (3.38)

Here and in what follows in this paper, O(s) denotes a quantity or a matrix whose norm is bounded by C|s|
for some positive constant C independent of s for small s. Define

G2(x′, t) = (x′, ϕ(x′)) − t√
|∇′ϕ(x′)|2 + 1

(
−∇′ϕ(x′), 1

)
.

We have

∇G2(0, t) = I − 2ed ⊗ ed + t∇2ϕ(0). (3.39)

From the definition of F , G1, and G2, we have

F (y) = G1 ◦G−1
2 (y).

This yields

∇F (y) = ∇G1(x′, t)[∇G2(x′, t)]−1 where G2(x′, t) = y.

We derive from (3.38) and (3.39) that

∇F (y) = I − 2ed ⊗ ed − 2tΠ − 2tc(0) ed ⊗ ed + O(t2),

for y = G2(0, t). Here for notational ease, we also denote Π = ∇2ϕ(0). We have, for y = G2(0, t),

| det∇F (y)|−1∇F (y)T∇F (y) =
[
1 + 2t traceΠ − 2tc(0)

](
I − 4tΠ + 4tc(0)ed ⊗ ed

)
+ O(t2)

= I + 2t
d−1∑[

traceΠ − 2λi − c(0)
]
ei ⊗ ei + 2t

[
c(0) + traceΠ]ed ⊗ ed + O(t2).
i=1
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By taking c(0) = βtraceΠ with −1 < β < 0 and β is closed to −1, we have

B := | det∇F (y)|−1∇F (y)T∇F (y) − I ≥ γtI,

for some γ > 0. The conclusion now follows from Theorem 2. The proof is complete. �
Remark 11. Corollary 3 does not hold for d = 2. Indeed, assume that A = I in R2, D = Br2 \ Br1 for 
0 < r1 < r2. Let F : Br2

2/r1
\ Br2 → Br2 \ Br1 be the Kelvin transform with respect to ∂Br2 and let 

Σ = F∗1 in Br2 \Br1 , then F∗A = A and F∗Σ = Σ: the resonance appears (Proposition 2 in Section 5). The 
strict convexity condition of Γ is necessary in three dimensions. In fact assume that D = {(x1, x2, x3) ∈ R

3;
x2

1 + x2
2 < 1 and 0 < x3 < 1} and let G : R2 × (0, 1) \D → D be defined by G(x1, x2, x3) =

(
F (x1, x2), x3

)
. 

Set (A, Σ) = (I, 1) in R3 \ D and (I, G∗1) otherwise. The problem is not well-posed again for some f by 
Proposition 2 in Section 5. Nevertheless, the strict convexity condition can be weaken in four or higher 
dimensions. To illustrate this point, let consider the case d = 4. Then

1
2tB = (λ2 + λ3 − λ1 − β)e1 ⊗ e1 + (λ1 + λ3 − λ2 − β)ee ⊗ e2

+ (λ1 + λ2 − λ2 − β)e3 ⊗ e3 + (1 + β)(λ1 + λ2 + λ3)e4 ⊗ e4 + O(t).

Assume that λ1, λ2, λ3 ≥ 0 and if λ1λ2λ3 = 0 then only one of them is 0. Then B ≥ γtI if β is chosen as in 
the proof of Corollary 3. Hence the conclusion of Corollary 3 holds in this case.

4. A variational approach via the multiplier technique

In this section we develop a variational approach via the multiplier technique to deal with the case 
F∗A = A in Dτ . This complements the results in the previous sections. The main result of this section is:

Theorem 3. Let f ∈ L2(Rd) with supp f ⊂ BR0 \ Γ, and let uδ ∈ H1(Rd) (0 < δ < 1) be the unique solution 
of (1.3). Assume that there exists a reflection F from U \ D to Dτ , for some τ > 0 and for some smooth 
bounded open subset U of Rd with D̄ ⊂ U such that either

F∗A−A ≥ 0 and Σ − F∗Σ ≥ cdist(x,Γ)β , (4.1)

or

A− F∗A ≥ 0 and F∗Σ − Σ ≥ cdist(x,Γ)β , (4.2)

in each connected component of Dτ , for some β > 0 and c > 0. Set vδ = uδ ◦ F−1 in Dτ . Then, for all 
0 < ρ < R,

∫
BR\(Dρ∪D−ρ)

|uδ|2 +
∫
Dτ

|Σ − F∗Σ||uδ|2 +
∫
Dτ

|〈(A− F∗A)∇uδ,∇uδ〉|

+
∫
Dτ

|uδ − vδ|2 + |∇(uδ − vδ)|2 ≤ CR,ρ‖f‖2
L2(Rd). (4.3)

Moreover, (uδ) converges to u0 weakly in H1
loc(Rd \ Γ) and strongly in L2

loc(Rd \ Γ) as δ → 0, where 
u0 ∈ H1

loc(Rd \ Γ) is the unique outgoing solution of (1.2) such that the LHS of (4.4) is finite, where 
v0 := u0 ◦ F−1 in Dτ . Consequently,
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∫
BR\(Dρ∪D−ρ)

|u0|2 +
∫
Dτ

|Σ − F∗Σ||u0|2 +
∫
Dτ

|〈(A− F∗A)∇u0,∇u0〉|

+
∫
Dτ

|u0 − v0|2 + |∇(u0 − v0)|2 ≤ CR,ρ‖f‖2
L2(Rd). (4.4)

Here CR,ρ denotes a positive constant depending on R, ρ, A, Σ, R0, β, c, and the distance between supp f

and Γ, but independent of f and δ.

The solution u0 in Theorem 3 is not in L2
loc(Rd). Its meaning is given in the following definition:

Definition 5. Let f ∈ L2(Rd) with supp f ⊂⊂ R
d \ Γ, and let F be a reflection from U \D to Dτ for some 

τ > 0 and for some smooth open subset U of Rd with D̄ ⊂ U such that (4.1) or (4.2) holds. A function 
u0 ∈ H1

loc(Rd \ Γ) such that the LHS of (4.4) is finite is called a solution to (1.2) if, with v0 = u0 ◦ F−1,

div(s0A∇u0) + k2s0Σu0 = f in R
d \ Γ, (4.5)

u0 − v0 = 0 and (F∗A∇v0 −A∇u0
∣∣
D

) · ν = 0 on Γ, (4.6)

and

lim
t→0+

�
{ ∫
∂Dt\Γ

(
F∗A∇v0 · νv̄0 −A∇u0 · νū0

)}
= 0. (4.7)

Remark 12. Since u0 − v0 ∈ H1(Dτ ), (Σ − F∗Σ)u0 ∈ L2(Dτ ), and (A − F∗A)∇u0 ∈ L2(Dτ ), it follows 
that div(F∗A∇v0 − A∇u0) ∈ L2(Dτ ) and F∗A∇v0 − A∇u0 ∈ L2(Dτ ). Hence u0 − v0 ∈ H1/2(Γ), and 
(F∗A∇v0 −A∇u0

∣∣
D

) · ν ∈ H−1/2(Γ). Requirement (3.5) makes sense.

Remark 13. β is only required to be positive in Theorem 3. In (4.1) and (4.2) of Theorem 3, we only make 
the assumption on the lower bound and not on the upper bound of the quantities considered.

The proof of Theorem 3 is based on a variational approach via the multiplier technique. One of the key 
point of the proof is Lemma 9, a variant of Lemma 5, where test functions are used. Sylvester in [43] used 
related ideas to study the transmission eigenvalues problem. The compactness argument used in the proof 
of Theorem 3 is different from the standard one used in the proof of Theorem 2 due to fact the family (uδ)
might not be bounded in L2

loc(Rd) in the context considered in Theorem 3.
Here is a corollary of Theorem 3 which is a complement to Corollary 3 in two dimensions.

Corollary 4. Let d = 2, σ0 ∈ R, D = B1, f ∈ L2(Rd) with supp f ⊂ BR0 \ Γ, and let uδ ∈ H1(Rd)
(0 < δ < 1) be the unique solution of (1.3). Assume that (A, Σ) = (I, 1) in D−τ and (A, Σ) = (I, σ0)
in Dτ for some small τ > 0. Let F be the Kelvin transform with respect to ∂D. Then F∗I = I in Dτ/2
and F∗1 − σ0 ≥ c dist(x, Γ) in Dτ/2 if σ0 ≤ 1 and σ0 − F∗1 > c in Dτ/2 if σ0 > 1 for some c > 0. 
As a consequence, (uδ) converges u0 weakly in H1

loc(R2 \ Γ) and strongly in L2
loc(R2 \ Γ) as δ → 0, where 

u0 ∈ H1
loc(Rd \ Γ) is the unique outgoing solution of (1.2); moreover, u0 satisfies (4.4).

The rest of this section contains three subsections and is devoted to the proof of Theorem 3 and Corol-
lary 4. The first one is on a variant of Lemma 5 used in the proof of Theorem 3. The proof of Theorem 3
and Corollary 4 are given in the last two subsections.
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4.1. A useful lemma

The following lemma is a variant of Lemma 5 and plays an important role in the proof of Theorem 3.

Lemma 9. Let Ω be a smooth bounded open subset of Rd, and A1 and A2 be two symmetric uniformly elliptic 
matrices, and Σ1 and Σ2 be two bounded real functions defined in Ω. Let f1, f2 ∈ L2(Ω), h ∈ H−1/2(∂Ω), 
and let u1, u2 ∈ H1(Ω) be such that

div(A1∇u1) + Σ1u1 = f1 and div(A2∇u2) + Σ2u2 = f2 in Ω, (4.8)

and

u1 = u2 and A1∇u1 · ν = A2∇u2 · ν + h on ∂Ω. (4.9)

Assume that

A1 ≥ A2 and Σ2 ≥ Σ1 in Ω. (4.10)

We have ∫
Ω

(Σ2 − Σ1)|u2|2 + 〈(A1 −A2)∇u2,∇u2〉 + |∇(u1 − u2)|2 ≤ CN (f1, f2, h, u1, u2),

for some positive constant C independent of u1, u2, f1, f2, and h, where

N (f1, f2, h, u1, u2) = ‖(u1, u2)‖L2(Ω)‖(f1, f2)‖L2(Ω)

+ ‖h‖H−1/2(∂Ω)‖(u1, u2)‖H1/2(∂Ω) + ‖u1 − u2‖2
L2(Ω).

Proof. By considering the real part and the imaginary part separately, without loss of generality, one may 
assume that all functions mentioned in Lemma 9 are real. Define

w = u1 − u2 in Ω.

From (4.8) and (4.9), we have

div(A1∇w) + Σ1w = f1 − f2 + (Σ2 − Σ1)u2 + div([A2 −A1]∇u2) in Ω, (4.11)

w = 0, and A∇w · ν = h on ∂Ω. (4.12)

Multiplying (4.11) by u2 and integrating on Ω, we have
∫
Ω

(f1 − f2)u2 + (Σ2 − Σ1)|u2|2 +
∫
Ω

〈(A1 −A2)∇u2,∇u2〉

=
∫
Ω

(
div(A1∇w) + Σ1w

)
u2 +

∫
∂Ω

(A1 −A2)∇u2 · ν u2.

Integrating by parts and using the fact that

A1∇w · ν + (A1 −A2)∇u2 · ν = A1∇u1 · ν −A2∇u2 · ν = h on ∂Ω,∫
A1∇w∇u2 =

∫
A2∇w∇u2 +

∫
(A1 −A2)∇w∇u2,
Ω Ω Ω



H.-M. Nguyen / J. Math. Pures Appl. 106 (2016) 342–374 367
and

Σ1wu2 = (Σ1 − Σ2)wu2 + Σ2wu2,

we derive from (4.10) and (4.12) that

∫
Ω

(Σ2 − Σ1)|u2|2 +
∫
Ω

〈(A1 −A2)∇u2,∇u2〉

≤ CN (f1, f2, h, u1, u2) +
∫
Ω

(Σ1 − Σ2)wu2 +
∫
Ω

〈(A2 −A1)∇w,∇u2〉. (4.13)

Here and in what follows in this proof, C denotes a positive constant independent of fj, h, uj for j = 1, 2. 
Multiplying (4.11) by w and integrating on Ω, we have

∫
Ω

〈A1∇w,∇w〉 ≤ CN (f1, f2, h, u1, u2) +
∫
Ω

(Σ1 − Σ2)wu2 +
∫
Ω

〈(A2 −A1)∇u2,∇w〉. (4.14)

A combination of (4.13) and (4.14) yields

∫
Ω

(Σ2 − Σ1)|u2|2 +
∫
Ω

〈(A1 −A2)∇u2,∇u2〉 +
∫
Ω

〈A1∇w,∇w〉

≤ CN (f1, f2, h, u1, u2) + 2
∫
Ω

(Σ1 − Σ2)wu2 + 2
∫
Ω

〈(A2 −A1)∇w,∇u2〉. (4.15)

We have for λ > 0, since A1 ≥ A2,

2
∫
Ω

〈(A2 −A1)∇u2,∇w〉 ≤ λ

∫
Ω

〈(A1 −A2)∇u2,∇u2〉 + λ−1〈(A1 −A2)∇w,∇w〉, (4.16)

and, since Σ2 ≥ Σ1,

2
∫
Ω

(Σ1 − Σ2)wu2 ≤ 2
∫
Ω

(Σ2 − Σ1)w2 + 1
2

∫
Ω

(Σ2 − Σ1)u2
2. (4.17)

By choosing λ smaller than 1 and close to 1, we derive from (4.15), (4.16), and (4.17) that

∫
Ω

(Σ2 − Σ1)|u2|2 +
∫
Ω

〈(A1 −A2)∇u2,∇u2〉 +
∫
Ω

|∇w|2 ≤ CN (f1, f2, h, u1, u2). (4.18)

The proof is complete. �
4.2. Proof of Theorem 3

The proof of the uniqueness of u0, i.e., if f = 0 then u0 = 0 is similar to the one of Lemma 8. The details 
are left to the reader.
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We next establish the estimate for uδ by a compactness argument. The compactness argument used in 
this proof is different from the one in the proof of Theorem 2 due to the loss of the control of uδ in L2

loc(Rd). 
Without loss of generality, one may assume that supp f ∩ (Dτ ∪ F−1(Dτ )) = ∅. By Lemma 2, we have

‖uδ‖2
H1(Rd) ≤

C

δ
‖f‖L2(Rd)‖uδ‖L2(BR0\(Dτ∪F−1(Dτ ))). (4.19)

We first prove that

‖uδ‖L2(BR0\(Dτ1∪F−1(Dτ1 ))) ≤ C‖f‖L2(Rd), (4.20)

by contradiction5 where 0 < τ1 < τ/3 is a positive constant chosen later. Assume that there exist δn → 0, 
fn ∈ L2(Rd) with supp fn ⊂ BR0 and supp fn ∩ (Dτ ∪ F−1(Dτ )) = ∅ such that

‖fn‖L2(Rd) → 0 and ‖un‖L2(BR0\(Dτ1∪F−1(Dτ1 ))) = 1, (4.21)

where un is the solution of (1.3) with δ = δn and f = fn. Set vn = un ◦ F−1 in Dτ . By Lemma 4,

div(F∗A∇vn) + k2F∗Σvn + iδnF∗1vn = 0 in Dτ , (4.22)

and

vn = un and A∇vn
∣∣
D
· ν = F∗A∇un · ν + iδnA∇un

∣∣
D
· ν on Γ. (4.23)

We also have

div(A∇un) + k2Σun +
(
iδns

−1
δn

+ [s0s
−1
δn

− 1]k2Σ
)
un = 0 in Dτ . (4.24)

Applying Lemma 9 with D = Dτ/2 and using (4.19) and (4.21), we have
∫

Dτ/2

|Σ − F∗Σ||un|2 +
∫

Dτ/2

|〈(A− F∗A)∇un,∇un〉|

+
∫

Dτ/2

|∇(un − vn)|2 ≤ Cτ

(
1 +

∫
Dτ1

|un − vn|2
)
. (4.25)

By choosing τ1 small enough, one has

Cτ

∫
Dτ1

|un − vn|2 ≤ 1
2

∫
Dτ/2

|∇(un − vn)|2,

since un − vn = 0 on Γ. It follows from (4.25) that
∫

Dτ/2

|Σ − F∗Σ||un|2 +
∫

Dτ/2

|〈(A− F∗A)∇un,∇un〉| +
∫

Dτ/2

|∇(un − vn)|2 +
∫

Dτ/2

|un − vn|2 ≤ Cτ . (4.26)

This implies, by (4.1) and (4.2), for 0 < ρ < τ/4,

‖
(
un, vn

)
‖H1/2(∂Dρ\Γ), ‖

(
A∇un · ν, F ∗A∇vn · ν

)
‖H−1/2(∂Dρ\Γ) are bounded.

5 We do not prove that ‖uδ‖L2(BR ) ≤ C‖f‖L2(Rd). This is different from the proof of Theorem 2.

0
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Using Lemmas 1 and 3, we derive that
∫

BR\(Dρ∪D−ρ)

|un|2 + |∇un|2 ≤ Cρ,R, (4.27)

for 0 < ρ < R. Without loss of generality, one may assume that (un) converges to u0 weakly in H1
loc(Rd \Γ), 

and strongly in L2
loc(Rd\Γ), (vn) converges to v0 weakly in H1

loc(Dτ ) and strongly in L2
loc(Dτ ), and (un−vn)

converges to u0 − v0 weakly in H1(Dτ ) and strongly in L2(Dτ ), and v0 = u0 ◦ F−1 in Dτ . We have,
by (4.26),

∫
Dτ

|Σ − F∗Σ||u0|2 +
∫
Dτ

|〈(A− F∗A)∇u0,∇u0〉|

+
∫
Dτ

|u0 − v0|2 + |∇(u0 − v0)|2 +
∫

BR\(Dρ∪Dρ)

|u0|2 + |∇u0|2 ≤ Cρ,R,

and u0 ∈ H1
loc(Rd \ Γ) is an outgoing solution to the equation

div(s0A∇u0) + k2s0Σu0 = 0 in R
d \ Γ.

From (4.19) and (4.23), we obtain

u0 − v0 = 0 and (A∇u0
∣∣
D
− F∗A∇v0) · ν = 0 on Γ.

Similar to (3.37), we also have

lim
t→0+

�
{ ∫
∂Dt\Γ

(
F∗A∇v0 · νv̄0 −A∇u0 · νū0

)}
= 0.

Hence u0 = 0 in Rd by the uniqueness. We have a contradiction with the fact that

‖u0‖L2(BR0\(Dτ1∪F−1(Dτ1 ))) = lim
n→∞

‖un‖L2(BR0\(Dτ1∪F−1(Dτ1 ))) = 1.

Claim (4.20) is proved. The conclusion now is standard as in the proof of Theorem 2. The details are left 
to the reader. �
4.3. Proof of Corollary 4

It suffices to check F∗1 − σ0 ≥ c dist(x, Γ) if σ0 ≤ 1 and σ0 − F∗1 > c if σ0 > 1 in Dτ/2 for some c > 0
provided that τ is small enough. A computation gives

| det(∇F )(y)| = 1 − 4 dist(x,Γ) + O
(
dist(x,Γ)2

)
,

where F (y) = x. This implies

1/| det(∇F )(y)| = 1 + 4 dist(x,Γ) + O
(
dist(x,Γ)2

)
,

where F (y) = x. The conclusion follows from the definition of F∗1 and the fact F∗I = I. �
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5. Optimality of the main results

In this section, we show that the system is resonant if the requirements on A and Σ mentioned in 
Theorems 1, 2, 3 are not fulfilled and Theorems 2 and 3 are “optimal”. More precisely, we have

Proposition 2. Assume that there exists a reflection F : U \ D̄ → Dτ for some smooth open subset U of Rd

with D̄ ⊂ U and some τ > 0 such that

(A,Σ) = (F∗A,F∗Σ) in B(x0, r̂0) ∩D,

for some x0 ∈ Γ and r̂0 > 0. Let f ∈ L2(Rd) with supp f ⊂⊂ BR0 \ Γ and assume that A is Lipschitz 
in D ∩B(x0, r̂0). There exists 0 < r0 < r̂0, independent of f , such that if there is no solution in H1(D ∩
B(x0, r0)) to the Cauchy problem:

div(A∇w) + k2Σw = f in D ∩B(x0, r0) and w = A∇w · ν = 0 on ∂D ∩B(x0, r0),

then lim supδ→0 ‖uδ‖L2(K) = +∞ for some K ⊂⊂ BR0 \Γ where uδ ∈ H1(Rd) is the unique solution of (1.3).

Recall that B(x, r) denotes the open ball centered at x and of radius r.

Proof. Without loss of generality, one may assume that x0 = 0 and r̂0 is small. We prove Proposition 2
by contradiction. Assume that the conclusion is not true. Then even for small r0, there exists f with 
supp f ∩Br̂0 \ Γ such that there is no solution in H1(D ∩B(x0, r0)) to the Cauchy problem:

div(A∇w) + k2Σw = f in D ∩B(x0, r0) and w = A∇w · ν = 0 on ∂D ∩B(x0, r0),

and

lim sup
δ→0

‖uδ‖L2(K) < +∞ for all K ⊂⊂ BR0 \ Γ.

Using Lemma 2, we have

‖uδ‖H1(BR0 ) ≤ Cδ−1/2, (5.1)

since supp f ⊂⊂ BR0 \ Γ. Set vδ = uδ ◦ F−1 in D ∩B(x0, ̂r0) and define wδ = vδ − uδ in D ∩B(x0, ̂r0). By 
Lemma 4, we have

div(A∇vδ) + k2Σvδ = −iδnF∗1vδ in D ∩B(x0, r̂0).

Since

div(A∇uδ) + k2Σuδ = k2(1 − s−1
δ s0)Σuδ − iδs−1

δ uδ + s−1
δ f in D ∩B(x0, r̂0),

it follows that

div(A∇wδ) + k2Σwδ = gδ in D ∩B(x0, r̂0),

where

gδ = f − iδF∗1vδ − k2(1 − s−1s0)Σuδ + iδs−1uδ − (s−1 + 1)f in D ∩B(x0, r̂0).
δ δ δ
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By Lemma 4, we also have

wδ = 0 and A∇wδ · ν = iδ∇uδ

∣∣
D
· ν on ∂D ∩B(x0, r̂0).

Using a local chart and applying Lemma 10 below, we have

lim sup
δ→0

δ1/2‖wδ‖H1(D∩B(x0,r̂0)) = +∞.

This contradicts (5.1). The proof is complete. �
The following lemma is used in the proof of Proposition 2.

Lemma 10. Let R > 0, a be a Lipschitz symmetric uniformly elliptic matrix and σ be a real bounded function 
defined in BR ∩ R

d
+, and let g ∈ L2(BR). Assume that Wδ ∈ H1(BR ∩ R

d
+) (0 < δ < 1) satisfies

div(a∇Wδ) + σWδ = gδ in BR ∩ R
d
+,

Wδ = 0 on BR ∩ R
d
0, and a∇Wδ · ν = hδ on BR ∩ R

d
0,

for some hδ ∈ H−1/2(BR ∩ R
d
0) such that

‖gδ − g‖L2(BR∩R
d
+) + ‖hδ‖H−1/2(BR∩R

d
0) ≤ cδ1/2, (5.2)

for some c > 0. There exists a constant 0 < r < R depending only on R, and the ellipticity and the Lipschitz 
constants of a, but independent of δ, c, gδ, g, hδ, and σ, such that if there is no W ∈ H1(Br ∩ R

d
+) with 

the properties

div(a∇W ) + σW = g in BR ∩ R
d
+, W = 0 on BR ∩ R

d
0, and a∇W · ν = 0 on BR ∩ R

d
0, (5.3)

then

lim sup
δ→0

δ1/2‖Wδ‖H1(BR∩R
d
+) = +∞. (5.4)

Here and in what follows, we denote Rd
+ = R

d
ed,+ and Rd

0 = R
d
ed,0 with ed = (0, · · · , 0, 1) ∈ R

d.

Proof. For notational ease, W2−n , g2−n , and h2−n are denoted by Wn, gn, and hn respectively. We have

div(a∇Wn) + σWn = gn in BR ∩ R
d
+,

Wn = 0 on BR ∩ R
d
0, a∇Wn · ν = hn on BR ∩ R

d
0.

We prove by contradiction that

lim sup 2−n/2‖Wn‖H1(BR∩R
d
+) = +∞. (5.5)
n→+∞
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Assume that

m := sup
n

2−n/2‖Wn‖H1(BR∩R
d
+) < +∞. (5.6)

Set

wn =
{

Wn+1 −Wn − wn in BR ∩ R
d
+,

−wn in BR ∩ R
d
−,

where wn ∈ H1(BR) is the unique solution of

div(a∇wn) + σwn = (gn+1 − gn)1BR∩R
d
+

in BR \ Rd
0,

[a∇wn · ν] = hn+1 − hn on BR ∩ R
d
0, and a∇wn · ν − iwn = 0 on ∂BR.

Here we extend a and σ in BR by setting a(x′, xd) = a(x′, −xd) and σ(x′, xd) = 0 for (x′, xd) ∈
(Rd−1 × R−) ∩ BR; though we still denote these extensions by a and σ. We also denote 1Ω the charac-
teristic function of a subset Ω of Rd. We derive from (5.2) and (5.6) that

‖wn‖H1(BR) ≤ Cm2−n/2. (5.7)

In this proof, C denotes a constant independent of n. From the definition of wn, we have

div(a∇wn) + σwn = 0 in BR.

From (5.6) and (5.7), we derive that

‖wn‖H1(BR) ≤ Cm2n/2 and ‖wn‖H1(∂BR∩R
d
−) ≤ Cm2−n/2. (5.8)

Set S = (0, · · · , 0, −R/4) ∈ R
d. By [35, Theorem 2] (a three sphere inequality), there exists r0 ∈ (R/4, R/3), 

depending only on R and the Lipschitz and elliptic constants of a such that

‖wn(· − S)‖H(∂Br0 ) ≤ C‖wn(· − S)‖2/3
H(∂BR/4)‖wn(· − S)‖1/3

H(∂BR/3),

where

‖ϕ‖H(∂Br) := ‖ϕ‖H1/2(∂Br) + ‖a∇ϕ · ν‖H−1/2(∂Br).

This implies, by (5.8),

‖wn(· − S)‖H(∂Br0 ) ≤ Cm2−n/6.

By Lemma 1, we obtain

‖wn(· − S)‖H1(Br0 ) ≤ Cm2−n/6. (5.9)

Since wn converges in H1(BR) by (5.7), it follows that (Wn) converges in H1(Br ∩R
d
+) with r := r0 −R/4. 

Let W be the limit of Wn in H1(Br ∩ R
d
+). Then

div(a∇W ) + σW = g in Br ∩ R
d
+, W = 0 on Br ∩ R

d
0, a∇W · η = 0 on Br ∩ R

d
0.

This contradicts the non-existence of W . Hence (5.5) holds. The proof is complete. �
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Remark 14. Lemma 10 is inspired by [29, Lemma 2.4]. The proof also has roots from there. The fact 
that r does not depend on σ is somehow surprising. This is based on a new three spheres inequality in 
[35, Theorem 2]. Proposition 2 is in the same spirit of the results in [29] and [16] and extends the results 
obtained there.
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