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Path integral methods provide a rigorous and systematically convergent framework to include the quantum
mechanical nature of atomic nuclei in the evaluation of the equilibrium properties of molecules, liquids or
solids at finite temperature. Such nuclear quantum effects often are already significant for light nuclei at room
temperature, but become crucial at cryogenic temperatures such as those provided by superfluid helium as a
solvent. Unfortunately, the cost of converged path integral simulations increases significantly upon lowering
the temperature so that the computational burden of simulating matter at the typical superfluid helium
temperatures becomes prohibitive. Here we investigate how accelerated path integral techniques based on
colored noise generalized Langevin equations, in particular the so called PIGLET variant, perform in this
extreme quantum regime using as an example the quasi rigid methane molecule and its highly fluxional
protonated cousin, CH +

5 . We show that the PIGLET technique gives a speedup of two orders of magnitude
in the evaluation of structural observables and quantum kinetic energy at ultralow temperatures. Moreover,
we computed the spatial spread of the quantum nuclei in CH4 to illustrate the limits of using such colored
noise thermostats close to the many body quantum ground state.

I. INTRODUCTION: MOTIVATION AND
BACKGROUND

Path integral molecular dynamics1 is nowadays a well
established simulation methodology in order to consider
nuclear quantum effects (NQEs) at finite temperatures
even in chemically complex systems consisting of flexible
molecules such as hydrogen bonded clusters in the gas
phase, aqueous solutions, molecular solids or molecular
adsorbates on surfaces. This quantum statistical method
is particularly appealing at temperatures where NQEs
are already sizable, but do not yet override the gross pic-
ture as obtained in the framework of classical statistical
mechanics, which is known as the quasi classical regime.
A corollary of this statement is that such numerically
discretized path integral methods become increasingly
cumbersome in the deep quantum regime, i.e. upon ap-
proaching the quantum ground state. The reason is that,
according to Trotter’s theorem applied to path integra-
tion2, the number P of discretization points, or (imagi-
nary) time slices or (Trotter) beads, that turns the con-
tinuous functional integral into its usual so called primi-
tive discretized version1, must be increased appropriately
the lower the temperature becomes3,4. Apart from using
genuine ground state quantum simulation methods that
exclude any thermal excitations, and exploit the fact of
working at 0 K at their advantage5, any finite temper-
ature approach such as path integral based techniques
must face the curse of discretization at ultralow temper-
atures.
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But why would one need to perform quantum simula-
tions of molecular systems at ultralow albeit not at zero
temperature? A major motivation comes from matrix
isolation spectroscopy experiments that are carried out
using helium nanodroplets6–8. These superfluid quan-
tum clusters provide experimentalists with an environ-
ment that interacts only rather weakly with the molec-
ular solute species, which they easily trap as dopants
in typical pick–up experiments, yet it cools the solutes
rapidly down to temperatures on the order of 1 K. At
such ultralow temperatures, the molecular solutes find
themselves mostly in the quantum ground state, which
dramatically simplifies spectra due to the absence of sig-
nificant excitations which otherwise greatly congest data
recorded at higher temperatures.

Several approaches have been established during the
years in order to tackle the low temperature issue in the
realm of numerical path integration. Pioneering bosonic
path integral simulations9 of the λ–transition in super-
fluid helium at about 2 K were enabled by using a numeri-
cal pair product action9–11 instead of the usual single par-
ticle high temperature propagator. This is particularly
useful if the species and their interactions are not too
complex, helium atoms with pair potential interactions
being the hallmark where P ≈ 40 is already sufficient
at T ≈ 1 K. Alternatively, higher order Trotter approx-
imants have been devised, reinvented, and tested since
several decades12–21 which converge faster than the usual
primitive approximant at a given P . More recently, yet
another class of approaches has been introduced which
uses colored noise thermostatting in order to add approx-
imately some quantum fluctuations while still using the
primitive approximant to take care on whatever remains
to converge to the exact result as P increases22,23.
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In what follows, we will explore to what extend the
so called “path integral generalized Langevin equation
thermostat” (PIGLET) method23 can be used in order
to approach in an efficient manner temperatures on the
order of 1 K; we refer the interested reader to Refs. 23–
25 for the fundamentals of using colored noise (GLE)
thermostatting in order to accelerate path integral con-
vergence in the framework of molecular dynamics sim-
ulations. It is noted in passing that PIGLET has al-
ready been extensively applied to molecule–based prob-
lems in conjunction with interaction potentials of increas-
ing complexity such as Lennard-Jones potentials, point-
charge models, polarizable force fields, and even density
functional based ab initio path integral26–28 simulations
as exposed for instance in Refs. 24,29. Reference path
integral simulations will be carried out using the stan-
dard primitive approximant using up to P ≈ 16′000 time
slices within this brute force approach. Moreover, we will
also highlight some of the advantages of the PIGLET
approach with respect to well-established fourth-order
path integral schemes, using in particular the Takahashi–
Imada14 or Lee–Broughton15 action as a representative
example.

The molecular models to be used for this benchmarking
are CH4 and CH+

5 in vacuum. While methane is a quasi
rigid molecule that undergoes small amplitude oscilla-
tions with respect to a well defined equilibrium structure,
its protonated counterpart is considered to be an utmost
fluxional molecule30–32. Protonated methane is unique in
the sense that it possesses an unusually shallow potential
energy surface which supports large amplitude motion,
leading to so called full hydrogen scrambling even at low
temperatures30. Thus, while the former is expected to be
a less challenging test for methods that make use of the
harmonic oscillator model in one way or another such as
PIGLET does, the latter species can be expected to be
a tough call. In order to be computationally efficient, we
use the recently developed and validated POSflex force
field33 for CH+

5 and construct an analogous potential for
CH4. This allowed us to systematically study the con-
vergence properties of the different approaches in terms
of energy components, structural parameters and nuclear
delocalization at temperatures that are relevant to differ-
ent types of experiments, namely from 100 K in ion traps
to 20 K in some gas phase experiments down to 1.67 K
in bulk superfluid helium.

II. THEORETICAL BACKGROUND

A. Path Integral Molecular Dynamics

The Hamiltonian for N nuclei in the Born–
Oppenheimer approximation is given by

H =

N∑
i=1

~2

2mi
∇2
i + V (q) , (1)

where q = {qi} denotes the set of all nuclear positions.
The statistical mechanics of a system described by such
Hamiltonian in the canonical ensemble at inverse tem-
perature β = 1/kBT is described by the thermal density
matrix, from which the canonical quantum mechanical
partition function can be obtained as

Z = Tr
(
e−βH

)
=

∫
dq
〈
q
∣∣ e−βH ∣∣q〉 . (2)

To be able to compute this trace for general Born–
Oppenheimer potentials, it is useful to factorize the
Boltzmann operator using the Trotter theorem — effec-
tively introducing P complete sets of position eigenstates,
each of which leads to the evaluation of the off diagonal
components of a Boltzmann operator at a higher tem-
perature β/P . The factorized partition function can be
evaluated by introducing a mixed basis consisting of mo-
mentum eigenfunctions for the kinetic part and position
eigenfunctions for the potential term, and using a high
temperature expansion for e−βH
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P→∞
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)2

+ V
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))]
, (3)

where ωP = P/β~, and cyclic boundary conditions

q
(j+P )
i ≡ q

(P )
i are implied. Truncating the expansion at a

finite value of P introduces formally an error of the order
of (β/P )2 within this primitive approximant to the high
temperature propagator. While this discretized partition
function can be fully evaluated in terms of the positions
of the P copies of the physical system using stochastic
Monte Carlo methods, for the purpose of sampling one
can introduce a set of fictitious classical momenta p con-

jugate to q with associated fictitious masses m
′(j)
i , lead-

ing to the usual expression for the path integral molecular
dynamics Hamiltonian,

HP ({q} , {p}) =

P∑
j=1

[
N∑
i=1

p
(j)
i

2

2m
′(j)
i

+

N∑
i=1

m
(j)
i P 2

2(β~)2

(
q

(j+1)
i − q

(j)
i

)2

+ V
(
{qi}(j)

)]
(4)

which describes the movement of a classical ring polymer
with a potential V (q) acting on each of the P beads.

B. Integrating and Thermostatting PIMD

The path integral Hamiltonian (4) has gained a repu-
tation for being associated with difficult sampling prob-
lems, due to the presence of a stiff harmonic term to-
gether with the physical potential. In fact, integration
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and sampling can be made more manageable precisely
by exploiting the large fraction of the free ring polymer
normal modes that is associated with quasi harmonic vi-
brations that are much faster than those associated with
V . Several techniques have been proposed to this end,
involving scaling of the dynamical masses of different nor-
mal modes, or the so called staging transformation of ring
polymer coordinates34–36. Here, for reasons that will be-
come apparent further below, we will use physical masses
for the integration of the PIMD, setting m′ = m. Nev-
ertheless, it is possible to use a time step comparable to
the one that should be used in a classical molecular dy-
namics trajectory, by applying a multiple time stepping
procedure37, in which the free particle contribution to
the full Hamiltonian (4),

H0
P ({q} , {p}) =

N∑
i=1

P∑
k=1(

[p̃
(k)
i ]2

2m
′(k)
i

+
1

2
m

(k)
i ω(k)2

[q̃
(k)
i ]2

)
, (5)

is evolved exactly and the forces arising due to the physi-
cal potential are applied in the outer loop. As shown, the
propagation of H0

P is best carried out by working in the
normal mode representation of the ring polymer, that is

p̃
(k)
i =

P∑
j=1

p
(j)
i Cjk and q̃

(k)
i =

P∑
j=1

q
(j)
i Cjk, (6)

where Cjk is an orthogonal transformation matrix whose

elements are listed, for instance, in Ref. 22, and p̃(k) is the
normal mode associated with the ring polymer vibration
of frequency ω(k) = 2ωP sin((k−1)π/P). In practice, the
forward and backward transformations can be performed
efficiently using fast Fourier transforms, which becomes
crucial in cases involving a very large number of replicas.

Evolving the dynamics in normal modes coordinates
is not only beneficial for the stability of the integrator.
Having access to the different dynamical time scales also
allows one to tackle the ergodicity problems that might
affect this strongly anisotropic quasi harmonic problem.
Thermostats can be applied in the normal modes rep-
resentation, and their coupling parameters be tuned to
obtain the most efficient sampling of ring polymer config-
urations using either deterministic36 or stochastic22 ap-
proaches. Following the latter avenue, this leads to the so
called Path Integral Langevin Equation (PILE) thermo-
stat when the underlying thermostat is based on white
noise Langevin dynamics, and simply amounts to apply-
ing the transformation

p̃
(k)
i ← e−(∆t/2)γ(k)

p̃
(k)
i +

√
m
′(k)
i

βP

(
1− e−(∆t)γ(k)

)
ξ

(k)
i

(7)
before and after the velocity–Verlet step of the integrator.
In this equation, ξ denotes uncorrelated Gaussian ran-
dom numbers, ∆t is the integration time step, and γ(k)

is the friction parameter that determines the coupling
strength. It can be shown that the most efficient configu-
rational sampling can be achieved by setting γ(k) = ω(k).
A similar tuning of the coupling strength can also be per-
formed using (massive) Nosé–Hoover chain thermostats38

in the path integral context39. As we will demonstrate
further down, the two approaches perform similarly at
the level of accuracy whereas PILE is computationally
less complex.

C. PIGLET Thermostatting

The choice of an efficient integrator and thermostat are
important to thoroughly sample the path integral parti-
tion function. However, the convergence of the expec-
tation values of estimators to their quantum mechanical
limit cannot be accelerated by conventional thermostats
that enforce a canonical distribution of positions and mo-
menta.

In recent years, however, it has been shown that
stochastic thermostats based on colored noise can be
modified to induce a frequency dependent thermaliza-
tion with the aim to mimic approximately quantum me-
chanical fluctuations – at the expense of breaking de-
tailed balance40,41. This basic idea can be combined with
PIMD, using the colored noise thermostat to accelerate
the convergence with the number of beads24. The sta-
tionary distribution of a generalized Langevin equation
(GLE) can be predicted analytically for a one dimen-
sional harmonic oscillator of frequency ω and mass m.
Subsequently, the parameters of the noise can be tuned
to obtain an expectation value for

〈
q2
〉

= kBT̃ (ω)/mω2,

where T̃ (ω) can be interpreted as corresponding to a fre-
quency dependent temperature.

Then, when one applies such GLE to a path integral
simulation of the same oscillator, the fluctuations will be
modified from the case of canonical sampling, and yield

〈
q2
〉
P

=
1

P

P∑
k=1

〈
q̃(k)2

〉
=

P∑
k=1

kBT̃
(k)(
√
ω2 + ω(k)2)

m(ω2 + ω(k)2)
,

(8)
where we considered the most general case in which a
different GLE has been applied to each of the normal
modes, so the frequency dependence of the temperature
T̃ (k)(ω) is mode specific. Note that a crucial aspect here
is that the normal mode transformation is an orthogonal
one, and that introducing a harmonic potential with fre-
quency ω on top of the path integral molecular dynamics
Hamiltonian of a free particle (5) amounts to a shift of
the ring polymer frequencies but leaves the eigenvectors
unchanged. This property means that it is possible to
apply the GLE in the free ring polymer normal modes
basis, without the need of knowing the vibrational fre-
quencies and displacement patterns associated with the
physical potential.

By adjusting the GLE parameters associated with dif-
ferent normal modes one can enforce the quantum me-
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chanical expectation value for
〈
q2
〉

even for a small
number of beads, as well as the bead–bead correla-
tions that might be needed to accelerate convergence of
the estimators of other properties. In the case of the
PIGLET method23, the simplifying assumption is made
that T̃ (1)(ω) = T — that is, the centroid thermostat ful-
fills the classical fluctuation–dissipation theorem — and
that T̃ (k)(ω) = T̃ (ω) — that is, all other ring polymer
modes are subject to the same GLE which is tuned to en-
force

〈
q2
〉

= ~/2mω coth ~ωβ/2. This is sufficient to guar-
antee that any structural (purely q–dependent) observ-
able will be exact in the harmonic limit, and so will be
the important centroid virial estimator of the particle
kinetic energy — that also enters estimators for the pres-
sure. While fluctuations can be made exact for any P
with a harmonic potential, convergence for an arbitrary
interaction potential V is guaranteed within PIGLET by
the fact that in the P → ∞ limit the GLE thermostat
reduces to canonical sampling. Asymptotically, conver-
gence will be achieved in a similar way as for conven-
tional PIMD based on the primitive approximant. As
we will see, other quantities that depend upon different
bead–bead correlations converge much more slowly upon
application of a PIGLET thermostat, just because no
provision is made for them to be exact in the harmonic
limit.

The procedure for obtaining the GLE parameters that
give the desired T (ω) dependence, as well as efficient cou-
pling to all vibrations, is described in detail in Ref. 42,43.
The parameters that we used in this work at higher
temperatures were available from the online repository
Ref. 44, whereas we optimized new parameter sets for the
lowest temperatures using the open–source tools avail-
able at Ref. 45.

While all of the techniques we discussed so far are
available in the i–PI software46, given the peculiar na-
ture of the simulations we performed here — with a rel-
atively inexpensive force field to be computed for tens
of thousands of path integral replicas — we found that
the communication overhead associated with the i–PI
client/server model was too large to make this approach
viable. We have therefore freshly implemented both
PILE and PIGLET thermostats directly into the CP2k
program package47–49, which will prove useful for any fu-
ture studies using CP2k.

III. COMPUTATIONAL DETAILS

In order to study systematically the behavior of molec-
ular systems at low temperatures we decided to investi-
gate different cryogenic regimes from moderate (100 K)
to intermediate (20 K), and finally down to ultra low
temperature (1.67 K) as being relevant to species sol-
vated in superfluid helium. The temperatures were con-
trolled using the PILE and PIGLET thermostats. For
one case, massive Nosé–Hoover chain thermostatting38

was used to benchmark the PILE thermostat (Figure 1

and 2 panel F). In the present case, the PILE thermostat
is demonstrated to give the same average values as well
as similar error bars for all tested properties compared
to the Nosé–Hoover thermostat, but is computationally
less demanding.

We selected two extreme cases as our tests so as to
systematically scrutinize the behavior of PIGLET in
different scenarios. Firstly, we considered protonated
methane (CH +

5 ) which is known to have a very flat
and anharmonic hypersurface with respect to the angular
coordinates50, that results into utmost fluxional behav-
ior even at very low temperatures30. Secondly, we sim-
ulated the very stiff, almost perfectly harmonic methane
molecule (CH4). For the description of both molecules
we used the recently introduced POSflex model as previ-
ously parameterized for protonated methane33. For the
quasi rigid methane molecule the angular part is defined
according to Eq. (7) and Table I of Ref. 51, whereas the
radial term is parameterized herein following the general
procedure described in Ref. 33; the resulting force field
parameters are compiled in Table I.

Table I. Parameterization of the anharmonic radial C–H po-
tential of the POSflex model for CH4 as defined in Ref. 33.

Parameter Value

r0 1.094 Å

k2 1.283 Eh Å
−2

k3 −6.627 Eh Å
−3

k4 16.949 Eh Å
−4

For every selected combination of temperature, Trotter
bead number, and thermostat we performed production
runs of 900 ps with a time step of 0.25 fs, but we selected
for further analysis one every 10th path configuration.
For simulations with more than 64 beads we only stored
64 equally spaced replicas, discarding the others. The
average Takahashi–Imada estimates14 for the quantum
kinetic energy were obtained from the PILE simulations
in a post processing scheme52–55 (using an approximate
virial estimator55 to compare with the virial estimates of
the kinetic energy as obtained from the other methods).

IV. RESULTS AND DISCUSSION

A. Kinetic and Potential Energies

This section is structured in the following way. We
first present our convergence study of quantum kinetic
and potential energies as a function of the bead num-
ber. Next we discuss structural properties where we only
present selected cases for the sake of clarity. All following
figures are organized such that the left side (panel A,C,E)
contains the results for methane whereas the right side
(panel B,D,F) contains the results obtained for proto-
nated methane. Panel A and B always contain results
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from simulations at 100 K, panel C and D from simula-
tions at 20 K, and panel E and F from simulations at
1.67 K.
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Figure 1. Convergence behavior of the average kinetic en-
ergy of CH4 (A,C,E) and CH +

5 (B,D,F) with the bead num-
ber P at 100 K (A,B), 20 K (C,D), and 1.67 K (E,F). The
thermostats used in each simulation are indicated as fol-
lows: green squares (PILE), blue triangles (PIGLET), and
turquoise pluses (massive Nosé–Hoover Chains) only in panel
F (note that the NHC and PILE data are identical on the
shown scale). The Takahashi–Imada estimates (red crosses)
were obtained from the PILE simulations by a posteriori sta-
tistical reweighing (see text).

The convergence behavior of the average virial kinetic
energy as generated by the distinct path integral simu-
lation techniques can be analyzed based on Fig. 1. As
expected, to converge the kinetic energy with a given
level of accuracy, independent of the choice of thermo-
stat, higher bead numbers are necessary for lower tem-
peratures.

When considering the PILE simulations (green
squares) at 100 K at least 256 beads are needed for con-
vergence at the meV level. At a temperature of 20 K at
least 1024 beads are needed, and for 1.67 K at least 8192
beads are required to reach such level of convergence. Im-
portantly, the convergence of the kinetic energy is strictly
monotone from the low bead limit all the way up to the

limiting behavior in case of PILE thermostatting (akin
to the well-established massive Nosé–Hoover chain ther-
mostats38). In the asymptotic regime, the convergence
can be improved by using a higher order path integral
scheme. Here, we used in particular a Takahashi–Imada
estimator for the kinetic energy (specifically a hybrid
thermodynamic/virial form55 that does not suffer from
increased variance with large P ). All fourth-order Hamil-
tonians contain a term proportional to the square modu-
lus of the physical force, which is problematic when one
wants to use them in a PIMD context, since the molec-
ular dynamics integrator then contains hard-to-compute
second derivatives of the potential (which is particularly
hampering in the realm of ab initio path integral26–28

simulations). In order to circumvent this problem, we
used the well known strategy of statistically reweighing
second order trajectories52,53,56. It is noted that out-
side of the asymptotic regime the reweighed fourth or-
der estimators dramatically overestimate the energy and,
moreover, that convergence appears to be non monotone.
This is, in fact, a manifestation of the pathological sta-
tistical behavior of the reweighing procedure when the
difference between the sampled (Trotter) and the tar-
get (Takahashi–Imada) ensembles is too large. For low
numbers of beads, the discrepancy is so large that the
reweighed estimators are affected by a systematic error
as well as by a huge statistical uncertainty. This problem
is not specific to the TI method, but affects any fourth-
order scheme when sampled with a reweighing approach.
For the closely related Suzuki–Chin path integrals16,17

it has been shown that the crucial parameter that de-
termines the sampling efficiency (which should be on
the order of unity or smaller to make reweighing viable)
scales as Nfβ

6/P 4, where Nf is the number of degrees
of freedom of the system56. The discrepancy between
the sampled and target ensemble is slightly smaller for
TI, which is the reason we used it here, but it shows a
similar asymptotic behavior with system size and beads
number.

Small systems such as those considered here are the
ideal scenario to employ these higher order techniques,
but the statistical problems are expected to worsen with
lower T . Indeed, at our highest temperature of 100 K the
systematic errors due to reweighing level off at about
P = 16, and TI gives reasonable results already at
P = 64 for both molecules. Lowering the temperature
to 20 K, the TI results reach a sweet spot for error can-
cellation at 64 beads before the agreement relative to the
converged result slightly deteriorates at P = 256 and fi-
nally converges at 1024 beads. For 1.67 K, at ultra low
temperatures, the same non monotone convergence is ex-
acerbated with a clear cross over from a regime domi-
nated by the reweighing instabilities and thus dramatic
overestimation of the kinetic energy up to a Trotter num-
ber as large as P = 1024, to the asymptotic convergence
from there onwards.

Having in mind the aim to get even faster conver-
gence with moderate bead numbers, without the issue
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of statistical reweighing, we explored the performance of
PIGLET thermostatting down to ultra low temperatures.
Here the energy can be pushed close to convergence for
relatively low bead numbers at the price, however, of non
monotone convergence in the limit of striving for ultimate
accuracy in the sense of fully converging the path inte-
gral discretization, P →∞. An extreme case of such non
monotone convergence can be found for CH +

5 at 1.67 K
(panel F in Figure 1), where the PIGLET kinetic energy
(blue triangles) is close to the converged value already
at 48 beads, but declines for P = 128 where it yields a
worse estimate than for 32 Trotter beads before it even-
tually reaches its converged value. By decomposing the
kinetic energy into its atomic contributions, we observed
that this non monotone behavior can be ascribed to the
protons, whereas the kinetic energy of the carbon atom
converges regularly. While we could not pin–point more
precisely the origin of the non monotone behavior, we
suspect that the problem could be related to zero point
energy leakage57, where different degrees of freedom that
are thermostatted at different effective temperatures ex-
change energy through anharmonic couplings. Increasing
the number of replicas reduces the gradient in T (ω) — as
a larger fraction of quantum fluctuations is dealt with by
the path integral — but at the same time increases the
number of vibrational modes through which zero point
energy can leak. A milder manifestation of this effect is
probably involved in the small drop of the energy that
is observed for the PIGLET simulations of methane at
1.67 K (panel E) and P = 512.

This non monotone behavior of the PIGLET thermo-
stat with the bead number does not only arise for the
kinetic, but also for the potential energy as evidenced by
the data depicted in Fig. 2. It can be seen in all stud-
ied cases that the PIGLET thermostat underestimates
the potential energy limit for low values of P . For larger
bead number, however, the potential energy is slightly
overestimated but approaches the correct limit for the
largest investigated bead numbers. This region of over-
estimation of the potential energy seems to be system
independent for our investigated cases and seems to be
dictated only by the temperature, peaking at roughly 8,
48, and 384 beads for the temperatures 100 K, 20 K, and
1.67 K respectively.

While this non monotone convergence could be prob-
lematic when aiming at ultimate accuracy, it is clear that
for all the cases we considered the PIGLET thermostat-
ted simulations yield a dramatic improvement of both ki-
netic and potential energy for any number of beads com-
pared to the standard PILE or NHC approaches. If one
is satisfied with a residual error on the order of a few
percent, PIGLET enables one to reduce the number of
replicas needed for convergence by a factor between 10
and 100. For instance, in the case of CH +

5 at 100 K
the bead number can be lowered from P = 256 to 16
to achieve the same level of convergence (with 16–fold
speedup) and for CH4 at 1.67 K the bead number can be
lowered by a factor of 42 (from P = 4096 to 96) with no
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Figure 2. Convergence behavior of the average potential en-
ergy of CH4 (A,C,E) and CH +

5 (B,D,F) with the bead num-
ber P at 100 K (A,B), 20 K (C,D), and 1.67 K (E,F). The
thermostats used in each simulation are indicated as fol-
lows: green squares (PILE), blue triangles (PIGLET), and
turquoise pluses (massive Nosé–Hoover Chains) only in panel
F (note that the NHC and PILE data are identical on the
shown scale).

loss of accuracy. Note that thermostatting via PIGLET
only requires generating about 20 random number per
particle per replica per step, an operation whose com-
putational overhead is barely noticeable even in a case
such as the present in which the interatomic forces are
obtained from an inexpensive empirical force field. As a
consequence, the decrease in the bead number enabled
by using PIGLET directly translates into a speedup.

B. Nuclear Quantum Effects

While energies provide an easily accessible and well
defined indicator of convergence in terms of simple num-
bers, structural observables in terms of distribution func-
tions are of more immediate interest in view of their di-
rect connection to both NQEs on structure and also to ex-
perimental findings. In Fig. 3 and Fig. 4 we compiled rep-
resentative distribution functions for the CH and HH dis-
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Figure 3. C–H distance distribution functions of CH4 (A,C,E)
and CH +

5 (B,D,F). The panels correspond to 100 K (A,B),
20 K (C,D), and 1.67 K (E,F) where representative combina-
tions of thermostat type and bead number are selected as indi-
cated. For each system and temperature we report the PILE
and PIGLET data obtained with the largest bead numbers
(the former serving as our benchmarks) and compare them
with results obtained with significantly lower Trotter num-
bers as indicated.

tance, respectively. For the sake of clarity, we neither re-
port the results for all possible internal coordinates nor
for all simulation parameters such as bead number and
thermostatting scheme. Instead, we chose to only present
some representative distributions at a few specific bead
numbers. For PILE as well as for PIGLET we report as a
reference the highest number of beads we considered. In
order to highlight the convergence properties of PIGLET
compared to PILE, we also show the results for the low-
est bead numbers that gives near-converged results with
PIGLET. The key observation of highest practical rele-
vance that can be extracted from Figs. 3 and 4 is that
the PIGLET data obtained with the lowest discretization
number P almost perfectly fit the converged PILE curves
and features deviations which are hardly visible on the
intrinsic variations of these distribution functions. Note
that at 1.67 K we found well converged PIGLET results
with P = 48 already, but we did not run the correspond-

ing bead number for PILE so that we compared to the
closest match for PILE being P = 64.

The results are very consistent across different tem-
peratures and between the two molecules we considered.
The highest number of beads we considered for PIGLET
(which is about 10 to 50 times smaller than P used for the
converged PILE benchmarks) agrees with the reference
simulations within the accuracy that is provided by the
graphs as depicted. Moreover, when using PIGLET it is
possible to achieve nearly quantitative accuracy while re-
ducing even further the number of replicas. For instance,
at 100 K, already 8 replicas yield an almost perfect match
with the fully converged distributions and even P = 16
gives only minor deviations at 20 K.

The most striking case is that of the ultra low tem-
perature, 1.67 K, where 48 replicas suffice to capture
the essential features of NQEs on the molecular struc-
ture of both quasi-rigid methane and fluxional proto-
nated methane as described by the probability distri-
bution functions in Figs. 3 and 4. In all these cases,
conventional PILE thermostatting yields much too nar-
row distributions which is even associated with a shift of
the maximum and thus of the most probable quantum
structure in the most extreme case of CH +

5 at cryogenic
temperature.

As already alluded to, the HH distance distribution
functions in Fig. 4 show similar trends. At all tempera-
tures PIGLET can reproduce almost perfectly the fully
converged PILE results with a considerable reduction in
the number of beads and thus compute time. Moreover,
they even semi quantitatively capture the shape of these
probability distributions also at much smaller Trotter
numbers – conditions for which PILE fails to reproduce
even qualitatively the correct quantum mechanical be-
havior due to NQEs. A case that is worth discussing
in more detail is that of CH +

5 at 1.67 K. At this ultra
low temperature, the positive impact of the colored noise
in the low bead number regime is particularly striking.
While PIGLET captures well the fluxional nature of the
H atoms already with 48 beads, the distribution obtained
with PILE at P = 64 breaks down in a multitude of
sharper peaks, corresponding to proton–proton distances
according to the equilibrium structure. In particular, dis-
tances around 1.2 Å that occur during the scrambling
motion via the C2v transition state, and therefore are
the signature of quantum fluxionality, are significantly
underpopulated. We conclude that PILE simulations us-
ing such a bead number are unable to even qualitatively
describe the fluxionality of CH +

5 in the limit of ultra
low temperatures such as those provided by superfluid
helium.

There is, however, a price to pay for the much faster
convergence of structural observables and energies when
using PIGLET acceleration as we will clearly disclose in
the following by analyzing the quantum delocalization
properties of the protons upon approaching ultra low
temperatures. Colored noise techniques like PIGLET in-
troduce artificial, frequency dependent fluctuations that
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Figure 4. H–H distance distribution functions of CH4 (A,C,E)
and CH +

5 (B,D,F). The panels correspond to 100 K (A,B),
20 K (C,D), and 1.67 K (E,F) where representative combina-
tions of thermostat type and bead number are selected as indi-
cated. For each system and temperature we report the PILE
and PIGLET data obtained with the largest bead numbers
(the former serving as our benchmarks) and compare them
with results obtained with significantly lower Trotter num-
bers as indicated.

are carefully designed to reproduce exactly those for a
fully converged calculation with a purely harmonic po-
tential. In the most basic setup24, only the marginal
distribution of individual beads is tuned to reproduce
convergent results — which is already enough to acceler-
ate convergence of any observable that can be written as
a position dependent operator. Other quantum mechani-
cal observables (such as those that are momentum depen-
dent) also depend on cross correlations between different
replicas. Each of such correlation has to be enforced sep-
arately, as it is done for instance in the PIGLET scheme
to guarantee efficient estimation of the centroid virial ki-
netic energy estimator23.

A quantity that is often used to assess the quantum
mechanical spread of the nuclei is the the average ra-
dius of gyration of the ring polymer. For non spherically
symmetric potentials, as in the present case, this idea
can be generalized as worked out in Ref. 58, to obtain an

‘effective radius’ that quantifies the spatial spread of an
arbitrary distribution. In Fig. 5 we analyze, as an exam-
ple, the average effective radius for the protons in CH4

for our three different temperatures as function of the
beads number. As qualitatively expected, the effective
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Figure 5. Convergence behavior of the effective radius, aver-
aged over the four protons in CH4, as a function of the bead
number P at 100, 20, and 1.67 K using PILE and PIGLET
thermostats as indicated.

protonic radius increases when the temperature is low-
ered. At 100 K the PILE effective radius converges to ap-
proximately 0.25 Å, whereas at 20 K the converged num-
ber increases to about 0.4 Å. By lowering the tempera-
ture even further to 1.67 K the converged spread seems
to be in between roughly 1.0 and 1.1 Å. As it can be
seen from the figure, the effective radius estimates from
the PIGLET runs systematically overestimate the bench-
mark data even when using the best discretization of the
path integral, and moreover exhibit slower convergence
than what we saw for all other properties discussed so
far. This is to be expected, as the effective radius esti-
mator depends on beads cross correlations that have not
been included in the target distribution for designing the
colored noise parameters. The relative weight of different
kinds of correlations depends on the temperature, which
is apparent in the change in the speed of convergence
at different temperatures. At 100 K, PIGLET seems to
have an edge on PILE, but already at 20 K the opposite is
true. At the lowest temperature we considered, the con-
vergence of PIGLET has become dramatically slow and
deviates by more than 20% from the converged PILE
values even with P = 512 beads. Despite this fundamen-
tal caveat, PIGLET nevertheless is able to describe the
qualitative behavior of the quantum spread as a func-
tion of temperature down to superfluid helium temper-
atures. We close this critical discussion by mentioning
that it would be possible — in principle — to extend the
PIGLET framework to include also the correlations that
contribute to the estimator for the effective radius, a line
of research that we will explore in future work.
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V. CONCLUSIONS AND OUTLOOK

In the present study we have investigated the applica-
bility of colored noise acceleration of path integral molec-
ular dynamics simulations to the study of ultra cold sys-
tems, such as for instance molecules embedded in super-
fluid helium droplets, pushing the method to its limits
by considering the overly anharmonic, fluxional molecule
CH +

5 at T = 1.67K. The results are extremely encour-
aging since the number of replicas that is required to
converge the kinetic or potential energy energy within a
few percent relative to the P → ∞ limit is significantly
reduced, by a factor between 10 and 100. Structural
distribution functions show similarly improved conver-
gence: even at the lowest temperature and for the utmost
anharmonic protonated methane case, PIGLET simula-
tions with fewer than 100 beads give quantum probability
distributions that are almost indistinguishable from the
fully converged results which require more than 10’000
replicas. Contrary to all high-order factorization schemes
of the propagator, the present approach can be read-
ily applied to rather complex interaction potentials of
relevance to molecule–based systems, including point-
charge models and polarizable force fields, without hav-
ing to worry about the need of computing second- or even
higher-order derivatives of the potential, or having to deal
with statistically inefficient reweighting schemes. These
virtues are particularly rewarding in the realm of ab ini-
tio path integral26–28 simulations where the interactions
are computed on-the-fly28 from the fully self-consistent
electronic structure as the path integral is sampled.

When pushing an approximate method to such ex-
treme conditions, however, it is most interesting to in-
vestigate when and why it fails, and how it could be im-
proved to overcome its shortcomings. Here we find, for
instance, that the convergence of PIGLET is not mono-
tone as a function of the discretization number, partic-
ularly for the kinetic energy of CH +

5 at 1.67 K. The
colored noise thermostat has to enforce a wildly non
uniform effective temperature on physical vibrations of
different frequency, a task that is made even harder, at
low temperatures, by the presence of a quasi continuum
set of ring polymer vibrations. A better understanding
of the behavior of GLE thermostats in quasi harmonic
systems, and of how the thermostat coupling strength
should be tuned to contrast zero point energy leakage be-
tween different modes might help designing GLEs which
can cope more stably with unusually anharmonic prob-
lems. Another aspect in which GLE frameworks need
to be improved is the evaluation of estimators that de-
pend on off diagonal bead correlations. As we reveal in
detail, the effective radius of the ring polymer gets sig-
nificantly and systematically overpredicted by PIGLET
simulations and, in addition, convergence at the lowest
temperatures is slower than by conventional path integral
molecular dynamics.

Even with these caveats, our results underscore the
great potential of the combination of non equilibrium

colored noise thermostats and path integral molecular
dynamics for the study of matter at extreme levels of
quantum mechanical behavior. Thanks also to the native
implementation of these techniques in the CP2k simula-
tion package, this work will pave the way to the study
of low temperature physics and cryochemistry, such as
helium droplet spectroscopy of molecules, together with
an ab initio treatment of interatomic forces that is en-
abled by the recently developed hybrid ab initio/bosonic
PIMD/PIMC simulation technique59,60.
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