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Abstract

Two-dimensional solitary waves at the surface of a film flow down a vertical plane are considered. When the system is subjected to inlet white
noise, solitary waves are formed after an inception region and interact with each other. Using open-domain simulations of reduced equation
models, we investigate numerically their late time process dynamics. Close to the instability threshold, the waves synchronize themselves into
bound states. For higher values of the Reynolds number, the separation distance between the waves increases and the synchronization process
at work is weaker. Performing statistics, we show that the mean characteristics of the waves correspond to the minimal value of the mean film
thickness along the traveling-wave branch of solutions. In this regime, synchronization occurs through the waves tails which is associated with
a change of scaling of the waves features. A similar behaviour is observed performing simulations in periodic domains: the selected waves
maximize the mean flow rate.

Keywords: thin liquid films, solitary waves, reduced equation models

1. Introduction

Falling liquid films are widely used in industrial applica-
tions due to their interesting properties regarding heat and mass
transfer. Interfacial waves intensify transfers by a factor up to
two in comparison to the flat film situation [10], though the ex-
change surface undergoes an increment of only a few percents
[20]. The reason for this paradox lies in the organization of
the wavy motion of the film around isolated structures, or soli-
tary waves, interacting one with the other through nearly flat
regions of the film. These so-called solitary waves are com-
posed of a main hump, a series of capillary ripples and a flat
part called substrate. Whenever the amplitude of these waves
is high enough, a recirculation region, i.e. a roll, appears in the
main hump [25]: this mixing is a key element to transfer in-
tensification [34]. At given flow conditions, the onset of recir-
culation regions is sensitive to the separation distance between
waves and therefore to the frequency [24]. It is thus essential
to determine the preferred wavelength of the natural evolution
of the film. This selection process is the subject of the current
paper.

The onset of the different regimes of the film dynamics is
function of the reduced Reynolds number, denoted δ, and intro-
duced by [28]. This parameter combines inertia, viscosity and
surface tension and will be defined in § 2.1. When δ < 1.5,
inertia effects are weak and the amplitude of the waves remains
small (drag-gravity regime). Selection of the waves in this case
has been the object of several works, within the framework
of the hydrodynamic bound states theory, and based on var-

ious equation models: the weakly nonlinear Kawahara equa-
tion [16, 22, 32], the Benney equation [9], the Kapitza-Shkadov
model [4] and more recently the Ruyer-Quil-Manneville model
[23]. A discrete set of preferred wavelengths is observed as
waves tend to form bound states through interaction of their
tails with the capillary ripples at the front of the next ones.
These separation distances correspond to discrete values of sta-
bility of the waves with respect to infinitesimal perturbations,
and to local minima of the viscous dissipation function along
the traveling-wave branch of solitary waves.

When δ > 1.5, the amplitude and speed of the waves in-
crease drastically (drag-inertia regime). In that regime, the nat-
ural evolution of the waves show some similarities with the in-
verse energy cascade observed in 2D turbulence [17]. One can
observe successively formation of linear waves, their non-linear
saturation, evolution towards solitary waves through quasi peri-
odic or subharmonic secondary instabilities, wave merging and
increasing of the separation distance between solitary waves.
The value to which this separation distance converges is still an
open question in the literature. It has been addressed only by
Chang et al. [4] but using the Kapitza-Shkadov model and mak-
ing strong assumptions on the details of the dynamics. Other
studies are available in the turbulent case on the coarsening of
the so-called roll waves [1].

Eventually, let us introduce the concept of optimal wave
which is the main motivation of this study. It is due to Trifonov
[30] and corresponds to a minimum of the mean height along
the traveling-wave branch of solitary waves. Short and long op-
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timal waves are distinguished, depending on the value of the
associated separation distance. We will show in this paper by
means of time simulations of the Ruyer-Quil-Manneville model
that the long-time dynamics of the film converges to these solu-
tions. Links will be made with results from the linear stability
analysis, and with the argument of minimal viscous dissipation.

The paper is organized as follows. Section 2 presents the
numerical tools. In section 3, we revisit the literature results in
the drag-gravity regime (δ > 1.5). Section 4 presents the results
obtained in the drag-inertia regime. Conclusions are given in
Section 5.

2. Numerical tools

2.1. Notations

We consider a liquid film falling down a vertical plane (Fig-
ure 1). The flow is assumed to be Newtonian with constant
physical properties (surface tension σ, viscosity µ, density ρ).
We denote by ν = µ/ρ the kinematic viscosity and g the accel-
eration of gravity. The current study is carried out in the 2D
case, that is only by considering spanwise invariant waves with
x being the coordinate in the direction of the flow and y the co-
ordinate oriented in the normal direction to the plane. u and v

refer to the velocity components in the two directions x and y.

O

x

y

g

h(x,t)

Figure 1: Sketch of the problem set-up

Two length scales can be defined balancing viscosity, ac-
celeration of gravity and surface tension: the capillary length
lc =

√

σ/ρg and the viscous-gravity length lν = ν2/3g−1/3.
Adding the flat film thickness h̄N (Nusselt thickness) allows to
get a first set of non-dimensional parameters. It is composed
of the Kapitza number Γ = (lc/lν)

2 and the Reynolds number
Re = q̄N/ν = h3

N
/3 built from the flow rate q̄N or the non-

dimensional Nusselt thickness hN = h̄N/lν.

The Kapitza number takes rather high values in practice
which is not convenient from a numerical point of view. This
led Shkadov [28] to introduce a specific non-dimensionalization,
compressing the x coordinate by a factor κ with respect to the
y direction. This factor is adjusted to balance the gravity force
and the capillary pressure gradient, i.e. κ = (lc/h̄N)2/3. The
Shkadov scaling yields two non-dimensional numbers: the re-
duced Reynolds number δ = 3Re/κ and a viscous dispersion
parameter η = 1/κ2. It sets the coefficient of the capillary pres-
sure term to one and makes explicit the balance of all forces in
the equations (gravity, viscosity, surface tension and inertia).

2.2. WRIBL model

Hereinafter we will mimic the dynamics of the film based
on the solutions to a reduced set of equations involving only
two variables: the film thickness h(x, t) and the local liquid flow

rate q(x, t) =
∫ h

0
udy. This model has been validated through

comparisons to DNS and experiments [14] showing excellent
agreement for the parameter range of interest. It allows to get
access to the essence of the flow dynamics at reasonable com-
putational costs. Let us briefly outline its derivation procedure
starting from the governing equations.

First, the long-wavelength nature of the instability enables
to invoke a separation of scale between the x and y coordinates.
In practice, this is performed by introducing a small parame-
ter ϵ = ∂x,t and ordering terms into powers of ϵ. Then, the
classical boundary-layer approximation is followed: pressure is
computed after integration of the y-momentum balance where
O(ϵ2) inertial terms have been dropped out. Depth-averaging
of the x momentum equation yields an evolution equation for
the flow rate consistent up to O(ϵ2). Let us mention that us-
ing specific weights through this latter procedure allows con-
siderable algebraic simplification (weighted-residual technique,
see [14] for more details). The so-obtained Weighted Resid-
ual Integral Boundary Layer model is composed of a (exact)
depth-averaged mass-conservation equation and a momentum-
conservation equation. It is written as:

∂th + ∂xq = 0, (1a)

δ∂tq =
5

6
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2
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[
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2
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]

.

(1b)
As already underlined, this model is consistent up to O(ϵ2) with
the long-wave expansion and thus adequately accounts for the
second-order viscous effects, i.e. the elongational viscous terms
(last row of (1b)), which are omitted in most low-dimensional
models, for instance the classical Kapitza-Shkadov model [27]
as the viscous dispersion parameter η is generally small. Yet,
the linear stability of the Nusselt base flow is significantly af-
fected by the presence of these terms as they decrease the speed
of kinematic waves. We recall here that the imbalance of the
kinematic-wave speed with the flow speed at the free surface is
the key ingredient for the onset of the instability as pointed by
[29] and [14] within the Whitham wave-hierarchy framework
[33].
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2.3. Two-dimensional traveling-wave solutions

Traveling wave branches of solution are computed accord-
ing to the following procedure. The coordinates x and t are
combined into ξ = x − ct in the moving frame of reference
where c is the wave speed. This allows to integrate the mass-
conservation equation yielding q = ch + q0. A single o.d.e. is
thus obtained which can be recast in the form of an autonomous
dynamical system in a 3D phase space spanned by h, and its two
derivatives hξ, and hξξ.

The constant q0 =
∫ h

0
(u−c)dy represents the flow rate under

the wave in its moving frame. Considering traveling waves, i.e.
limit cycles of period λ in the phase space, q0 is adjusted so that

the average ⟨h⟩ξ = λ
−1

∫ λ

0
h dξ corresponds either to the waves

generated by the synchronization between the flow and an in-
let forcing (see for instance the experimental work by [18]), or
to the spatial periodicity of numerical simulations in a periodic
domain. In the former case, ⟨q⟩ξ = 1/3, which is the value of
the flow rate corresponding to the Nusselt solution of thickness
unity. For the latter, the total mass being conserved, we get
⟨h⟩ξ = 1 [26]. In practice, we have used the software AUTO-
07p [8] and computed the traveling wave branches of solution
by continuation starting from Hopf bifurcation and increasing
the period. Let us mention that the traveling waves computed
with these two conditions are in fact identical provided that the
Reynolds number based on the substrate thickness hs is used.
This latter quantity can be obtained by assuming a Nusselt pro-
file in the substrate and solving the following 3rd order polyno-
mial equation: h3

s/3 = chs + q0.

2.4. Time-dependent simulations

We perform spatio-temporal simulations of the equations
model using an algorithm that is briefly described here. Let us
write formally the system (1) in the form:

∂tH = L(H) +N(H) (2)

H = (h, q) is the vector of unknowns, L and N are linear and
nonlinear operators, respectively. The code employs the Crank-
Nicholson temporal scheme with first order Taylor expansion
of the nonlinear operator. Spatial derivatives are approximated
using centered finite differences. The truncation error is thus
of second order both in time and space. Two kinds of simula-
tions associated with different boundary conditions have been
performed. The first-set of boundary conditions corresponds to
an open domain, for which no-reflection conditions are applied
at the outlet. This open-flow situation mimics the experimental
conditions. The second-set of boundary conditions is the peri-
odic boundary conditions, or closed-flow situation.

In an open domain, the open-flow boundary conditions are
written as:

H(x, 0) = P(x), H(0, t) = (1, 1/3) + B(t), (3a)

∂tH(L, t) = ν f ∂xH(L, t). (3b)

The function P(x) can be taken as a constant equal to (1, 1/3).
To speed up the transient phase of computations, we have rather
used an ad-hoc profile of the form a0 − a1 arctan(a2x+ a3) with
(ai)i suitably chosen. The function B(t) is a temporal white

noise. The condition (3b), imposed by dimensionality con-
straints, is an ad-hoc expression which allows to limit wave
reflection at the outlet (ν f = 1 typically). In practice, con-
dition (3b) “hyperbolizes” our system of equations at the end
of the numerical domain, ensuring that the information travels
downward. The drawback of using (3b) is the generation of nu-
merical errors at the outlet. However, due to the convective na-
ture of the wave dynamics of falling film flows, these numerical
errors are efficiently evacuated and do not accumulate so that
only a few nodes are affected near the outlet. In this first case,
the matrix to invert at each time step is band diagonal which
can be efficiently done using the LU decomposition technique.

In a periodic domain, the closed-flow boundary conditions
are written as:

H(x, 0) = (1, 1/3) + B(x), (4a)

H(L, t) = H(0, t), ∂tH(L, t) = ∂tH(0, t). (4b)

The function B(x) is a spatial white noise. In this second case,
the system matrix is no more band diagonal and a more sophis-
ticated method based on Thomas algorithm was employed.

In practice, we have used a noise amplitude of 0.001, a spa-
tial mesh size of 0.15 and a time step of 0.01. The computations
were performed on a typical workstation and lasted from a few
days to several weeks.

3. Drag-gravity regime (δ < 1.5)

3.1. The Nusselt profile as a minimum of viscous dissipation

The idea that the Nusselt velocity profile could be obtained
alternatively by minimizing the viscous dissipation in the film
comes from the first papers of Kapitza [15]. It is indeed a gen-
eral property of Stokes flows with given boundary conditions
[2]. We briefly recall here the proof of this result (a similar
calculation can be found in [11]).

Let us consider a liquid film of constant thickness h = hN

flowing down an inclined plane. The vertical case is singu-
lar since the critical Reynolds number for instability is zero:
without any loss of generality, we will deal here with the case
β < 90◦. We look for the velocity profile u(y) given the bound-
ary conditions of no slip at the wall u(0) = 0 and free shear at
the interface u′(h) = 0. The viscous dissipation inside the film
per unit streamwise length is:

Φ(u) = η

∫ h

0

(

∂u

∂y

)2

dy (5)

The differential of Φ(u) with respect to u is written as:

Φ(u + ϵw) −Φ(u) = 2ϵη

∫ h

0

∂u

∂y

∂w

∂y
dy + O(ϵ2) (6)

The boundary conditions for the velocity perturbation w are:
w(0) = 0, w′(h) = 0. An additional condition arises from the

conservation of the total flow rate:
∫ h

0
w(y)dy = 0. Integrating

by parts in (6) and using the boundary conditions, we get:

Φ(u + ϵw) −Φ(u) = −2ϵη

∫ h

0

w
∂2u

∂y2
dy + O(ϵ2) (7)
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A necessary and sufficient condition in order to set the differen-

tial of Φ(u) to zero for any function w(y) is:
∂2u

∂y2
= C ! 0. This

gives the semi-parabolic Nusselt profile.

3.2. Short-optimal waves (bound states)

We examine now the case in the presence of waves and the
selection process in the drag-gravity regime. The velocity pro-
file is prescribed to be self-similar to the Nusselt one. This
assumption is actually very accurate in this regime for which
the amplitude of the waves remains small [14]. The unknown
quantity becomes the preferred wavelength or frequency.

3.2.1. Linear stability

A necessary condition to observe a wave train at a given
period is that this traveling solution is stable with respect to
infinitesimal perturbations. The associated linear stability pro-
cedure is called a Floquet analysis because the base state is pe-
riodic. It is usually written using the moving frame variable
ξ = x − ct and put in the form:

H(ξ, t) = H0(ξ) +H1(ξ)eiψkxξ+αt (8)

H denotes the vector of unknowns (h, q), H0 is the periodic base
state with wavenumber kx, H1 is a perturbation amplitude with
the same period, α is the complex growth rate. The period of the
resulting solution H is allowed to vary through the parameter ψ
which is tuned from 0 (same period) to 0.5 (period doubling).

The stability of the different branches of solutions is well-
understood thanks to several studies [7, 6, 30]. We recall here
the main results on this question. In the terminology intro-
duced by Chang, there are two main wave families. The γ1

waves show a dominant depression at low wavenumbers and
are slower than the temporally most amplified linear waves.
These γ1 waves, as well as the hybrid families (γ′1, γ′2, γ′′1 . . . )
are unstable for all wavenumbers: we will therefore not con-
sider them. The γ2 waves are faster than the temporally most
amplified linear waves and show a dominant elevation at low
wavenumbers. This wave branch is the only one for which sta-
ble waves exist. In the drag-gravity regime, the wavenumbers
kx,n of these stable waves form a discrete set of values and vary
like ωc/n, with ωc the oscillation frequency of the capillary
waves. The waves synchronize themselves using their capillary
radiations. Between these values, the solutions are unstable to
subharmonic (ψ = 0.5) or sideband (ψ ≪ 1) instability modes.
At low wavenumbers, this discrete sequence is truncated by the
flat-film instability of the substrate (ψ = 0).

3.2.2. Viscous dissipation

In the drag-gravity regime, the inertial terms are small and
we expect the minimum dissipation argument to remain approx-
imately valid. This was speculated by Kapitza [15] and later on
by Chang [6] using a different expression for the viscous dis-
sipation. In addition, Trifonov [30] introduced the concept of
optimal waves which minimize ⟨h⟩ξ for constant-flux formula-
tion ⟨q⟩ξ = 1/3. We contrast here these different approaches
and discuss their ranges of validity.

Figure 2 presents the variations with the frequency of the
three energy functionals mentioned above along the γ2 branch

of solutions for δ = 1 and Γ = 2000. The expression derived
by Kapitza is Φ1 = 9⟨(∂yu)2⟩ξ = 9⟨q2/h3⟩ξ . Φ1 admits three
local minima at f1 = 8.3 ∼ 16.5/2 Hz, f2 = 5.4 ∼ 16.5/3
Hz, f3 = 4.1 ∼ 16.5/4 Hz. Chang introduced a more com-
plete expression Φ2 = 9⟨(∂yu)2

+ (∂xv)2⟩ξ. These curves Φ1( f )
andΦ2( f ) are superimposed, which indicates that the additional
term (∂xv)2 is negligible in this case. The functional Φ3 = ⟨h⟩ξ
considered by Trifonov agrees qualitatively well with the two
other ones.

The most general expression for viscous dissipation given
by Rayleigh (see for instance [3]) is written as:

Φ4 =

∫ h

0

⟨2[(∂xu)2
+ (∂yv)2] + [∂yu + ∂xv]2dy⟩ξ (9)

Computations of this functional show similar behaviours, apart
from the fact that the curve is reversed with the consequence
that the values are always higher than in the case of a smooth
film. Physically, it is not clear in which case (wavy or smooth
film) viscous dissipation should be the highest. Numerically,
we have observed that the equation model and the condition
used to compute the waves (constant-flux or constant-thickness)
are crucial: viscous dissipation is sometimes found lower in the
wavy case [12] or smooth case [6].

Indeed, this question amounts to finding min⟨Φ(h, q)⟩ξ un-
der the constraint ⟨q⟩ξ = 1/3 or ⟨h⟩ξ = 1. It could be treated un-
der the framework of Lagrange multipliers, but we leave this
for future work. For low δ values, the energy functionals can be
expanded around the flat film solution which explains the fact
that all these latter show similar behaviours. Some of them may
be reversed because of the sign of the coefficients in the expan-
sion. For higher δ values, we have observed significant differ-
ences between them. As a consequence, we do not attempt to
discuss the long-time behaviour of the film in the drag-inertia
wavy regime using these viscous dissipation functions. Since
the inertial terms are no more negligible, it is an open question
to know if the minimum viscous dissipation argument remains
valid in the drag-inertia regime, or if not which functional to
minimize is relevant.

3.2.3. Direct numerical simulations

The crucial question is to check that these short-optimal
wave solutions are indeed selected by the system when per-
forming direct numerical simulations. Figure 3 compares the
traveling-wave optimal profiles (Fig 3a, 3b, 3c) to snapshots
from the time-dependent simulations of the model (Fig 3d) with
parameter values corresponding to Figure 2. In some parts
of the domain, we have found groups of synchronized waves.
These groups do not spread over the entire domain but are sep-
arated by portions of disordered states. Moreover, the preferred
optimal solution among the three ones illustrated in Figure 3
is the one of intermediate frequency ( f = 5.2 Hz). This point
was addressed in fact recently by Pradas et al. [23] in the drag-
gravity regime. Performing statistics on the separation lengths
between the waves, they found peaks around the values corre-
sponding to bound states predicted by the theory. They do not
conclude on which solution is the preferred one but their his-
tograms show as well a greater number of waves for intermedi-
ate values of the separation length. Interestingly, they observed
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Figure 2: Variation with the frequency of two energy functionals Φi as well as ⟨h⟩ξ along the γ2 traveling-wave branch of solutions (δ = 1, Γ = 2000)
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Figure 3: Short-optimal wave solutions (Γ = 2000, δ = 1). Figure 3a, 3b, 3c are traveling-wave profiles corresponding to stable periodic waves and to the local
minima of Figure 2b. Figure 3d shows a snapshot from a spatio-temporal simulation of the low-dimensional model (1).

also oscillatory behaviour for certain values of the initial sepa-
ration distance [21].

The selected state is thus not necessarily the one correspond-
ing to the lowest local minimum of viscous dissipation. We
conjecture that the selection of the observed local minimum
depends on the linear filtering of the inlet signal. We have
thus compared the velocity of these short-optimal waves c f Hz

with the one cs of the spatially most amplified linear waves:
c4.0 Hz > c5.2Hz > cs = 0.991 > c8.2Hz. As the nonlinear wave-
merging process tends to accelerate the flow, the wave velocity
tends to increase away from inlet, with the consequence that the
slowest optimal-wave solution at 8.2 Hz cannot be selected.

4. Drag-inertia regime (δ > 1.5)

4.1. Open-domain simulations: a new preferred separation

Let us turn now to the drag-inertia regime. From the point
of view of the linear stability of the γ2 branch of solutions, the
situation appears quite different from the drag-gravity regime.
As explained by Chang et al. [6], bound states become unstable
in this regime. For low values of the wavenumber k < k f , the
waves are still unstable due to the flat film instability of the
substrate but a band of stable wavenumbers appears k f < k <
ks. Among this continuum of stable solutions, we will investi-
gate which one is more preferred.

Figure 4 shows a snapshot from an open-domain simulation
for δ = 10, Γ = 20. After inception, we see the formation of
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large amplitude solitary waves. However, the selection process
at work is weaker than in the drag-gravity regime (Figure 3d).
Pradas et al. [23] observed also that the pulses lose their bound-
state self-organization in this regime. Their distribution func-
tions of the mean-separation distance are quite broad but still
show some peak.

Following this idea, we investigate here the shape of these
distribution functions and their dependence on the distance from
inlet. Figure 5 presents two frequency histograms for the same
sets of parameters as in Figure 4, one corresponds to a location
near inlet of the white zone 0 < x < 3000 (Fig 5a) and the other
one to a location close to outlet of the white zone (Fig 5b). We
have used a large sample (more than 4000 waves) to achieve
good convergence of the statistics. Nevertheless, the former
case would require even more waves as it is visibly more sen-
sitive to inlet noise. The two histograms show that there are
nearly no waves whose frequency is below 2.5 Hz or above 15
Hz as the associated solutions are certainly unstable. The peak
around 5 Hz does not depend much on the spatial location as
we shall see later. The distributions have a long tail that decays
faster near outlet.

Given these long-tailed distribution shapes, we now com-
pare them with Levy distributions. Indeed, our distribution func-
tions cannot be viewed as a sum of independant events (Gaus-
sian case). There are long-range interactions through the flat
film and extreme events which do not have negligible proba-
bility: coalescence between the waves. The Levy distribution
function that we employ here is the only one as far as we know
that can reproduce these features: it has a heavy tail and is inde-
pendant of the time horizon (stable distribution). Its expression
is written as:

P(x) =

√

c

2π

1

(x − µ)α
exp

(

−c

2(x − µ)

)

(10)

The parameter µ controls the mean of the distribution, c is a
shape factor and α is the tail exponent (usually α = 3/2 but
we stick here the most general expression). In our case, the
existence of a cut-off frequency provides a finite variance but
Figure 5 shows that the agreement is convincing. It seems that
going away from inlet can be modeled increasing the tail ex-
ponent α. The distribution is becoming more symmetric near
outlet and begins to present a more Gaussian shape (the log-log
plot of Figure 5b indicates some disagreement with the fitted
Levy distribution for the largest frequencies). As we will see
later, this process is very slow and difficult to investigate due to
computational cost limitations.

4.2. Traveling-wave solutions: a new minimum of ⟨h⟩ξ

The shape of the traveling-wave solutions of the γ2 branch
is quite different between the drag-gravity and the drag-inertia
regime. In the latter case, the waves have a large amplitude
and speed. Moreover, the characteristic lengths of their front
and back are no more equal but rather scale as: X f ront ∼ 1,
Xback ∼ δ [14, 19]. These properties lead to an important con-
sequence illustrated in Figure 6. The mean height of the waves
along the γ2 branch of solutions shows a minimum at low fre-
quency values that is not present in the drag-gravity regime.
We recall here that the open-flow condition ⟨q⟩ξ = 1/3 is en-
forced. Similarly to the capillary local minima also visible in

Figure 6b, this new global minimum arises most probably from
the coupling between this condition and the change in scalings
explained above. We observe also that, due to the large am-
plitude of the waves, there is a 10 % variation of ⟨h⟩ξ which is
much higher than in the drag-gravity regime (only 0.5 % varia-
tion in Figure 2b). The solution associated with this global min-
imum, whose profile is depicted in Figure 6a, has been called
“long-optimal wave” by Trifonov [31]. However, it was not
noticed that it exists only in the drag-inertia regime.

4.3. Selection of the long-optimal waves

Let us recall briefly the results obtained in the previous sec-
tions 4.1 and 4.2. From the open-domain simulations of the
model, we have seen that there is some preferred separation
between the waves in the drag-inertia regime. The system is
clearly not at equilibrium since the frequency distributions vary
significantly with the distance from inlet. We have introduced
a special category of traveling-wave solutions associated with a
new global minimum of the mean height along the γ2 branch.
We make the link here between these results and show that the
waves selected by the simulation are indeed these long-optimal
solutions. In the two remaining sections of the paper, we will
justify physically why these waves are selected and explore the
ability of periodic-domain simulations to reach the equilibrium
state of the system.

Figure 7 shows the time averaged characteristics of the waves
(frequency, mean and maximum height) as functions of the dis-
tance x from inlet for the parameter set corresponding to Fig-
ure 4. These three quantities converge towards the optimal val-
ues. The convergence is very fast for ⟨h⟩ξ whereas it seems to
require a larger distance from inlet for hmax and f . The com-
putation of the number of wave-peaks at each position x for a
given time window (insert in Figure 7a) demonstrates that coa-
lescence events, though rare, still occur.

Inserts presenting histograms at a location far from inlet
(x = 2700) have been added to Figures 7b and 7c. The distri-
bution of ⟨h⟩ξ shares similarities with the frequency histogram
depicted in Figure 5: a long tail with a clear accumulation above
⟨h⟩ξ ∼ 0.8. For a small part of the sample however, ⟨h⟩ξ > 1
which indicates that these waves are not close to traveling-wave
solutions. The histogram of hmax has a different shape: it is
almost symmetric. This effect is probably related to the fact
that the waves present a spatial modulation (clearly visible in
Figure 4), which will be discussed later in this paper. The his-
togram of c, also displayed in an insert, is similar to the one of
hmax: ∆c ∝ ∆hmax, which is a correlation frequently encoun-
tered in the literature (see e.g. [18]).

We have checked these results for three other sets of param-
eters as shown in Table 1. In each case, the optimal quantity
(OPT), corresponding to the optimal traveling-wave solution,
is compared with the time averaged value computed from the
open-domain time-dependent simulations (DNS). As reported
earlier, the agreement is almost perfect for ⟨h⟩ξ and convincing
for f and hmax.

To complete our investigations, we have examined the in-
fluence of the parameters Γ and δ on the wavelength of the op-
timal traveling-wave solutions (Figure 8). As the dimensional
frequency fHz depends on the Shkadov time scale and thus on Γ
and δ, it is more relevant to consider here the non-dimensional
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Figure 4: Snapshot from a spatio-temporal simulation of the equations model in an open domain. The parameters are: Γ = 20, δ = 10. The statistics have been
performed based on the results of a simulation run on the white zone 0 < x < 3000.
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Figure 5: Frequency distributions of the waves for two different spatial locations along the plane: near inlet, x = 600 (Fig 5a) and near outlet, x = 2700 (Fig 5b).
The parameters are the same as in Fig 4 and the x location values refer as well to this situation. The red lines are the associated Levy distributions with c = 14,
µ = 2.3, α = 3.4 in Fig 5a and α = 3.6 in Fig 5b. The inserts are the same plots in a log-log scale. The total number of waves of the sample is Ntot = 4082.
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Figure 6: Optimal profile for δ = 4.3, Γ = 500 (Fig 6a) associated with the global minimum of the mean height along the branch of traveling-wave solutions (Fig 6b)
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δ = 15, Γ = 20 δ = 4.3, Γ = 500 δ = 4.3, Γ = 20

DNS OPT DNS OPT DNS OPT

fHz 5.88 5.63 4.67 4.27 3.69 3.53

⟨h⟩ξ 0.860 0.861 0.903 0.903 0.906 0.905

hmax 2.46 2.42 2.33 2.26 2.30 2.23

Table 1: Time averaged characteristics of the waves near outlet (DNS) and
comparison with the optimal values (OPT) for three sets of (δ, Γ). The total
number of waves of the sample is: Ntot = 840.

wavelength λx. As explained before, this quantity depends on
the relative importance of the different parts of the wave profile
(tail, front, capillary waves). For δ > 20, λx is independant of Γ
and scales as λx ∝ δ: this is consistent with the fact that most of
the domain is occupied by the wave tail. The rest of the curve,
especially the resonance peak around δ = 2, expresses the fact
that the contributions of the different parts of the wave profile
compete with each other.

4.4. Discussion

In this section, we address the following question: in the
drag-inertia regime, why should the “optimal” traveling-wave
solutions of minimum mean height be selected in the open-
domain simulations ? We readily reject two possible explana-
tions: (i) that these waves are the most stable, or (ii) that they
correspond to a minimum of viscous dissipation. The former
argument cannot be invoked since γ2 traveling-wave solutions
present a band of marginally stable waves in the drag-inertia
regime. The latter one is not a good candidate either for at
least two reasons. Numerically, we have been unable to obtain
any significant trends because it depends a lot on precise char-
acteristics of the waves as well as velocity field representation.
Moreover, it is not clear physically if it should apply for δ > 1.5
as inertia is no more negligible in this regime.

The explanation we suggest is that the mean thickness has
no alternative but to decrease in an irreversible manner toward
a global minimum since the waves are faster than any infinites-
imal disturbance. This result was outlined by Chang and De-
mekhin [4]. Using the generalized Kuramoto-Sivashinsky equa-
tion as well as the Kapitza-Shkadov model, they found that the
solitary waves escape the wave packet for δ > 1 which corre-
sponds roughly to the limit between the drag-gravity and the
drag-inertia regime. Mass drainage can then occur only back-
wards which imply that the temporal mean thickness has to de-
crease with the distance to the inlet. It may occur however that
the waves stay trapped in the local minima at high values of the
Kapitza number (Figure 6b).

To illustrate the fact that mass drainage occurs only back-
wards, we look at the dynamics of the waves in a frame moving
at the optimal wave speed. Figure 9 presents the evolution of
the mean thickness over such a moving frame as function of the
distance x from inlet. Figure 10 is a spatio-temporal diagram
for 1900 < x < 2800 (same simulation run). We have chosen
a window width of three times the optimal wavelength. This
value (∆x f = 165) is the result of the following compromise: it
is much lower than the total length of the domain (∆x = 3000)
but sufficiently high so that to attenuate the effect of waves re-
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Figure 7: Time averaged characteristics of the waves as functions of the dis-
tance x from inlet and comparisons with the optimal values (parameter values
are δ = 10, Γ = 20). Total number of waves for the construction of the his-
tograms: Ntot = 4082. (a): Frequency. In insert: number of waves for a given
time window Nw divided by its value Nf at x = 3000. (b): Mean height and
histogram showing the associated distribution for x = 2700. (c): Maximum
film thickness and distribution in insert (x = 2700). The insert presents also the
distribution of the celerity of the waves (hatched bars ; x = 2500, Ntot = 2816).
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Figure 8: Non-dimensional optimal wavelength λx obtained from the traveling-
wave solutions as functions of the reduced Reynolds number δ for two values
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δ > 20.

 0.84

 0.88

 0.92

 0.96

 0  600  1200  1800  2400  3000

1

2

3

4

5

433

11

5

22

⟨h
⟩ ξ

x

Figure 9: Mean thickness ⟨h⟩ξ over a sliding window as function of the distance
x of its center from inlet (Γ = 20, δ = 10). The sliding window is moving at
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Wave profiles for five specific points are shown in inserts. Vertical dashed lines
separate three distinct regimes: the entry zone (x < 800), the zone where the
waves accelerate and coalesce (800 < x < 2400) and a quasi-synchronized zone
(x > 2400).

spectively going in (I) or out (O) of the window. Nevertheless,
these latter effects are still visible around x = 2100 (I), 2200
(O), 2550 (I), 2750 (O): they correspond to an increase, respec-
tively a decrease, of the mean thickness over the sliding win-
dow. The results show that, after an entrance zone (x < 800),
the mean thickness of the film decreases as the waves accelerate
and coalesce with each other (800 < x < 2400). Eventually,
the system stabilizes into a quasi-stationary state (x > 2400)
consisting in three waves moving roughly at the optimal wave
speed. At each coalescence event, some mass is rejected at the
wave back and exits the window as Figure 10 clearly outlines.

Let us compare now our analysis with the one by Chang
et al. [5]. Using the Kapitza-Shkadov model, they introduced a

Figure 10: Spatio-temporal plot around the coalescence event corresponding to
specific point n◦4 in Figure 9. The coordinate x refers to the center location of
the sliding window as in Figure 9, x f is the position within the sliding window
and h is the thickness of the film.

distinction between two kind of traveling-wave solutions: small
reference waves and large excited waves resulting from the co-
alescence of two small ones. They derived an analytical ex-
pression for the coalescence time between these two kinds of
pulses and, making this quantity tend to infinity, theoretically
deduced the final spacing between the waves (equation (25) of
their paper). The crucial point of their analysis relies on the
fact that there are as many small pulses as large pulses due to
the subharmonic instability at wave inception. It is interesting
to point out that their expression of the separating distance is
proportional to δ as in agreement with our observations at large
values of δ (see Figure 8). However, their results do not agree
quantitatively with ours which may be due to the assumptions
and the type of model they used.

4.5. Periodic-domain simulations

In the last part of this paper, we are going to contrast qual-
itatively our observations for time-dependent simulations in an
open domain with similar ones conducted in a periodic domain.
This analysis is motivated by the prohibitive cost of simulations
in extended domains. Figure 4 points out the very slow decay
of a remaining spatial modulation of the wavetrain exiting the
open-flow domain. The value of this decay coefficient can be
related to the analysis by Chang et al. [4]. Indeed, the spectrum
of solitary pulses contains both a discrete and a continuous part.
Using an exponentially weighted space, the continuous part can
be shifted which brings back the anaylsis of the mass drainage
dynamics to a single new eigenvalue: the resonance pole [13].
Even though Chang et al. used the Kapitza-Shkadov model, this
argument should remain valid for the current WRIBL model.

The evolution of the wavetrain modulations can be inves-
tigated by performing very long-time simulations in a suffi-
ciently extended periodic domain as the temporal evolution of
the wavetrain shall be similar to its evolution in an open-flow
system. To illustrate the decay of the wavetrain modulation, we
report the amplitude of the waves as a function of time in the
middle of the domain for δ = 10, Γ = 20 (Figure 11). For small
domain lengths (Figure 11a), temporal modulations of the film
are nearly harmonic as the number of waves in the domain is
small and a final state of the wave organization is reached with
a reasonable computational cost. When increasing the size of
the domain, the modulations have a broader frequency content
(Figures 11b,11c). However, it seems that the attenuation of the
first Fourier coefficient does not depend on the domain size. A
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fitting with an exponential e−γt gave us: γ = (4.5 ± 0.5).10−5.
Moreover, this spatio-temporal modulation does not travel at
the same speed as the waves as shown in the spectrum in insert
of Figure 11a.

The time required to relax the entire dynamics of the film
to an array of waves of constant amplitude can be estimated
from γ. For the discussed simulation, one gets t f ∼ 5.104 (non-
dimensional units). To transpose this value to the open-domain
case, the length required to get access to the final state would
be roughly: x f ∼ c × t f = 6.5 × 104 (c ∼ 1.3 is the mean value
of the velocity of the waves). This is impossible to achieve for
computing cost reasons.
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Figure 11: Influence of the domain length L on results of periodic-domain com-
putations (δ = 10, Γ = 20). In each case, the amplitude of the waves hmax is
plotted as a function of time t for a spatial location x which is the middle of
the domain. The signal looks continuous due to the large number of waves by
pseudo-period (the period of the waves is much smaller than the period of the
modulation). Frequency spectrum in also plotted in the insert of Figure 11a.

From what we have discussed so far, it seems that compu-
tations in periodic domains of short length L are well adapted
to get the final spacing λ f of the waves. However, as illustrated
in Figure 12, this spacing is discretized by the boundary condi-
tions: λ f = L/Nw, with Nw the number of waves in the domain
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Figure 12: Final state of periodic-domain simulations (δ = 10, Γ = 20) for a
short domain length (L = 1500): the number of waves Nw is different for each
run.
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Figure 13: Mean flow rate ⟨q⟩ξ (filled symbols, continuous line) and maxi-
mum thickness (open symbols, dashed line) in function of the wavelength along
the traveling-wave branch (lines) and several final values obtained from the
periodic-domain simulations (circles). The parameters are the same as in Fig-
ure 12.

at the end of the simulation. Thus, given that the initial condi-
tion is a random noise, we do not get the same value of Nw at
the end of each run of the simulation (Figures 12a,12b). It is
therefore not possible to do statistics aggregating different sim-
ulation runs. Increasing the size of the domain could minimize
this effect but would lead back to computing cost issues. Inter-
estingly, even if the amplitude of the waves is constant at the
end of the simulation, the spacing between them is not strictly
constant: this may be the consequence of the presence of sub-
sidiary homoclinic orbits (several waves moving together with
a separation between them not equal to the optimal one).
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These simulations cannot reproduce also the mean height
reduction as the total mass is fixed. However, the selected so-
lution corresponds then to the one of maximum mean flow rate,
as can be seen in Figure 13. Performing an averaging over 8
simulation runs in order to filter the discretization effect im-
posed by the boundary conditions, we have indeed obtained
⟨q⟩ξ = 0.524 which corresponds exactly to the maximum value
along the traveling-wave branch.

5. Conclusion

In this article, the late time dynamics of solitary waves in a
vertically falling liquid film subjected to inlet white noise has
been investigated numerically. We have employed for that pur-
pose a reduced set of equations which quantitatively mimics the
dynamics of the film as shown by comparisons to experiments
and DNSs in e.g. [14, 30] (Ruyer-Quil-Manneville model). In
the drag-gravity regime (δ < 1.5), it is already known that the
waves synchronize themselves into bound states through the in-
teraction of their back tails with the undulatory front tails (cap-
illary ripples). In contrast, the results we have presented here in
the drag-inertia regime (δ > 1.5) are novel. Open-domain sim-
ulations show an irreversible decrease of the mean thickness of
the film towards its minimum value along the corresponding
traveling-wave branch of solutions. The mean characteristics
of the waves tend then to the one of these optimal solutions.
This convergence process is very slow due to a persistent spatial
modulation of the waves. When performing periodic-domain
simulations, we obtain similar trends except for the fact that it
is now the mean flow rate which increases to its maximal value.
Although the simulations suffer from finite-size effects, they al-
low to reach a fully converged final state. The separation dis-
tance between the waves is not found then to be strictly constant
due to the possible existence of subsidiary homoclinic orbits.

We believe that these results shall prove to be useful for
industrial applications since they allow to predict directly the
mean characteristics of the waves in noisy films far from inlet.
Further developments include verifications using direct numer-
ical simulations of the basic equations, extension to the 3D case
and accounting for heat and mass transfer. These optimal waves
are favorable to diffusive transfers as the effective resistance of
diffusion is the harmonic mean film thickness. It would be very
interesting to see if this is also the case for convective transfers
due to fluid recirculation and mixing in the main hump.
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