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Abstract

The two-dimensional discrete dislocation dynamics (2D DD) method, consisting of
parallel straight edge dislocations gliding on independent slip systems in a plane strain
model of a crystal, is often used to study complicated boundary value problems in crystal
plasticity. However, the absence of truly three dimensional mechanisms such as junction
formation means that forest hardening cannot be modeled, unless additional so-called
‘2.5D’ constitutive rules are prescribed for short-range dislocation interactions. Here,
results from three dimensional dislocation dynamics (3D DD) simulations in an FCC ma-
terial are used to define new constitutive rules for short-range interactions and junction
formation between dislocations on intersecting slip systems in 2D. The mutual strengthen-
ing effect of junctions on preexisting obstacles, such as precipitates or grain boundaries, is
also accounted for in the model. The new ‘2.5D’ DD model, with no arbitrary adjustable
parameters beyond those obtained from lower scale simulation methods, is shown to pre-
dict athermal hardening rates, differences in flow behavior for single and multiple slip,
and latent hardening ratios. All these phenomena are well-established in the plasticity
of crystals and quantitative results predicted by the model are in good agreement with
experimental observations.

Keywords: A. dislocations; A. strengthening mechanisms; B. crystal plasticity; B.
constitutive behaviour; C. numerical algorithms

1. Introduction

Dislocations are line defects in a crystal lattice whose properties and interactions with
other defects control macroscopic mechanical properties such as strength, work hardening
and ductility. Glide of dislocations in response to applied shear stresses cause plastic
deformation while the stress required to sustain plastic flow is governed by the properties
of obstacles to dislocation glide such as forest dislocations, precipitates, grain boundaries,
dislocation cell walls, etc. The flow stress τ is typically inversely related to the obstacle
spacing d, i.e. τ ∝ d−n, with the exponent n dependent on several factors such as the
type, strength and density of the obstacles and with d ranging from 10 nm < d < 10
µm. Continuum models of plasticity embody these strengthening mechanisms implicitly,
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but are mainly based on experimental observations at macroscopic length scales (> 1
mm). It is now experimentally well-established (Fleck and Hutchinson, 1997; Arzt, 1998;
Uchic et al., 2009), that plasticity is size-dependent when specimen dimensions or spatial
variations in stress become comparable to or smaller than the microstructural length
scales, with increasing strength with reduced sample dimensions or increasing stress or
strain gradients. Well known limitations of continuum plasticity theory, such as the
mesh dependence of results in strain localization calculations (De Borst et al., 1993) and
the inability to predict realistic values for the fracture toughness of ductile materials
(Tvergaard and Hutchinson, 1992), are probably related to length scale effects due to the
inherently discrete nature of plasticity in such situations.

Modeling size-dependent behavior requires augmenting continuum plasticity models
with embedded length scales. Top-down approaches involve the introduction of gradient
plasticity models (Fleck et al., 1994; Gao et al., 1999; Chakravarthy and Curtin, 2011b),
while bottom-up methods directly model the dislocations and their motion. The main
advantage of the latter discrete dislocation (DD) modeling is the absence of constitutive
assumptions at the macro scale, which allows for size-dependent behavior to emerge nat-
urally. The DD method treats dislocations as discrete line defects embedded in an elastic
continuum, which move and interact with other crystal defects in response to their mutual
interaction forces and the applied mechanical fields, and plastic deformation results from
the collective motion of the dislocations. Fully three-dimensional models (3D DD) consider
a 3D simulation cell containing closed dislocation loops that nucleate from Frank-Read
sources and glide and interact with other defects in response to applied loads. Realistic
representation of the crystallographic slip systems and the geometry of the dislocation
loops on individual slip systems naturally leads to the emergence of forest hardening by
mutual entanglement of these loops. However, 3D DD is computationally very expen-
sive, particularly for problems with non-homogeneous loading and explicit interfaces. An
alternative approach is thus a two-dimensional method (2D DD) that sacrifices some phys-
ical fidelity for computational efficiency. Following early work by Amodeo and Ghoniem
(1990), the most commonly used 2D DD model by Van der Giessen and Needleman (1995)
considers parallel straight edge dislocations in plane strain, which permits the study of
problems involving complex inhomogeneous loading such as the growth of cracks (Desh-
pande et al., 2001; Chakravarthy and Curtin, 2010b), bi-material fracture (O’Day and
Curtin, 2005), micro-void evolution (Segurado and Llorca, 2009), indentation (Widjaja
et al., 2007), thin films (Nicola et al., 2006; Chng et al., 2006) and sliding/friction (Desh-
pande et al., 2004). The 2D DD method captures the long range interactions between
dislocations, which enables size and gradient effects to emerge naturally, but truly 3D
phenomena like junction formation and forest hardening are missing, so that standard
2D DD models predict elastic/perfectly-plastic response under nominally homogeneous
loading conditions. The objective of the present paper is to propose a new algorithm for
incorporating strain hardening into 2D DD simulations, which improves upon existing
approaches in the literature in several important ways.

Since 2D DD lacks the physics of junction formation, constitutive rules need to be
prescribed to represent the effects of the corresponding phenomena in 3D. Such efforts
are known as ‘2.5D’ DD (Benzerga et al., 2004; Gómez-Garcia et al., 2006). The first
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such model was proposed by Benzerga et al. (2004), in which dislocations on intersecting
slip planes are allowed to form ‘junctions’ when they approach within a critical interac-
tion distance, which was fixed at six times the magnitude of the Burgers vector. These
immobile junctions, which act as obstacles to slip and possibly also anchoring points for
new ‘dynamic’ Frank-Read sources, can be destroyed by sufficiently high resolved shear
stresses on the participating dislocations. The resulting evolution of the source and obsta-
cle population was shown to predict strain hardening as well as size effects in micron-sized
compression specimens (Benzerga et al., 2004; Guruprasad and Benzerga, 2008). An al-
ternative approach adopted by Gómez-Garcia et al. (2006) considered a single crystal
undergoing nominally homogeneous deformation, a cross-section plane of which was ana-
lyzed using periodic boundary conditions to simulate bulk behavior. In contrast with the
approach of Benzerga et al. (2004), their model accounted for dislocation density multi-
plication due to the 3D flux of expanding dislocation loops crossing the plane of analysis,
as opposed to nucleation of dipoles from fixed sources. These dislocations subsequently
formed junctions with dislocations on other slip systems according to a critical distance
criterion, where the interaction distance was taken to vary inversely as the square root of
the local dislocation density, consistent with the observation that the lengths of junction
segments in 3D satisfy the above scaling relation. Despite these differences, strain hard-
ening in both these models resulted from the addition of junction obstacles, following a
critical interaction distance criterion in the plane of analysis. However, if we view 2.5D
DD as a projection of 3D DD onto a 2D plane, then dislocations on intersecting slip planes
in 3D can intersect and form junctions at any location in the 2D plane, with consequent
strengthening of all dislocations in the vicinity of the junction. This cannot be captured
using a critical distance criterion for junction formation in 2D. Moreover, the existing
2.5D DD models introduce several constitutive parameters related to the strength and
stability of the junctions that are used as adjustable parameters to obtain a desired hard-
ening rate. Thus, there is some need for a more physically-based 2.5D DD model that
cleanly represents realistic 3D phenomena with few additional assumptions or inputs.

In this paper, a new 2.5D DD model is proposed based on the ideas that (i) constitu-
tive rules for short range dislocation interactions in 2D must reproduce the effects of the
corresponding phenomena in 3D on the overall plasticity rather than attempt to repro-
duce the details of the mechanisms themselves, and (ii) constitutive parameters related
to junction formation and other hardening phenomena must be derived from 3D DD sim-
ulations. We present such a physically-motivated 2.5D DD model using information from
3D DD to select key parameters. We then demonstrate that the model produces initial
strengthening, due to preexisting glide obstacles, followed by linear hardening due to for-
est interactions, with hardening rates under single and multiple slip conditions consistent
with experimental behavior. This 2.5D DD model thus represents a general method to
include multiple strengthening mechanisms, hardening, and multi-axial plastic behavior,
into plasticity simulations of problems involving complex loading conditions in materials
with realistic deformation behavior.

The remainder of the paper is organized as follows. A brief summary of the standard
2D DD simulation method is provided in Section 2.1, followed by a detailed presentation of
the new 2.5D algorithm in Section 2.2. The method is illustrated by studying the response
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of bulk single crystals using periodic unit cells subjected to arbitrary plane strain loading.
Details of the geometry, boundary conditions and the solution procedure are explained in
Section 3. The corresponding simulation results are presented in Section 4, followed by a
discussion of the results in Section 5 and conclusions in Section 6.

2. 2.5D Dislocation Dynamics

2.1. 2D DD Constitutive Rules

Before introducing additional constitutive rules for our 2.5D DD model, we briefly
summarize the general framework and constitutive rules for the standard 2D DD model.
The 2D DD model of Van der Giessen and Needleman (1995) considers a plane strain
model of a crystal containing parallel straight dislocations normal to the plane of analysis
and subjected to arbitrary in plane loading. Only pure edge dislocations are considered
due to the fact that the Volterra solution for a straight edge dislocation in an infinite
medium satisfies plane strain conditions. The edge dislocations exist on pre-determined
glide planes in the crystal. The Peach-Koehler force on an individual dislocation has
contributions from the stress fields generated by all the other dislocations in the system
when treated as an infinite body, additional image stresses of all the dislocations due to
the imposed boundary conditions in a real finite body, and the applied loading on that
finite body. For a dislocation i of Burgers vector bi lying on a slip plane with normal
vector ni, the Peach-Koehler glide force is given as

f ig = bi ·

(
σ̂ +

∑
j 6=i

σj

)
· ni (1)

where the σ̂ field includes all the applied and image forces (computed as detailed later)
and the direct interaction of dislocation j is σj.

Nucleation, glide, pinning, and unpinning of dislocations is governed by a set of con-
stitutive rules based on lower-level physics, as follows. A set of discrete points represent
Frank-Read sources in 3D. Each source can nucleate a dislocation dipole when the re-
solved shear stress on the source exceeds the critical nucleation stress of the source τnuc
over a critical nucleation time tnuc, mimicking the bow out process of a Frank-Read source
projected onto the 2D plane. A statistical distribution of the source strengths following
a normal distribution with average source strength τ̄nuc and standard deviation τsd is as-
sumed, since the nucleation strength of a Frank-Read source in 3D depends on the length
of the source, which is not represented in 2D. The glide velocity vig of nucleated dislocation
i is given by a linear viscous mobility law as

f ig = Bgv
i
g (2)

where Bg is the phonon drag coefficient that can be computed atomistically (Olmsted
et al., 2005). The Peierls barrier for glide is usually neglected, which is reasonable for
edge dislocations in FCC metals, but can be included when dominant (Olarnrithinun
et al., 2013).
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The simulation domain also contains discrete point obstacles randomly distributed on
the slip planes with a specified average density. A dislocation encountering an obstacle in
its glide path is pinned at the obstacle until the magnitude of the resolved shear stress on
the pinned dislocation reaches the pinning strength τobs of the obstacle, at which point
the dislocation is released from the obstacle and resumes glide in the direction of the
Peach-Koehler force. Chakravarthy and Curtin (2010a) have shown that the resolved
shear stress for macroscopic yielding on a slip system in the 2D model depends on the
source and obstacle strengths and obstacle spacing Lobs as

τy =

√
4µb

π(1− ν)

τobs
5.7Lobs

+ τ 2s (3)

where τs = τ̄nuc−2τsd. In 2D, a discrete set of slip planes with spacing d is used, and so the
average obstacle spacing is Lobs = Ns/(ρobsd) where Ns is the number of independent slip
systems and ρobs is the imposed 2D obstacle density. Finally, dislocations of opposite sign
on the same slip plane annihilate each other when they are within a critical annihilation
distance Lann = 6b.

2.2. 2.5D DD Constitutive Rules for Strain Hardening

The flow stress in a plastically deforming crystal is controlled by the short range
interactions of glissile dislocations with obstacles to glide such as forest dislocations, pre-
cipitates, grain boundaries, etc. Dislocations can move past an array of localized obstacles
by bowing out between the obstacles until a sufficient force is generated to pull the pinned
dislocation segments past the obstacle (or loop around it). The stress required to overcome
an array of obstacles is well-known to scale inversely with the average obstacle spacing
(Hirth and Lothe, 1968). Dislocations also multiply with increasing plastic strain so that
the average spacing between forest dislocations scales as the inverse square root of the
dislocation density. Hence, the flow stress for a plastically deforming crystal subject only
to forest hardening scales with the square root of the dislocation density. In the standard
2D DD model, the population of obstacles is fixed a priori, thus representing precipitates
or grain boundaries, and the obstacle strength τobs and spacing Lobs are chosen to achieve
the desired yield stress, according to Eq.(3) above, associated with a real 3D distribution
of such obstacles. The material response is then elastic/perfectly-plastic. However, to
represent forest hardening, a model must account for an evolving population of forest
obstacles that operate together with the fixed obstacle to impede dislocation motion.

As noted earlier, previous 2.5D DD models by Benzerga et al. (2004) and Gómez-
Garcia et al. (2006) assumed that a forest junction is formed between two dislocations on
intersecting slip planes when they fall within a given radius centered at the intersection
point of the slip planes. Benzerga et al. (2004) assumed this radius to be fixed at 6b
while Gómez-Garcia et al. (2006) took the capture radius to evolve inversely with the
square root of the dislocation density, thus capturing some 3D effect. Upon formation,
these new 2D junctions act as additional obstacles with strength proportional to µb/Ll,
where Ll is a local length that signifies the size of the junction segment. The junctions
impede further glide on both slip planes until the resolved shear stress on either dislo-
cation exceeds the junction strength, at which point the junction is destroyed and glide
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resumes on the two slip planes. These junction obstacles are thus treated differently than,
and independently of, the initial fixed obstacles. Here, we consider an obstacle in a 2D
simulation to represent a projection of an array of obstacles in the third dimension, so
that their density and strength in 2D is representative of the actual obstacle density in
3D. Thus, a “junction” obstacle in a 2D simulation represents an array of junctions in the
third dimension corresponding to some local density of forest dislocations, and any real
3D dislocation moves through a field of both fixed and “junction” obstacles. Furthermore,
such a junction obstacle need not occur at the intersection point of two 2D slip planes nor
rely on the presence of any actual dislocation at the 2D point of the junction obstacle.

3D DD simulations show that the important microscopic parameters relevant to the
evolution of forest hardening are the forest dislocation density and the mean free path of
glissile dislocations (Devincre et al., 2008; Kubin et al., 2008). Specifically, the junction
strength τ ijcn for a junction on slip system i is the resolved shear stress required for a
dislocation to cut through an array of junctions with the dislocation forest. This is
related to the local average spacing Lif between forest dislocations on the remaining slip
systems as

τ ijcn = α
µb

Lif
(4)

where µ is the shear modulus, b is the modulus of the Burgers vector and α is a constant,
which in simple models averaged over various junction types in an FCC material is α ≈ 0.5.

Lif is related to the local forest density, ρif , as Lif ≈ 1/
√
ρif , where the neighborhood

defining “local” is specified later.
The mean free path Li on slip system i is the average glide distance of a mobile

dislocation before it is halted (“stored”) by interaction with the forest of dislocations on
other slip systems. The mean free path determines the plastic strain increment for each
dislocation glide step, and so an increasing dislocation density causes not only an increase
in strength but also a decrease in mean free path (plastic strain increment). Therefore the
strain hardening rate is inversely related to the mean free path. Kubin and co-workers
(Devincre et al., 2008; Kubin et al., 2008) have used 3D DD to estimate the mean free
path for slip systems in an FCC crystal. They show that

Li =
K√
ρif

= KLif (5)

where K is a constant that depends on loading orientation. Their reported value of K
was a decreasing function of the number of active slip systems with K ∼ 10 for a double
slip orientation to ∼ 5 for four active slip systems. Here, we choose a constant value for
the parameter K irrespective of the loading orientation, which is reasonable given the
2D idealization and the fact that the first order variation in Li results from the variation
of the mean forest spacing Lif as a function of the loading orientation. The relationship
between the mean free path Li and the mean spacing between forest dislocations Lif is
illustrated in Fig. 1(a), which shows the dislocation on slip system i gliding through a
random field of forest dislocations on its slip plane. In a 2D simulation, where the plane
of analysis is perpendicular to the slip plane, new junction obstacles should be introduced
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Figure 1: Schematic diagram showing (a) the mean free path Li of a dislocation gliding through a random
array of forest dislocations on its slip plane and (b) the corresponding spacing of junction obstacles in
the 2D plane of analysis.

with a mean spacing Ljcn approximately equal to the mean free path Li (see Fig. 1b), and
not the average forest dislocation spacing Lif . This choice of the junction spacing accounts
for the fact that not all forest dislocations form junctions with a mobile dislocation.

In addition to the junction obstacles, the simulation domain has a fixed population of
preexisting obstacles with initial strengths set according to the yield stress of the material.
Consideration of these non-forest obstacles is important for the modeling of real material
microstructures where a significant part of the strength results from engineered defects
initially present in the material, such as solute atoms, precipitates or phase boundaries.
These obstacles account for the initial yield strength of the material, as well as affect the
subsequent flow strength due to the simultaneous interaction of a glide dislocation with an
array of fixed obstacles and forest junctions. Line-tension simulations of a long dislocation
line moving through a random array of two types of obstacles (Dong et al., 2010) provide
useful insight into this problem. Consider two types of obstacles i = 1, 2 with obstacle
strengths τoi and obstacle densities ρi. Let τi denote the average flow strength due to
each type of obstacle acting alone. When both obstacle types are present at comparable
densities (within a factor of 50 in density, encompassing many cases of interest (Dong
et al., 2010)), the overall strength is given by

τ 2tot = τ 21 + τ 22 (6)

This result was obtained long ago (Foreman and Makin, 1967; Brown and Ham, 1971)
but without a clear delineation of the regime of obstacle densities over which the result
is accurate. In order to achieve realistic strain hardening rates in a 2D DD simulation, it
is necessary to introduce new junction obstacles with strengths and mean spacing on the
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e1

e2

R

Figure 2: Sampling neighborhood for introduction of new junction obstacles in the 2.5D algorithm. A
random dislocation and glide plane are chosen (as indicated) for evaluation as a possible junction location.
Surrounding dislocations within a radius R are computed for both the glide plane dislocations (blue) and
the forest dislocations (red) on other slip systems.

slip planes in accordance with equations (4) and (5) and, furthermore, to strengthen all
other forest and fixed obstacles in the vicinity according to Eq.(6). All of these features
evolve locally according to the local dislocation densities on the various slip systems. The
algorithm for implementing these features in a 2.5D DD simulation is described next.

At the end of each simulation time step, the material contains a spatial distribution
of dislocations, forest/junction obstacles, and pre-existing fixed obstacles lying on the
various discrete slip planes in the system. A point is picked at random along one slip
plane i in the system as a potential position of a new junction obstacle on that slip
plane. In practice, and with no loss of generality, we choose this point to coincide with an
existing dislocation, since this restricts the sampling of possible positions of junctions to
regions where dislocations actually exist in the sample. The neighborhood of the chosen
point on a slip system i is then examined to determine (i) the current density of junction
obstacles on slip system i and (ii) the density of forest dislocations on all intersecting
slip systems, as shown schematically in Fig. 2. Specifically, a circular domain of radius
R(N) around the chosen point and containing N dislocations, irrespective of slip system,
is constructed. Within this radius, the number of existing junctions N i

jcn and the number
of forest dislocations N i

f for each slip system i are measured. The average spacing of the
existing junctions on slip system i is computed as

Lijcn =
1

ρijcnd
, ρijcn =

N i
jcn

πR2
(7)

where we are careful to account for the discrete slip plane spacing d in the 2D problem.
The mean free path of mobile dislocations on slip system i is then computed using Eq.(5),
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with ρif =
N i

f

πR2 . If the existing junction spacing Lijcn on slip system i is greater than the
expected mean free path Li, then a new junction obstacle is created at the location of
the chosen dislocation. Finally, the new and old obstacle strengths within the radius R
are modified to account for the increased density of forest obstacle. The strength of the

newly-created junction obstacle τ ijcn is given by Eq.(4) with Lif =
(
ρif
)− 1

2 . The strengths
of all other junction obstacles on slip system i within the radius R are also increased to
τ ijcn, unless they are already larger than this value. And, the strengths of all the fixed
obstacles within R are increased according to Eq.(6),

τ iobs
2

= τ 2obs + τ ijcn
2

(8)

unless they are already larger than this value. This procedure accounts for the fact that
the strengthening is due to an interaction of a dislocation with the combined array of
fixed and forest obstacles as it glides.

The overall algorithm above must be repeated on each slip system. The algorithm must
also be performed with sufficient frequency such that the junction density can keep up with
the spatially-evolving dislocation density in the specimen. However, since introduction
of a new junction only occurs if warranted by the current forest densities and current
junction densities, more-frequent insertion attempts do not lead to an increasing number
of junctions; the junction creation rate is thus well defined. The junction density in
our algorithm is currently a monotonically increasing function of the plastic strain; i.e.
recovery mechanisms (usually thermally activated) that can potentially lead to a decrease
in the local junction density are not modeled. While real 3D junctions can be destroyed
by the application of sufficiently high stresses, the evolution of the mean free path in 3D is
expected to account for the net effect of the junction formation and destruction processes.
Hence the algorithm may be expected to yield reasonable predictions for the hardening
rates at low temperatures, so long as the correct estimate for the mean free path as a
function of plastic strain is used. One might imagine that the algorithm depends on the
number N of dislocations that determines the radius R(N). However, while N should be
large enough to measure a meaningful density yet small enough that local fluctuations
in dislocation density are not smoothened out, we show below that results for the strain
hardening are insensitive to N over the range N 10− 100. Obviously, the radius R of the
sampling neighborhood decreases as the overall dislocation density increases, and so the
algorithm does have an evolving internal length scale that controls the hardening process.
However, this is physical since the 3D processes scale with local forest density. Finally,
when parts of the circle of radius R fall outside the sample, only the area in the domain
of analysis is used when calculating densities.

The key difference between the new model described above and the earlier models
of Benzerga et al. (2004); Gómez-Garcia et al. (2006) is in the prescription to add new
junction obstacles in accordance with the evolving local mean free path for glide on each
slip system as a function of the forest dislocation density rather than a critical distance
criterion tied to the intersection points of the slip traces in the 2D plane of analysis. The
dislocation nucleation criterion in the model of Gómez-Garcia et al. (2006) assumed a
constant value for the mean free path, while its effect on the density of junction obstacles
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was indirectly accounted for by making the critical distance for junction formation a
decreasing function of the dislocation density. However, it was unclear how the above
rules would lead to the correct evolution of the junction densities as the dislocation density
increases. Also, unlike in the previous models, the combined effect of forest dislocations
and pre-existing non-forest obstacles on strengthening are accounted for using the results
of previous studies on dislocation glide though two populations of obstacles using the line
tension model. This is important for the study of alloy materials where a significant part of
the strengthening results from pre-existing obstacles such as precipitates. Gómez-Garcia
et al. (2006) assumed a pure material with no pre-existing obstacles to glide while the
model of Benzerga et al. (2004) assumed a fixed initial density of point obstacles, although
their strength was assumed to be independent of the density of forest dislocations.

3. Test Geometry and Implementation Details

We simulate the stress-strain response of a bulk crystal using a periodic representative
volume element (RVE) to avoid any finite-size or surface effects, using a formulation for
periodic boundary conditions previously employed by Hussein et al. (2008). The sample is
taken as a rectangular domain V of dimensions L×H in the x1-x2 plane containing discrete
edge dislocations on three slip systems as shown in Fig. 3(a). The three slip systems are
symmetrically oriented such that the angle between neighboring slip systems is 60◦; a
symmetric orientation of the unit cell is chosen as shown in Fig. 3(a) with ϕ = 30◦. The
edge dislocations have their line direction along the x3 axis and hence appear as discrete
points in the plane of analysis.

Let σ, ε and u denote the stress, elastic strain and displacement fields in the crystal,
which are doubly periodic with periods L and H in the x1 and x2 directions, respectively.
Using the superposition method associated with linear elasticity, the fields are written as
the sum of two constituent fields

σ = σ̃ + σ̂, ε = ε̃ + ε̂, u = ũ + û (9)

The fields with overscript ~ are themselves the superposition of the singular Volterra fields
of all the dislocations within the domain V , i.e.

σ̃ =

Ndisl∑
i=1

σi, ε̃ =

Ndisl∑
i=1

εi, ũ =

Ndisl∑
i=1

ui, (10)

where the superscript i denotes the Volterra solution for dislocation i and Ndisl denotes
the total number of dislocations in the cell. Consequently, the ~ fields are non-periodic
and the ^ fields in (9) are correction fields that enforce periodicity of the overall solution
as well as impose the remotely applied loads on the unit cell. Here, we consider a strain
controlled plasticity simulation so that the average total strain in the unit cell at any
given time t equals a prescribed strain ε̄(t); i.e.

〈ε〉V = 〈ε̃ + ε̂〉V = ε̄ at time t (11)

where the notation 〈·〉V denotes a volume average over V .
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Figure 3: Superposition method for the solution of the elastic fields in a periodic unit cell.

The singularities and discontinuities in the stress and displacement fields are contained
in the analytical ~ fields so that the ^ fields are smooth and can be calculated using the
finite element method. Since the Volterra solution for the dislocations is self-equilibrating,
the equilibrium equations for the ^ fields reduce to

∇ · σ̂ = 0 in V . (12)

We have

σ̂ = C : ε̂, ε̂ =
1

2

(
∇û +∇ûT

)
(13)

where C denotes the fourth order elastic stiffness tensor and û is a continuous displacement
field such that û+ ũ− ε̄ · x is periodic, with x as the position vector in the RVE. Let the
superscripts 1 and 2 denote the fields at two periodic image nodes 1 and 2 on the RVE
boundary as shown in Fig. 3. We have from the periodicity of the overall displacement
fields,

u2 − u1 = ε̄ · (x2 − x1) =⇒ û2 = ε̄ · (x2 − x1)− (ũ2 − ũ1) + û1 (14)

Similarly, the total traction t = σ · n, where n is the outward unit normal on the RVE
boundary, must be equal and opposite at image nodes 1 and 2 in order to satisfy period-
icity, i.e.

t2 = −t1 =⇒ t̂
2

= −t̂1 − (t̃
1

+ t̃
2
) (15)

where t̃ = σ̃ · n and t̂ = σ̂ · n respectively. The governing Eqs.(12)-(13) for the ^

fields subject to boundary conditions (14)2 and (15)2 are solved using the finite element
method. Note that conditions (14) and (15) are imposed using multi-point constraints
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on the degrees of freedom on the periodic boundaries, which leads to an unsymmetric
sparse stiffness matrix in the discretized finite element equations. The resulting equations
are solved using the open source sparse solver LUSOL. Subsequently, the ~ fields of the
dislocations in the cell unit cell are superposed with the ^ fields to obtain the actual
solution of the periodic boundary value problem, as illustrated in Fig. 3(a)-(c).

The simulation proceeds by applying the prescribed strain history ε̄(t) in discrete in-
crements of time, δt. At each time step, the elastic fields in the specimen are computed
using the superposition method described above, for the current positions of the dislo-
cations. The resulting stress fields are used to compute the forces on the dislocations
and their glide velocities through equation (2) and their positions are updated using a
semi-implicit integration scheme for the equations of motion (Chakravarthy and Curtin,
2011a). The constitutive rules for short range interactions from section 2.1 are used to
check for events such as nucleation from sources, dislocation annihilation and pinning and
de-pinning at obstacles, while the introduction of new junctions and updating of existing
obstacle and junction strengths follow the 2.5D DD algorithm in section 2.2. If the circle
of radius R(N), corresponding to the sampling neighborhood for junction formation in the
2.5D algorithm happens to fall partially outside the domain V , periodic images of the par-
tial circles that overlap the domain are used to calculate densities. Dislocations crossing
periodic boundaries are removed and reintroduced into the simulation cell on a matching
slip plane from the opposite boundary in order to preserve the overall periodicity of slip in
the crystal. Note that care must be taken to retain the displacement discontinuities due
to slip at the periodic boundaries so as to avoid spurious singularities at the boundary.
Also, perfect periodicity of slip requires that the cell dimensions and aspect ratios must
be chosen such that L is an integral multiple of d/ sinϕ, where d denotes the slip plane
spacing and H/L = tanϕ (see Fig. 3). Given the new configuration of dislocations in the
cell at the end of the increment, the new stress fields are computed and the simulation
proceeds in an iterative manner.

The unit-cell in Fig. 3(a) is deformed at a constant average strain rate ˙̄ε in the x1−x2
plane. Purely deviatoric strain rates ˙̄ε that satisfy plane strain conditions are considered
such that one can write ˙̄ε = ˙̄ε11(e1 ⊗ e1 − e2 ⊗ e2) + ˙̄ε12(e1 ⊗ e2 + e2 ⊗ e1) in the coor-
dinate system introduced in Fig. 3, where the ratio ˙̄ε12/ ˙̄ε11 can be varied to control the
principal directions of the deformation. Since the crystal has 60◦ rotation symmetry, a
little consideration shows that there are six potential orientations of the principal axes of
deformation, 30◦ apart, which correspond to single slip and six orientations correspond-
ing to symmetric double slip midway between the single slip orientations. Here we look
at three different loading scenarios: (i) single slip ( ˙̄ε11 = 0), (ii) symmetric double slip
( ˙̄ε12 = 0) and (iii) asymmetric double slip ( ˙̄ε11 = ˙̄ε12), which are equivalent (in terms of
the magnitudes of the slip rates) to one of the principal directions of strain rate oriented
at 15◦, 0◦ and 7.5◦ with respect to the e1 axis, respectively. The work quantity conjugate
to the applied strain rate ˙̄ε is the average stress in the unit cell, defined as σ̄ = 〈σ〉V ,
which can be conveniently calculated by integration of the tractions on the boundaries of
the unit cell using the divergence theorem.

The average resolved shear stress τ on a given slip system is plotted as a function of
the corresponding resolved shear strain γ. The resolved shear stress on slip system k (k
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= 1–3), identified by the slip direction m(k) and slip plane normal direction n(k), is given
by τ (k) = σ̄ : (m(k)⊗n(k)), where m(k)⊗n(k) is the Schmid tensor for slip system k. The
shear strain rates γ̇(k) can be obtained from the solution of the equations

˙̄ε =
1

2

∑
k

γ̇(k)(m(k) ⊗ n(k) + n(k) ⊗m(k)) (16)

In two dimensions, the above considerations yield two independent linear equations and
at least two independent slip systems are required for a solution to exist for an arbitrary
prescribed strain rate ˙̄ε. For crystals with redundant slip systems, as in the present case,
the solution is non-unique and Taylor’s minimum dissipation principle states that the two
active slip systems will be chosen such that the overall plastic dissipation is minimized.
For a crystal with identical slip systems, this translates to the condition that

∑
k |γ̇(k)|

is minimized for the true slip rates. We verify that the active slip systems in all our
simulations satisfy the above condition, which is a confirmation of the well-known result
that plastic flow is associative for a material that obeys the Schmid law.

Material properties of Aluminum are assumed with Young’s modulus E = 70 GPa,
Poisson’s ratio ν = 0.33 and modulus of the Burgers vector b = 0.25 nm on all slip
systems. The dislocation glide mobility is assumed to be Bg = 10−4 Pa s. The average
nucleation strength of the Frank-Read sources is taken to be τ̄nuc = 50 MPa, with a
standard deviation of τsd = 0.2τ̄nuc. We use a constant τobs = 150 MPa and vary the pre-
existing obstacle density to achieve desired values of the initial yield strength according to
Eq.(3). Additionally, some results are also shown for crystals containing no pre-existing
obstacles. Subsequently, the flow stress evolves as a function of the accumulated strain
due to the formation of additional junction obstacles according to the 2.5D algorithm.
The relevant parameters for the 2.5D algorithm are the junction strength parameter α
in Eq.(4) and the mean free path parameter K in Eq.(5). We first assume α = 0.75 and
K = 10, which are within the known ranges of these parameters based on atomistic and
3D DD simulations (cf. section 2.2), and the effects of these parameters on the predicted
behavior are then examined. A unit cell with L = 15µm and H = L/

√
3µm is used,

and simulations at other cell sizes for some loading conditions below show that this size
is sufficient to preclude possible cell size effects. Hence the results may be considered
representative of an infinite bulk material.

4. Results

We consider loading conditions that induce single slip, symmetric double slip, and
asymmetric double slip. The 2.5D DD model should reproduce the correct behavior in all
of these situations, consistent with the behavior of real single crystals. Under single slip,
the hardening rate is very low, due to the absence of forest dislocations. Under multiple
slip, the hardening rate is much higher due to the evolution of forest hardening. The
strain hardening rate in multiple slip is typically in the range µ/200 − µ/100 for FCC
materials (Argon, 2008; Kocks and Mecking, 2003). Note that no strain hardening is
predicted in the absence of the 2.5D constitutive rules in any of the simulations reported
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Figure 4: Stress-strain curves from the 2.5D DD simulations for single crystals of varying initial yield
strengths τy. (a) Symmetric double slip ( ˙̄ε11 = − ˙̄ε22, ˙̄ε12 = 0): resolved shear stress vs. shear strain
curves for the two active slip systems (solid and dotted lines). (b) Single slip ( ˙̄ε11 = ˙̄ε22 = 0, ˙̄ε12 = 1

2 γ̇):
resolved shear stress vs. shear strain curves for the active slip system.

here, consistent with previous 2D DD simulations in the literature. These results are
omitted for clarity.

Fig. 4(a) shows the simulated stress-strain behavior under symmetric double slip con-
ditions for four different initial yield strengths τy ≈ 30, 35, 50 and 65 MPa. The lowest
yield strength specimen corresponds to a crystal free of preexisting obstacles and con-
taining an initial dislocation density of ∼ 50 µm−2, while the higher strength specimens
have a fixed population of initial obstacles with average spacing Lobs = 600, 300 and 150
nm. Hence, strain hardening in the lowest strength specimen is entirely due to the for-
mation of junction obstacles, while hardening in the higher strength specimens is due to
the combined strengthening effect of preexisting obstacles and forest junctions. Fig. 4(a)
shows the stress-strain response for both active slip systems, which are nearly identical
due to the symmetric loading orientation. An approximately linear hardening response
is predicted irrespective of the initial yield strength, indicating that the forest harden-
ing mechanism is operative in addition to the strengthening due to the pre-existing fixed
obstacles. The post-yield strain hardening rate is estimated using a linear least squares
fit to the resolved shear stress vs. strain curves and, averaged over multiple realizations,
yields µ/70 for Lobs = 600 nm. This is somewhat larger than the experimental range
µ/200 − µ/100 but comparable; the effect of various model parameters on the predicted
hardening rate will be discussed below.

Fig. 4(b) shows the stress-strain response of the same unit-cell subjected to single slip
loading conditions ( ˙̄ε11 = ˙̄ε22 = 0, ˙̄ε12 = 1

2
γ̇). The response of the primary slip system

shown in the figure exhibits very little strain hardening. The resolved shear stresses acting
on the two secondary slip systems oriented at ±60◦ relative to the primary system (not
shown) are approximately one half that of the primary system, for pure shear loading
applied in the e1–e2 plane. This stress level is below the yield stress for the secondary
systems and so there is no significant dislocation activity on these systems. Hence, the
above results show that although a constant value of 10 is adopted for the parameter K
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Figure 5: Resolved shear stress vs. shear strain curves for the primary (solid lines) and secondary (dotted
lines) slip systems for crystals of various initial yield strengths τy under asymmetric double slip conditions
( ˙̄ε11 = − ˙̄ε22 = ˙̄ε12).

in Eq.(5) irrespective of the loading orientation, the mean free path Li for the active slip
system is much larger in single slip and the hardening rate is much smaller.

Fig. 5 shows the response of the primary and secondary slip systems in the case of the
asymmetric double slip orientation corresponding to ˙̄ε11 = ˙̄ε12. As expected, the strain
hardening rate in the secondary system is higher than for the primary system, since the
higher dislocation activity in the primary system leads to greater forest hardening for the
dislocations on the secondary system. Fig. 6 shows the stress-strain curves under different
loading orientations averaged over multiple simulations, to better show the differences in
hardening rate among different loading conditions. As expected, the lowest hardening rate
is obtained under single slip conditions, consistent with the self-hardening of a crystal
during Stage I deformation. The strain hardening rate under symmetric double slip
conditions is consistent with the athermal Stage II deformation. Under asymmetric double
slip conditions, the primary slip system exhibits a lower hardening rate and the secondary
system exhibits a higher hardening rate, as compared to those obtained under symmetric
double slip conditions.

The hardening rate predicted by the new 2.5D DD method is a function of the two
parameters in the constitutive rules: the junction strength parameter α, Eq.(4), and the
mean-free path parameter K, Eq.(5). In addition, the local density is evaluated in a
neighborhood containing N dislocations, and so the hardening rate should not depend
on N . We now examine the role of these parameters on the material response under
symmetric double slip conditions. Fig. 7 shows the stress-strain curves predicted for
symmetric double slip for various values of N . The predicted hardening rate is nearly
independent of N in the range N = 5–100. Values of N < 5 make the sampling size
too small for a reliable density calculation while large values of N suppress local density
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Figure 6: Resolved shear stress–strain curves averaged over multiple simulations under various loading
orientations.

fluctuations. Fig. 7 shows that the strain hardening disappears for N ≥ 200, which
suggests an important role of local density fluctuations on the overall strain hardening
rate.

Examination of the dislocation structures in the unit cell reveals that the microstruc-
ture at various stages of deformation consists of dense dislocation clusters separated by
relatively dislocation free zones, as seen in Fig. 8(a) for one of the symmetric double slip
simulations at ∼ 0.3% strain. As the plastic strain increases, initially dislocation free
zones accumulate dislocations as observed in Fig. 8(b) for the same simulation at ∼ 1%
strain, although the dislocation density remains highly non-uniform throughout the de-
formation. Although the cell like dislocation structures in Fig. 8 appear to indicate some
sort of microstructuring or pattern formation within the RVE, the walls of these cells are
invariably aligned with the orientation of the slip systems, indicating that these are dense
dislocation pileups anchored by strong obstacles/junctions and not patterns formed due
to some long range ordering. The results of Fig. 7 indicate that the formation of strong
junctions in regions of high local dislocation density is probably responsible for the strain
hardening effect, which disappears when the size of the sampling region becomes too large
to capture these density fluctuations, i.e. N ≥ 200. Further results below use N = 50.

The effect of the mean free path parameter K on the hardening rate is shown in Fig. 9.
Fig. 9(a) shows the resolved shear stress vs. shear strain response under symmetric double
slip and Fig. 9(b) shows the dislocation density, ρ, vs. strain. A wide range of values of
K is considered in Fig. 9, with a lower limit K = 1 corresponding to Li = Lif in Eq.(5),
i.e. a dislocation forming junctions with every forest dislocation on its glide path, and the
upper limit K =∞ corresponding to junction formation turned off completely. Note that
no strain hardening is predicted in the latter case, consistent with previous results in the
literature using the 2D model, while the predicted hardening rate is highest for K = 1.
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Figure 8: Dislocations structures at two different strain levels in a symmetric double slip simulation:
(a) γ ≈ 0.3% and (b) γ ≈ 1%. The red + symbols are positive dislocations and green open circles are
negative dislocations.
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Figure 9: Effect of the mean free path parameter K in Eq.(5) on the predicted hardening rates under
symmetric double slip conditions: (a) resolved shear stress vs. shear strain and (b) dislocation density
vs. shear strain.
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Figure 10: Effect of junction strength parameter α on the predicted hardening rates under symmetric
double slip conditions: (a) resolved shear stress vs. shear strain and (b) dislocation density vs. shear
strain.

The true mean free path of glide dislocations as a function of strain is difficult to estimate
experimentally, and the value of K can only be estimated indirectly from analysis of 3D
DD simulation data. Approximate values of K for various multi-slip loading directions in
an FCC crystal, estimated using 3D simulations, fall in the range 5–10 (Devincre et al.,
2008). Interestingly, our simulations show that within the range K ≈ 5–50, the evolution
of the flow stress and the dislocation density are relatively insensitive to the actual choice
ofK, thus justifying our use of a constantK = 10 irrespective of the loading orientation. A
related subtle point is the definition of the dislocation density ρ in 2D, which excludes the
density of the junction obstacles formed by the 2.5D algorithm, although the dislocation
line density in 3D does include a contribution from the junction segments. However,
this cannot be accounted for in a 2D simulation without specification of an additional
parameter relating to the ratio of the junction density to the overall dislocation density
in 3D. Assuming this ratio to be approximately 30%, as evidenced from 3D simulations
(Devincre et al., 2008), it is observed that the estimated total dislocation densities increase
from those shown in Fig. 9(b) by approximately 10-15%, although the above observations
regarding the effect of parameter K remain unchanged.

The effect of the parameter α, which determines the strength of the junction obsta-
cles, is shown in Fig. 10 over the range 0.33–1. The hardening rate, θ = ∂τ/∂γ, increases
monotonically with α, with values of α ≤ 0.5 showing little strain hardening. The increase
in hardening rate is correlated with a corresponding increase in the rate of dislocation
density evolution, shown in Fig. 10(b). The normalized hardening rate θ/µ is estimated
using a linear least squares fit to the post yield stress-strain curve and averaged over mul-
tiple realizations of the simulations to account for statistical variations due to the initial
source distribution. Fig. 11 shows θ/µ versus α along with the experimentally-measured
range of the athermal hardening rates in an FCC material (Argon, 2008). Despite signif-
icant scatter, a clear monotonic trend of hardening rate vs. α emerges, and the rate for
α ∼ 0.5–0.6 is consistent with experiments. This range of values is also consistent with
an isotropic line tension estimate for α as the average strength of possible junction types
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Figure 11: The predicted strain hardening rates θ, normalized by the shear modulus µ, as a function of
the junction strength parameter α. The horizontal band shows the experimentally observed range of the
athermal hardening rates in FCC materials.

in an FCC crystal weighted by their frequency of occurrence.
Overall, the 2.5D DD algorithm presented here provides very good agreement in terms

of differences in strain hardening with loading conditions, independence of the behavior
to the parameter N over a reasonable range, insensitivity to K over its physical range,
and realistic strain hardening rates for reasonable values of α. Within the limits of small
strain, there is no significant feature of the Stage I-II hardening in real single-crystal
materials that is not captured well by the present 2.5D DD model.

5. Discussion

Phenomenological relations have long been used in continuum plasticity models to
capture the evolution of flow stress with plastic deformation. The most well-known re-
lationship is the Taylor hardening law, which states that the flow stress is proportional
to the square root of the dislocation density. Along with the fact that the stress-strain
curve is approximately linear in the early stages of plastic flow, when recovery processes
are not active, this has been used to infer that the dislocation density evolves as the
square of the accumulated plastic strain. However, this model does not account for the
mutual hardening effect of one slip system on another in a single crystal, known as latent
hardening. Building on experimental work from to 60s (Kocks and Brown, 1966; Kocks,
1970), Peirce et al. (1982, 1983) proposed a latent hardening model for use in continuum
crystal plasticity simulations of the form

τ̇ (k) =
∑
l

hkl|γ̇(l)|, hkl = qh+ (1− q)hδkl (17)

where h is the self hardening rate of a slip system, q is the ratio between the self hardening
and latent hardening rates, and δkl is the Kronecker delta function. The value of q is known
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to fall in the range 1–1.4, and a commonly used value is 1.4 (Peirce et al., 1983). The new
2.5D DD method has been shown to produce physically observed behavior under multiple
slip conditions, and so can be used to estimate the value of the latent hardening ratio q. In
a planar crystal with three slip systems as considered here, Eq.(17) predicts that the strain
hardening rate θ(k) = ∂τ (k)/∂γ(k) of the primary slip system is (1 + qr)h while that of the
secondary system is (1+ q

r
)h, where r ≤ 1 is the ratio of the slip rates on the secondary and

primary slip systems. Thus, the value of q may be determined by comparing the hardening
rates between two active slip systems with unequal slip rates. Here, we use the average
stress-strain curves in Fig. 6 for the asymmetric double slip simulation, corresponding to
r = 0.366. Estimating the slopes of the stress-strain curves for the primary and secondary
slip systems and solving for the value of q using the above equations yields q ≈ 1.27, well
within the accepted range for q. Together with the fact that our simulations predict a
reasonable value for the absolute hardening rate under symmetric double slip conditions
(and therefore the value of h itself) as shown in Fig. 10(b), the 2.5D DD method captures
the typical behavior in crystal plasticity.

Eq.(4) for the strength of junction obstacles in 2D, with Lif = 1/
√
ρif , also hints

at a generalized Taylor-type relationship between the slip system strengthening and the
evolution of the forest dislocation density. However, it is noted that using Eq.(4) for the
local junction strengths in terms of the local dislocation densities does not automatically
imply a Taylor relationship between the average slip system strengths and dislocation
densities. Hence it is interesting to investigate the relationship between the average flow
stress and the forest dislocation density for each slip system. The existence of preexisting
obstacles complicates the picture due to the fact that the resultant flow stress is a possibly
non-linear combination of the strength due to preexisting obstacles, which is well predicted
by Eq.(3), and that due to the junction obstacles. In the absence of preexisting sources
and obstacles, the flow strength due to junction obstacles acting alone may be expected to
follow a similar relationship as in Eq.(3), where τobs and τobs are replaced by the average
strength and spacing of junction obstacles in the entire specimen. Using Eqs. (4) and (5)
in (3), this yields

τ̄ if = ᾱµb
√
ρ̄ijcn (18)

where ρ̄ijcn is the average forest dislocation density for slip system i and ᾱ is the Taylor
hardening coefficient. When preexisting sources and obstacles are added, the combined
strengthening due to both populations of obstacles could be expected to follow a rela-
tionship of the form (6), where τ1 = τy from Eq.(3) and τ2 = τ̄ if . In order to check this
hypothesis, Fig. 12 shows the square of the flow stress τ , normalized by the material shear
modulus µ, as a function of the forest dislocation density multiplied by the square of the
Burgers vector b. The response of active slip systems under symmetric and asymmetric
double slip are compared and, following an initial transient, an approximately linear scal-
ing is obtained, indicating that the exponent in Eq.(6) is indeed close to 2. The slope of
the curve is the Taylor hardening coefficient ᾱ, whose value is known to be of the order
of unity and ∼1/3 for random polycrystals. Calculation of the slopes from Fig. 12 yields
a value in the range ∼0.4–0.5, which is close to the expected value. Using an alternative
definition of ρ that also includes a 30% contribution from the junctions yields lower values
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Figure 12: Scaling of the square of the flow strength as a function of the forest dislocation density for
the active slip systems under multiple slip conditions. Appropriate non-dimensionalized quantities are
plotted on both axes.

of ᾱ in the range 0.35–0.45. It is emphasized that although the Taylor form is suggested
by our constitutive equations for strain hardening in section 2.2, the emergence of this
result is not obvious for the reasons cited above. The deviations from linearity in the
early stages of plastic flow in Fig. 12 are indicative of the fact that the density of forest
dislocations at this stage is much smaller than that of the preexisting obstacles and hence
the exponent in (6) is probably different from 2.

6. Conclusion

Two dimensional discrete dislocation (2D DD) simulations are widely used to solve a
variety of complex boundary value problems where full 3D DD is prohibitively expensive
in terms of computing effort. However, the physics in 2D DD is unable to accommodate
the 3D effects that cause strain hardening. To rectify this and create a new 2.5D DD
model that captures 3D effects, we have proposed a set of constitutive rules for dislo-
cation interactions in 2D based on projecting 3D phenomena into 2D. The constitutive
laws lead to a dynamic evolution of the dislocation mean free path, and to the emergence
of overall strain hardening. The physically-motivated parameters in the new constitutive
rules are obtained from 3D DD simulations, and so are well-bounded. The 2.5D DD model
then predicts stress-strain behavior of bulk single crystals under homogeneous imposed
deformation that exhibits several important effects of 3D dislocation plasticity. Specifi-
cally, the method captures both initial yielding and subsequent hardening, the differences
between single and multiple slip, appropriate latent hardening under asymmetric multiple
slip, and multiple slip hardening rates that are consistent with experiment. The model
has an internal evolving length scale associated with the development of the forest dislo-
cation network that may influence size-dependent plasticity. In the future, the new 2.5D
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DD method can be applied to problems such as fracture toughness and fatigue behavior
under cyclic loading, where hardening phenomena are expected to play an important role.
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