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Abstract—This paper introduces a hierarchical framework
that is capable of learning complex sequential tasks from hu-
man demonstrations through kinesthetic teaching, with minimal
human intervention. Via an automatic task segmentation and
action primitive discovery algorithm, we are able to learn both
the high-level task decomposition (into action primitives), as
well as low-level motion parameterizations for each action, in
a fully integrated framework. In order to reach the desired
task goal, we encode a task metric based on the evolution of
the manipulated object during demonstration, and use it to
sequence and parametrize each action primitive. We illustrate
this framework with a pizza dough rolling task and show how the
learned hierarchical knowledge is directly used for autonomous
robot execution.

I. INTRODUCTION
In order to teach a robot a complex task, involving a

sequence of action primitives (atomic actions), such as pizza
dough rolling, we must learn and discover a hierarchy of
parameterizations for each level of the task. As opposed to
typical LfD (Learning from Demonstration) approaches, where
individual motions are learned independently and then the
high-level composition of the task is either manually encoded
or learned as a second step [1], we propose an integrated
framework that is capable of extracting different levels of
knowledge from the task, which are sufficient to parametrize
the high-level task plan and low-level motion control of the
robot, from complete demonstrations (See Figure 1).

Given successful demonstrations of the task by a skilled
user via kinesthetic teaching, we begin by applying an au-
tomatic task segmentation and action primitive discovery al-
gorithm to the raw data of the end-effector (Section II).
This algorithm outputs a set of unique action primitives and
their corresponding segmented data, as well as their transi-
tion probabilities. The latter is used to learn a probabilistic
representation of the action sequencing involved in the task
(Section III) and the former is used to extract individual action
constraints to learn low-level motion parameterizations of each
action (Section IV). Finally, the high-level action parameters
(i.e. rolling direction) are defined by a task metric, which
encodes the evolution of the manipulated object (Section V).

II. AUTONOMOUS TASK SEGMENTATION AND ACTION
PRIMITIVE DISCOVERY

To automatically segment and discover action primitives
we apply a method introduced in [2], which uses a Bayesian
Non-Parametric approach for segmentation and clustering of
time-series data. Bayesian nonparametrics allows for learning
problems to be independent of a priori knowledge of model
parameters such as the number of hidden states, cluster or

Figure 1: Learning Pipeline: Given a set of recorded demonstrations from a
skilled user, we learn high-level knowledge such as the action primitive, their
sequence and the task metric (left column) and low-level knowledge of the
individual actions (right column). This knowledge is encoded as action/motion
planners and used directly in robot execution.
mixtures. The algorithm used in this work is an extension of
the Beta Process Hidden Markov Model (BP-HMM), with the
capability of clustering similar actions subject to changes in
scaling, translation and rotation, without any prior knowledge
of the task, actions or the number of primitives involved. This
is done by evaluating the similarity of the extracted Gaussian
models from the HMM using a novel Spectral Polytope Co-
variance Matrix (SPCM) similarity function, which is invariant
to any type of variation, such as translation, rotation and
scale. This is highly useful in tasks such as dough rolling,
since every rolling action is subject to a change in frame of
reference (rolling direction) and scaling (dough area).We apply
the algorithm to the raw data-set ξ = {F, x}, where F ∈ R6 is
the wrench at the end effector and x ∈ R6 is the end-effector
position and orientation. In Figure 2, the extracted primitives
and segmentations points are shown, we were able to extract 3
unique action primitives from this task: reach, roll and reach
back, regardless of rolling direction, duration or force intensity.
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Figure 2: Extracted primitives
and segmentation overlapped on
demonstration data ξ.

Figure 3: Learned motion dynamics for
each phase

III. ACTION SEQUENCE LEARNING

To avoid pre-defining or making assumptions on the prim-
itives and the sequence, we use the transition probabilities
πj learned by the extended BP-HMM to find the correct
sequence. For each j-th time series, a transition probability
matrix is learned for the extracted primitives which are shared
throughout all time series. The full set of N -time series
represent multiple rolling demonstrations. In order to consider
all possible πj , we compute an average transition probability
matrix: π̄ = 1

κN

∑N
j=1 π

j , where κ is the sticky parameter used
to bias the HMM to match high self transitions and N is the to-
tal number of time-series used to extract the primitives. We can
then construct a stationary markov chain of the primitives using
π̄ as the transition matrix. By computing the joint probabilities
of each possible sequence p, we can infer the correct sequence
by finding the max(P (pi)|i = 1, 2, 3) = {1→ 2→ 3}, where
i is the index of the unique action primitive.

IV. ACTION CONSTRAINTS AND MODEL LEARNING
Following the approach proposed in [3], we assume that

all action primitives can be executed by the robot using a
Cartesian impedance controller. Hence, we extract the soft task
constraints from each action primitive, which correspond to the
variable of interest (F or x) and stiffness modulation. Applied
to the dough rolling task this method determined a position
controller as the most suitable for the reaching actions and a
hybrid force-position decomposition for the rolling action. We
then learn a set of action models s = {1, 2, 3} corresponding
to each action primitive, ψsm = [xsm, F

s
m,K

s
m], which represent

the parametrization of a Cartesian impedance controller, used
to control a 7DOF robot arm, with the following control
law: τ = JT (Km(x − xm) + Fm). Where xm, Fm,Km are
defined by their corresponding action models. xm ∈ R6 is the
desired pose and is queried from an attractor-based coupled
dynamical system (CDS) model, which encodes the position
and orientation as two coupled autonomous dynamical systems
(Figure 3). Fm ∈ R6 is the desired force which is encoded as a
function using a Gaussian Mixture Model (GMM) conditioned
on the distance to the attractor. For dough rolling, we identified
the vertical force applied on the dough as one of the tasks soft
constraints (Figure 5). Km ∈ R6 corresponds to the stiffness
and its encoded as a modulation function for a base stiffness
value via a GMM (Figure 3).

V. TASK METRIC ENCODING
The goal of this task is to achieve a desired size/shape

of the pizza dough. From the demonstrations, we discovered
that all rolling trajectories followed the same direction as the
secondary principal component of the dough (when fitting an
ellipse to the shape). In addition, the ending points of the
reaching segments were clustered at the beginning points of
that direction and the ending of the rolling segments were
clustered on the same direction but on the opposite side (see
Figure 4). Thus, we use the secondary axis of a fitted ellipse
on the dough as the main feature to parametrize the rolling
direction and reached the desired circular shape.
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Figure 4: Positioning of the attrac-
tors wrt. dough shape
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Figure 5: Model of the vertical force
F z
m Dough Type

Control Mode Metrics Soft Stiffer Elastic

Hybrid

Defratio 2.6270 (0.0602) 2.585 (0.379) 2.5048 (0.1892)
Isoquot 0.9907 (0.0068) 0.9981 (0.0024) 0.9949 (0.0074)

Numrolls 12.3333 (1.5275) 38.66 (3.055) 76.3333 (3.5119)
Maxforce 38.3540 (3.1945)N 41.126 (1.899)N 45.5943 (3.4927)

Pos-Stiff

Defratio 2.5240 (0.2507) 2.5559 (0.2128) 2.8250 (0.3952)
Isoquot 0.9940 (0.0047) 0.9855 (0.0110) 0.9932 (0.0072)

Numrolls 14.6667 (1.5275) 46.6667 (4.0415) 118.6667 (19.1398)
Maxforce 71.0843 (1.7159)N 78.9383 (2.8563)N 83.0120 (3.2562)N

Table I: Evaluation of control modes. (Hybrid) is our proposed framework,
(Pos-Stiff) is a standard position controller with fixed high stiffness values. The
values in the metrics are the mean (std.) of 3 trials per control mode/dough
consistency.

VI. FRAMEWORK EVALUATION
We evaluate our framework with 2 different control modes:

(hybrid) being our approach where we control for position
and modulate force/stiffness during interaction and (pos-stiff)
is a standard position controller that will follow the desired
trajectories with high stiffness, but with a hand-tuning in the
position for the rolling phase (in order to achieve flattening of
the dough). We ran each control mode 3 times for 3 different
dough consistencies: (i) very soft (freshly made) dough, (ii) a
bit stiffer dough (once it cooled down) and (iii) a hard dough,
almost elastic. The task performance is then evaluated with
the following measures:

1) Defratio: Deformation achieved, computed by dividing the ellipse
area ratio between last/first roll.

2) Isoquot: The isoperimetric quotient evaluates the obtained round-
ness of the resulting deformed dough.

3) NR: # of rolls needed to achieve the target area (0.025m2).
4) Maxforce: Maximum force applied to the dough.

Using the following task settings across trials: initial dough
area ≈ 0.01m2, dough weight ≈ 0.5kg and goal area ≈
0.025m2 we gathered the results presented in Table I, with
(hybrid) achieving more consistent shapes (Isoquot) than (pos-
stiff). Both control modes achieve the desired size. However,
since (pos-stiff) uses a fixed high stiffness and hand-tuned
position, it reached extremely high values during contact (70-
80 N), which causes the robot to become unstable. Whereas
(hybrid) reached the target size/shape with less rolls and
safe force levels (40N), as the ones learned from human
demonstrations.

VII. FUTURE WORK
Our ongoing work is focused on autonomously learning

the relevant features of the manipulated object that evolve as
en effect of the action primitives. We will then apply this
framework to different tasks where the manipulated object is
subject to some sort of deformation be it shape, size, color,
such as painting, batter mixing or egg beating.
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