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In this paper, we investigate an area-based pricing scheme for congested multimodal urban
networks with the consideration of user heterogeneity. We propose a time-dependent pric-
ing scheme where the tolls are iteratively adjusted through a Proportional–Integral type
feedback controller, based on the level of vehicular traffic congestion and traveler’s behav-
ioral adaptation to the cost of pricing. The level of congestion is described at the network
level by a Macroscopic Fundamental Diagram, which has been recently applied to develop
network-level traffic management strategies. Within this dynamic congestion pricing
scheme, we differentiate two groups of users with respect to their value-of-time (which
related to income levels). We then integrate incentives, such as improving public transport
services or return part of the toll to some users, to motivate mode shift and increase the
efficiency of pricing and to attain equitable savings for all users. A case study of a medium
size network is carried out using an agent-based simulator. The developed pricing scheme
demonstrates high efficiency in congestion reduction. Comparing to pricing schemes that
utilize similar control mechanisms in literature which do not treat the adaptivity of users,
the proposed pricing scheme shows higher flexibility in toll adjustment and a smooth
behavioral stabilization in long-term operation. Significant differences in behavioral
responses are found between the two user groups, highlighting the importance of equity
treatment in the design of congestion pricing schemes. By integrating incentive programs
for public transport using the collected toll revenue, more efficient pricing strategies can be
developed where savings in travel time outweigh the cost of pricing, achieving substantial
welfare gain.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Research in transport economics have proposed road pricing as an effective policy to relieve traffic congestion in cities for
many years. By charging road users the external costs they create, congestion pricing aims to trigger travel behavior changes
(e.g. mode shift from cars to buses or departure time shift to outside of peak-hour) such that congestion is avoided. Despite
the vast literature, a small number of cities have actually implemented congestion tolls due to social disagreement, political
issues and myopic treatment of other modes of transport. Traffic mobility in multimodal systems is inherently a distributed
and interconnected process, which should be modeled and managed as a whole to improve the global operational efficiency.
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The classical approach for determining pricing is based on economic theories. In the literature, there exists an extensive
body of works on the first- and second-best pricing models. A comprehensive summary of these models can be found in Yang
and Huang (2005) and de Palma and Lindsey (2011). Over the years, researchers have made significant effort in extending
this type of models (either of a bottleneck or a small network) for studying the impact of pricing. Representative examples of
this direction can be found in Verhoef (2002), Arnott (2007), and elsewhere, where Vikrey’s bottleneck model (Vickrey, 1969)
form the basis of their analysis; or in Lu et al. (2008), Lou et al. (2010) and Wu et al. (2011), where user equilibria of route
choices were derived, given that the cost of pricing is taken into account. The treatment of user heterogeneity and equity
should not be ignored when discussing congestion pricing. Regarding this research direction, similar types of models were
proposed to capture the behavioral difference among travelers with have different value-of-times (see for instance in Lu
et al., 2008; van den Berg and Verhoef, 2011; Qian and Zhang, 2013; Tian et al., 2013). Other well-established works on
the design of equitable pricing schemes for multimodal networks include for example, Yang and Zhang (2002) and Yin
and Yang (2004) who developed optimal pricing with social and spatial equity constraints. Others employed Pareto-
improving approaches, such that all users are not worse off in the presence of pricing, see for example Lawphongpanich
and Yin (2010), Nie and Liu (2010) and Xiao et al. (2013). Wu et al. (2012) and Xiao et al. (2013) share similar research
interest with this paper, where the distributional effect of pricing on different income groups is captured and income-
based pricing schemes are discussed. Zhu et al. (2013) developed a theoretical framework to address equity issues, though
they did not touch directly how an equitable pricing scheme should be theoretically designed.

Existing traffic models in transport economics pose severe theoretical and empirical limitations in realistic applications.
The main reason is because they employ link travel cost functions, which do not accurately describe the intra-day traffic
dynamics and relate them to urban-scale network characteristics in a way that is computationally tractable and consistent
with the physical properties of traffic. This failure constrains the ability of economic models to support efficient develop-
ments for network traffic management and diminish congestion externalities (Tsekeris and Geroliminis, 2013). With respect
to the treatment of congestion dynamics (utilized traffic models), most of the aforementioned studies assume a steady-state
traffic condition or demand-type of capacity-supply functions. Such models ignore the fact that the level of congestion is not
a memory-less function of demand at a given time, but dependent on the history of the system, i.e. the same demand profile
can influence differently the system if this was uncongested or congested at the current state (Geroliminis and Levinson,
2009).

With respect to the application level of the pricing schemes, pricing based on individual links is extremely difficult to
implement in practice, and it is computationally complex for large-scale networks (Verhoef, 2002). With respect to the
consideration of user heterogeneity, few studies quantitatively analyze the impact of pricing on different types of users,
e.g. differences in mode shift behavior or distributional effect (as pointed out by Eliasson and Mattsson, 2006), while design-
ing a pricing scheme capable of balancing the gain of all users is even rarely mentioned in the literature. While with respect
to multimodality, alternative modes are not taken into account in most approaches. Integrating multimodality consideration
in pricing is challenging and reserves further attention.

While the classical approaches focus on the link- or corridor-level of application, existing pricing schemes for macro-
scopic (large-scale) level have similar ambiguity. For example, in Maruyama and Sumalee (2007) and Zhang et al. (2008)
traffic conditions are considered stationary; whereas in the well-known field implementation of congestion pricing, the
Singapore scheme, it introduced a dynamic area-based type pricing system where the toll rates are time-dependent and
adjusted based on regular surveys on travel speed (Liu et al., 2013). The valuable experience of the Singapore case signifi-
cantly advanced the knowledge on congestion pricing, and had inspired the developments of speed-based toll schemes
where a pre-defined optimal speed range serves as the base for toll optimization. According to the same reference mentioned
above, the speed-based toll is regulated such that traffic flow rates can maintain at a speed ranging from 20 km/h to 30 km/h.
Though it sounds reasonable, the issue is that traffic states can vary significantly at this speed range (see for example in the
empirically observed fundamental diagram, e.g. in Geroliminis and Daganzo, 2008), therefore the determined pricing rates
may not guarantee an optimum. Regarding the pricing schemes of other successful field implementations, for instance in
Stockholm and London, the underlying method for determining the prices is unfortunately unavailable and remains as a
black-box to the researchers.

To develop an effective congestion pricing scheme for urban networks, the aforementioned inadequacies need to be
treated. Integrating a proper traffic model that captures congestion dynamics is critical in designing the optimal prices. It
is even more challenging as the current urban management requires understanding at the network level. Recent findings
on the Macroscopic Fundamental Diagram (MFD) shed light into this direction. The idea of macroscopic traffic model for
car-only urban networks was initially proposed in Godfrey (1969) and followed in Mahmassani et al. (1987) and Daganzo
(2007). The demonstration of the existence of the MFD with dynamic features from field data was firstly reported in
Geroliminis and Daganzo (2008), showing that urban single-mode regions exhibit an MFD relating space-mean network flow
(traffic throughput) to network density (traffic state). It has been showed by the same reference that (i) even though the
flow-density plots for individual links in the network exhibit considerable scatter, the scatter nearly disappears once data
of the individual links are spatially aggregated for the entire network, and (ii) the MFD is a property of the network itself
(infrastructure and control) and not very sensitive to different demand patterns. An interested reader could refer to
Yildirimoglu and Geroliminis (2014) and Leclercq et al. (2014) for a review of recent developments in MFD. Given the
MFD of a network, monitoring and predicting the evolution of congestion is possible through the existing data technologies
with fixed-location and mobile sensors (loop detectors and GPS of probe vehicles). It should be noted that the spread of
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congestion may not be homogeneous within large-scale networks. If the MFD of a network exhibits high spatial or modal
usage heterogeneity, a solution is to partition such network into regions with homogenous congestion distribution that each
partitioned-region has a low-scatter MFD (Ji and Geroliminis, 2012) and a higher degree of connectivity and compactness
(on-going work investigates further this direction Saeedmanesh and Geroliminis, 2015). A modeling framework has been
developed to capture how vehicles passing such multi-region networks with MFD-representation (Yildirimoglu et al.,
2015). Furthermore, latest works extend the single-mode MFD to a bi-modal where cars and buses share the same infras-
tructure and look at passenger flow dynamics in addition to vehicular dynamics (Zheng and Geroliminis, 2013;
Geroliminis et al., 2014; Chiabaut et al., 2014; Chiabaut, 2015).

One of the most important contributions of the MFD and bi-modal MFD modes is that they enable the development of
traffic management strategies to optimize bi-modal urban networks. Research effort has been made by many researchers,
e.g. perimeter flow control for single-mode networks (Aboudolas and Geroliminis, 2013; Keyvan-Ekbatani et al., 2015;
Haddad, 2015), and multimodal networks (Ampountolas et al., 2014). In addition to online traffic control, studies have
shown promising results on demand management with the MFD, as well. Gonzales and Daganzo (2012) examined system
optimum solutions using MFD for a transport system with cars and public transit share spaces for the morning commute
problem, whereas Gonzales and Daganzo (2013) provided solutions for combined morning and evening peaks problems.
The first work of MFD-based pricing investigated a flat-rate cordon pricing during the peak hour (Zheng et al., 2012). This
work showed that an MFD-based pricing scheme succeeds not only in congestion reduction, but also high efficiency where
the total travel time savings outweigh the total toll paid. In this work, travelers could only change their time of departure and
route but mode choice is not an option. A similar approach was later applied in Simoni et al. (2015) who derived optimal
pricing using MFD and marginal cost theory, without investigating the impact of pricing on multimodality either. Combining
dynamic pricing with dynamic allocation of road space between multiple modes (e.g. changing the fraction of roads dedi-
cated to buses) using MFD modeling has been shown to be an efficient traffic management scheme (Zheng and
Geroliminis, 2013). Nevertheless, the aforementioned work performs the optimization by assuming perfect knowledge of
how users adapt due to congestion and pricing through an MFD model. Investigating dynamic traffic management schemes
where the model has a different level of abstraction from the considered reality (plant is the appropriate terminology in con-
trol literature) can shed more light for the applicability of these schemes in the real world. In this work, while the pricing is
developed based on an aggregated MFDmodel, the implementation is done in a more detailed model in an agent-based envi-
ronment, where information for the actions and the individual behavior of users is unknown during the optimization phase.
If such an approach shows significant improvements in terms of congestion, it can be a promising and convincing method-
ology to be applied in real life. While many studies have showed that a time-dependent toll (e.g. based on congestion level)
can reduce congestion more efficiently, a network time-dependent area-based pricing building on the MFD representation of
congestion for multi-modal networks deserves investigation.

To develop efficient pricing schemes that allow higher user acceptance, we consider the following objectives in our cur-
rent work. (i) integrate the behavioral adaptation of the users during pricing (ii) promote a multimodal solution combined
with pricing, to maximize the efficiency of pricing, and (iii) recognize the heterogeneous effect of pricing on users, to design
pricing strategies with equity. We will show in this paper that proper treatments, such as incorporating a value-of-time
based pricing rates or redistributing toll revenue to improve public transport service, can significantly enlarge the efficiency
of the pricing and the sustainability of urban mobility. In particular, we reveal that considering the effect of pricing on mul-
timodal mobility improves remarkably the system performance, which has not been studied thoroughly. Questions that arise
are how pricing rates should be adjusted when congestion conditions change due to user’s behavioral changes?What are the
impacts of different types of incentive programs for using public transport (PT) on the performance of congestion pricing? It
has to be highlighted that despite the vast literature in pricing, field tests are quite limited and this is among other reasons of
user acceptability. Thus, providing incentives to other modes of transport (e.g. return a fraction of the tolls paid to users that
switched to public transport mode) can make such policies more attractive for real cases.

In this paper, we propose a time-dependent area-based congestion pricing scheme for multimodal urban network with
heterogeneous user groups. Two groups of users are differentiated in our approach by their individual VOTs. We determine
time-dependent tolls based on the level of congestion of the network represented by the MFD, and user’s behavioral adap-
tation to the tolls captured by the evolution of congestion between the adjustments of pricing rates. An agent-based model,
which preferably ensures a realistic reproduction of travel behavior of users, is utilized for carrying case studies. Only aggre-
gated information is collected from the model, and passed to the higher level traffic model (the MFD) which is utilized during
the optimization phase to determine the optimal toll. We investigate the performance of pricing strategies that integrates
public transport incentives into the pricing schemes, and we analyze the distributional effect of pricing to the two different
user groups. Note that the pricing strategy is based on a feedback control approach, which utilizes observable information
when determining the prices. There is no behavioral model integrated during pricing, but the change in behavior from day to
day (or period to period) influences the value of price.

The rest of the paper is organized as follows. Section 2 describes in detail the methodology for treating user heterogeneity
and the control algorithm of pricing. Section 3 presents the case study results of the Sioux Fall network, and compares the
performances of four pricing strategies which differ in the treatment on user adaptation and the integration of multimodality
in pricing. Dedicated analysis and discussion are given in Section 4, regarding the behavioral differences and distributional
effect between users having heterogeneous values-of-time. Concluding remarks are provided at the end.
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2. Methodology

This section is divided into three parts. Section 2.1 describes the properties of the employed agent-based model, the
simulation process, and the proposed treatment on user heterogeneity to integrate into the simulation model. Section 2.2
concerns the core concept of an MFD- and user-adaptation based pricing scheme, providing the algorithmic steps to reach
the desired mobility level and detailed explanations on pricing adjustment. Having understood the model and the pricing
control mechanism, Section 2.3 introduces two pricing strategies that combine a time-dependent area-based pricing and
incentives of promoting the usage of public transport.

2.1. Agent-based simulation and user heterogeneity

In this work, while the pricing is developed based on an aggregated MFD model, the implementation is done in a more
detailed agent-based environment, where information for the individual behavior of users is unknown during the optimiza-
tion. We consider this approach to have a high degree of realism, given that detailed behavioral data is difficult to be
obtained in real time and even more difficult to be applied in an optimization process. It is also known that detailed
simulations contain a large number of assumptions that do not necessarily represent reality with a high degree of accuracy,
especially with respect to the dynamic development and evolution of congestion. Thus, our intension is to test a feedback
control framework to improve mobility of multi-modal systems based on aggregated network level modeling, in an environ-
ment with significantly higher degrees of freedom and complexity than the one the model is not aware of.

The agent-based simulation model MATSim is utilized (Meister et al., 2010). The MATSim model has been widely applied
for travel behavior studies in transportation systems and land use analysis. It integrates activity-based demand generation
with dynamic traffic assignment. Demand generation is embedded in a concept of daily activity sequence from which the
need for transport is derived. In the context of activity-based demand, the entire activity plan (mode choice, departure time
choice, route choice and the activity sequence) is the unit of decision to iterate travel dynamics. Random utility theory is
applied to generate the plans of daily activities. Each agent (traveler) in the simulation is assigned with different utility
values when performing different activities. A typical utility function consists of four items for an agent performing her daily
plan: denote Ui,act the score performing activity i, Ui,travel the score of traveling to activity i, Ui,wait a penalty for waiting instead
of performing activity i, and Ui,short a penalty for performing activity i for a too short duration, where i 2 f1; . . . ; ng is the num-
ber of planned activities. The existing model does not distinguish the difference of these utility terms when perform exactly
the same activity. For example, a travel time of 10 min would be simply transformed to a utility value of Ui,travel 3CHF, if
assuming a value-of-time is 18 CHF/h.

Now let us consider the existence of heterogeneity in the agent population. Agents are grouped with respect to value-of-
time (VOT). Denote j as the group index Eq. (1) displays the utility calculation for user group j performing daily plans:
U j
plan ¼

X

i¼1:n

U j
i;act þ U j

i;travel þ U j
i;wait þ U j

i;short ð1Þ
Note that in the current work, the influence of VOT is mainly reflected by the physical travel cost term U j
i;travel. Neverthe-

less it is easy to incorporate this treatment to other terms, such as embedding earliness and lateness penalty into U j
i;act . These

properties provide more realistic modeling of the reaction of the agents towards any traffic management strategy, and thus
can help traffic engineers develop more reliable congestion pricing schemes. Furthermore, we assume in this work that VOT
varies across individual income, which is line with the empirical findings by Börjesson and Eliasson (2014). Defining user
heterogeneity in this manner allows us to later design equitable pricing strategies among for example the ‘‘rich” and the
‘‘poor” people. Other studies indicate that difference in VOT also exists in mode choice preference (such as Börjesson
et al., 2014).

As for the simulation, the process can be summarized as follows. Each agent has an activity plan to perform her daily
events. The selected activity plans are simulated along the timeline in the model representation of the physical world. A
First-In-First-Out queue model is embedded as the traffic model, with pre-defined road capacity and some treatment of
shockwave between vehicles traveling backwards at constant speed in the case of discharging traffic jam. The executed
activity plans are evaluated with a measure of utility as mentioned above. Based on the evaluation result, certain amount
of the agents (by default 10%) carries out a re-planning strategy such as changing mode choice or departure time. Smaller
values will significantly increase convergence times, while larger values might create strong oscillatory behavior. New plans
then are created and added into the memory of the agents. Agents afterwards decide to execute either the new plan or
choose one of the existing plans, preferably the ones with the highest evaluation score. This procedure is iterated via a
day-to-day learning process, until agent-based stochastic user equilibrium is achieved (Nagel and Flötteröd, 2009). Under

such equilibrium, not only travel behavior is stabilized, but also the utility of the entire daily activities, U j
plan, is indirectly

optimized. Please note that as it is complicated to achieve the classical stochastic user equilibrium for systems with such
multi-dimension behaviors. Trade-off needs to be made between computational cost of the iterations (e.g. a full-scale
one-day simulation of the Swiss city Zurich takes eight hours on a high-performance-computer) and the magnitude of
behavioral convergence. For detailed information on this subject or MATSim, the readers may refer to Nagel and Flötteröd
(2009) and Meister et al. (2010).
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2.2. MFD-based pricing scheme with user adaptation

The physical modeling tool, which is integrated in time-dependent pricing is the Macroscopic Fundamental Dia-
gram (MFD) of urban traffic, which provides for some network regions with a small heterogeneity in the spatial distribution
of congestion, a unimodal, low-scatter relationship between network vehicle density (veh/km) and network space-mean
flow (veh/h). The MFD offers an analytically tractable and parsimonious approach for modeling congestion with dynamic
features and is relevant to pricing-oriented policies to reduce congestion. The MFD approach permits the analysis of a set
of second-best strategies, which could not be investigated in classical economic models that fail to include hypercongestion
or are intractable for large-scale networks. Such measures include the use of advanced monitoring technology for metering
of access or perimeter control (Aboudolas and Geroliminis, 2013; Ramezani et al., 2015; Keyvan-Ekbatani et al., 2015 and
others), the reallocation of the existing network capacity and land use among urban zones (Tsekeris and Geroliminis,
2013) and area-based pricing (Zheng et al., 2012). The main logic of the strategies is that they try to decrease the inflow
in regions with points in the decreasing part of an MFD.

The MFD can be obtained via analytical approximations with variational theory (such as proposed in Geroliminis and
Boyacı (2012), Leclercq and Geroliminis (2013), or observed with real data from multiple sensors Leclercq et al. (2014),
Ortigosa et al. (2014), Ji et al. (2015) and others). If network density is regularly measured, the critical density Kcr beyond
which oversaturation accumulates in the network and congestion grows, can be identified. Knowing Kcr is important and
extremely helpful for traffic management, as the general principle of an MFD-based strategy aims at operating a network
at traffic states where density is no higher than Kcr. Once the network accumulation exceeds the critical density Kcr, control
actions will then be activated to guide the network to recover to states around Kcr. This type of actions in control theory lit-
erature have been addressed in transportation science mainly with integration of feedback control, and has been widely
applied in traffic regulation on real freeways (Papageorgiou and Kotsialos, 2010) and flow restriction at the perimeter of
urban networks (see previous paragraph for references), or mixed arterial-freeway networks for simple networks
(Haddad et al., 2013). Developing pricing strategies with similar control tools have an additional challenge. While in traffic
control, the effect of feedback is immediate and drivers might not have the ability to adapt (they might change only their
route), pricing could make users to make behavioral changes, e.g. change their departure time from the origin or change
mode of transport. Considering this adaptation in the development and design of efficient pricing schemes could be challeng-
ing, as the control action might not have the expected results. While large amount of research efforts have been put to
develop traffic control strategies based on the concept of the MFD, adaptation of travelers to these changes have not been
considered.

We attempt to build our pricing scheme to cover both aspects mentioned above. Given that the multi-dimension behav-
ioral adaptation is quite difficult to model in an analytical way, we consider that an agent-based framework influences their
decisions in an unknown way to the system operators (traffic manager). Nevertheless, the operators can monitor the aggre-
gated network performance through vehicle accumulations (or densities). The monitoring of vehicle accumulation can also
help identify spatial heterogeneity in congestion within a network. If the distribution of congestion exhibits strong hetero-
geneities, a partitioning algorithm (for example Ji and Geroliminis, 2012) should be applied to determine the area for pricing
implementation. A coordinated multi-area pricing scheme will be reported as a future research direction. In this work a
time-dependent area-based pricing scheme is applied. This means that any trip traveling in the area under consideration,
should pay the specified toll independently of the distance traveled. Trip-based tolls have been reported in the literature
(Levinson, 2010) as possibly more equitable, but also more difficult to implement.

A successful pricing scheme should consider that travelers adapt their behavior through a day-to-day learning process
and the aggregated effect of this behavioral adaptation might make the current pricing rate inefficient. The proposed pricing
control scheme takes this effect into account and adjusts the prices after some time periods. Recall that the agent-based
simulation performs iterations such that a system convergence point is reached. If prices change in every iteration, then
the travelers do not have enough time to evaluate their decisions and convergence might take too long because the learning
process of the drivers based on others’ choices is slower due to the intervention in the system. To be able to reflect the impact
on traffic performance when a certain pricing rate is applied, this pricing rate will remain unchanged during a required
number of iterations where the system is close to convergence. In our results, the system reaches close-to-equilibrium with
non-changing decisions for the travelers after around 50 iterations. We therefore take the system performance of the 50th
iteration as the representation of the permanent effect of the current pricing, and adjust the pricing such that less congestion
would be expected after the users re-adapt in the new pricing. A similar concept for pricing update is implemented in San
Francisco, where on-street parking prices are re-evaluated once per month (Pierce and Shoup, 2013).

Summarizing the discussion above, an illustration of this pricing scheme is displayed in Fig. 1. Detailed description of the
algorithmic steps is provided as the follows:

(i) Given an initial scenario without pricing, identify the congested area of the city where pricing will be applied and
obtain the shape of the MFD. In a real environment, this can be obtained from multi-sensor data and a partitioning
algorithm. For this paper, we utilize an agent-based simulation. The critical value of density that maximizes the
network flow, Kcr is estimated.

(ii) Observe the time series of network and identify the time intervals when the network density is higher than Kcr and
congestion occurs. Determine initial tolls by applying only the term c1(Kk(t) � Kcr) of Eq. (2).



Fig. 1. An illustration of the optimization algorithm of pricing.
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(iii) Let the system operate for a number of days with the determined tolls, until users learn and adapt and convergence is
reached (density time-series does not change significantly from day to day). In this paper, we run the agent-based
simulation with the updated toll for 50 iterations when system convergence is closely reached.1

(iv) Obtain the resultant traffic performance (final density time-series). Check if the network experiences states that
exceed Kcr. If there are still time intervals with congested states, apply a Proportional-integral type controller to adjust
the tolls, which is defined by Eq. (2). Repeat from step (ii).

(v) If Kk(t) < Kcr for all time intervals, finish price update and obtain the final toll.

Let us now focus on the equation for adjusting the pricing. Denote k, the k-th adjustment of the pricing. The toll at the
(k+ 1)-th toll adjustment for time interval t, Tollk+1(t), is proportional to (i) the magnitude that the average network density
Kk(t) exceeds Kcr and (ii) the difference between the resultant densities under the current pricing Kk(t) and the previous one
Kk�1(t). Recall that Kcr is the point in the MFD, where the maximum network production is reached and network production
decreases if Kk(t) > Kcr). A slightly smaller value is chosen, e.g. 0.95 Kcr, to facilitate stability of the system around the set
point.

Eq. (2) below is the pricing controller, where c1 and c2 are control gain parameters:
1 In o
conditio
Tollkþ1ðtÞ ¼ TollkðtÞ þ c1ðKkðtÞ � KcrÞ þ c2ðKkðtÞ � Kk�1ðtÞÞ ð2Þ
This equation employs a Proportional–Integral (PI) type controller which is a classic feedback control mechanism. It was
demonstrated that dynamic systems with well-defined properties (e.g. small errors in the traffic states) can be stabilized
with a feedback strategy to a desired state (Papageorgiou and Kotsialos, 2010). Similar dynamic control of pricing was
applied to the managed lanes (single-link level) with consideration on user’s willingness to pay (Yin and Lou, 2009). Com-
paring to the pricing schemes developed in Zheng et al. (2012) and Zheng and Geroliminis (2013), the proposed scheme gives
higher flexibility in toll adjustment based on user’s adaptation to the toll. In particular, this scheme allows reduction of toll if
Kk(t) is smaller than Kk�1(t) which benefits the users from not being overcharged. Parameters c1 and c2 have constant and
positive values. The values are chosen offline via a trial-and-error process to avoid oscillations (analytical solution would
be impossible to obtain for such a system with complex dynamics). We would emphasize that this pricing strategy is robust
to moderate parameter changes and has fast and global convergence. A sensitivity analysis on c1 and c2 will be provided at
the final part of the paper. Alternatively, price can be determined by solving optimization problems in real-time. An example
can be found in Lou et al. (2011) where prices are optimized to maximize the maximum flow of a freeway section meanwhile
maintain a free-flow condition for the high-occupancy-toll lane.

Note that a PI controller is applied for every time t independently of other times. The feedback is provided by iteration k,
which describes the adaptation of drivers from iteration to iteration (or day to day in the real world). Despite the fact that
ther networks or real environments the time to convergence might vary. By observing how the system evolves with time, close-to-convergence
ns can be observed with real data.
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Fig. 2. The MFD of the study site: (a-down left) network speed-density data scatter and (b-down right) the fitted network flow-density plot with indication
of the critical density Kcr.
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these controllers operate independently, it is found that the resultant pricing scheme is smooth with respect to time t. The
reason is that the space-mean density of the network Kk(t) evolves smoothly over time twhile correlation exists between the
level of congestion between the current and its previous time step t. Thus, the pricing scheme is based on the iteration-to-
iteration (or day-to-day) dynamic behavior and not in within-day dynamics, i.e. it is not a real-time pricing scheme. If such a
pricing scheme was developed at a link basis, it would be expected that results would have quite oscillatory behavior due to
the non-smooth dynamics of traffic for links (compared to spatial aggregations at network levels as described in the MFD
literature). Note that the density of the network at the final toll, should not be significantly smaller than Kcr during the peak
period. For example if the set-point of the controller is chosen at 0.5 Kcr, the capacity of the network is underutilized and the
system will operate at higher speed, but much lower flows. Note also that, the choice of Kcr and the final prices can be seen as
policy factors influencing the service level of general mobility. One may argue that if lower values are chosen, the toll is very
strict and over-charging might occur as the system operates in a state less than its capacity. Nevertheless, this does not nec-
essarily indicate over-charging unless the total toll paid outweighs the total savings in travel time. System operator can
choose the desired values in a way to maximize traffic flow and as a result to transfer the highest possible number of
passengers with small delays. The value of toll which results in points in the MFD just without the decreasing branch (a
graphical illustration can be found in Fig. 2) can be set as the lower bound, while the one which results the total toll paid
just equal to total travel time savings can be set as the upper bound in order to avoid over-charging. This higher toll will
push the system to operate at a smaller than the maximum flow during the toll period, but with higher average speed
and some potential savings in travel delay. This also implies that an operator can utilize a slightly smaller value to guarantee
a more reliable operation, e.g. capable of buffering if there is sudden disturbance from demand, as flow decreases (see for
example Geroliminis and Levinson, 2009).
2.3. Pricing strategies with accessibility improvement and incentive on public transport

Road traffic networks and management systems constitute a system of systems (SoS) with complex behaviors of various
modes of transport competing for the same space. A traditional approach of decentralized control design for traffic manage-
ment is not appropriate for heterogeneously loaded networks with multiple modes of transport and high congestion levels
(Haddad et al., 2013). Lack of collaboration between operators of different systems can result in sub-optimal and less effi-
cient conditions because it does not consider interactions and conflicts between different modes. Traffic systems should
be managed as a whole to improve their global operational efficiency while avoiding conflicting decisions. The proposed
MFD-based traffic management strategies thus should serve for this sustainable and global mobility goal. This requires
the consideration of alternative modes in the design process of pricing, understanding the impact of pricing on the operators
and the users of traffic systems, and development of integrated and smart pricing schemes that motivate user acceptability
and behavioral changes, as well as reaching equitable savings for all users.

We propose in this paper to simultaneously treat multimodality and equity with congestion pricing. Recently, several
works (Zheng et al., 2012; Simoni et al., 2015) are devoted to develop effective congestion pricing schemes similar to the
one of Section 2.2, however without treating multimodality or user heterogeneity. Operating at a decent level of public trans-
port (PT) services is important. If public transport is not attractive and mode shift is limited, congestion will preserve and
pricing will be inefficient. To this end, we redistribute a fraction of the toll revenue such that it serves as an incentive for
higher PT usage. Let us denote a pricing scheme without any toll redistribution, ‘‘pricing”. Meanwhile, the collected total toll
can be distributed in two possible ways: (i) to expand the number of bus lines in operation and bus network coverage, so that
the accessibility cost to bus (BA cost), decreases. We denote this strategy ‘‘pricing BA”; and (ii) in addition to (i), to provide a
one-time incentive money for travelers who shift their mode from car to bus. We denote this strategy ‘‘pricing BAI” (‘‘I” for
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incentive). Both strategies can be readily implemented in the simulator or in a city where travelers utilize a public transport
card, e.g. as in London. Regarding equity, thanks to the extension on VOT heterogeneity as introduced in Section 2.1, we
investigate a modified version of strategy ‘‘pricing BAI”, where the award money is only given to users who have low
value-of-time (presumably those who have lower income). Denote this strategy as ‘‘pricing BAIp” (‘‘p” stands for group
‘‘poor”). We expect that the design and operation of such incentive programs in practice are also feasible, however highly
dependent on political, financial and other influences. We do not wish to deepen our discussion into the direction of
policy-making, but to demonstrate via compact analysis that proper distribution of toll revenue for PT systems can have
critical impact on the efficiency and equity of congestion pricing. We will show in the next section the resultant performance
of each pricing strategy.
3. System performance under the pricing strategies

In this section, we demonstrate the performance of the proposed pricing strategies with a case study from the agent-
based simulation. The set-up of the case study is given in Section 3.1. In Section 3.2, system performances of the different
pricing strategies are compared and discussed. We now describe the chosen performance indicators. The primary goal of
pricing is to alleviate congestion in road networks. Thus, space-mean traffic density and the total travel time of all travelers
(person-hours traveled, PHT) are estimated as the measurement of traffic performance. Secondly we focus on the impact of
pricing on multimodal mobility and the efficiency of the pricing strategies. The efficiency is defined as the ratio between the
total saving of PHT (sPHT) and the total toll paid (TTP) by all travelers. To have the same unit of the two items, TTP is
converted to time units by VOT, denoted as vTTP. The impact on multimodality is considered as the third measure, which
is basically represented by the change of mode share of bus. Furthermore, we examine in Section 3.3 how user’s behavioral
response to the pricing over time and how the pricing rates are updated accordingly. These results will illustrate the mech-
anism and convergence feature of the proposed pricing scheme. In the last sub-section, we present a sensitivity analysis on
the control parameters of the proposed pricing controller as in Eq. (2).

3.1. Case study set-up

The case study is carried out in the well-known Sioux-Falls urban network. The structure of the network captures the
major arterial roads of the real city: highways with 3 lanes per direction at the perimeter of the network and urban roads
with 2 lanes in the city center. The average link length is 0.4 km. The total length of the network is 150 lane-kms. The scale
of the network is suitable for applying MFD-based analysis. The embedded public transport system serves five bi-directional
bus lines crossing the network (in total ten different operation bus routes). The spacing between bus stops is 0.6 km and the
frequency of service ranges from 5 to 15 min. The studied network area holds a total amount of 110,000 travelers. The daily
plans of the travelers are created based on detailed census data. The generated traffic demand exhibits typical morning- and
evening-peak characteristics. For more information on the design of the Sioux-Falls simulation scenario, readers may refer to
Chakirov and Fourie (2014). An area-based pricing is implemented for the whole network. Agents need to pay for the toll
once they decide to travel by car in the network independently of the trip length.

The steps presented in Section 2.2 are described in more details for the specific case study. The first task is to investigate
the existence of a well-defined and low-scattered network level MFD and then identify the critical density Kcr. As the MFD
depends on the property of a network, one can obtain parameter Kcr from historical data, e.g. analyzing the speed-density
relationship of the network for a few typical weeks. In our case, Kcr is estimated based on preliminary simulation results
when pricing is not implemented. Given that the traffic model of the agent-based simulator is simplistic and the route choice
adaptation is not well-captured, the network flow contains quite some scatter. Nevertheless, if the network speed-density
relation is well represented, it can be utilized to estimate the Kcr value. Speed and density data are collected from scenarios
of different demand profiles (population size, origin–destination loading, etc.), and the speed-density Macroscopic Funda-
mental Diagram is displayed in Fig. 2(a). Each data point corresponds to a network-level space mean during a 5-min time
interval. This speed-density curve is fitted by a natural-logarithm-family function and a best fit curve is obtained
v = 42 � 9.46 log k (the value of the R-square test is 0.95). Alternative functions may also be applied to approximate the
shape of the MFD. Given the fitted function and the dynamic equation Q = kV, where Q, K, V are network space mean flow,
density and speed respectively, the critical density that maximizes network flow is obtained by the solution of the equation
dQ
dK

��
K¼Kcr

¼ VðKcrÞ þ Kcr
dV
dK

��
K¼Kcr

¼ 0. Fig. 2(b) displays this MFD. Note that the y-axis is outflow or the trip finish rate of the net-

work, which is a scaled version of flow (related to the average trip length, see in Geroliminis and Daganzo, 2008; Leclercq
et al., 2015). We observe that Kcr does not vary from iteration to iteration and its value is approximately 32 veh/km. Note
that the network experiences many states with values larger than Kcr. Thus a time-dependent area-based pricing scheme
is expected to decrease network delays.

User heterogeneity is treated numerically as follows. We define and implement two user groups in the case study: A
group of users with a high value of VOT, which takes one third of the whole population, and a group with lower VOT for
the rest of the population. We consider that the mean VOT for the entire population has a value of 16 $/h. This value is
derived from Axhausen et al. (2007) who studied the VOTs of different types of Swiss travelers. Given this value, we assign
the VOT for the two groups to be 26 $/h and 11 $/h respectively.
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3.2. Network traffic performance

The simulations are executed following the algorithmic steps described in Fig. 1. A value of 0.5 $/(veh/km) and
0.3 $/(veh/km) is used for c1 and c2 in Eq. (2). Let us first examine the resultant traffic performance of the network, without
and with the implementation of pricing. Denote the two cases as ‘‘no pricing” and ‘‘pricing”, correspondingly. The density
time series of these two cases (left axes, the lines in blue and green) are displayed in Fig. 3(a). Time series of the final optimal
pricing is plotted in the same figure, where y-axis values are shown on the right-hand-side of the figure. The final pricing
gives a 0.8$/trip toll for the morning peak between 8 h and 8h30, and a higher step toll for the evening peak between
17 h and 19 h. We can observe that the congestion level of the network, as expressed by the density, decreases significantly
for both morning and evening peaks, albeit under different toll rates (see the secondary y-axis of the same graph).

In the same figure, we also display density and toll series when ‘‘pricing BA” scheme is implemented. Recall that ‘‘pricing
BA” improves the accessibility to PT service, e.g. the resultant average access (walking) time from home to bus stops is
assumed to decrease by 15%. Comparison of the results of this strategy with the other two cases highlights the importance
of the proposed congestion pricing scheme with a preferential treatment of PT. With the improvement in accessibility, we
find that congestion level can be further reduced (comparing density time series). It is intriguing that this is achieved at an
even smaller amount of toll. Estimated from the result, this strategy succeeds in maintaining network density under
40 vehs/km with 20% less toll charge. An interesting observation is that even if the set-point of the PI controller is set at
a value of Kcr = 32 veh/km, the network operates at densities close to 40 veh/km. This is the value that the system converges
after many iterations and not a higher price is chosen. The main reason is that the total cost of traveling by bus is about the
same with the cost traveling by car plus the toll for this specific density range. Thus, even if a higher price would be chosen,
this would result in worse system performance (higher total cost and unequal travel cost between the two modes) as public
transport is not any more attractive. This result motivates us to take a step further and we will show later that when incen-
tives are given to the users and PT is improved, the network will operate at lower car density values. Note that the optimal
tolls of both pricing strategies change smoothly and do not oscillate over time, making them feasible to implement in
practice. Note also that in Fig. 2(b) that the outflow of the network for density close to 40 veh/km is only 2.5% less than
the maximum outflow of Kcr. If one also considers the scatter of the MFD around these values, the difference is negligible.
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Table 1
Traffic and welfare gain among the three pricing strategies.

Strategies PHT (h) sPHT (h) vTTP (h) Efficiency ratio (%)

Pricing 69,124 3449 10,644 32.4
Pricing BA 64,165 8408 7626 110.2
Pricing BAI 64,785 7788 6602 118.0
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Fig. 3(b) illustrates the mode share of buses under the three pricing strategies. As expected, the number of bus users
increases with pricing implementation and improvement of level of service. Strategy ‘‘pricing BA” triggers a 5% increase
in mode shift than ‘‘pricing”, and a nearly 10% increase comparing to ‘‘no pricing”. Fig. 3(c) displays the change of departure
behavior, after pricing (the ‘‘pricing” scheme) is implemented. The time series in green2 (positive values) represents the
increase in departure during that time interval, comparing to the ‘‘no pricing” case, while the one in blue (negative values)
reflects the reduction of demand who attempt to avoid the cost of toll. Note that the values of the two curves do not add to
zero, because there is a significant amount of travelers prefer to change mode to remain traveling in the toll period without
increasing their travel cost. Nevertheless, it is clearly shown that travelers who persist in using cars attempt to avoid paying
the tolls. During the tolling period, reduction of departures can be observed. On the other hand, increases of departures are
clearly shown before and after the tolling period, especially in the evening when congestion is more evident. When traveling
during pricing period is necessary (e.g. during the evening peak 17–19 h), users choose to avoid paying higher tolls which is
reasonable. Note that in many pricing-related studies, public transport is not considered as an option. Therefore the benefit
of pricing comes from shift of departure time, while in this study bus serves as a competitive and attractive mode and mode
shift plays an important role in congestion reduction. Another interesting observation is that roughly similar amount of car-
usage reduction can be achieved in the morning by enforcing a much smaller toll rate than in the evening. To understand this
result, we will have a careful look on how densities and the corresponding pricing rates change over simulations in Section 3.3.

To quantify the effectiveness of the pricing strategies, we calculate the improvement in travel time (the PHT) over toll
adjustments, at an aggregated scale for cases ‘‘no pricing” and ‘‘pricing”. Under congestion pricing, the total PHT decreases
from 72,573 h to 69,124 h by 7%, while the average travel time by individual car travelers drops from 0.53 to 0.46 h/trip.
There is however no change for traveling by bus. The proposed pricing scheme is able to avoid highly congested states.
Nevertheless, travelers pay a high amount of toll to obtain such a decrease in PHT.

To quantify the efficiency of the pricing strategies, we estimate the sPHT (savings in travel time) and vTTP (the required
toll paid) which is the extra cost to the users. Savings are the difference in PHT comparing to the ‘‘no pricing” case. The sum
of these two terms is the ‘‘gain” of a pricing strategy. Traditionally from an economic point of view, pricing is considered a
transfer of money from car travelers to system operators and is not integrated in the objectives of the design. While the sci-
entific literature of pricing is vast, pricing implementations are very few and this might be because people are reluctant to
pricing and acceptability is limited. A smart and sustainable pricing strategy would hopefully result positive gains, without
imposing high expenses to the users. In Table 1, savings in travel time and efficiency ratio are estimated for the three pricing
strategies: ‘‘pricing”, ‘‘pricing BA”, and ‘‘pricing BAI”. The resultant PHT of the ‘‘no pricing” scenario is 72,573 h. The efficiency
ratio is obtained by dividing sPHT and vTTP. Since a fraction of the collected toll is returned to users, the toll value vTTP
should not be entirely viewed as cost term. Therefore from a total-cost perspective (i.e. PHT + vTTP), strategies ‘‘pricing
BA” and ‘‘pricing BAI” are even more efficient as part of the tolls are redistributed internally among the users.

The resultant efficiency ratios shown in Table 1 indicate, evidently, that pricing can be remarkably efficient when the toll
revenue is invested in improving accessibility of bus service, as well as when the mode shift to high-occupancy buses is
subsidized. Strategy ‘‘pricing BA” and strategy ‘‘pricing BAI” are able to reach an efficiency value larger than 110%. Note that
in the classical morning commute literature with a constant capacity bottleneck, pricing efficiency is at a maximum of 100%,
i.e. the total delay savings are equal to the total toll paid. Nevertheless, in case of urban networks with MFD representations,
the savings can be larger because the network operates at higher flows and congestion period is shorter. Note in Fig. 2(a) that
the pricing interval is smaller than the interval of congestion in the no pricing case. Another interesting observation is that
savings in travel time is smaller, when incentive is provided for mode shift (7788 h instead of 8408 h). The explanation is
given as follows. A significant amount of users switch to buses, given that they value the award money for doing so. How-
ever, traveling with bus is not as fast as with cars, since congestion does not exist anymore in the car network. As a result,
Strategy ‘‘pricing BAI” could not further improve the total travel time. Nevertheless, this strategy requires less toll to satisfy
the congestion management goal (because users are more willing to shift from car to bus), showing the highest efficiency
and equity, which will be further discussed in the next sub-section.

3.3. User adaptation and long-term stabilization

The objective of MFD-based traffic management strategies including the one developed in the paper are to monitor
network density and try to retain it at a desired level that maximizes system outflow, without the direct need for demand
2 For interpretation of color in Fig. 3, the reader is referred to the web version of this article.
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information or prediction. We have mentioned several of the state-of-the-art traffic signal control approaches in Section 2.2,
which are based on the MFD. In the current work, we intend to apply the same principle by utilizing a time-dependent area-
based pricing, which creates additional difficulties and complexities. Firstly, pricing influences travelers’ choices in non-fully
predictable ways, whereas in the ramp-metering or network-level perimeter control car users have to obey the controlled
traffic signals. Secondly, traffic signals mainly influence the delay of drivers after they make a decision to travel by car
and adapt signal settings in an online framework, while pricing attempts to change the behavior of a traveler before she
starts her trip (by influencing time of departure or mode choice). This is a long-term process, as the traveler has to learn
how to react in these changes. The controller that determines the dynamic pricing for influencing mode choice, considers
both the network congestion, represented by the different between density k and critical density Kcr (2nd term RHS of Eq.
(2)), and user’s behavioral change, represented by the evolution of density over pricing adjustments (3rd term RHS of
(2)), simultaneously. This is innovative, given that such control scheme is rarely reported in the literature of pricing. We have
demonstrated that such control approaches can also be successfully applied with congestion pricing. An interesting question
to investigate then is how users adapt their travel choices in short- and long-term periods, and how pricing responds inter-
actively with those changes.

We now investigate the evolution of network congestion densities, toll rates, total toll paid (TTP) and the total number of
mode shifters (from using car to bus) over toll adjustments. We also look into how travelers are adapting between the toll
adjustments. As mentioned before, we do not intend to change the toll in a day basis, as we need to provide time until the
system reaches some equilibrium. Fig. 4(a) and (b) display the time series of density and pricing of three toll adjustments,
k = 1, 4, 7, under strategy ‘‘pricing” before reaching the final optimal toll (in total 8 adjustments were performed). This graph
shows that the initial tolls (k = 1) are almost equally high for both morning and evening peak periods. The morning traffic
adapts quickly to the increased cost due to pricing, and the density level decreases to slightly above Kcr. The morning toll
is then lowered so that car users are not overcharged (see the graph for k = 4). It can be observed here that pricing decreases
with density. Nevertheless as density Kk(t) is higher than Kcr, it makes the term c1(Kk(t) � Kcr) (2nd term RHS of Eq. (2)) pos-
itive. Then a careful calibration of the c2 parameter leads to this result. If we would apply a simpler controller (such as the
one in Zheng et al. (2012)), this trend is not feasible. In other words, if c2 = 0, the pricing is not efficient.

We can observe that there is almost no induced demand for the morning peak, even though the toll rates become three
times less comparing to the initial toll. While for the evening peak, it seems that higher toll must be imposed and kept. The
reason is twofold: (i) travelers have to travel during the peak hour to perform their activities without scheduling penalties in
their utility. Leaving activities early would experience ‘‘schedule penalty” which is larger than the cost of pricing and (ii) the
PT mode bus is not sufficiently fast to trigger mode shift until the cost of pricing is greater than the difference in travel times
between car and bus. Therefore many users choose to travel even after pricing is applied, which weakens the elasticity of
demand towards pricing.

A third possible explanation of demand inelasticity lies on the fact that users who choose to travel with cars in the morn-
ing, have to travel with cars in the evening (e.g. to not leave their cars at work places), which constraints their mode choice in
the evening and forces them to take the high congestion tolls. However, as users (agents) can learn their experienced cost
iteratively, they have the opportunities to choose the other alternative mode (bus) and keep this plan if such change results
a higher utility by the end. Please note that the travelers if they decide to travel by car, they need to return the car at home by
the end of the trip, which constrains their alternatives, for example it is not possible to drive to work in the morning and
return by bus due to a high evening toll. Thus we believe the high pricing cost should have sufficient impact on mode choice.
However, when users finish their activities in the evening, they are forced to leave their work place since there is no utility of
staying late. Then, many car users travel anyway despite the high toll, which explains the cause of the inelasticity to pricing.
An alternative would be to travel by bus for all their trips during the day, as it is not possible to leave the car at work and
return by bus. Nevertheless pricing adjustment to user’s adaptation can be observed for the evening peak as well. As the
implementation of the initial toll decreases network density, a considerable drop of the toll rate can be found for k = 4 in
Fig. 5(b). Given this adjustment, it seems that travelers begin to switch back to the peak period and take advantage of
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the improved network condition. Our pricing scheme identifies this trend. The same figure shows that a higher toll is
re-implemented for k = 7. Recall that a pricing adjustment takes place approximately every 50-iterations of the agent-
based simulation (after 50 iterations user behavior is stable, and the behavioral change after more iteration is negligible).

A relevant question now is how sensitive are the travelers to the change of tolls and how fast they adapt. Fig. 5(a) plots
TTP for strategies ‘‘pricing” and ‘‘pricing BA” over the entire iterations. The initial pricing is implemented at the 100th iter-
ation. Since then, the tolls are adjusted every 50 iterations. It can be seen that travelers do not have previous experience and
overreact when the tolls are initially introduced, reflected by the huge jumps at the 150th (k = 2) and the 200th (k = 3) iter-
ations. Similar phenomenon can be observed in Fig. 5(b), where the number of mode shifters (from car to bus) is plotted over
iterations for the same two cases. After the 6th adjustment of the toll (the 350th iteration), both TTP and mode shifts change
slowly over toll adjustments. With sufficient amount of iterations, it is expected that user-equilibrium is achieved. These are
promising results, as they indicate that the developed pricing scheme shows smooth convergence in the long-term operation
that involves user adaptation. It is expected that a small level of induced demand might appear from time to time, and the
system would be able to adjust and avoid congestion without performing drastic behavioral changes. Note also that the total
money paid is significantly smaller for the final pricing (after iteration 500 or k = 7), which highlights the importance of pric-
ing adaptation after the first implementation. The efficiency ratio of pricing for k = 1 is less than 10%.

Let us now compare the price controller (2) with the controller developed in Zheng et al. (2012) for determining a peak-
hour cordon pricing scheme. Zheng et al. (2012) carried out the first work that introduces the concept of MFD for the update
of congestion prices, where the authors employed an I-type of controller optimizing prices to keep the network operate at
non-congested states. However, the authors only determined single price rates for the morning and the evening peak hours
respectively, which lack flexibility in dealing with fluctuation of congestion states within each peak-hour. It also lacks flex-
ibility in adapting the prices, since (I) public transport mode was not modeled sufficiently and provided as an alternative
mode, and (II) prices are updated without considering how congestion evolves over price adjustments. In this paper, limita-
tion (I) above is treated in our simulation model and pricing strategies treating public transport are discussed, while (II) is
incorporated by the third item at the RHS of the regulator in Eq. (2). Furthermore, the proposed pricing scheme shows an
improved pricing efficiency. We executed a few simulation scenarios of different random seeds, applying the controller of
Zheng et al. (2012) and the proposed ‘‘pricing” strategy of controller (2) without treatment on improving bus service or
distributing mode shift incentives.

The resultant efficiency ratio is found on average 23% which is nearly 10% less than controller (2) which has a mean value
of 32%. It is not surprising that such improvement can be achieved, given that user adaptation is taken into account in the
pricing update process, which helps avoid overpricing on the users. As parameter c2 in Eq. (2) does not exist and the bus
performance is worse than the cost of car travelers at Kcr, the pricing mechanism will continue to increase the pricing despite
the fact that mode shift is constraint due to bus performance and results in overpricing.
3.4. Sensitivity analysis on the control parameters

Given the complexity of the system dynamics, analytical derivation of the two parameters c1 and c2 in price controller (2)
is extremely difficult, as these dynamics are influenced by both user adaptation and mode choice. Therefore parameters c1
and c2 were determined via trial-and-error. In this sub-section, our objective is to show through a sensitivity analysis that
system performance does not differ significantly when proper values of the parameters are chosen, and the proposed pricing
controller shows robustness in congestion reduction. To this end, we vary the values of both c1 and c2 and execute the sim-
ulations under five combinations of the parameters. This variation is represented by the percentages that the values of the
two parameters are changed, comparing to the values utilized in a base scenario. Due to the computational cost of the
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simulation runs, we investigate and present the results of five combinations, while a more comprehensive analysis would be
tedious and similar conclusions can be drawn.

All the five scenarios reach the agent-based equilibrium where the average cost of the users nearly keeps unchanged.
Fig. 6 displays the resultant density series and toll rates under equilibrium. The different values given to c1 and c2 are listed
in the legend (using this metric, the base scenario owns c1 100% and c2 100%). According to the figure, it is evident that the
values of the parameters affect the final congestion level and optimal toll. Let us compare these two performance indicators
between an aggressive toll scheme where price changes with higher magnitude (for example in the case of c1 200%, c2 50%)
and a mild toll scheme (the case of c1 50%, c2 50%). The aggressive scheme imposes higher toll rates, which consequently lead
to a larger reduction of congestion (lower density level on average). Now if we compare the efficiency ratio of the two toll
schemes to the one of the base scenario, we find that the aggressive toll scheme gives almost the same ratio (32.3%) as the
base scenario (32.4%) while the mild scheme shows a slightly smaller ratio (25.6%). The total travel time (PHT) for the three
cases are 68,413, 69,124 and 69,988 respectively.

As a general remark, the system performance appears not very sensitive to the fluctuation of the chosen values of the
control parameters. While further case studies might be needed, we argue that the efficiency of the final pricing is not sig-
nificantly dependent on the choice of parameters if a range of proper values can be found in advance via trial-and-error. It
should be noted that differences in the final system performances can still be identified, which are as expected. Nevertheless,
it is infeasible to obtain optimal control parameters via analytical ways using classical control theory approaches, for trans-
portation systems of complex behavioral dynamics.
4. The impact of user heterogeneity

The last section of this paper is dedicated specifically to the impact of pricing on users with different VOTs. We consider
that the heterogeneity in VOT, which are obtainable from surveys, causes differences in mode choice behavior and the per-
ceived travel costs. Utilizing this setting, we investigate the responses of two user groups to congestion pricing, and the
equity conditions of various pricing strategies. We aim to propose feasible and equitable pricing strategies where the savings
are in favor of the more vulnerable groups.

The simulation scenarios (in terms of simulation setting, random seeds, etc.) remain the same as presented in the previ-
ous section. Only that now these scenarios are extended with two groups of users having two different VOTs, and we analyze
the results more at a disaggregated user-group level.
4.1. Heterogeneity in mode choice

Let us start with the observations on the behavioral difference of users, when heterogeneity is introduced. We demon-
strate this in the ‘‘no pricing” case. A comparison of the resultant mode share of buses between the two groups is displayed
in Fig. 7(a) for scenario without user heterogeneity (a single user group, thus the mode split has the same value) and the
scenario with the two groups defined earlier. Denote the user group with high VOT the ‘‘R group” and the one with low
VOT the ‘‘P group” (as rich vs. poor groups). It is observed that the two groups have strong contrast in mode choice behavior.
While the mode share of buses is identical for the single-group scenario, there is nearly 10% difference between the R group
and the P group when two VOTs are differentiated. It is obvious that the R group tends to prefer traveling with cars, as it is
faster. This is logical because travel time is valued much higher for the users of this group than those of the P group. While for
the P group, mode share of buses increases even if the utility difference remains the same between traveling with the two
modes. The reasoning is exactly the opposite of the one for the R group: Since now the P group has a smaller VOT, travelers
care less about the cost of travel time therefore are more ‘‘willing” to choose traveling by bus.
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Fig. 7. (a-left) Mode choice difference of the two user groups, without congestion pricing, and (b-right) comparison of mode shift, toll paid and the net
savings between the two user groups under strategy ‘‘pricing”.
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When congestion pricing is applied, the two user groups exhibit distinct reactions which are as expected. Fig. 7(b) dis-
plays the comparison of the resultant mode shift (the percentage of users shift from cars to buses after pricing), average toll
paid per person (total toll paid divided by the total amount of the paying users), and the average net savings per person (net
saving is the difference between the reduction in total travel time and the total toll paid by all users) under strategy ‘‘pric-
ing”. It is found that more users of the P group tend to switch to buses, though the numerical results seem to suggest a minor
difference between the two groups. The resultant average pricing rates (toll) indicate that the R group users are willing to
pay 0.3$ more for traveling faster with cars. The net saving is negative for the entire population, and almost equivalent
for the two groups. These results are consistent with the findings summarized in Levinson (2010) which highlighted the dif-
ference in behavior of travelers with different VOTs. We will show next that pricing strategies that treat in a preferential way
public transport, can have positive savings for the users (delay savings are higher than toll paid).
4.2. Distributional effect under different pricing strategies

We now aim to shed some light in the equity perspective of the proposed pricing strategies. We define here equity as the
(average) savings in travel cost which include both travel time and toll paid. Fig. 8(a) illustrates the mode shift by strategies
‘‘pricing”, ‘‘pricing BA” and ‘‘pricing BAIp” (recall that strategy ‘‘pricing BAIp” distributes subsidy only to the mode shifters
from the ‘‘P group”). Mode shift here calculates the mode shift to bus under each of the three strategies compared to the ‘‘no
pricing” case. It can be seen that as the incentive of using buses arises, there is an increasing demand for both groups to travel
by bus. This is not only because pricing increases the cost of car, but also because PT benefit increases the attraction of bus.
For the R group, it is evident that users are reluctant to change mode even though traveling with bus becomes less costly.
Mode shift is found below 1% under strategy ‘‘pricing” while less than 2.5% under the other two pricing strategies. This is
probably due to the fact that traveling with cars becomes less costly at the same time as more users travel with buses, mak-
ing travel by car remain attractive for the R group that values travel time more importantly. While for the P group, the resul-
tant mode shift shows a clear tendency of growth as the strategies provide more benefit by improving the bus level of
service. Under strategies ‘‘pricing” and ‘‘pricing BA”, the mode shifts are 1.8% and 4.5% respectively, almost double for the
mode shift of the R group. Under ‘‘pricing BAIp” the percentage goes to 6.8% which nearly triples that of the P group. Com-
paring to strategy ‘‘pricing BA”, ‘‘pricing BAIp” makes 3% more users of the P group switch their mode.
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Fig. 8(b) illustrates the comparison of average toll paid and average savings for the two user groups under the three pric-
ing strategies. In all cases, the R group users are willing to pay higher toll to reserve the right of traveling with cars. Note that
both user groups benefit from the PT incentives, since they all get positive savings. The savings of the P group users outweigh
the R group by 100% when subsidy only provided to the R group. As the users of the P group are generally considered to rep-
resent the users with lower income (Börjesson and Eliasson, 2014), strategy ‘‘BAIp” is undoubtedly a more equitable pricing
scheme. These results indicate that heterogeneity of users and distributional effect should be treated carefully when design-
ing strategies and policies of congestion pricing, so that beneficial and equitable conditions can be achieved for all travelers.
5. Discussion

In this paper, we developed and investigated time dependent area based pricing strategies for congested multimodal
urban networks with consideration of two user groups with heterogeneous value-of-time. A time-dependent area-based
pricing scheme was proposed, where the tolls are iteratively adjusted through a Proportional–Integral type feedback con-
troller, based on both the level of congestion represented by the MFD, and user’s adaptation to the toll cost. With this pricing
scheme, we integrated incentive schemes to improve PT accessibility and services for motivating mode shift and increasing
the efficiency of the pricing and investigated the impact of pricing on the two groups of heterogeneous users with different
values-of-time. The pricing strategies were tested in an agent-based traffic simulation model, to ensure that behavioral
changes by pricing are well captured. Case study of the Sioux Fall network revealed appealing results: (i) the proposed toll
scheme is highly effective in congestion reduction, (ii) comparing to similar toll schemes in literature the proposed pricing
scheme is more flexible in toll adjustment as it takes user adaptation into account, and showed a smooth user equilibrium in
long-term operation (iii) significant difference in behavioral responses and trip costs were found for the two groups of users,
(iv) by integrating incentive programs, the pricing scheme achieved large welfare gain for all user groups and (v) by realizing
user heterogeneity, pricing strategies can be designed to achieve more equitable result. The output of this paper can be of
great importance to the existing pricing-based management strategies in practice, for example to support the optimization
of the congestion toll scheme in different cities worldwide. On-going work further investigates the equity of the pricing
schemes, e.g. welfare distribution among different trip purposes and impact on trip departures. How such pricing scheme
can help maintain network performance under network disruption scenarios such as road construction (encouraging detour
around the bottlenecks) will also be under investigation.
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