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Why this study?

Plasma turbulence in the SOL and across the last closed flux surface determine the heat load on
the walls and the plasma confinement, two crucial issues on the way towards a fusion reactor

What do we present in this poster?

1. A new formulation of the vorticity equation that allow us to relax the Boussinesq approximation
2. The energy conservation properties of the new system of equations
3. Results of turbulent simulations in the SOL with and without the Boussinesq approximation with the

GBS code [Ricci 2012, Halpern 2016]
4. Results of turbulent simulations across the last closed flux surface with the Boussinesq approxi-

mation taking into account a cold and a hot ion regime

1. Relaxation of the Boussinesq approximation: new formulation of
the vorticity equation

I Context: in the Edge-SOL is reasonable to use a fluid approximation, in particular the drift-reduced
Braginskii equations [Braginskii 1965, Zeiler 1999]

I The Boussinesq approximation is used in the evaluation of the divergence of the polarisation current:
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I It simplifies the solution of the Poisson equation necessary to evaluate the electric potential

Derivation of a new vorticity equation
1. We start from the ion momentum equation given in [Braginskii 1965] – with d

dt ≡
∂
∂t + (v i · ∇) –
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2. Hypothesis 1: ∂/∂t ≈ (ρ2
i /L

2
⊥) ωci � ωci . Making use of this ordering and taking the cross product of

Eq. (2) with the unit vector b =⇒
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ZenB2 , with φ the electric potential (E = −∇φ)

3. Hypothesis 2: magnetic field variation on length scales of order R (tokamak major radius), which
is larger compared to the perpendicular turbulent length scale (L⊥/R � 1), this implies: ΠFLRi0 =
−min (vdi · ∇) v i =⇒ ‘gyro-viscous’ cancellation

4. Hypothesis 3: plasma quasi-neutrality (n = ne = ni). Or, equivalently, we consider the stationary
charge conservation equation, ∇ · j = 0 =⇒
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5. From Eqs. (3), the new formulation of the vorticity equation is:
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with Ω the new scalar vorticity: Ω = ∇ · ω = −∇ · [b × (nv⊥i0)] = ∇ ·
(cn
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ZeB∇⊥Pi

)
and ω the

perpendicular vector: ω = −b × (nv⊥i0) = cn
B∇⊥φ + c

ZeB∇⊥Pi .

6. The Poisson equation for the electric potential φ, ∇ ·
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B∇⊥φ
)

= Ω − c
ZeB∇

2
⊥Pi , is solved with an

efficient parallel multigrid method.

2. Energy conservation with the new vorticity equation

I Taking into account the continuity, parallel and temperature equations (for ions and electrons) together
with the vorticity equation (4) we obtain the expression of the time evolution of the total energy of the
system:
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What do we learn from these equations?

1. The total energy varies because: Joule, viscous dissipation and the approximation made in the
drift reduction of the Braginskii equations (see the ε term Eq. (6))

2. The first term of Eq. (6) is a curvature term. Using Hypothesis 2 we find that this term is smaller than
the first term on the left hand side of Eq. (5) by a factor L⊥/R � 1

3. The second term of Eq. (6) is of order (vpol · ∇). Comparing this last term with the corresponding term

on the left hand side of Eq. (5), (d/dt), using Hypothesis 1: vpol · ∇ ≈
ρ2
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4. Therefore, if the dissipation terms can be neglected, the new model conserves the total energy
within the ordering used for its deduction

3. Boussinesq approximation effect in the SOL

I Turbulent simulations in the SOL, taking into account
the Boussinesq (B) and the non-Boussinesq (NB)
model

I A safety factor q scan
I We considered cold ions (τ = Ti0/Te0 = 0) and a hot

ion regime (τ = 2)
I Evaluation of the SOL pressure typical radial

length, defined as LP =
〈 ∣∣∣1P ∂P
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Figure 1: Radial pressure length (ρs units)
as a function of the safety factor q.

Our findings
1. For τ = 0 the difference in the LP value

between the B and the NB model is of a
few percent (see Fig. 1)

2. LP is 10% larger for the NB model com-
pared to B if q = 3 and τ = 2 are con-
sidered (see Fig. 1)

For the case q = 3 and τ = 2 (see Figs. 2
and 3):

Figure 2: SOL snapshot of the pressure field for NB (left)
and B (right) models, q = 3 and τ = 2.

I In Fig. 3 –Left– a flattening of the pressure
profile is visible for the NB case

I The enhancement of the turbulent transport
explains the flattening of P, or increase of LP

I In Fig. 3:
a. For NB: the standard deviation has larger val-

ues
b. For NB: the pressure spectrum shows

stronger fluctuations with lower poloidal mode
numbers
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Figure 3: –Left– pressure (semi-log), mean profile and profile at the low field side (LFS). –Center– stan-
dard deviation profile. –Right– poloidal mode number spectrum, for q = 3 and τ = 2.

4. Averaged plasma profiles at the Last Closed Flux Surface

I Two regimes are considered: τ =
Ti0/Te0 = 0 and a hot ion regime with
τ = 1

I The simulations are performed for two

normalized resistivities: ν =
e2n0R
micsσ�

=

{0.05,0.1} ∝ n0R
/
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e0

I We find an increase of the inverse pres-
sure gradient length

∣∣∣L−1
P

∣∣∣ at the LCFS
for the hot ion case with low resistivity

I The increase of
∣∣∣L−1

P

∣∣∣ is correlated with
the increase of the poloidal E × B ve-
locity and velocity shear

Figure 4: Edge-SOL snapshot of the pressure field –left–
and electric potential –right–, for τ = 1 and ν = 0.05.
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