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Sensitive and Accurate Dispersion Map Extraction of
HNLFs by Frequency Tuning of a Degenerate FWM

Fatemeh Alishahi, Armand Vedadi, Mohammad A. Shoaie, Camille-Sophie Brès, and Khashayar Mehrany

Abstract—A sensitive and accurate method for dispersion map
extraction along an arbitrarily profiled highly nonlinear fiber
(HNLF) is proposed. High sensitivity is achieved by positioning
the wavelength of a signal at the band edge of the modulation in-
stability (MI) spectrum generated by an intense degenerate four
wave mixing (FWM) pump. In doing so, the to-be-extracted disper-
sion fluctuations leave a more drastic effect on the FWM-generated
power since they either inflate or deflate the MI spectrum. The ac-
curacy of the method is increased by monitoring the distribution
of power along the fiber. Once the power distribution is measured
along the fiber, dispersion map of the HNLF is extracted using an
appropriate inverse algorithm, which reconstructs the dispersion
with a highlevel ofaccuracy.

Index Terms—Brillouin optical time domain analysis, dispersion
map, four wave mixing, highly nonlinear fiber, parametric ampli-
fication, zero-dispersion wavelength.

I. INTRODUCTION

H IGHLY Nonlinear Fibers, (HNLFs), can be fabricated
with dispersion properties which enhance nonlinear inter-

actions based on four-wave mixing (FWM) within the telecom-
munication band [1]–[4]. The nonlinear effects are generated
with relatively low input powers thanks to the large nonlin-
ear coefficient of the HNLF due to its small mode effective
area and high amount of dopants [5]. Despite the remarkable
level of maturity in the fabrication process of HNLFs [3], [6],
[7], the dispersion characteristics along the fiber are signifi-
cantly altered by the inevitable microscopic variations of the
HNLF cross section [5]. The random fluctuations of the dis-
persion characteristics, even when they are as short as few me-
ters, strongly affect the phase matching condition and thereby
degrade the overall performance of FWM processes [7]–[10].
Fortunately, compensation schemes are available to counter-
balance the phase matching fluctuations caused by dispersion
fluctuations along the fiber [11]–[13]. An efficient compensa-
tion scheme for HNLF, however, requires having reliable dis-
persion map along the fiber [6], [7], [12]–[14]. One tenable
methodology for extraction of the dispersion map is to initiate a
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type of localized nonlinear interaction and the sought-after dis-
persion map can be extracted nondestructively by monitoring
the localized interaction [6], [14]. Generally, this methodology
becomes convoluted when the efficiency of the nonlinear inter-
action is predominantly determined by the nonlinear coefficient
of the fiber rather than the to-be-extracted dispersion. This is
what handicaps dispersion map extraction of HNLFs. Not sur-
prisingly, the only present scheme for extraction of dispersion
map is the elegant and elaborate work of Myslivets et al. [6],
[7], [15]. Although, this interesting method provides sub-meter
scale resolution, it is inevitably complicated both from the ex-
perimental [5], [7] and dispersion reconstruction algorithm [15]
viewpoints.

Basically, the extracted dispersion map using localized non-
linear interaction would have two resolution features; one is
the physical spatial resolution or simply the resolution, which
defines the minimum distance of resolvable points along the
fiber axis. Second is the vertical resolution which relates to
minimum resolvable difference between the values of disper-
sions at two consecutive spatial points. Although, any spatial
frequency concept such as dispersion would inevitably feature
a theoretical spatial resolution as well, it may be disregard for
being negligible compared to the meter-scale physical spatial
resolution. Though, the physical spatial resolution of extracted
dispersion is simply the spatial resolution of the measurements,
the vertical resolution of dispersion map is not directly acces-
sible. It can only be assessed in any dispersion map extraction
scheme via the vertical resolution of the powers of the local-
ized interactions. However, as the power of waves at a specific
point along the fiber depends on the average of dispersion over
the propagation length [16], [17], the vertical resolution of the
dispersion is poorly reflected in the vertical resolution of the
measured power, in general. Therefore, it is crucial to reach to a
scheme that enlarges the effect of dispersion vertical resolution
and reflects it in the vertical resolution of nonlinear localized
interaction or in other words enhances the sensitivity.

In this paper, for the first time to the best of our knowledge
a less complex yet highly sensitive approach is proposed for
extraction of dispersion map in HNLFs. The success of the
proposed method is indebted to the following facts. First, the
efficiency of the nonlinear interaction in which the dispersion
fluctuations of the fiber are reflected is measured by monitoring
the distribution of the generated FWM power along the fiber
instead of optical power measurement at the fiber output [6].
However, distributed power measurements would not necessar-
ily render enough sensitivity for HNLF dispersion extraction.
Therefore as the second fact, the wavelengths of the interact-
ing waves are carefully chosen to ensure that the sensitivity
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of the scheme is enhanced. As the result of high sensitivity, the
improved accuracy of the method is assessed using the simulate-
then-retrieve procedure [15].

The remainder of this paper is organized as follows. Initially
in Section II, theory of FWM interaction under dispersion fluc-
tuations is introduced. Then, the proposed method for the deriva-
tion of dispersion map is explained in Section III. In Section IV,
the method introduced in Section III is numerically studied and
its enhanced sensitivity and as the result, high accuracy for dis-
persion reconstruction are demonstrated using numerical sim-
ulations. After that, the obtained results from the experimental
setup introduced in Section III, are presented and validated in
Section V. Finally, the conclusions are made in Section VI.

II. THEORETICAL FOUNDATION

One conceivable method to extract the dispersion map of
an HNLF in a non-destructive fashion is to call upon nonlin-
ear interaction whose efficiency depends on dispersion. In a
degenerate FWM process, the dispersion fluctuation at signal
and idler frequencies counterbalance each other in the linear
phase mismatch term of the process while the contribution of
the dispersion fluctuation at the pump frequency remains in-
tact [16], [17]. This fact taken at its face value suggests that
extraction of the dispersion fluctuation at the pump frequency
is straightforward. Regrettably, however, the efficiency of the
nonlinear process is not solely determined by the linear phase
mismatch term. Therefore, extraction of dispersion fluctuations
at the pump frequency is not as straightforward as one might
expect. This fact is better understood by studying the follow-
ing equations governing the power distribution of pump, Pp(z),
and two sidebands which are hereafter referred to as the signal,
Ps(z), and the idler, Pi(z):

dPp/dz = 2γPiPs sin(θ) (1-a)

dPs/dz = −γPpPi sin (θ) (1-b)

dPi/dz = −γPpPs sin (θ). (1-c)

In these expressions, γ is the nonlinear coefficient of the fiber
and is assumed to be uniform along the fiber. It should be noted
that the HNLF loss has not been taken into account [6], [15] as
a result of typical short length. The pump, signal, and idler are
frequency matched but are not necessarily phase matched. Their
relative phase mismatch θ(z) is as follows and determines the
efficiency of their nonlinear interaction [16], [17]:

θ(z) = θl(z) + θn (z) + θ(0), (2-a)

where

θn (z) = γ

∫ z

0
2Pp − Ps − Pi

+Pp

(√
Pi

Ps
+

√
Ps

Pi
− 4

√
PiPs

Pp

)
cos(θ)dz′ (2-b)

and

θl(z) =
∫ z

0
Δβ(z′)dz′ (2-c)

These expressions show that the complexity of extracting
dispersion fluctuations at the pump wavelength is due to the
following two factors. First, the sought-after dispersion map at
the pump wavelength λp along the fiber, D(z, λp), contributes
in the linear term of the overall relative phase mismatch, θl(z),
via the integral of the linear propagation constant mismatch
Δβ(z):

Δβ(z) ≈ −2πc

λ2
P

D(z, λP )Δλ2 (3)

where c, and Δλ are the speed of light at free space, and
the wavelength detuning of pump and signal/idler, respectively.
Therefore, single measurement of the optical power at the fiber
endpoint does not provide the desired dispersion map D(z, λp),
but its integral along the fiber. Second, γPP is usually a no-
ticeable term in HNLFs such that nonlinear power interaction
represents a non-negligible contribution to the overall relative
phase mismatch.

The abovementioned issues can be addressed by taking the
following measures. First, the number of optical power measure-
ments can be increased to provide further information, which
is needed to find the integrand, i.e., the linear propagation con-
stant mismatch Δβ, from the integral, i.e., the relative phase
mismatch θ(z). Second, the contribution of the linear relative
phase mismatch term, θl(z), in the nonlinear power interaction
efficiency should be enhanced considerably. In what follows we
introduce an experimental plan that resolves both mentioned
issues.

III. THE PROPOSED METHOD FOR EXTRACTION OF DISPERSION

The idea of localized nonlinear interaction [6], [7], [18]–[22]
can be implemented to extract the dispersion map of HNLFs.
The basic principle is to initiate a localized nonlinear interac-
tion whose efficiency depends on the dispersion characteristics
of the spot at which the interaction is taking place. The ef-
ficiency of the nonlinear interaction is implicitly measured at
either ends of the fiber, and the sought-after dispersion map
is extracted by sweeping the nonlinear interaction spot along
the fiber. The localized nonlinear interaction can be initiated by
either two co-directional waves with different velocities [19],
or two contra-directional waves colliding each other [6], [20]–
[22]. The latter strategy is adopted here since it can reach the
meter-scale resolution [6], [20] while the resolution of the earlier
strategy is limited to the kilometer scales [19]. There are number
of elegant works [20]–[22] which have used nonlinear localized
interaction between contra-directional waves, and successfully
extracted the dispersion map of SMFs or DSFs. However, these
methods are not useful for nearly dispersion-less HNLFs since
localized nonlinear interaction in such fibers is not sensitive
enough to dispersion characteristics [6].

Our proposed method is based on Brillouin Optical Time-
Domain Analysis (BOTDA) [23], which counts among optical
time domain reflectometry techniques [24]. It has been already
implemented for the realization of localized nonlinear interac-
tion between contra-directional waves [25]–[27]. The basic idea
is that a pulsed wave acts as a pump for Brillouin interaction with
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Fig. 1. (a) Experimental setup of the proposed scheme. PD: Photo-detector. The insets show the spectral components at each point. (b) Polarization locking
scheme for parametric interaction.

a counter-propagating continuous-wave (CW) probe [25]–[27].
Using BOTDA idea, proposed experimental plan is developed
which can effectively extract the dispersion map along HNLFs.

The proposed experimental setup is schematically shown in
Fig. 1(a). An intense CW pump is generated by a tunable laser
(TL1) and phase modulated by a 10-GHz pseudo-random bit
sequence. An erbium-doped fiber amplifier (EDFA) followed
by a tunable filter, then boosts the pump to the fiber under
test. The pulsed Brillion pump and two CW probes share the
same laser source (TL2). The pulsed Brillouin pump is pro-
duced by periodically gating a semiconductor optical amplifier
(SOA) for almost 80 ns at a period of 6 μs. This pulse dura-
tion corresponds to almost 8 meter spatial resolution. Using a
wavelength-division multiplexer (WDM) the Brillouin pump is
combined with the CW pump. They both pass through a polar-
izer and are injected into the same end of the fiber under test
(FUT). The CW pump wavelength is adjusted slightly above
zero- dispersion wavelength (ZDW) and thus modulation in-
stability (MI) bumps appear at the fiber end [17]. Moreover,
since the Brillouin pump is considerably weaker than the CW
pump and its wavelength lies within the MI spectrum of the CW
pump, both waves interact [15], [16] and generate an idler wave
through Eqs. (1) and (2). The CW pump, the Brillouin and the
generated waves are hereafter referred to as the FWM pump,
the signal and the idler, respectively. They travel along the FUT,
and are monitored in an optical spectrum analyzer (OSA).

The other portion of TL2 is carrier-suppressed-intensity-
modulated by a CW tone with frequency of 9.8 GHz. This
frequency is approximately matched to the average Brillouin
frequency shift of the fiber, WB . Hence, the two generated CW
sidebands referred to as probe waves have the frequency detun-
ing WB with the signal pulse. As pointed out in our previous
work [26], the double sideband probe configuration provides
far more robustness and accuracy. A polarization switch (PSw)
switches the probe polarization between two orthogonal states
by having its bias changed from +5 V to -5 V and vice versa.
After passing through the PSw, the probe waves are routed to
the opposite end of the fiber. Finally, one of the probe waves

is selected by a fiber Bragg grating (FBG) and is routed to the
oscilloscope (OSC).

Also, a programmable procedure has been run to ensure
the alignment of the parametric pump and signal polarizations
[26]. The basic of this procedure is graphically demonstrated in
Fig. 1(b). In four runs of the experiment, the probe powers are
captured in OSC and sent to a processor. In the first two runs, the
power traces of either of the probe sidebands for two states of
PSw are obtained while the FWM pump is on. Measured traces
of OSC relating to the probe power at location z = 0 of fiber
can be written as [25], [28]:

P̃ ON
H (0, t) = P0 × exp

(
∓

∫ c(t−T )/ 2

c(t+T )/ 2
gH

B (z)Ps(z)dz

)
(4-a)

P̃ ON
V (0, t) = P0 × exp

(
∓

∫ c(t−T )/ 2

c(t+T )/ 2
gV

B (z)Ps(z)dz

)
(4-b)

where gH
B (z) or gv

B (z) denotes the Brillouin coefficients [29]
for either of polarization states of the probe, Ps(z) is the signal
power along the fiber, P0 represents the input power of the CW
probes and T stands for the signal pulse width. The plus and
minus signs account for the Brillouin gain and loss, respectively,
as one of the probes experiences Brillouin gain and the other
Brillouin loss. In the last two runs of the experiment, the time
variations of the probe sidebands at OSC are measured when
the FWM pump is turned off and the PSw is in either of its
polarization states. These powers recorded at point z = 0 via
the OSC, are:

P̃ OF F
H (0, t) = P0 × exp

(
∓

∫ c(t−T )/ 2

c(t+T )/ 2
gH

B (z)Ps(0)dz

)
(5-a)

P̃ OF F
V (0, t) = P0 × exp

(
∓

∫ c(t−T )/ 2

c(t+T )/ 2
gV

B (z)Ps(0)dz

)
(5-b)

In the above equations, Ps(0) is the input peak power of the
signal. It can be easily verified that the exponentials in Eqs. (4)
and (5) can be approximated by their first order Taylor series
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expansion [25]. That is:

P̃ j
i (0, t) ≈ P0 ×

(
1 ∓

∫ c(t−T )/ 2

c(t+T )/ 2
gi

B (z)Ps(0)dz

)
(6)

in which, i = H,V and j = ON,OFF . Therefore, for zero av-
erage powers, Pi

j (0, t) ≈ P̃ j
i (0, t) − P0 , the following equality

holds:

PON
H (0, t) + PON

V (0, t)
POF F

H (0, t) + POF F
V (0, t)

=

∫ c(t−T )/ 2
c(t+T )/ 2 g

(
B z)Ps(z)dz∫ c(t−T )/ 2

c(t+T )/ 2 g
(
B z)dz

(7)

in which gB (z) = gH
B (z) + gv

B (z) is the scalar Brillouin gain
coefficient [29]. For short signal pulses, i.e. for small cT
values, Eq. (7) yields the normalized signal power, η(z) =
Ps(z)/P (0), as:

PON
H (0, t) + PON

V (0, t)
POF F

H (0, t) + POF F
V (0, t)

≈ η(z = ct/2) (8)

Now, η(z) obtained by Eq. (8) can be attributed to the disper-
sion coefficient via Eqs. (1) and (2), provided that polarizations
of the signal, FWM pump and the generated idler inside FUT
are aligned. If signal is not completely aligned to the pump at
fiber input, its polarization wanders randomly inside the fiber
due to the pump pulling effect [30]. As a result, the parametric
gain η(z) in each run of experiment is not the same. Therefore, a
sanity check for the polarization alignment is to inspect whether
following equality is satisfied [26]:

PON
H (0, t) + PON

V (0, t)
POF F

H (0, t) + POF F
V (0, t)

= 0.5

×
[

PON
H (0, t)

POF F
H (0, t)

+
PON

V (0, t)
POF F

V (0, t)

]
(9)

Therefore as depicted in Fig. 1(b), the four mentioned mea-
sured traces are recorded and processed to see whether Eq. (9)
is satisfied. If not, the polarization controllers in the path of the
signal and pump are retuned until Eq. (9) is satisfied.

IV. NUMERICAL STUDY OF THE PROPOSED METHOD

As already pointed out in Section II, the efficiency of the
nonlinear interaction between the FWM pump and the signal
depends not only on the dispersion map but also on nonlinear
coefficient of the fiber. Therefore, it is tried to seek for a spectral
regime in which the vertical resolution in dispersion produces a
large vertical resolution in the generated FWM power or in other
words, an enhanced sensitivity is achieved. In this order, numer-
ical simulation of Eqs. (1) and (2) under different circumstances
is carried out. A virtual fiber of length 270 m and nonlinear coef-
ficient γ = 14.5 W−1km−1 is considered. The dispersion coef-
ficient of this fiber at the free space wavelength λ = 1558 nm is
supposed to be D(z, λ = 1558 nm) = D0(λ) + δD(z), where
D0(λ) = 0.077 ps/(nm · km) is the average dispersion coeffi-
cient along the fiber, and δD(z) is an arbitrary dispersion fluc-
tuation. δD(z) as plotted by solid line in Fig. 2 is randomly
generated in a very similar method as in [15] by summing up
five sinusoids. To extract the dispersion fluctuations at 1558 nm,

Fig. 2. Solid line: Randomly generated propagation constant mismatch along
a virtual fiber. Dashed line: Numerically retrieved map.

Fig. 3. Solid line: Normalized signal power η(z) for the dispersion map of
Fig. 2 when: (a) Δλ > Δλ0 , (b) Δλ < Δλ0 , and (c) Δλ = Δλ0 . Dotted line:
The best fit of the normalize signal power when the dispersion coefficient is
constant.

the wavelength of the degenerate pump of the FWM Eqs. (1)
and (2) is set to λp = 1558 nm. The pump power is 700 mW
and three different wavelength positions are considered for the
signal.

First, the wavelength detuning of the pump and the signal is
set to Δλ = 26.3 nm. The distribution of the signal power nor-
malized to the initial signal power, i.e., η(z) = Ps(z)/Ps(0)
is calculated by numerically solving Eqs. (1) and (2) using
a commercial software package [31]. The calculated normal-
ized signal power is shown in Fig. 3(a) (solid line). Since
the calculated η(z) in Fig. 3(a) is almost sinusoidal, the sig-
nal power distribution is close to the signal power distribution
along an ideal fiber with no dispersion fluctuation [16], [17].
In other words, the presence of dispersion fluctuation is not
strongly reflected in the signal power distribution. This point
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can be easily demonstrated by calculating the distribution of
the normalized signal power, η(z), in a fiber with a constant
dispersion D(λ = 1558 nm) = 0.09 ps/(nm · km). The differ-
ence between η(z) of a fiber with D(λ = 1558 nm) and η(z) of
the original fiber is less than 2%. Therefore, zero and nonzero
vertical resolutions in the dispersion have mapped to almost the
same level of vertical resolution in power. In other words, this
spectral positioning clearly diminishes the vertical resolution
of dispersion and has low sensitivity. Practically, it is almost
impossible to extract δD(z) from η(z) insofar as η(z) can be
generated by constant dispersion.

Second, the wavelength detuning of the pump and signal is set
to Δλ = 16 nm. This time, the distribution of the signal power is
almost hyperbolic. Once again, the presence of dispersion fluc-
tuations is a matter of no consequence, and similar signal power
distribution can be achieved in a fiber with constant dispersion.
Normalized signal power distribution, η(z), is plotted for the
original fiber with dispersion fluctuation, and a fiber with con-
stant dispersion D(λ = 1558 nm) = 0.09 ps/(nm · km). The
difference between the obtained results plotted in Fig. 3(b) is no
more than 1% and again this spectral positioning does not show
enough sensitivity.

It is worth noting that the two abovementioned values for the
wavelength detuning between the pump and signal correspond to
two different regimes: the sinusoidal FWM power exchange for
Δλ = 26.3 nm, and phase insensitive parametric amplification
for Δλ = 16 nm. Neither of these two regimes is sensitive to
the presence of dispersion fluctuations. There is, however, a
value for the wavelength detuning at which the presence of
dispersion fluctuations becomes a matter of great consequence.
This critical value for the wavelength detuning of the pump and
signal is Δλ0 = 23.4 nm for our particular example. This time
the minimum attainable difference between η(z) of the fibers
with and without dispersion fluctuations is as large as 12%.
Interestingly, the normalized signal power distribution plotted
in Fig. 3(c), resembles neither the oscillatory (sinusoidal) FWM
power exchange scheme observed at Δλ = 26.3 nm, nor the
non-oscillatory (hyperbolic) parametric amplification observed
at Δλ = 16 nm.

The critical value for the wavelength detuning of pump and
signal at which the normalized signal power distribution be-
comes sensitive to dispersion fluctuations is as follows:

Δλo = 2λo

(
γP

2πcDo(λo)

)1/2

(10)

Thisdetuning value corresponds to |Δβ| = 4γP in Eq. (3).
At this detuning value, the signal wavelength is at the edge
of the parametric simplification bandwidth of a fiber without
dispersion variations or δD(z) = 0. The sensitivity of the nor-
malized signal power distribution to dispersion fluctuations at
this particular detuning value should not come as a surprise
since dispersion fluctuations can drastically change the pattern
of the normalized signal power distribution when the signal
lies at the edge of the parametric simplification bandwidth. The
normalized signal power distribution can be changed from the
parabolic power distribution [16] to either the oscillatory pattern

of the FWM power exchange, or the non-oscillatory pattern of
parametric amplification. In other words, the presence of the
dispersion fluctuations deviates the dispersion from its average
value D0(λ), and thus moves the sideband wavelengths and
causes transition from the oscillatory FWM power exchange
regime to the non-oscillatory parametric amplification regime.
That is why the normalized signal power distribution becomes
sensitive to dispersion fluctuations. It is worth noting that ob-
serving anomalous signal power distribution along the fiber that
does not match the signal power distribution predicted by FWM
differential equations in a fiber with uniform dispersion coef-
ficient has been experimentally reported in [26] for the signal
wavelengths tuned to the edge of the MI spectrum and this nu-
merical example confirms how tiny fluctuations of dispersion
result in discernable variations in the distribution of the FWM
generated power for the mentioned spectral positioning.

To assess the accuracy of deriving the dispersion map using
distributed FWM generated power, when signal lies at the edge
of parametric amplification bandwidth, a simulate-then-retrieve
method [15] is implemented. In the retrieve procedure it is at-
tempted to minimize the following cost function by searching
for the proper map Δβr (z).

F =
∥∥∥ηΔβr (z )(z) − ηΔβ (z )(z)

∥∥∥ (11)

where ηΔβ (z )(z) and ηΔβr(z )(z) are the normalized signal
power distribution satisfying Eqs. (1) and (2) for the generated
Δβ(z) and retrieved Δβr (z), respectively. Also, ||.|| denotes the
Euclidian norm. The details of this procedure is explained in
the appendix. The dispersion map which eventually yields the
minimum F is shown in Fig. 2. The reconstructed map is in
great agreement with the actual map particularly after first few
meters for which the idler has been built up. As the result of
enhanced sensitivity, the normalized first order norm of the dif-
ference between the actual and the retrieved dispersion maps is
turned out to be 0.1% while it has been reported as almost 5%
for the method described in [15].

V. EXPERIMENTAL RESULTS

The experiment is carried out for a 500 m-long HNLF
with reported average value of ZDW of 1551.4 nm and γ of
10 W−1km−1 placed as the FUT in the experimental setup of
Fig. 1. The pump power and wavelength are 680 mW and
1553.6 nm, respectively. The pulse peak power of the signal
is held around 20 mW which ensures non-depleted regime [16],
[17]. In compliance with the proposed scheme, the detuning
between the wavelengths of the signal and the pump is set to
match the critical wavelength detuning Δλ0 . This step is car-
ried out by inspecting the MI spectrum as observed in the OSA.
Therefore, the signal wavelength is at 1574.6 nm, which coin-
cides with the edge of the MI spectrum as shown in Fig. 4(a),
where the output spectrum including the wavelengths of pump,
signal, and idler together with the MI spectrum are plotted.
To demonstrate that the edge of the MI spectrum matches the
edge of the parametric gain spectrum, the average value of the
dispersion of the FUT is first extracted from the MI spectrum
[16] and is found to be D0(1553.6 nm) = 0.08 ps/(nm · km).
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Fig. 4. (a) MI spectrum of the fiber (dotted grey), and the corresponding
gain spectrum when the dispersion of the fiber is constant (red). (b) Extracted
dispersion maps when the signal is launched from the left (red line) and the
right (dashed grey), and the proposed dispersion map (bullets). Insets: Measured
normalized signal power when the signal is launched from the left (dotted red)
and the right (dotted grey), and reconstructed normalized signal powers when
the signal is launched from the left and the right are plotted in grey lines in their
relevant insets.

The gain spectrum of a fiber with uniform dispersion coefficient
D0(1553.6 nm) = 0.08 ps/(nm · km) is then plotted in Fig. 4(a),
where it can be compared against the MI spectrum. It can be
easily seen that the signal and pump wavelengths are correctly
detuned.

The CW probes are fed through the other end of the fiber,
and the distribution of the normalized signal power η(z), is
experimentally derived by using Eq. (8). Finally, an optimization
algorithm for minimizing F in Eq. (10) is employed and the
dispersion map is extracted [31]. The details of the dispersion
reconstructed algorithm is given in appendix.

As already expected, the obtained results are erroneous in the
vicinity of the launching point of the pump and signal. This
issue is overcome by repeating the experiment when the pump
and signal are launched into the other end of the FUT (z =
500 meter). The obtained results are shown in Fig. 4(b). The
extracted dispersion maps between z = 100 m and z = 400 m
are in very good agreement with each other. The difference is less
than 2%. Since the experiments run at two different directions
are independent from each other, the good agreement between
the extracted dispersion maps stands witness for the reliability
of the obtained results. One might argue that the most accurate
dispersion map for 100 <z< 400 is the average value of the
dispersion maps obtained by running the experiments at opposite

ends. For 0 < z < 100, and for 400 <z< 500, on the other hand,
the accurate dispersion map is the one which is obtained when
the pump and signal are launched from z = 500 m, and from
z = 0, respectively.

The extracted dispersion maps D(z, λp) are further used for
the reconstruction of η(z). The reconstructed η(z)s can be com-
pared against the experimentally derived η(z) plotted in the in-
sets of Fig. 4(b), resulting in a difference of less than 2.5%.

VI. CONCLUSION

A novel method for dispersion map extraction along HNLFs is
proposed. It is based on the BOTDA measurement of the FWM-
generated power and has obtained the highest level of accuracy
in comparison with other existing methods. The accuracy of
the method is indebted to the fact that the sidebands of the
FWM interaction are tuned to coincide with the edge of the MI
spectrum.

The proposed scheme, relying on a simple two-shot exper-
iment, is tested on a typical HNLF and accurate results are
obtained. While the destructive method of chopping the fiber
into subsequent segments [11], [12] to validate the dispersion
map has been discarded for practical reasons, the accuracy of
the extracted map has been validate here by two independent
approaches. One is to use two independent experiment runs
through opposite ends of the fiber (z = 0, and z =L) which
have yielded almost identical results. The other approach is the
numerical study of the proposed method which has demon-
strated the accuracy of the reconstruction dispersion with less
than 2% error for the dispersion extraction from bidirectional
measurements.

APPENDIX

The normalized signal power distribution measured along the
fiber is not a single-valued function of the dispersion fluctuations
δD(z). This point is validated by showing that the normalized
signal power distribution is a multiple-valued function of the
linear propagation constant mismatch Δβ(z). First, it should
be noted that both θ (z) and π−θ (z) result in identical patterns
for the normalized signal power distribution. Then, the linear
propagation constant mismatch Δβ(z) and the relative phase
mismatch term θ(z) in the non-depleted regime [16] are related
to each other via the following equation:

dθ/dz = Δβ(z) + 2γP + γP

(
Ps + PI√

PsPI

)
cos(θ) (A-1)

Therefore, both Δβ(z) corresponding to θ(z), and Δβ2(z) =
−4γPp − Δβ(z) which corresponds to θ(z) = π − θ(z), gen-
erate the same patterns for the normalized signal power distri-
bution. Now, if the search for the linear relative phase mismatch
term is limited to smooth functions, there are at least two per-
missible functions θ (z) and π−θ(z) that can generate the
same power distribution. These two linear relative phase mis-
match terms correspond to two different continuous functions
for the linear propagation constant mismatch Δβ(z). But if the
search for the linear relative phase mismatch term is limited
to continuous but non-smooth functions, there might be more
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than two linear relative phase mismatch terms that can gener-
ate the same power distribution. This is on account of the fact
that whenever smooth functions θ (z) and π − θ(z) meet each
other (they meet each other when one of them becomes either
+π/2 or −π/2), two new sets of continuous but non-smooth
functions are conceivable for the relative phase mismatch term.
As a matter of fact, if there are m points at which the linear
relative phase mismatch term becomes +π/2 and n points at
which it becomes −π/2, there would be 2m+n+1 continuous
but non-smooth functions for the linear relative phase mismatch
term, which generate the same normalized signal power distri-
bution. Non-smooth linear relative phase mismatch terms, how-
ever, correspond to non-smooth functions for the linear propa-
gation constant mismatch Δβ(z). Since non-smooth Δβ(z) is
not physical, all 2m+n+1 continuous but non-smooth functions
for the linear relative phase mismatch term must be discarded. It
should be noted that the continuous but non-smooth linear rel-
ative phase mismatch functions are usually non-differentiable
because θ(z) and π−θ(z) have oppositely-signed derivatives
when they cross each other at +π/2 or −π/2. Under partic-
ular circumstances however, when the derivative of the rela-
tive phase mismatch term is zero, i.e., when Δβ(z) = −2γPp ,
θ(z) and π−θ(z) just touch each other and generate differen-
tiable but non-smooth functions.

The preceding argument shows that the brute-force numeri-
cal search for either Δβ(z) or θ(z) is bound to be troublesome
because neither Δβ(z) nor θ(z) is uniquely determined by a
certain distribution for the normalized signal power. To resolve
this issue, the brute-force numerical search is carried out to
find sin(θ(z)), which is uniquely determined by the normalized
signal power. Then, the sought-after Δβ(z) is analytically ex-
tracted from the numerically found sin(θ(z)). In this fashion,
the numerical issues due to the fact that the normalized signal
power distribution is a multiple-valued function of Δβ(z) are
avoided. This point is numerically demonstrated below.

An optical fiber of length L = 500 m, nonlinear coefficient
of γ = 11 W−1km−1 , and a specific linear propagation con-
stant mismatch Δβ(z) as shown by the solid grey line in
Fig. A.1(a) is considered. The optical pump power is assumed
to be PP = 0.5 W. Given that the linear propagation constant
mismatch Δβ(z) is specified, the corresponding relative phase
mismatch term, θ1(z), its sine, sin(θ1(z)), and the distribution of
the normalized signal power along the fiber η(z), are all uniquely
determined and plotted by solid lines in Fig. A.1(b)–(d), re-
spectively. It should be however noted that even though there
is a one-to-one correspondence between η(z) and sin(θ(z))
whereby the latter can be uniquely determined from the for-
mer, no one-to-one relationship is held between θ(z), and
sin(θ(z)) since θ2(z) = π − θ1(z) whose sine is no different
from sin(θ1(z)) yields the same η(z). Fig. A.1(b) shows that
the relative phase mismatch term becomes π/2 at z = 100 m,
where θ2(z) = π − θ1(z) touches the relative phase mismatch
term θ1(z). Therefore, the following continuous yet non-smooth
relative phase mismatch terms are also conceivable:

θ3(z) =

{
θ1(z) for 0 < z < 100

π − θ1(z) for 100 < z < 500

Fig. A.1. (a) Actual Δβ(z) (solid grey), Δβ(z) obtained by minimizing
Eq. (A.2) (dashed grey) and obtained by minimizing Eq. (A.3) (dashed pink).
(b) θ1 (z) (solid grey), θ2 (z) (solid cyan), θ3 (z) (crosses) and θ4 (z) (cir-
cles). θ(z) which is obtained by minimizing Eq. (A.2) (dashed grey) and
Eq. (A.3) (dashed pink). (c) sin(θ(z)) which satisfies Eqs. (1) and (2) (solid
grey), sin(θ(z)) which is obtained by minimizing Eq. (A.2) (dashed grey) and
Eq. (A.3) (dashed pink). (d) Normalized signal power based on the actual Δβ(z)
(solid grey), Δβ(z) which minimizes Eq. (A.3) (dashed pink) and sin(θ(z))
which minimizes Eq. (A.2) (dashed grey).

and

θ4(z) =

{
π − θ1(z) for 0 < z < 100

θ1(z) for 100 < z < 500

These two non-smooth relative phase mismatch terms are
plotted together with π−θ1(z) in Fig. A.1(b).

The major difficulty arisen from this issue is that θ1(z), θ2(z),
θ3(z) and θ4(z) result in different linear propagation constant
mismatch Δβ(z), Δβ2(z), Δβ3(z) and Δβ4(z), even though
they all have the same sin(θ(z)) and the same η(z). It is worth
noting that while Δβ(z) and Δβ2(z) are smooth functions,
Δβ3(z) and Δβ4(z) are non-smooth functions.

Now, any direct attempt toward extracting the linear propa-
gation constant mismatch Δβ(z) by running a brute-force nu-
merical search generally strives to minimize the following cost
function:

FΔβ =
∥∥∥η(z) − ηΔβ (z )(z)

∥∥∥ (A-2)

where ηΔβ (z )(z) is the normalized signal power distribu-
tion satisfying Eqs. (1) and (2) for a given Δβ(z). Since
Δβ(z), Δβ2(z), Δβ3(z), and Δβ4(z) all minimize FΔβ , it is
no wonder that using the least mean square method for extrac-
tion of Δβ(z) by minimizing FΔβ results in an erroneous linear
propagation constant mismatch which is depicted in Fig. A.1(a).
This erroneous linear propagation constant mismatch, however,
provides a good estimate of the normalized power distribution.
This point can be easily verified by comparing ηΔβ (z )(z) with
η(z) in Fig. A.1(d). Therefore, the failure of the least mean
square method for extraction of Δβ(z) is not due to the failure
in minimization of the cost function FΔβ , but is on account of
the fact that the existence of multiple answers Δβ(z), Δβ2(z),
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Δβ3(z), and Δβ4(z) befuddles the inverse algorithm. This is-
sue can be easily overcome by running a brute-force numerical
search, which strives to minimize the following cost function:

F sin(θ) =
∥∥∥η(z) − ηsin(θ(z ))(z)

∥∥∥ (A-3)

where ηsin(θ(z ))(z) is the normalized signal power distribution
satisfying Eq. (1). This time, the cost function is minimized
by searching for the appropriate sin(θ(z)). As demonstrated
in Fig. A.1(d), ηsin(θ(z ))(z) virtually reconstructs η(z). How-
ever, the success of this approach is indebted to the fact that
sin(θ(z)), in contrast to θ(z), has a unique distribution. Once
the appropriate sin(θ(z)) is found, all four different candidates
for θ(z) are at hand. Two of them are differentiable and provide
two different Δβ(z)s that are continuous (see Eq. (A.1)). The
correct Δβ(z) is the one whose corresponding D(z, λP ) has the
correct sign. Thus, the extracted Δβ(z) plotted in Fig. A.1(a)
is in great agreement with the original distribution of the lin-
ear propagation constant mismatch, even though it is erroneous
along the first few meters of the fiber. This is due to the fact that
there is a singularity at z = 0 in Eq. (A.2). This mathematical
singularity is caused by the absence of idler at the input of the
fiber. Fortunately, this issue can be overcome by launching the
signal from the other end of the fiber, i.e. z = L.
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