Swiss
Medtech

(D) VivoForce Force sensitive hook for epiretinal membrane peeling in eye surgery

Project management: Dr Charles Baur charles.baur@epfl.ch
EPFL - STI - IMT - INSTANT-LAB

Start date
1.09.2014

Duration
2 years

Project goal

This project addresses the design, construction and evaluation of a peeling hook with force measuremen capability for in-vivo intra-ocular vitreoretinal surgery. The force sensor consists of a miniature multi-degree-of freedom flexure where deformations induced by contact forces are measured using optical fiber white light interferometry. This instrument will be used for epiretinal membrane peeling procedures and should then lead to the creation of a new generation of force sensitive surgical tools.

Medical need

Forces exerted onto retinal structures may generate irreversible visual impairment if they exceed specific thresholds. Since these forces are too small to be detected by the tactile senses of the surgeon's hand, they are nowadays estimated based solely on the visual feedback through the microscope. The novel instrument will thus improve patient safety by providing an objective measurement of the exerted forces.

Peeling force

Proposed solution

In-vivo force sensing surgical instrument

Force range: $0-15 \mathrm{mN}$

- Measuring resolution: 0.1 mN
- Tool diameter: 0.6-0.9 mm

Biocompatible, adapted for liquid environment

- Immune to electric and magnetic noise

Portable interface

- Real-time force value monitoring and chart display
- Audio feedback indicating safety threshold

Force measurement using white light interferometry

Instrument development cycle

- FEM/Analytic model

- Feedback from medical partner

- Measurements
- Analysis
- Calibration

Forseen benefitis

Safer vitreoretinal surgery
 Real-time feedback of peeling forces

Information on forces below human perception
Quantification of the tissue properties

Overall clinical impact

Prevent retinal tissue damage

- Ameliorate visual recovery

Team

Research partner
($\|$)
ÉCOLE POLYTECHNIQUE ERALE DE LAUSANN Instant-Lab instantlab.epi.ch

Prof.
Simon Henein

Charles Baur

Improved training of surgeons
Correlation of surgical outcome with excerted forces

- Faster learning curve

Standardization: correlate forces with surgical parameters

Industrial partner

References:
[1] S. Fifanski, J. Rivera, M. Clogenson, C. Baur, A. Bertholds, P. Llosas, S. Henein: Flexure-based multi-degrees-of freedom in-vivo force sensors for medical instruments.
Euspen's 16 th Conference \& Exhibition, Nottingham, UK, May 2016
2] Optical fore [2] Optical force sensing element and microsurgical instruments, [3] Optical measuring element having an integral structure, US 12/919.621 EP 02255170
Bertholds A. \& Llosas P., Henein S., Patent Holder: Sensoptic SA (Losone, CH) (2009).

Micro. Eng. EPF Pere Llosas
sensoptic.ch

Sebastian Fifański

SENS PTIC

Medical partner

asile-aveugles.ch

Swiss Confederation

