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ABSTRACT

It often happens that we are interested in reconstructing a signal from
partial measurements. In Unlabeled sensing problem, we consider
the case in which the order of noisy samples out of a linear measure-
ment system is missing. Thus, the main challenge would be: given a
set of unordered sample values, how to recover the data uniquely and
at the same time, how to recover it more efficiently. In [1] we con-
sidered these two fundamental questions regarding uniqueness and
efficiency by designing a robust sampling matrix in linear equation
system and providing a novel recovery algorithm. In this document
we present the theoretical findings and proofs of the work introduced
in [1].

1. NUMBER OF THE SOLUTIONS IN UNIFORMLY
SPACED SETTING

y = PΦx+ ε, (1)

Theorem 1. Consider the unlabeled sensing problem in (1) with ε =
0 and N -equally-spaced sampling vectors. The number of solutions
for (1) is equal to 2 whenN is even and equal to 2N whenN is odd.

Proof. We want to show that with the N -equally spaced setting, if
N is an odd integer, each point x has exactly 2N dual points on the
plane and these points are all possible solutions. Set S is constructed
such that it contains all possible combinations of N integer numbers
from 1 to N . It means that if we give indices to unordered sam-
ple values from 1 to N , each set in S shows one possible order for
unordered sample set. Suppose that set M ∈ S shows the correct
labeling for sample values. Suppose that y shows correct ordered
sample values and also Φ(M) represents matrix representation of
the setting sorted based on set M . In other words,

Φ(Mi) = [cos(
2π

N
mi), sin(

2π

N
mi)] (2)

shows ith row of Φ(M). Thus, equation y = Φ(M)x holds. If
there is another set L corresponding to the dual point x′, following
equation must hold:

Φ(M)x = Φ(L)x′. (3)

We can search through all points on the plane in order to find x′ or
equivalently we can take x′ = cx where c ∈ (0,∞) and then rotate
the whole sampling setting. We can verify that arg(x) = arg(x′)
and ‖x′‖2 = |c|‖x‖2. By considering different c, we can search
through the line that connects point x to origin from zero to infinity.
Now we need to rotate this line and complete our search all over the

plane. Equivalently, we can rotate the setting with any continuous
angle η ∈ (0, N ]. It can be done by considering Φ(L + η) instead
of Φ(L) in (3):

Φ(M)x = cΦ(L+ η)x

Φ(Mi)x = cΦ((L+ η)i)x, ∀i ∈ {1, · · · , N}[
cos( 2π

N
mi)

sin( 2π
N
mi)

]T [
cos(θx)
sin(θx)

]
= c

[
cos( 2π

N
(li + η))

sin( 2π
N

(li + η))

]T [
cos(θx)
sin(θx)

]
∀i ∈ {1, · · · , N}.

(4)

In this way, by simplifying (4), for each sample value we can
write an equation

cos(
2π

N
mi − θx) = c cos(

2π

N
(li + η)− θx) ∀i ∈ {1, 2, · · · , N}.

(5)
By solving (5) and calculating c, η, and L, we can find all possible

solutions for N -equally spaced setting. We claim that in (5), c = 1
is the only valid norm for dual point of x. In other words, all dual
points should have the same norm on the plane. To prove this, first
we prove the following lemma.

Lemma 1.
∑N−1
n=0 cos2( 2π

N
n+ θ) = N

2
.

Proof. The proof is straight forward. We start with left side of equal-
ity,

N−1∑
n=0

cos2(
2π

N
n+ θ) =

N−1∑
n=0

1

2
+

1

2
cos(

4π

N
n+ 2θ)

=
N

2
+

1

2

N−1∑
n=0

cos(
4π

N
n+ 2θ)

=
N

2
+

1

2
cos(2θ)

N−1∑
n=0

cos(
4π

N
n)− 1

2
sin(2θ)

N−1∑
n=0

sin(
4π

N
n)

(6)
In (6), the summations are equal to zero, because

N−1∑
n=0

cos(
4π

N
n) + j

N−1∑
n=0

sin(
4π

N
n)

=

N−1∑
n=0

ej
4π
N
n =

1− e
j4πN
N

1− ej 4π
N

= 0.

(7)

The proof is completed by replacing two terms in (6) with zero val-
ues which were derived from (7).
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In (5), we raise two sides to the power two and sum up over all
values in L and M ,∑
mi∈M

cos2(
2π

N
mi − θx) = c2

∑
li∈L

cos2(
2π

N
(li + η)− θx). (8)

Summation terms in left and right sides of (8) are equal to N/2 ac-
cording to Lemma 1. Therefore, we can conclude that c = 1. Now
we can simply solve (5) and derive solutions for dual points. There
exist two sets of solutions for this equation; the first one is

2π

N
mi − θx =

2π

N
(li + η)− θx

⇒ η = mi − li
η ∈ Z
mi, li ∈ {1, · · · , N}.

(9)

In (9), since li andmi are both integer values in set {1, · · · , N},
η must be an integer as well. Also, we defined η in interval (0, N ],
therefore, for this set of solutions, η can only take integer values
{1, · · · , N}. It means that the equations at most have N valid solu-
tions.

The second solution to (8) is

2π

N
mi − θx = −2π

N
(li + η) + θx

⇒ η =
N

π
θx − (mi + li)

mi, li ∈ {1, · · · , N}.

(10)

In (10), we can see that η can only take N different values in
interval (0, N ]. Therefore, (10) has at most N valid solutions. In
total, (9) and (10) account for at most 2N valid solutions.

In summary, we conclude that for N -equally spaced setting
where N is an odd number, there are 2N dual points for each point
on the plane. We saw that there are two set of solutions for these
settings, one was derived by rotating sampling vectors and sample
values which corresponds to solutions of (9) and second set of solu-
tions was derived by reflecting the first set over symmetry line of the
setting and then rotating them. This set of solutions is corresponding
to solutions of (10). We can follow the same steps for the case that
N is an even number and derive that in that case there are only two
valid solutions for the equations.

2. UNIQUE SOLUTION OF EXPONENTIALLY-SPACED
SAMPLING SETTING

Theorem 2. Consider the sampling matrix Φ with N ≥ 4 expo-
nentially spaced sampling vectors. Suppose that for some x and x′,
there exists a permutation matrix P 6= I such that Φx = PΦx′. If
‖x‖ = ‖x′‖, then x and x′ coincide and lie on the bi-sector of two
of the sampling vectors.

Proof. In 2-dimensional vector space, in (1), rows of matrix Φ are
simply the sine and cosine of sampling vectors’ angles. For instance,
Φi = [cos(ϕi), sin(ϕi)]. As mentioned before, matrix Φ′ is the
permuted version of matrix Φ such that we reordered rows of Φ.

‖x‖[cos(ϕi), sin(ϕi)][cos(θx), sin(θx)]T =

‖x′‖[cos(ϕ′i), sin(ϕ′i)][cos(θx′), sin(θx′)]
T

.

(11)

Multiplying terms and using geometric relations in (11) results in the
following equation,

cos(ϕi − θx) = cos(ϕ′i − θx′). (12)

We can easily verify that (12) has two set of solutions,

θx′ = 2lπ + ϕ′i − ϕi + θx , (13)

or
θx′ = 2lπ + ϕ′i + ϕi − θx. (14)

We use Lemma (2) to show that only two sampling vectors
can satisfy (14) and all the rests satisfy (13). Thus, we con-
clude for nonuniform-exponential sampling setting, if the solution
is not unique, only two vectors satisfy (14) and all other vec-
tors satisfy (13). In that case, only one of the equations in (16).
In other words, if (14) holds for i1 and i2, then we can write
θx′ = 2lπ + ϕ′i − ϕi + θx , ∀i 6= i1, i2 then ϕi = ϕ′i ,∀i 6= i1, i2.
Substituting on (14) we will have θx′ = 2lπ + θx. Substituting θx′
in equation for i1 and i2 results in,

θx =
ϕi1 + ϕi2

2
+ 2lπ. (15)

It is important to note that in nonuniform-exponential setting, the bi-
sector of every distinct sampling vectors is separated, in other words
the bisector of one pair of vectors is not the bisector of any other
pairs. We prove this claim in lemma (3).

From all of the discussions here we conclude that with the as-
sumption of ‖x‖ = ‖x′‖, x = x′ should hold, also only two vectors
in Φ and Φ′ can be interchanged and x should be on the bisector of
these two vectors, the rest of them are the same.

Lemma 2. In nonuniform-exponential sampling setting withN vec-
tors, (12) holds for Φ 6= Φ′ if and only if just two sampling vectors
satisfy (14) and all the rest satisfy (13). In this case x = x′ and it
lies on the bisector of two mentioned vectors.

Proof. Now we consider different cases:

• More than 2 vectors satisfy (14).

• Only one vectors satisfies (14) and all other remaining vectors
satisfy (13).

• Neither of the vectors satisfies (14) and all of them satisfy
(13).

• only two vectors satisfy (14) and all others satisfy (13).

First, we will show that in nonuniform-exponential setting it is not
possible that more than 2 vectors satisfy (14). We prove this using
contradiction. Suppose that (14) holds for three different vectors
i1, i2, i3 at the same time. In that case we can write:

2lπ + ϕ′i1 + ϕi1 − θx = θx′ ,

2lπ + ϕ′i2 + ϕi2 − θx = θx′ ,

2lπ + ϕ′i3 + ϕi3 − θx = θx′ .

Subtracting first and second equations and also first and third ones
results in the following equations,

ϕ′i1 − ϕ
′
i2 = ϕi2 − ϕi1 ,

ϕ′i1 − ϕ
′
i3 = ϕi3 − ϕi1 .

(16)

Since the spacing between vectors are monotonically increasing, the
first equation in (16) is valid only when ϕ′i1 = ϕi2 and ϕ′i2 = ϕi1 .



At the same time, the second equation holds if and only if ϕ′i1 = ϕi3
and ϕ′i3 = ϕi1 . This means that ϕi2 = ϕi3 which is not possible.
This contradicts the assumption of setting with N distinct vectors,
therefore no more than 2 vectors can satisfy (14).

No we want to consider the case where only one sampling vector
satisfies (14) and all the other vectors satisfy (13). In this case we
can say,

2lπ + ϕ′i1 + ϕi1 − θx = θx′ ,

2lπ + ϕ′i − ϕi − θx = θx′ , ∀i 6= i1.
(17)

From (17) we conclude that 2θx = (ϕ′i1 + ϕi1) + (ϕi − ϕ′i). Con-
sidering this equation for i = m,n, n,m 6= i1 we can simply verify
that (ϕm − ϕ′m) = (ϕn − ϕ′n). This can be true if and only if all
the vectors for Φ and Φ′ are the same meaning that Φ = Φ′ and
thus x = x′. This contradicts the assumption of non-unique solu-
tion. Therefore, it is not possible to have only one sampling vector
satisfying (14) and all other satisfying (13).

The remaining task is to show if it is possible that all vectors
satisfy (13). In this case similar to previous steps, we can write (13)
for two arbitrary distinct vectors like n,m , n 6= m and subtract the
two equations. We can easily verify that in that case (ϕ′m − ϕ′n) =
(ϕm − ϕn). This is true only if ϕ′i = ϕi, ∀i. Thus we can say
Φ = Φ′ which is not in accordance to our initial assumption.

Lemma 3. In the nonuniform-exponential setting with N vectors,
lets define bi,j as the bisector angle of two vectors ϕi and ϕj . If
i 6= i′ or j 6= j′ then bi,j 6= bi′,j′ .

Proof. We know that bi,j =
ϕi+ϕj

2
. We can easily verify that,

bi,j = π
2i + 2j − 2

2N − 1
. (18)

We prove the lemma by contradiction. Suppose that bi,j = bi′,j′ . In
that case 2i + 2j = 2i

′
+ 2j

′
. First consider the case that i = i′ but

j 6= j′, it is clear that this equation has no valid solution. Proof for
the reversed case when i 6= i′ but j = j′ is also trivial. It remains to
consider the case where i 6= i′ and j 6= j′. Consider the following
definitions,

Tmax , max{i, j},

Tmin , min{i, j},

T ′max , max{i′, j′},

T ′min , min{i′, j′}.

(19)

We can rewrite 2i + 2j = 2i
′

+ 2j
′

as,

2Tmax + 2Tmin = 2T
′
max + 2T

′
min .

Also this equation can be written as,

2Tmin (1 + 2Tmax−Tmin ) = 2T
′
min (1 + 2T

′
max−T

′
min ).

If Tmin > T ′min we divide both sides of the equation system to T ′min,
otherwise we divide it to Tmin.

2Tmin−T ′min (1 + 2Tmax−Tmin ) = (1 + 2T
′
max−T

′
min ). (20)

In (20) we can see that right side of the equation is odd when left
hand side is even. This is not possible so this case is not also possi-
ble. We conclude that if i 6= i′ or j 6= j′, then bi,j 6= bi′,j′ .

Algorithm 1 Efficient algorithm in 2D

1: Initialize:
P = ∅, feasible set: F = ∅ .

2: Take every N(N − 1) selection of two rows of Φ.
3: Put all N(N − 1) matrices with size 2× 2 in set P .
4: for each Pi ∈ P , i = 1, 2, · · · , N(N − 1) do
5: Solve 2× 2 equations [y1, y2]T = Pix

i.
6: F ← F ∪ {xi}.
7: end for
8: for each sample value yn, k = 3, 4, · · · , N do
9: for every xi ∈ F do

10: Find 2 tangent lines from xi to the circle c(0, yn).
11: Check if any of the two tangent points on the c lies on

any of the remaining N − (n− 1) rows of Φ.
12: if neither of two tangent points lies on any of the rows

then Remove xi from F .
13: end if
14: end for
15: end for
16: return x ∈ F .

3. POINTS ELIMINATION IN GR ALGORITHM IN 2D
CASE

Lemma 4. In Algorithm 1, at n-th iteration of for loop stated in
step 8, when we are considering the n-th sample value yn, at most
N(N − 1)/(n− 2) points are remaining in F .

Proof. Suppose that we are evaluating y3. We have seen in Algo-
rithm 1 that at the beginning we have N(N − 1) points in the initial
set. At this step, we evaluate every point in F and keep the points in
F if and only if one of the tangent points to the circle c(0, y3) lies
on one of the N − 2 remaining vectors.

𝑦1

𝑦2

𝑦3

Φ𝑖

Φ𝑗

Φ𝑙

Φ𝑚

𝑥1

𝑥2

𝑥3

Fig. 1: Collinearity of points in feasible set

For better illustration, in Figure 1, we have 4 vectors, therefore
there are 4 perpendicular lines related to sample value y3. If neither
of the points are colinear, then at most 4 points remains in set F at
the end of this iteration. However, if we consider colinear points,
they can all remain in set F . Now let us check how many colinear
points remains at this step. Points x1, x2 and x3 are colinear and
they all have projection value y3 over sampling vector ϕi. Recall
that each point is generated by intersecting two tangent lines related
to sample values y1 and y2. If these points are colinear on sample
value y3, they can not be colinear on neither y1 or y2 since two points



Algorithm 2 Combinatorial algorithm 1

1: for each i = 1, 2, · · · , N ! do
2: Generate Bi = SiΦ.
3: Check if y = Bix has a solution:
4: Choose B̂i, the upper K ×K sub-matrix of Bi.
5: Find x̂ from B̂ix̂ = y.
6: Put x̂ in the lower N −K equations of Bix = y.
7: if x̂ satisfies all N −K equations then return x̂ as the so-

lution.
8: end if
9: end for

can only lie on one line. Therefore, for each remaining colinear
point we have two distinct tangent lines which are related to other
N − 1 vectors (other than ϕi) and we can say ((number of points)×
2 = (N − 1). Number of colinear points corresponding to ϕi is
(N − 1)/2. However, we have N different vectors, so the total
number of remaining points can not exceedN(N−1)/2. This is the
total number of points for the next iteration when we are considering
y4.

This result can be generalized to other iterations. For instance,
when we are considering yn−1, for the points in feasible set, we
have already found n− 2 vectors. Thus, for each perpendicular line,
at most there exist N−1

n−2
collinear points and for all N perpendicular

lines, N(N−1)
n−2

points can survive to go to the next iteration. It means

that when we are considering yn, at most N(N−1)
n−2

points remain in
set F .

In practice, this number is much less than this value since when
points are collinear at one step, they can not be collinear at the next
step. But here we considered the collinearity for each step indepen-
dently. This can be viewed as the main reason for reducing the com-
plexity of GR algorithm. In practice, we see that in non-symmetric
settings such as random or exponential sampling settings, one or two
points remain in the feasible set after considering the third sample
value.

4. COMPLEXITY DERIVATION OF GR ALGORITHM IN
HIGHER DIMENSIONAL SPACES COMPARED TO

COMBINATORIAL ALGORITHMS

4.1. Combinatorial algorithm 1

Suppose that we have N different sample values in vector y. The
order of sample values is not specified. A naı̈ve combinatorial al-
gorithm to reconstruct vector x is as follows. By permuting rows of
matrix Φ, we have N ! different Bi = SiΦ, i = 1, · · · , N !. In algo-
rithm 2, at each step we consider matrix Bi and check if there exists
a solution for Bix = y. The complexity of each step is as follows.

• In step 4, for a given Bi, inverting a K × K sub-matrix re-
quires K3 multiplications.

• In step 5, K2 multiplications are required for calculating ele-
ments of x̂.

• In step 6, checking each equality requires K multiplications.
Thus, in total D(N −K) is the complexity of this step.

These steps repeat for each Bi. Therefore, in total the complexity of
this algorithm is calculated as follows.

C1 = N !× [K3 +K2 +K(N −K)] = N !(K3 +NK). (21)

Algorithm 3 Combinatorial algorithm 2

1: Choose Φ̂, the upper K ×K sub-matrix of Φ and invert it.
2: for each i = 1, 2, · · · , N ! do
3: Generate yi = Siy.
4: Check if yi = Φx has a solution:
5: Choose ŷi, the upper K × 1 sub-vector of yi.
6: Find x̂ from Φ̂x̂ = ŷi.
7: Put x̂ in the lower N −K equations of Φx = yi.
8: if x̂ satisfies all N −K equations then return x̂ as the so-

lution.
9: end if

10: end for

We conclude that the complexity of Algorithm 2 is O(K!(D3 +
KD)).

4.2. Combinatorial algorithm 2

Algorithm 2 considers all possible Bi and for each matrix calculates
the inverses of K ×K sub-matrices. In this section we consider an-
other combinatorial algorithm that plays smarter by just considering
the inversion procedure once. Now we evaluate the computational
complexity for each step of Algorithm 3.
• Step 1 requires one K ×K matrix inversion which takes K3

operational complexity.
• In step 6, for each i (in total N !), we need to compute x̂ =

Φ̂−1ŷi, which requires K2 multiplications.
• In step 7, checking each equality requires K multiplications.

Thus, the complexity of this step is K(N −K).
We can calculate the complexity of Algorithm 3 as follows.

C2 = K3 +N !× [K2 +K(N −K)] = K3 +N !NK. (22)

Thus, the total complexity of Algorithm 3 isO(K3+N !NK) which
is less than Algorithm 2 but still is in order of N !.

4.3. GR algorithm for unlabeled sensing in higher dimensional
spaces

Algorithm 1 can be extended to higher dimensional spaces. Algo-
rithm 4 illustrates this extension. In this part we are interested to
evaluate the complexity of algorithm 4.
• In step 5, in total we have to find the inverse of N(N −

1) · · · (N −K+ 1) differentK×K matrices. The complex-
ity for solving each equation system is O(K3 + K2), where
K3 is the complexity of inversion and K2 is the complexity
order ofK multiplications. Therefore, in total the order of the
complexity for this step isO([K3 +K2][N(N−1) · · · (N−
K+1)]). Just considering the dominant terms, this step takes
O((K3 +K2)NK) operations.

• In the step 10, all we have to do is to check if the points that
we have already found have the projection equal to one of the
sample values over one of the remaining vectors. Checking
part will take (N−K)K multiplications and for all the points
it will be on order O([K(N −K)][N(N − 1) · · · (N −K +
1)]). Considering the dominant terms will haveO(KNK+1).

It is obvious that compared to O(N !(K3 + NK)) and O(K3 +
N !NK) which are the complexities of combinatorial algorithms 2
and 3, our efficient algorithm achieves a very reduced complexity
O(DNK+1).



Algorithm 4 Efficient algorithm in higher dimensional spaces

1: Initialize:
P = ∅, feasible set:F = ∅ .

2: Take every N(N − 1) · · · (N −K + 1) selection of K rows of
Φ.

3: Put all N(N − 1) · · · (N −K + 1) matrices with size K ×K
in set P .

4: for each Pi ∈ P , i = 1, 2, · · · , N(N −1) · · · (N −K+ 1) do
5: Solve K ×K equations [y1, · · · , yK ]T = Pix

i.
6: F ← F ∪ {xi}.
7: end for
8: for each sample value yn, n = K + 1, · · · , N do
9: for every xi ∈ F do

10: Check if xi has the projection value equal to yn over any
of the remaining N − (n− 1) rows of Φ.

11: if such a row is not found then Remove xi from F .
12: end if
13: end for
14: end for
15: return x ∈ F .

5. DISTANCE THRESHOLD DERIVATION IN
GENERALIZED GR ALGORITHM IN NOISY CASES

d
(n,m,p)
(k,l,j)

≤ d(n,m,p)th . (23)

for some p ∈ N \ {m,n}. Here, d(n,m,p)th shows the upper bound
for the distance from point xn,mk,l to the line Lpj related to sampling
vector ϕp. Point xn,mk,l is derived by intersecting perpendicular lines
to sampling vectors ϕn and ϕm with offset value from the origin
equal to yk and yl. For the target point x, the distance from each
line to the point meets this constraint, thus points that have the dis-
tance greater than this value from all possible vectors can be easily
discarded from feasible set. we have to calculate the d(n,m,p)th as the
upper bound for the distance from one point to the line. Suppose that
x = [x0, x1]T is the target point in 2-D plane. x0 is the projection of
point x on the first standard basis e0 and x1 is the projection of x on
the second standard basis e1. In addition, suppose that we know that
the correct-ordered sample value related to sampling vector ϕm is
yk and correct-ordered sample value related to vector ϕn is yl. For
noiseless yk and yl, the following equation holds:

x =
1

sin(ϕn − ϕm)

[
yk sin(ϕn)− yl sin(ϕm)
yl cos(ϕm)− yk cos(ϕn)

]
. (24)

In (24), if we replace yk and yl with the noisy sample values
ŷk = yk+εk and ŷl = yl+εl, we get x̂. This point is the intersection
point of noisy sample value lines in GR algorithm.

x̂ = xm,nk,l =
1

sin(ϕn − ϕm)

[
ŷk sin(ϕn)− ŷl sin(ϕm)
ŷl cos(ϕm)− ŷk cos(ϕn)

]
=

1

sin(ϕn − ϕm)

[
yk sin(ϕn)− yl sin(ϕm)
yl cos(ϕm)− yk cos(ϕn)

]
+

1

sin(ϕn − ϕm)

[
εk sin(ϕn)− εl sin(ϕm)
εl cos(ϕm)− εk cos(ϕn)

]
.

Now we consider that point x has the sample value yj on sam-
pling vector ϕp. It is easy to derive the equation of the line Lpj that
is orthogonal to ϕp and has distance from origin equal to ŷj :

sin(ϕp)x1 + cos(ϕp)x0 − ŷj = 0

and we know that the distance from point x = [x0, x1]T and
line ax+ by − c = 0 is equal to

Distance(ax+ by − c = 0, x = [x0, x1]T ) =
|ax0 + bx1 − c|√

a2 + b2
.

Therefore, by replacing x with xm,nk,l and line equation with Lpj
and simplifying the equations, we can write the distance threshold
as follows:

Distance(Lpj , x
m,n
k,l )

=

∣∣∣∣εk sin(ϕn − ϕp)
sin(ϕn − ϕm)

+ εl
sin(ϕp − ϕm)

sin(ϕn − ϕm)
− εj

∣∣∣∣ .
We are not aware of the exact value of noise, but here we assume

that the noise is bounded and we know the upper bound of the noise
values. In other words, we know that |εi| ≤ εmax, ∀i ∈ N. It is easy
to derive d(n,m,p)th , the distance upper bound as written in following
equation.

d
(n,m,p)
th ≤ εmax

| sin(ϕn − ϕm)|×

[| sin(ϕn − ϕp)|+ | sin(ϕp − ϕm)|+ | sin(ϕn − ϕm)|].
(25)

This completes the derivation of the distance constraint for gener-
alized GR. We can use this threshold to eliminate invalid labellings
from feasible set in generalized GR.

6. NOISE ROBUSTNESS OF THE GENERALIZED GR
ALGORITHM AND BOUND DERIVATION

Theorem 3. Consider the exponentially-spaced vector setting with
‖ε‖∞ ≤ εmax. If there exist two solutions x and x′ with different
labelings, then

‖x− x′‖ ≤ 4εmax

cos( 2N−1−1
2N−1

π)
.

Proof. Based on Lemma (5) which will be presented later, all the
sampling vectors cover one side of the plane. In this way we can
make sure that positive and negative vectors are separated and we can
find the smallest and largest angles by searching among one group.
The next task is to find the smallest and the largest angles between
sampling vectors. We call them δmin and δmax respectively.

δmin = min
i,j
{δi,j} = ϕ1 − ϕ0 = δ1,0 = (

2π

2N − 1
). (26)

δmax = max
i,j
{δi,j} = ϕN−1 − ϕ0 = δN−1,0 = 2π(

2N−1 − 1

2N − 1
).

(27)
Based on Lemma (6), if two sample values are interchangeable

then their distance from each other is less than 4εmax. Suppose that
two sample values have the distance less than 4εmax. In this case,
according to other sample values there might be another solution
to the equation system y = Φx + ε with different labeling. Note
that different labellings result from the interchangeable sample val-
ues. Thus we are interested to find the farthest distance between the
consistent regions of two interchangeable labellings related to two
solutions. We can easily verify that the intersection of two 4εmax

region over two distinct sampling vectors is a symmetric diamond
on the bisector of two mentioned vectors. Two cases might happen:



This diamond might be vertical or horizontal. In other words, if δi,j
which is the angle between ϕi and ϕj is greater than π/2 then the
diamond is vertical otherwise if δi,j > π/2 the diamond is hori-
zontal. In the former, the farthest points in the diamond are the top
and bottom vertices and in the latter when the diamond is horizontal,
then the farthest points are right and left vertices. When the dia-
mond is horizontal, maximum distance among all possible points in
the plane can be achieved when the point is around the bisector of
the smallest angle between two vectors, δmin and similarly when the
diamond is vertical the maximum distance is achieved for the points
around the bisector of the largest angle between two sampling vec-
tors, δmax. Lemma (7) and Lemma (8) provide us with upper bounds
for maximum distances. From this results we can conclude that

‖x− x′‖ ≤ max{dH , dV }. (28)

We need to find the maximum value between dH and dV . We can
rewrite dH as follows,

dH =
4εmax

sin( π
2N−1

)
=

4εmax

cos(π
2
− π

2N−1
)
. (29)

We define θH
4
= π

2
− π

2N−1
= π 2N−1−1.5

2N−1
and θV

4
= π 2N−1−1

2N−1
.

Obviously, 0 < θH < θV < π/2, thus 0 < cos(θV ) < cos θH <
1. From Lemma (7) and (8) we conclude that dH < dV and thus
dV = max{dH , dV }. Substituting the result in (28) we get,

‖x− x′‖ ≤ 4εmax

cos(π 2N−1−1
2N−1

)
.

Lemma 5. In nonuniform-exponential sampling setting the angle
between every two vectors is less that π.

Proof. We can verify that ϕ0 = 0 and

ϕN−1 = 2π
2N−1 − 1

2N − 1
= π

2N−1 − 1

2N−1 − 0.5
= π(1− 1

2N − 1
) < π.

We can see that the smallest and the largest angles lie into the interval
[0, π).

In this part we want to provide a very simple lemma regarding
the maximum distance between interchangeable sample values.

Lemma 6. If ‖ε‖ ≤ εmax and ∃yi, yj , i 6= j such that |yi − yj | ≤
4εmax then solutions for y = Φx+ ε might be interchangeable.

Proof. If the distance between two sample values is less than 4εmax

then these two samples are interchangeable. The reason for this
claim is that ±εmax around each noisy sample value is the possi-
ble region that the noiseless sample value lies. If two noisy sample
values are closer than 4εmax then they both might be translated to the
same noiseless sample values or equivalently, their related noiseless
sample values can be interchangeable.

In this section we want to find the farthest points in the hori-
zontal and vertical diamonds which is translated to the maximum
distance between valid solutions of unlabeled sensing problem with
nonuniform-exponential sampling setting.

Lemma 7. In nonuniform-exponential sampling setting withN vec-
tors, if δi,j < π/2 then the distance between the farthest points in
the horizontal diamond bisector region is upper bounded by dH =

4εmax
sin( π

2N−1
)
.
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(a) Horizontal diamond inter-
changeable region
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(b) Vertical diamond inter-
changeable region

Fig. 2: Maximum distance between two valid regions with inter-
changeable labellings

Proof. In figure 2, we use geometry to derive the upper bound for

the distance. We can simply verify that
4
fhc ∼

4
fbo, therefore from

equivalence of angles of two triangles we can say that ĝhp = δi,j .

gp = 4εmax. Thus in
4
ghp we can write gh = gp

sin(δi,j)
= 4εmax

sin(δi,j)
.

On the other hand, in
4
ghn we have hn = gh cos(δi,j/2)

4
= d. We

can easily derive that d = 2εmax
sin(δi,j/2)

. Following this derivation we

can write dH = mh = 2d = 4εmax
sin(δi,j/2)

. By substituting δi,j =

δmax,the largest angle between sampling vectors, we will have,

dH = 2d =
4εmax

sin( π
2N−1

)
.

Lemma 8. In nonuniform-exponential sampling setting with N
sampling vectors, if δi,j > π/2 then the distance between the far-
thest points in the vertical diamond bisector region is upper bounded
by dV = 4εmax

cos(π 2N−1−1

2N−1
)
.

Proof. Figure 2 illustrates the geometry of this region. In
�

bodg we

can write âoc + m̂gh = 180. On the other hand, in
�

mghl we have
ĝhl + m̂gh = 180. From these two equalities we conclude that

ĝhl = δi,j . In
4
pgh we can derive the equality m̂gh + ĝhp = 90

and we know that m̂gh = 180 − δi,j so we can conclude that
ĝhp = δi,j − 90. From triangular equalities we can say gh =

hp
cos(δi,j−90)

= 4εmax
sin(δi,j)

. On the other hand, in
4
ghn, we can write

gn = gh sin(δi,j/2)
4
= d. We can easily verify that d = 2εmax

cos(δi,j/2)
.

In this way maximum distance between two interchangeable consis-
tent regions can be achieved by considering δi,j = δmax.

dV = 2d =
4εmax

cos(π 2N−1−1
2N−1

)
.
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