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Abstract—Classical ultrasound image reconstruction mainly
relies on the well-known delay-and-sum (DAS) beamforming
for its simplicity and real-time capability. Sparse regularization
methods propose an alternative to DAS which lead to a better
inversion of the ill-posed problem resulting from the acoustic
wave propagation. In the following work, a new sparse regular-
ization method is proposed which includes a component-based
modelling of the radio-frequency images as well as a point-
spread-function-adaptive sparsity prior. The proposed method,
evaluated on the PICMUS dataset,outperforms the classical DAS
in terms of contrast and resolution.

Index Terms—Plane wave, Sparse regularization, Compressed
sensing

I. INTRODUCTION

Classical ultrasound (US) imaging relies on the well-
known Delay-And-Sum (DAS) beamforming which is based
on compensating the hyperbolic travel-time delays induced
by the propagation from any inhomogeneity in the imaged
medium to receiving transducer-elements. DAS is used in most
ultrasound modalities due to its ability to be computed in real
time. Indeed, DAS beamforming is highly parallelizable and
requires only a few delay calculations per pixel. However, it
has been demonstrated that it is an approximate solution only
to the ill-posed problem of inverting the propagation to retrieve
an image [1].

Sparse regularization methods offer an alternative to DAS
in which the solution of the inverse problem is retrieved by
means of an optimization algorithm. The idea behind these
approaches resides in assuming that the image under scrutiny
is sparse under a given model. Following this model, the
optimization problem searches for the sparsest solution under
the data fidelity constraint.

In US imaging, sparse regularization has been extensively
used with various models for the sparsity priors. Lieb-
gott et al. [2] use the sparsity of backscattered echoes in the
wave atom frame to reduce the number of required echoes in a
pre-beamforming step. In a post-beamforming step, a sparsity
prior of radio-frequency (RF) images has been exploited in
various models such as: Fourier basis [3], wavelet basis [4],
sparsity averaging model [5], [6], α−stable distribution [7] or
more recently in learned dictionaries [8].

In previous works, we have shown that sparse regularization
can outperform classical approaches in terms of image qual-

ity [5], [9], [10]. However a few key limitations of sparse
regularization degrade the quality of the reconstruction in
certain cases. Firstly, the use of a single prior for the whole
image is intrinsically incompatible with US imaging, where the
point-spread-function (PSF) varies spatially across the image.
Secondly, modelling the complexity of RF images with only
one sparsifying model is an oversimplified approach as it does
not take into account the different structures that may appear.

In this paper, we propose a more elaborated sparse regular-
ization approach, based on dividing the desired image into two
components, namely a bright reflector part and a background
part [11], [12]. The two components are sparse under different
models, in a similar manner as described in the morphological
component analysis framework (MCA) [13]. In addition, a
PSF-adaptive prior is also proposed. Section II reviews the
sparse regularization method. The proposed approach is de-
scribed in Section III and evaluated on the PICMUS dataset
in Section IV. Concluding remarks are given in Section V.

II. SPARSE REGULARIZATION FOR ULTRASOUND IMAGING

A. General framework

Sparse regularization methods aim at proposing an alterna-
tive to classical image reconstruction methods. Let us denote
as r ∈ RM the vectorized element raw RF-echo data and as
s ∈ RN the vectorized RF image. The idea behind sparse
regularization is to exploit sparsity of the RF image in a given
model in order to invert an ill-posed problem. Thus, it relies
on two pillars:
• The ability to express an operator H ∈ RM×N such that

r = Hs+n, where H denotes the measurement operator
and n is the noise.

• The ability to find Ψ ∈ RN×J such that Ψ†s is sparse,
where Ψ† denotes the adjoint of Ψ.

The desired image is then reconstructed by solving the fol-
lowing analysis-based convex problem:

min
s̄∈CN

‖Ψ†s̄‖1 subject to ‖r − Hs̄‖2 ≤ ε. (1)

B. Measurement operator in plane wave imaging

The measurement operator associated to plane wave (PW)
imaging has been derived in previous works [6], [9]. Formally,
let us denote by r (xi, t) the element raw data received at
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time t by a transducer positioned at xi. Let us also define
s (x, z) the RF image corresponding to the point in the medium
located at (x, z) If we consider a steered plane wave (SPW)
insonification with angle θ, it can be demonstrated that the
following equation holds:

r (xi, t) =

∫∫
(x,z)∈Ω(xi,t)

s (x, z) dxdz, (2)

where Ω (xi, t) = {(x, z) | t = tRx (xi, x, z) + tTx (x, z)},
in which tRx (xi, x, z) =

√
(x− xi)2

+ (z − zi)2
/c and

tTx (x, z) = z cos θ/c + x sin θ/c denote the delays on
receive and transmit respectively. The discretization of Equa-
tion (2) on the two grids defined by the element raw data and
the desired image leads to the following inverse problem:

r = Hs + n. (3)

C. Sparsity prior

Various sparsifying models have already been proposed
that rely mainly on wavelet-based models [1], [4], [14].
In our previous works [5], [6], [9], [15], we suggested to
use a concatenation of wavelet bases since it exhibits better
reconstruction results than traditional wavelet-based models.
The model, called sparsity averaging (SA) model, is composed
of the concatenation of Daubechies wavelet transforms with
different wavelet mother functions ranging from Daubechies
1 (Db1) to Daubechies 8 (Db8). Thus,

Ψ =
1
√
q

[Ψ1, ...,Ψq], (4)

where q = 8 and Ψi denotes ith Daubechies wavelet.

D. Limitations of sparse regularization

It has been demonstrated that the sparse regularization
approach can outperform classical approaches in terms of
image quality. However, the methods described above suffer
from two main limitations, which are intrinsic to US images.
Firstly, ultrasound images are characterized by spatially vary-
ing statistics. This aspect is visible in the shape of the PSF
which varies in both the lateral and the axial dimensions. Such
a variation is not in line with the sparsity prior that assumes the
same statistics in the whole image. This leads to problems in
the reconstruction of fully-developed speckle [10]. In addition,
US images are composed of various components such as
fully-developed speckle, bright reflectors and structural parts
e.g. carotid arteries, which are each sparse under a different
model. Assuming a sparsity prior in a single model is thus
inadequate in its ability to reconstruct the variety of complex
structures that could be present in a US image.

III. PROPOSED APPROACH

In this section, problem (1) is generalized to:

min
s̄∈CN

f(s̄) subject to ‖r − Hs̄‖2 ≤ ε, (5)

where the prior function f(.) will be defined in the following
subsections.

A. Morphological component analysis

The first improvement resides in modelling the RF image as
a sum of a background and a bright reflector components. Such
an approach has raised significant interest in US imaging [11],
[12], [16]. This may be formulated as s = sb + sr, where
sb and sr denote the background and the bright reflector
components respectively. Each component is sparse in a given
model denoted by Ψb and Ψr respectively. This leads to the
following prior function:

f(sb, sr) = ||Ψbsb||1 + ||Ψrsr||1. (6)

Problem (5), with the prior function defined in Equation (6),
is similar to the MCA problem [13].

B. Adaptive sparsity prior

The prior function defined in Equation (6) encapsulates a
component-based model of the RF image. However, it does not
take into account the spatial variability of the PSF. In order to
include such a feature, several assumptions on the behaviour
of the PSF are achieved. First, it is assumed that the PSF is
spatial-shift invariant within localized parts of the RF image.
Secondly, it is supposed that the apodization compensates for
the lateral variability of the PSF at a given depth [17]. Taking
into account the above assumptions, quasi-stationary regions
are obtained by splitting the RF image into non-overlapping
segments in the axial dimension [17]. In order to make the
algorithm adaptive, a sparsity prior is defined for each region.

Formally, if sb and sr are divided into L non-overlapping
segments, the prior function becomes:

f (sb, sr) =

L∑
i=1

(||Ψbsbi ||1 + ||Ψrsri ||1) , (7)

where sbi and sri correspond to the components of the ith

segment with i ∈ {1, ..., L}.
Instead of using the `1-norm as a sparsity promoting norm,

the `p-norm, with p < 1, is considered in the proposed method.
This choice is justified by the fact that it better approximates
the `0-norm. Moreover, a closed-form expression for the
shrinkage operator associated with the power p of the `p-norm
has been derived recently by Woodworth et al. [18]. Including
this consideration into Equation (7) leads to the following
formulation of the prior function:

f (sb, sr) =

L∑
i=1

(
||Ψbsbi ||pp + ||Ψrsri ||pp

)
. (8)

C. The proposed problem

Given the function defined in Equation (8), it is possible to
derive the following problem:

min
s̄b,s̄r

f(s̄b, s̄r) subject to ‖r − H (s̄b + s̄r) ‖2 ≤ ε. (9)

Problem (9) is a classical analysis-based problem, solved using
the Douglas-Rachford algorithm [19].



D. Adjustable image display

The solution of Problem (9) provides the two components
sb and sr. In order to control the relative amount of back-
ground and bright reflector in the desired image, an approach
similar to the one proposed by Szasz et al. [12] is used. A
parameter γ ∈ [0, 1] is introduced such that:

sd = γsr + (1− γ)sb. (10)

A high value of γ favours the reflector component while a low
value of γ favours the background component.

IV. RESULTS

The proposed approach is evaluated on the PICMUS dataset
in the following experiments: 1 PW, 3 SPWs and 11 SPWs.
Ψb is the SA model described in Section II-C and Ψr is the
Dirac basis. For the contrast experiments, a tapered cosine
window (F = 1.75) is used on receive. No apodization is used
for the resolution experiments. The angles for the 11 SPWs
experiments are chosen uniformly across the angle range of
16◦. For the 3 SPWs experiments, the angles considered are
chosen at −0.43◦, 0◦ and 0.43◦. As a reference, the classical
DAS is also computed on the dataset for each experiment.

A. Simulated contrast phantom

The number of segments are set to L = 6. Since a threshold
for the shrinkage operator has to be fixed for each segment
and each component, this leads to estimate 12 thresholds.
The values of ε are determined by a grid search and set to
0.89||r||2, 0.89||r||2 and 0.9||r||2 for the three experiments,
respectively. Since the RF image is mostly composed of fully-
developed speckle, γ is set to 0. The results, displayed in Fig-
ure 1(a), show a major increase of the contrast (around 5 dB)
compared to classical DAS for the three experiments. A visual
assessment of the B-mode images in Figures 2(a) and 2(b)
confirms the higher quality of the reconstruction for the
proposed approach.

B. Experimental contrast phantom

The number of segments is set to L = 6. The values of ε are
determined by a grid search and set to 0.92||r||2, 0.85||r||2
and 0.89||r||2 respectively. Since there is no bright reflector
in the RF image, γ is set to 0. The results, displayed in Figure
1(a), show a major increase of the contrast (around 5 dB)
compared to classical DAS for the three experiments.

C. Simulated resolution phantom

The number of segments is set to L = 8. The values of ε are
determined by a grid search and set to 0.95||r||2, 0.95||r||2
and 0.96||r||2 respectively. Since the RF image is composed
of point sources only, γ is set to 1. The results, displayed
in Figures 1(b) and 1(c), show a major improvement in both
lateral and axial resolution compared to DAS for the three
experiments. A visual assessment of the B-mode images in
Figures 2(c) and 2(d) confirms the better resolution obtained
with the proposed approach.

D. Experimental resolution phantom

The number of segments is set to L = 12. The values
of ε are determined by a grid search and set to respectively
0.95||r||2, 0.9||r||2 and 0.95||r||2. Since the objective is to
improve the resolution, γ is set to 1. The results, displayed
in Figures 1(b) and 1(c), show a major improvement in both
lateral and axial resolution compared to DAS for the three
experiments.

E. Limitations and perspective

The proposed approach outperforms classical DAS in terms
of image quality. However, it suffers from several drawbacks.
Firstly, the size of the matrix H may become prohibitive in the
case of compound imaging. This is the main reason why the 75
SPWs experiment was not performed. Secondly, the number
of parameters to evaluate is larger than with classical sparse
regularization as a threshold value for the shrinkage operator
has to be evaluated for each segment and for each component.
The number of segments is also a parameter that has to be
estimated. Empirically, segments of 10 to 20 mm appear to
be a good choice [16]. In addition, the proposed approach
is computationally heavy since the reconstruction algorithm
is sub-iterative. Indeed, the projection on the `2−ball of
the constraint requires several iterations. For compounding
experiments with a high number of SPWs, it makes the
problem hardly tractable. A solution to such a problem would
be to focus on primal dual algorithms [20].

V. CONCLUSION

In this study, we describe a novel sparse regularization
method which outperforms classical approaches in terms of
contrast and resolution. A component-based model is intro-
duced in which RF images are divided into bright reflector
and background components, sparse in two different models.
Spatial variability of the PSF is taken into account as the US
images are segmented in stripes in which the PSF is assumed
to be quasi-stationary. The sparsity prior is then adapted to
each stripe, resulting in an unbiased optimization algorithm
and a higher image quality.
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Figure 1 (a) Contrast, (b) axial resolution and (c) lateral resolution on simulated (solid line) and experimental (dashed line) PICMUS datasets
for the classical DAS (blue cross) and the proposed method (red circle) for 1, 3 and 11 PWs.
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Figure 2 B-mode images for 1 PW insonification computed on the simulated contrast phantom reconstructed with (a) DAS and (b) the
proposed approach, and on the simulated resolution phantom reconstructed with (c) DAS and (d) the proposed approach.
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