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Abstract—Classical beamforming methods, based on Delay-
And-Sum (DAS) require an extensive number of samples and
delay calculations to obtain high-quality images. Compressed
Beamforming (CB) proposes an alternative to DAS, based on
compressed sensing, which aims at reducing the data rate.
However, proposed CB approaches induce a computationally
heavy measurement model that hampers their attractiveness for
iterative image reconstruction. In this paper, a CB framework,
applicable to either radio-frequency or in-phase quadrature data
and for both plane wave and diverging wave compounding, is
described. The proposed framework exploits a computationally
light measurement model which leads to tractable reconstruction.
It solves a convex problem and assumes sparsity in a wavelet-
based model to achieve high-quality image reconstruction from
measurements acquired with only few transducer elements.

Index Terms—Plane wave, Diverging wave, Ultrafast imaging,
Sparsity, Compressed sensing, Beamforming

I. INTRODUCTION

Compressed-sensing based beamforming, also denoted as
Compressed Beamforming (CB) relies on a Compressed Sens-
ing (CS) framework [1] to achieve data rate reduction as it has
been successfully applied to other medical imaging modalities
such as Magnetic Resonance Imaging (MRI) [2]. In order to
apply CS onto an imaging problem, the image reconstruction
process has to be formulated as an inverse problem and the
unknown desired image has to be compressible i.e sparse in
a given model. Based on these two assumptions, the desired
image is retrieved by solving a convex optimization problem.

In ultrasound (US) imaging, CS has been extensively used
for various purposes. Liebgott er al. [3] use the sparsity of
backscattered echoes in the wave atom frame to reduce the
number of required echoes in a pre-beamforming step. The ob-
jective of such an approach is to reduce the complexity of the
probe hardware by simplifying cabling. In a post-beamforming
step, CS has been used for two main purposes, namely
data rate reduction and image quality enhancement through
deconvolution [4]. A sparsity prior of Radio-Frequency (RF)
images has been exploited in various models such as: Fourier
basis [5], wavelet basis [5], a—stable distribution [6] or more
recently in learned dictionaries [7]. Finally, CB has been
used as an alternative to classical beamforming methods.
Schiffner and Schmitz [8] introduced plane-wave-based CS
beamforming in which the inverse scattering problem is solved

in the time-frequency domain. Recently, David et al. [9]
introduced a simplified model in which the inverse scattering
problem is solved only in the time domain. Fourier-based CS
beamforming has also been studied by Chernyakova et al. [10]
in which a finite rate of innovation framework is used to reduce
the data rate while the beamforming is achieved in the Fourier
domain.

The main problem of CS based beamforming is the size
of the measurement model, usually prohibitive [8], which
prevents its use in US imaging. In this paper, we formulate
the inverse problem using a simplified measurement model
that can be stored as a sparse matrix. Such a measurement
model allows fast reconstructions using iterative algorithms.
The inverse problem is applicable to any type of transmit
scheme but the present study focuses on coherent Plane Wave
(PW) and Diverging Wave (DW) compounding. The proposed
model is expressed for both RF and In-phase Quadrature (IQ)
images.

Section II briefly reviews CS principles. The compressed
beamforming framework is then described in Section III. Fi-
nally, the proposed framework is evaluated through simulation
and in vivo experiments in Section IV and concluding remarks
are given in Section V.

II. PRINCIPLES OF COMPRESSED SENSING

The now famous theory of CS introduces a signal acqui-
sition framework that goes beyond the traditional Nyquist
sampling paradigm [11]. Formally, the signal = € C¥ is
acquired through the linear measurement model @ € CM*N
and y = ®x + n where y € CM is the measurement vector
and n € CM is the observation noise. CS relies on two
principles [1]:

1) Sparsity expresses the notion that the information carried

by a signal can be concentrated into few coefficients in
a proper basis W. This concentration is described by the
lo-norm, i.e. the number of non-zero coefficients.

2) Incoherent sampling expresses the notion that signals

which have a sparse representation in W must be spread
out in the measurement domain .
CS demonstrates that « can be recovered exactly from vy, for a
sufficiently high number of measurements M (lower than the
number of unknowns /N) whose lower bound is a function of
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the coherence between W and ¢ [12], by solving the following
analysis-based convex problem:

min ||WTZ|; subject to ||y — ®E||s < e, )

zeCN
where W' denotes the adjoint operator of W and € is an
upper bound on the ¢5-norm of the noise. Recall that the
¢,-norm of a complex-valued vector a € CM is defined as
lall, = (Zf\il |a;|P)/P, where |-| represents the modulus of a
complex number. In Equation (1), the £yp-norm is approximated
by the ¢;-norm for convex relaxation purpose.

III. COMPRESSED BEAMFORMING FRAMEWORK

A. The measurement model

In the remainder of the paper, the ultrasound array will
be located at a depth z; = 0. Formally, let us denote as
r (z;,t) the element raw data received at time ¢ by a transducer
element located at z,;. Let us define s(x,z) the RF-image
corresponding to the point in the medium located at (z, z). In
order to formulate the measurement model, two delay values
are introduced as follows:

1) Propagation delay on transmit: The propagation delay
on transmit, denoted as tp, (x,z) corresponds to the time
spent by the transmitted wave to reach a point located at (z, )
in the insonified medium. The propagation time depends on
the nature of the transmit wave. In this work, we will focus
on steered plane waves (SPW) and DW. These schemes lead
to the transmit delays defined below:

o Steered plane wave: A SPW is a PW with a given
angle 6. In this case, it has been demonstrated that [13]:

@ sin 6 + % cosf, 2)

try (x,2) =
where z,..r designates the position of the first or last
transducer element if 6 > 0 or § < 0 respectively.

o Diverging wave: A DW simulates the case where a
virtual point source has been positioned at coordinates
(Zn,zn) behind the US array. It has been demon-
strated [14] that the transmit delay is in this case equal
to:

\/(x—a:n)2+(z—zn)2+zn.

c

3)

tre (x,2) =

2) Propagation delay on receive: The propagation delay on
receive corresponds to the time spent by the US wave reflected
by any point scatterer in the medium to reach a transducer
element located at x;. According to acoustic principle, any
point source creates a spherical acoustic wave. Assuming that
the point is located at (x,z) the US wave will reach the
transducer element located at x; after a time ¢g, such that:

a0+

c
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tRx (xia (E,Z) =

3) The inverse problem: Given the propagation delays on
transmit and receive, it can be deduced that the points of the
medium which contribute to the value of 7 (x;,t) are such
that the sum of their propagation delays (transmit and receive)
equates t. This statement defines the following inverse problem
in the continuous domain:

r(z;,t) =

(z,2)€Q(zi,t)

s(x, z) dxdz, )

where Q (z;,t) = {(x,2) |t =tgs (i, 2, 2) +try (z,2)}.

4) Creating the measurement matrix: Formally, a linear
array is composed of N; transducer elements with a pitch
of p;. The time dimension is discretized according to the
sampling frequency f; and the desired imaging range leading
to N, samples. These considerations induce the following
gridding of the element raw data in the lateral dimension
z; = (aF) with 2 = 2! + (k—1) p, for
k € {1..Ng}, and in the time dimension t = (I —1)/fs,
for [ € {1..N;}. The element raw data are thus defined by a
matrix R € RNe*Net which contains the values of the received
echoes on the grid points. In the desired-image space, let us
consider the Cartesian grid defined by the lateral dimension
x = 2! + (m — 1)Ax, for m € {1...N,}, and the axial
dimension z = 2!+ (n —1)Az, for n € {1...N.}, where
Ax and Az are the image grid spacing in the lateral and axial
directions respectively. The desired image is thus defined by a
matrix S € RV=*N=_ The discretization of the inverse problem
consists in interpolating Equation (5) on the two grids defined
above. In the proposed work, the interpolation is limited to
a linear interpolation in the axial direction. More elaborated
interpolation schemes may be derived. The interpolation leads
to the discretization of € (x;,t) to Qy (k,{) which contains
the closest points on the image grid to € (z;,t). Let us define
the following quantity:

Nelmn if (T?’L7 Tl) S Qf (k’, l) s
Hklmn - 1- )\klmn if (mvn - 1) S Qj (kv l) ) (6)
0 otherwise,

with Agimn € [0,1] the corresponding linear interpolation
coefficient. Equation (6) defines the indicator function on the
set Q¢{k, [} and characterizes the response of the point located
at (x™, z") observed by the transducer positioned in z¥ at time
t'. We can deduce the following inverse problem:

R =HS, (7

with H a 4D-tensor approximating the Green’s function of a
homogeneous medium, under Born approximation, and taking
into account both the transmit and receive contributions.
Equation (7) is unwrapped in order to retrieve the formulation
of the inverse problem derived in Section II:

r = Hs, )

with » € RNetNe ' g ¢ RN:Na and H € RNatNexNaNa | The
matrix H is thus very sparse with a density of non-zero values
of at most 2/N.,.



5) Measurement matrix in the 1Q domain: Equation (8)
links the element raw data to the desired RF image. In order
to reduce the data rate as well as the size of the measurement
model, a complex base-band demodulation may be applied
on the element raw data. Such a procedure involves a down-
mixing, a low pass filtering and a decimation, leading to a
complex baseband signal called the 1Q signal.

It has been demonstrated [15] that the measurement model
in the IQ domain may be derived from the measurement model
in the RF domain by adding a phase shift which corresponds
to the time delay.

B. Image reconstruction

Problem (8) may be recast as a CS problem in which H
plays the role of the measurement model, r is the measurement
vector and s is the desired image. In order to decrease the
data rate, a downsampling operator P € RM*NeiNe which
selects the active transducers is introduced leading to a new
measurement vector r,, — Pr and a new measurement model
H, = PH.

The following problem, denoted as compressed beamform-
ing problem, is solved:

min_ [|[WT5]; subject to |7, — Hy5|[2 <. )

5€CNzNz
In the study, the downsampling schemes consists in select-
ing few transducer elements on receive as it has been done
in our previous work [16]. Such a choice is guided by the
hardware feasibility.

IV. EXPERIMENTS

Two main experiments have been performed to validate
the approach in both SPW and DW imaging in which CB
is compared against classical Delay-And-Sum (DAS) beam-
forming on interpolated element raw data (DAS-interp). A
spline interpolation has been used for this comparison. The
log-compressed B-mode images, obtained by normalization
of the envelope image and log-compression are displayed. The
sparsifying model used for CB is the sparsity averaging model
(SA) which surpassess wavelet-based models on classical [17]
and US images [18].

A. Plane wave imaging

A carotid is imaged using a Verasonics system equipped
with a linear array probe (128 transducer elements, 0.195 mm
pitch, 5MHz central frequency, 31.2MHz sampling fre-
quency). Five SPWs with angles uniformly spaced between
—2° and 2° are used on transmit. On receive, the array is
downsampled by randomly choosing 32 transducer-elements.
The element raw data are converted to IQ data and recon-
structed using CB and DAS-interp. As a reference, the image
obtained with the 128 transducer elements is also reconstructed
with DAS. The quality of the reconstruction is evaluated using
a cyst-to-tissue ratio (CTR) (in dB), measured as the ratio of
energies in the region delimited by the red square (anechoic)
and the region delimited by the blue square (tissue speckle)
of Figure 1. The CTR values for respectively CB, DAS-interp

and for the reference are —31 dB, —26 dB and —31 dB. These
values and a visual assessment show that CB reconstruction
has a quality similar to DAS reconstruction with the full
array and overcomes DAS-interp with the same number of
transducer elements.

B. Diverging wave imaging

A simulation study has been performed to test the frame-
work on DWs. A phantom composed of an §-mm anechoic
cyst positioned at 80 mm and embedded in a medium with a
high density of scatterers (30 scatterers per resolution cell) is
insonified with 3 successive DWs whose corresponding virtual
sources are positioned at —5.9 mm, 0 mm and 5.9 mm in the
lateral dimension and at —2.93 mm in the axial dimension.
The probe used in the study mimics a phased-array with
64 transducer elements, a central frequency of 2.7 MHz and
a half-wavelength pitch. The generation of simulated raw
data is performed using Field II software [19]. The element
raw data are received with few randomly selected transducer
elements spanning the whole aperture. The desired image is
reconstructed with both DAS-interp and CB.

The reconstruction methods are compared in terms of
contrast-to-noise-ratio (CNR) [18] against the number of trans-
ducers selected on receive. B-mode images are also displayed
on Figure 2. The CNR values, displayed in Figure 3, as well
as a visual assessment show that the proposed approach leads
to better image reconstruction than classical interpolation.

V. CONCLUSION

In this paper, a compressed beamforming framework is
presented, which permits to apply CS-based algorithms with
a tractable measurement model for both plane-wave- and
diverging-wave-coherent compounding as well as for both 1Q
and RF data. Equipped with an appropriate downsampling
scheme, such a framework allows us to fully benefit from the
CS-based algorithm in order to recover high quality images
from few selected transducer elements.
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Figure 1 B-mode image of an in vivo carotid insonified with 5 SPWs and reconstructed with (a) DAS with 128 transducer elements on
receive, (b) CB with 32 elements on receive and (c) DAS-interp with 32 elements on receive.

Depth [mm]

0dB
-20dB
T
E
£
o
O
-0d8 O
= - -60 dB
-30 -20 -10 0 10 20 30 -30 -20 -10
Lateral position [mm] Lateral posi
(a)

0 10
tion [mm]

(b)

0dB 0dB
-20dB -20dB

T

E

=

Q

3
-40dB QO -40 dB
-60 dB -60 dB

20 30 -30 -20 -10 0 10 20 30
Lateral position [mm]
(©

Figure 2 B-mode image of a simulated cyst insonified with 3 DWs and reconstructed with (a) DAS with 64 transducer elements on receive,
(b) CB with 21 elements on receive and (c) DAS-interp with 21 elements on receive.
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Figure 3 Contrast-to-noise ratio (dB) against the number of trans-
ducer elements on receive for DAS-interp (dashed-dot-blue line) and
for CB (red-solid line). The dashed-black line represents the contrast
measured on the Reference image (DAS with 64 elements).
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