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Introduction Plasma shaping effects on SOL turbulence

> In the tokamak SOL, magnetic field lines » Fully-turbulent non-linear simulations with same physical parameters, in different magnetic
intersect the walls of the fusion device geometries [Riva et al., PPCF, submitted]
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The Global Braginskii Solver (GBS) code:
a 3D, flux-driven, global turbulence code

used to study plasma turbulence in the SOL

» Mitigation of turbulence by A’, k, and negative §; enhancement of turbulence by positive §
» Good agreement between non-linear simulations and Gradient Removal theory
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Two-fluid drift-reduced Braginskii equations, 2 > kHZ, d/dt < wg
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» Linear scan over x and ¢ allows to
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» Equations implemented in GBS, a flux-driven plasma turbulence code with limited geometry to study

SOL heat and particle transport
» System completed with first-principles boundary conditions applicable at the magnetic pre-sheath

entrance where the magnetic field lines intersect the limiter [Loizu et al., PoP 2012] 0.06
» Parallelized using domain decomposition (MPI and OpenMP), excellent parallel scalability up to 0.04

~ 10000 cores » SOL quasi-steady state balance in the electron temperature 0,00
» Gradients and curvature discretized using finite differences, Poisson Brackets using Arakawa scheme, equation |

integration in time using Runge Kutta method » The perpendicular drifts (S) and the neutral interaction terms 0,
» Code fully verified using method of manufactured solutions [Riva et al., PoP 2014] (N) are balanced by the parallel advection (A) and the ~0.02!
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» Ampere’s equation from Ohm’s law, (Vi - @%n) Vie = V4 Uje — 27tnv) |
» Stencil based parallel multigrid implemented in GBS First simulations with X-point
» The elliptic equations are separable in the parallel direction leading to independent 2D solutions for

each perpendicular plane

The kinetic equation for neutral atoms » Development of a numerical algorithm in more flexible
coordinates: (r,, ¢) (not field aligned)
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» X-point equilibrium implemented in GBS
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» Sheath boundary conditions applied at the wall

» Method of characteristics to obtain the formal solution of f, [Wersal et al., NF 2015] ~ Turbulence structures appear field aligned

> TwWo assumptions, Tneyiral losses < Tturbulence @Nd Amip, neutrals < L plasma: 1€ading to a 2D steady state
system for each perpendicular plane

» Linear integral equation for neutral density obtained by integrating f, over v

» Spatial discretization leading to a linear system of equations
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» This system is solved for neutral density, n,, and neutral particle flux at the boundaries, I'oy¢, With the
threaded LAPACK solver.
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» Characterization of non-linear turbulent 00 — o
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» Mechanisms regulating SOL equilibrium » KSTAR » GBS is a tool to carry out SOL turbulence simulations of medium size tokamaks
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electrostatic potential [Loizu et al., PPCF 05 o0 mes o aeo 5o » Recent developments concern the implementation of shaping effects, neutral atom dynamics, the
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