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ABSTRACT

We argue that there is virtually no practical situation in which one
should seek a "theoretically wait-free" algorithm at the expense of a
state-of-the-art blocking algorithm in the case of search data struc-
tures: blocking algorithms are simple, fast, and can be made "prac-
tically wait-free".

We draw this conclusion based on the most exhaustive study of
blocking search data structures to date. We consider (a) different
search data structures of different sizes, (b) numerous uniform and
non-uniform workloads, representative of a wide range of practical
scenarios, with different percentages of update operations, (c) with
and without delayed threads, (d) on different hardware technolo-
gies, including processors providing HTM instructions.

We explain our claim that blocking search data structures are
practically wait-free through an analogy with the birthday paradox,
revealing that, in state-of-the-art algorithms implementing such data
structures, the probability of conflicts is extremely small. When
conflicts occur as a result of context switches and interrupts, we
show that HTM-based locks enable blocking algorithms to cope
with them.

1. INTRODUCTION

With multi-core architectures being ubiquitous, concurrent data
structures have become performance-critical components in many
widely-used applications and software systems. In particular, search
data structures are heavily used by numerous popular systems, such
as Memcached [42], RocksDB [15], LevelDB [20], MySQL [50],
MongoDB [49], MonetDB [48] and the Linux kernel [40]. Basi-
cally, search data structures are implementations of the set abstrac-
tion: they provide operations to search for a particular element, to
insert, and to remove an element. The most common examples in-
clude linked lists, skip lists, hash tables, and binary-search trees
(BSTs).

However, despite the fact that a large body of work has been ded-
icated to concurrent search data structure (CSDS) algorithms [6,9,
11,13,14,18,23,24,28,32,37,39,43,51,53,57, 58], their design
and implementation remains an onerous task. The difficulty lies
in providing implementations that are both correct, i.e., lineariz-
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able [31], as well as efficient. Essentially, an ideal concurrent data
structure (i) is easy to design, implement and reason about, (ii) pro-
vides high aggregate throughput and scalability, and (iii) ensures
limited latency delays due to concurrency for all requests.

In theory, wait-free algorithms [27, 30] are the only ones that
satisfy requirement (iii). These algorithms prevent known issues
of locking (i.e., convoying, deadlocks, priority inversions), without
the risk of starvation. In essence, a wait-free algorithm guarantees
that every thread completes its operation in a finite number of its
own steps, thus promising limited latency, even under high con-
tention.

Nevertheless, despite the significant amount of research dedi-
cated to the design of wait-free CSDSs [2, 16, 27,37, 38,57, 58],
these algorithms exhibit low throughput, roughly half of that of a
state-of-the-art blocking or lock-free search data structure (as we
show experimentally in the paper). Essentially, the reason for the
difference in throughput between wait-free algorithms on the one
hand, and lock-free and blocking algorithms one the other hand, is
related to the amount of concurrency-related information that needs
to be associated with the data. While in the case of lock-free and
blocking algorithms, data and concurrency-related information can
be efficiently manipulated in an atomic manner, this is not the case
for wait-free algorithms. This results in more pointer chasing and
thus slower traversals of the structures.

Lock-free algorithms have been shown to provide high aggre-
gate throughput in the case of CSDSs [9] (and have been proven
to ensure wait-freedom with high probability for a large class of
schedulers [3]). However, they are difficult to design and imple-
ment correctly [21], with memory management making the task
even more complex [7,44].

Blocking algorithms are considered to be significantly easier to
implement and use, mainly because data can only be modified in
critical sections protected through mutual exclusion mechanisms. It
is thus natural to ask whether it is possible to have blocking CSDS
algorithms that provide high aggregate throughput, but also ensure
that on realistic workloads, no individual request is significantly de-
layed due to contention, i.e., these algorithms are practically wait-
free.

We believe this question can only be answered empirically. To
this end, we conduct the most exhaustive study of blocking CSDSs
to date. We deploy a wide variety of state-of-the-art CSDS algo-
rithms, on the latest hardware technology. In particular, we enable
locks to use Hardware Transactional Memory (HTM) in order to
prevent threads from holding locks while not scheduled, which is
a rather novel use-case for HTM. Our evaluation is extensive both
in the metrics we collect, as well as in the scenarios we study: we
consider numerous uniform and non-uniform workloads, represen-
tative of a wide range of practical scenarios. We also test different
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data structures with varying sizes and percentages of update opera-
tions, with and without delayed threads.

Our results indicate that state-of-the-art blocking implementa-
tions of search data structures behave practically wait-free in all re-
alistic scenarios. Even in scenarios of extreme contention, requests
experience acceptable delays with blocking CSDSs. The usage of
HTM reveals effective in the face of frequent context switches and
other interrupts.

The main conclusion we draw from our study is that there is vir-
tually no practical situation in which one needs to seek an algorithm
providing a strong theoretical progress guarantee at the expense of a
state-of-the-art blocking algorithm in the case of search data struc-
tures: blocking algorithms provide good throughput and latency,
even under high contention, and are much simpler than their non-
blocking counterparts.

Our explanation for this fact is that state-of-the-art blocking CS-
DSs are specifically devised to minimize the probability of high
contention for any memory address. This reason is different from
the perspective taken by recent work [3], namely that if thread ac-
cesses are scheduled stochastically, lock-free algorithms behave in
a wait-free manner even if there is high contention for a particular
memory address. Our conclusion suggests instead that the main
reason for non-wait-free CSDS algorithms, in the theoretical sense,
to behave wait-free in the practical sense is the small probability
of actual contention for a surprisingly wide spectrum of workloads.
This follows from the fact that, in the case of state-of-the-art CS-
DSs, only short portions of the update operations may cause con-
flicts when occurring concurrently. State-of-the-art blocking algo-
rithms simply go through the nodes and follow the next pointers,
and only lock the area which needs to be modified. Indeed, the
time needed to traverse the structure in order to reach the point
where the operation needs to actually be performed generally dom-
inates the total execution time. In addition, problematic scenarios,
such as large delays that may occur due to context switches or in-
terrupts can often be handled efficiently using HTM technologies
available in commodity processors.

The probability of conflicts can be modeled using variations of
the birthday paradox. We show that in common workloads, this
probability is below 1%, with the probability of repeated conflicts
for the same request being much smaller. Even in contended sit-
uations with a high number of conflicts, it is extremely rare that
a wait-free algorithm outperforms state-of-the-art blocking algo-
rithms.

Three remarks are, however, in order. (1) We do not claim that
blocking search data structure algorithms behave in a wait-free man-
ner under every conceivable scenario. We could create a scenario
where (i) the data structure has a small number of nodes, (ii) these
are accessed repeatedly, (iii) by a very large number of concur-
rent threads, and (iv) with a high update rate, and in which latency
would indeed suffer.' (2) Our conclusion only applies to search
data structures. Indeed, we show in the paper that in the case of
data structures which have the potential of inducing much more
contention on a small number of memory addresses, such as queues
and stacks, a blocking algorithm is not ideal. (3) We do not claim
that non-blocking algorithms cannot offer the same performance as
blocking ones. In fact, several lock-free algorithms are known to
provide performance comparable to blocking algorithms. Rather,
we show that state-of-the-art blocking algorithms, which are of-

"We do however claim this does simply not occur in the vast ma-
jority of practical situations. Practitioners, which often have some
knowledge about their workloads and system requirements, can use
our work to decide when blocking implementations are sufficient.
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ten much simpler to design and implement than their non-blocking
counterparts, provide no disadvantage.

The rest of the paper is structured as follows. We discuss CS-
DSs in Section 2. We present our experimental methodology and
settings in Section 3. In Section 4, we show that blocking CSDSs
provide high throughput and scalability, while in Section 5 we per-
form an extensive evaluation of the degree to which blocking CSDS
algorithms are practically wait-free. Section 6 discusses the anal-
ogy with the birthday paradox. We examine the extent to which
our conclusions apply to structures other than CSDSs in Section 7.
Section 8 presents related work. We conclude the paper in Sec-
tion 9.

2. CONCURRENT SEARCH DATA STRUC-
TURES: FROM THEORY TO PRACTICE

In this section, we look at the metric types indicative of the
performance of a concurrent algorithm: coarse-grained and fine-
grained. Moreover, we clarify why theoretically wait-free algo-
rithms fail to perform well in the former, and explain what we mean
by practical wait-freedom in the context of blocking algorithms.

2.1 Performance and progress

The performance of concurrent algorithms is usually evaluated
according to two main types of metrics:

e coarse-grained performance metrics: these capture the over-
all performance of the system, and usually include metrics
such as throughput (the number of requests completed system-
wide per unit of time), average latency (average duration of
an operation), scalability (variation in throughput and latency
as more threads are added to the system), and fairness (the
difference in observed throughput and average latency be-
tween threads);

o fine-grained performance metrics: these metrics capture the
behavior of individual requests; these include for example
metrics such as latency distribution, variability, outliers, as
well as other algorithm-specific metrics. Such metrics might
be useful, for instance, to identify the quantity of particularly
slow requests in a system.

An ideal algorithm would provide good results for both these
metric types. However, optimizing for one of them can have a neg-
ative impact on the other. For example, attempting to maximize
system throughput might result in an algorithm with a large vari-
ability in the operation latencies. Ensuring bounded latencies for
all requests is likewise likely to limit throughput.

One of the main knobs used to adjust the relative importance of
these metrics is the progress guarantee provided by the algorithm.
The vast majority of published algorithms are either (i) blocking,
(i1) lock-free, or (iii) wait-free [30].

e Blocking algorithms ensure mutually exclusive access to (parts
of) the data structure using, for example, mechanisms such
as locks. More broadly, threads have to explicitly release
resources before others can use them, thus potentially pre-
venting the progress of other threads indefinitely.

o Lock-free algorithms ensure that at least one thread in the
system is able to make progress at any point in time.

o Wait-free algorithms ensure that every thread in the system
will eventually complete its operation.
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Figure 1: The throughput of blocking, lock-free and wait-free
linked lists of size 1024, with 10% of the operations being updates.

As we pointed out, blocking algorithms are generally simple.
The downsides are the potential of several threads being indefi-
nitely delayed by a slow thread holding a lock, deadlocks, livelocks,
convoying or priority inversions. Lock-free algorithms present the
risk of some threads starving. In theory, wait-freedom is the most
desirable property for a concurrent algorithm. It ensures that no
request is indefinitely delayed due to contention.

A significant amount of effort has been dedicated in recent years [16,

37, 38,57, 58] to dispel the belief that wait-free algorithms pro-
vide low throughput in practice [17,30]. In the context of search
data structures however, such algorithms still lag significantly be-
hind alternatives providing weaker progress guarantees in terms of
system-wide throughput, as we will discuss below.

2.2 A closer look at wait-free CSDS algorithms

A search data structure contains a set of elements, and allows ac-
cess to each of them, regardless of their position in the data struc-
ture. These structures store elements of arbitrary sizes, indexed
using keys, and are usually implemented as linked data structures.
They have a simple base interface, consisting of three operations:

e get(k) returns the value associated with key & in case such an
entry exists, or returns false in case the entry is not present;

o put(k,v) inserts a key-value pair in case an entry for key k is
not present, or returns false otherwise;

e remove(k) removes the entry corresponding to key k in case
it exists in the data structure, or returns false otherwise.

Given the practical importance of these structures, a lot of effort
has been dedicated to their efficient concurrent implementations.

In the following, we illustrate the current difference in through-
put between a state-of-the-art wait-free algorithm [58], a state-of-
the-art blocking algorithm [24] and a lock-free algorithm [23] for a
linked list (for space limitations, we only give results for the linked
list; we also experimented with a skip-list, a BST and a hash ta-
ble). We use a recent 20-core (40 hardware threads) Intel server.
We depict the throughput of a linked list with 1024 elements and
10% updates (5% inserts, 5% removes) as we increase the number
of threads from 1 to 40.

As conveyed in Figure 1, the throughput of the wait-free algo-
rithm is around 50% of its blocking and lock-free counterparts.
This trend pertains to other CSDSs as well (skip lists, BSTs and
hash-tables?).

%In the case of a hash table with average occupancy per bucket
equal to 1, and hence on average no linked components, the wait-
free algorithm is only around 33% slower. For the others, it is also
50%.
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The main reason for the difference in throughput between wait-
free and blocking CSDSs is that in a CSDS, the time needed to
traverse the structure in order to reach the point where the opera-
tion needs to actually be performed generally dominates the total
execution time. In essence, the smaller the number of memory lo-
cations an operation needs to read or write, the faster the operation.
Due to their simpler nature, blocking algorithms have to chase a
smaller number of pointers during an operation: the most efficient
such algorithms simply have to go through the nodes and follow the
next pointers, and only lock the area which needs to be modified.

In the case of wait-free algorithms, the underlying reason for
their inefficiency is a fundamental mismatch between current ar-
chitectures and the complexity of wait-free algorithms. In non-
blocking CSDS algorithms, the common approach is to associate
some concurrency information with each next pointer of a node,
and update this information and the pointer atomically. While the
unused three least significant bits of a pointer (in a 64-bit archi-
tecture) are generally sufficient for this concurrency information in
the case of lock-free algorithms, this is not the case for the most
efficient wait-free algorithms (which might need, for example, ver-
sion numbers associated with next pointers). In terms of practical
implementations, this usually translates in additional objects being
interposed between data structure nodes, resulting in slower traver-
sals of the structure. This is illustrated in Figure 2. Thus, wait-free
algorithms fail to provide at least one of the characteristics of an
ideal concurrent algorithm we have previously identified: high ag-
gregate throughput.

Of course, our experiment tells only half of the story: the main
goal of wait-freedom is not high system-wide throughput, but rather
the promise that every request will eventually return (fine-grain la-
tency). In the rest of the paper, we focus on showing that in addition
to providing good coarse-grained performance metrics (Section 4),
blocking CSDS algorithms also exhibit “wait-free behavior” for a
very wide variety of workloads (Section 5).

2.3 Practical wait-freedom

We now look at how the theoretical guarantees of wait-free algo-
rithms manifest in practice in the context of concurrent search data
structures.

In theory, threads may crash. Wait-free algorithms ensure that
despite the crash of a thread, the requests of other threads still get
served. In practice, threads usually do not crash, and when they do,
they do not crash independently: even when software bugs occur
in a multi-threaded program, it is preferable to stop or restart the
entire application rather than work with state that might have been
corrupted.

Threads can however be temporarily delayed due to I/O, context
switches, scheduling decisions or other interrupts. In practice, we
expect wait-freedom to translate to a bound in the delay a request
can suffer due to contention, i.e., all requests finishing before a
certain deadline as long as the thread itself is scheduled (i.e., taking
steps).

We thus argue that a data structure implementation which has
a negligible percentage of requests that exhibit significant delays
due to other concurrent threads in the system for a wide array of



Linked lists Skip lists

Hash tables

BSTs

Lock-coupling list [30]

Lazy linked list [24]

Pugh linked list [53]
Copy-on-write linked list [52]

Pugh skip list [53]
Herlihy skip list [28]

Lock-coupling hash table [30]
Lazy hash table [24]

Pugh hash table [53]
Copy-on-write hash table [52]
ConcurrentHashMap [39]
Intel TBB [34]

URCU hash table [11]

Practical binary tree [6]
Logical ordering tree [13]
BST-TK tree [9]

Table 1: Blocking search data structure algorithms considered in our evaluation.

workloads is practically wait-free. In practice, most systems in-
deed provide a Service Level Agreement (SLA) tolerating small
percentages (e.g. 0.1% or 1%) of slow requests. Hence, what we
call practical wait-freedom is bounded delays due to contention, for
all but a potentially infinitesimal percentage of requests, under all
realistic workloads.

This characteristic of an implementation does not imply a par-
ticular theoretical guarantee provided by the algorithm. It simply
identifies implementations whose execution (in terms of request de-
lays due to contention and fairness) cannot be distinguished from
that of an algorithm that actually provides the theoretical guarantee
of wait-freedom.

In the context of blocking CSDSs, there are two possible causes
for which a thread’s operation can be delayed by other concurrent
threads: locks and restarts. To quantify the extent to which a thread
is delayed as a result of them, we can measure the time an opera-
tion waits in order to acquire locks, as well as the number of times
an operation has to restart. These two fine-grained metrics are in-
dicative of different sources of delays to which wait-free algorithms
may serve as better alternatives:

e Large average waiting times to acquire locks can be for the
most part linked with i) other threads suffering delays while
holding locks or ii) a large number of threads attempting to
acquire the same lock. In the following sections, we show
that in the context of state-of-the-art blocking CSDS algo-
rithms, the latter case occurs only extremely rarely.

e In contrast, restarts capture a pattern present in a large frac-
tion of the state-of-the-art blocking CSDS algorithms: if at
some point during an operation, a state which does not al-
low it to progress correctly is encountered, the operation is
restarted. These possible inconsistencies triggering restarts
are a result of the fine-grained locking and optimistic ap-
proaches used in state-of-the-art algorithms. In general, a
large percentage of requests having to be restarted repeat-
edly can be linked to high contention for a particular area
of the data structure. The theoretical possibility of trigger-
ing restarts indefinitely might result in threads suffering from
starvation.

We note that a more generic metric such as latency distribution
is not appropriate in the case of all linked search data structures,
given the fact that request latencies are often dominated by the time
needed to reach the point of the data structure which needs to be
accessed. Therefore, accesses to different parts of the data struc-
ture naturally have very different latencies. In addition, if context
switches or other interrupts occur, threads may not even be taking
steps, resulting in potentially unbounded latencies even for a theo-
retically wait-free algorithm.

In the following, we look at the extent to which blocking CSDSs
provide the desired coarse-grained performance metrics, as well as
the fine-grained performance metrics indicative of practical wait-
freedom discussed above.
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3. EXPERIMENTAL SETTING

For our study, we evaluated a wide range of blocking CSDS al-
gorithms, summarized in Table 1, and part of ASCYLIB [5], an open
source library implemented in C containing blocking and lock-free
CSDSs. We report on their behavior under a wide range of condi-
tions, representative of a wide variety of workloads. We enhance
the library with benchmarks allowing us to report on the metrics
presented in this paper. Roughly, we argue that the state-of-the-
art algorithms have good throughput, scalability and behave prac-
tically wait-free regardless of the search data structure, thus repre-
senting ideal implementations for the vast majority of workloads.

For clarity, in the following experiments, we only highlight the
behavior of the blocking algorithm exhibiting the best performance
in our tests for each data structure, as our intention is to show that at
least one practically wait-free algorithms exists for each structure
type. Nevertheless, the conclusions we draw are in fact valid for
multiple state-of-the-art algorithms for each data structure.

The best performing algorithms per data structure (which are
shown in the following figures) are the lazy linked list, Herlihy’s
skip-list, the lazy linked list-based hash table (one lazy linked list
per bucket, with per-bucket locks, with average load factor per
bucket set to 1), and the BST-TK external binary search tree.

3.1 State-of-the art algorithms

Before we go into any details, it is important to understand the
principles according to which the best performing blocking CSDS
algorithms operate today [9]:

e Read operations do not perform any stores, and do not trigger
any restarts;

e Update operations can be divided into a parse phase and a
write phase: in the parse phase, the area of the data struc-
ture where the update needs to be applied is reached in a
synchronization-free manner, while during the write phase,
the actual updates are applied by writing to a small neigh-
borhood of nodes in the data structure.

o Conflicts arise between two threads if they are executing their
write phase concurrently, and the nodes accessed during these
phases by the two threads intersect.

e Parses and reads are not obstructed by concurrent updates.

In short, in all these algorithms, the only blocking portions are
short sequences of code in the update operations in which the actual
modifications to the data structures are performed.

3.2 Implementation details

Our structures use either test-and-set locks or ticket locks in our
experiments. We observe no benefits from using more complex
locks, such as MCS locks, due the low degree of contention for
any particular lock in these data structures. In addition, it has been
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Figure 3: Throughput scalability of blocking implementations.

shown that these simple locks often perform well in practice [10],
even for moderately high degrees of contention. Our implementa-
tions use an epoch-based memory management scheme, similar in
principle to RCU [41].

In order to test our implementations, we use an Intel machine
having two Xeon E5-2680 v2 Ivy Bridge processors with 10 cores
each (20 cores in total). In addition, each core supports two hard-
ware threads. The cores run at 2.8 GHz and have caches of sizes
32KB (L1), 256 KB (L2) and 25 MB (LLC per processor). The
machine runs Ubuntu Linux 14.04 (kernel version 3.13.0). We bind
threads to cores such that threads first use all physical cores before
using both hardware contexts of the same core.

3.3 Methodology

We present results for different structure sizes and update ratios,
which we believe to be representative of those used in practical
systems. We consider structures consisting of 512, 2048 and 8192
key-value pairs, and percentages of update requests of 1%, 10%,
and 50%. Half of the updates are inserts, and the other are removes.
These parameters, are, in fact, similar to the ones we observe in real
systems (e.g., in LevelDB [20], RocksDB [15], Memcached [42],
MySQL [50], MongoDB [49], MonetDB [48]). We also address
smaller structures and higher degrees of contention in a separate
experiment.

We evaluate the extent to which blocking CSDSs provide the two
main features of an ideal concurrent algorithm: (i) high system-
wide performance, and (ii) practical wait-freedom. We start by
showing that blocking CSDSs provide the desired coarse-grained
performance metrics, after which we look at the fine-grained met-
rics indicative of wait-freedom, and study how they evolve as we
modify the parameters of our workload and environment.

Unless otherwise specified, the distribution of accesses over the
key space is uniform. Keys and values have 64 bits in size. Us-
ing larger values is straightforward: instead of the 64-bit value we
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would simply manipulate pointers to these larger values. Each of
the worker threads in our benchmarks continuously issues requests.

In each of the workloads, we consider a key space twice as large
as the structure size. Given that our workloads have an equal num-
ber of inserts and removes, this ensures that on average the data
structure size remains close to the initial size throughout the exper-
iment. We use runs of 5 seconds and report the average results of
11 runs.

In order to capture the system-wide performance and the degree
to which the individual requests of these algorithms are delayed, we
consider the following metrics: (a) the throughput as we increase
the number of threads from 1 to 40 (the maximum number of hard-
ware threads on our machine), (b) the average throughput per thread
and the standard deviation of this quantity, (c) the average percent-
age of time spent waiting for locks by each thread and the standard
deviation, and the (d) percentage of operations that have to restart
at least once. We also look at the distribution of the values for the
last two metrics among requests to identify any outliers. Where not
specified, measurements are taken using 20 concurrent threads.

4. COARSE-GRAINED METRICS

In this section, we evaluate the first performance characteristic of
an ideal CSDS: we verify the extent to which blocking CSDSs pro-
vide good aggregate throughput and scalability for various structure
sizes and update ratios.

Figure 3 presents the evolution of the throughput as a function
of the number of threads. We note that the structures exhibit no de-
crease in scalability as the number of concurrent threads increases.
Of course, as we increase the percentage of updates more cache in-
validations are generated, resulting in slightly larger latencies and
overall lower throughput increases. However, the scalability trends
remain the same. This is particularly noticeable in the case of the
hash table, due to the much higher incurred throughput and the
lower latencies of the requests. Once we have to use both sockets
of the multi-core (for more than 10 threads), the scalability slope
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Figure 4: Per-thread throughput (and standard deviation).

slightly reduces due to increased latencies to access data. This ef-
fect of the higher cache coherence latencies on the total throughput
is inherent to each data structure, and cannot be bypassed regard-
less of the algorithm and its progress guarantees [9, 10].

In addition, in Figure 4, we also present the average throughput
per thread and the standard deviation of this metric. We depict the
standard deviation using error bars. On average, the standard devi-
ation is 0.2% of the average per-thread throughput. This quantity
is so small compared to the per-thread throughput, that it is not vis-
ible on the graphs. This is valid for all the data structures and for
all the workloads. Given that threads continuously issue requests,
we can also conclude that the average latency is identical among
threads. The observation we extract from this experiment is thus
that blocking CSDSs ensure a high degree of fairness.

The conclusion we can draw from these experiments is that the

blocking nature of these algorithms is not an obstacle to high through-

put or scalability, even as we modify the size of the structure or the
percentage of update operations. In addition, all threads exhibit
high performance: there is no skew between the throughputs of the
threads.

S. PRACTICAL WAIT-FREEDOM

While as we have shown in the previous experiments, blocking
algorithms have good throughput scalability and are fair, in this
section we look closer at the fine-grained performance metrics in-
dicative of practical wait freedom. As presented in Section 2, these
metrics are the amount of blocking and retries as we vary the data
structure size and update ratio.

We study how these metrics evolve as we very the percentage
of updates, decrease the size of the data structure, use non-uniform
workloads, cause threads to become unresponsive, and induce fre-
quent context switches.

5.1 Structure size and update ratio

In this experiment we collect the performance metrics as we vary
the structure size and the update ratio. Figure 5 presents the per-
centage of time threads spend waiting for locks. The percentage is
relative to the total execution time when threads are continuously
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Figure 5: Fraction of time threads

spend waiting for locks (and

standard deviation).
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Figure 6: Fraction of requests that are restarted.

issuing requests. We measure this amount of time by using ticket
locks: once a thread has acquired its ticket, if it is not immediately
its turn to be served, we measure the time until this event occurs.
‘We note that this percentage is under 2% in all situations, with most
values being significantly below this percentage. In the case of the
8192-element linked list, for example, no thread has to wait in or-
der to acquire locks. For the 2048-element linked list, the standard
deviation is large due to the fact that the waiting times are between
0 and a few hundred cycles: even one brief delay waiting for a lock
makes a thread an outlier. In the case of the BST, the tested algo-
rithm uses trylocks, and restarts the operation in case the locking



attempt fails. Therefore, the time spent waiting for locks is zero,
but this is compensated by the slightly higher percentage of opera-
tions that are restarted.

Similarly, as shown in Figure 6, the percentage of operations
delayed due to restarts is significantly smaller than 1% in all situa-
tions. This value is O in the case of the hash table: each bucket is
protected by a lock, so once the operations have acquired the lock
they never restart.

We also run an experiment in which we look at the distribution
of the two sources of delays (the number of restarts and the time
spent blocked) on a per-request basis. We want to identify any
outliers: requests significantly delayed due to concurrency, which
would violate practical wait-freedom. We consider a workload us-
ing a linked list of 512 elements, 40 threads and 10% updates. Only
0.01% of the requests had to wait for locks, with no requests wait-
ing for more than 6us. In addition, out of the 26 million operations,
2900 had to restart once, 9 had to restart 2 times, and none had to
restart more than that.

The conclusion we can draw from these experiments is that block-
ing CSDS algorithms cause negligible request delays due to con-
currency, thus allowing threads to complete their requests in a finite
number of their own steps. When these small delays do occur, there
are no requests that are affected significantly more than others.

These metrics also allow us to confirm the fact that our con-
clusion applies to the state-of-the-art search data structure algo-
rithms, and not to more naive implementations, which have more
frequent or longer critical sections. For example, we consider a
lock-coupling linked list [30]. This algorithm, while using fine-
grained locks, acquires locks as the structure is traversed. We mea-
sure the percentage of time threads spend waiting for locks for this
algorithm. With 20 concurrent threads and just 1% updates, threads
spend around 10% of their time waiting for locks, regardless of the
structure size. Therefore, we do not claim such algorithms are prac-
tically wait-free.

5.2 Non-uniform workloads

We now look at non-uniform workloads, in which some keys are
more popular than others. We use a Zipfian distribution of requests
over the key space with s = 0.8. Zipfian distributions are known
to model a large percentage of real workloads [8]. We show results
for each of the data structures, using a workload with 20 threads,
2048 data structure size and 10% updates. We provide numbers for
the time threads have to wait for locks, and the average number of
retries that have to be performed. The results of this experiment are
depicted in Figure 7. While the values observed in this experiment
are slightly higher than for uniform workloads, the delays remain
very low: threads spent at most 1% of their time waiting for locks,
and only restart at most 0.30% of their operations regardless of the
data structure.
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Figure 7: Percentage of time spent waiting for locks and percent-
age of requests restarted for blocking search data structures on a
workload with a Zipfian request distribution.
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Thus, we can conclude that blocking CSDS algorithms behave
practically wait-free on such non-uniform workloads as well.

5.3 High contention

We present the following experiment: we consider a scenario in
which 40 threads concurrently access a data structure, with 25% of
the operations being updates. We start with a structure having 512
elements and in subsequent runs reduce its size down to an extreme-
contention configuration with a structure consisting of 16 elements
on average out of 32 possible keys. We report the percentage of
time threads spend waiting for locks, as well as the percentage of
update operations that restart at least once, and more than three
times (reads do not restart). The percentage of updates restarted at
least three times provides a measure of the number of such requests
that are significantly delayed. As before, the hash table does not
restart (as we use per-bucket locks), while the BST does not wait
for locks.

Figure 8 presents the results of this experiment. In the case of
the linked list, in the most extreme contention configuration, with
only 16 elements in the structure, threads spend about 30% of their
time waiting for locks, with 20% of the operations restarting at least
once, and 1.8% of the operations restarting more than three times.
Arguably, these numbers stretch the limits of what could be consid-
ered as practical wait-freedom, and in this particular configuration
non-blocking algorithms may represent a better alternative. How-
ever, a data structure of size 32 already spends only around 1% of
the time waiting for locks, restarts only 0.6% of its operations and
repeatedly restarts only 0.02% of them, thus warranting the claim
of practical wait-freedom. The values of these metrics continue
to decrease steeply with the increasing data-structure size. With a
linked list of 512 elements, practically no requests are significantly
delayed or restarted more than three times.

Other data structures behave similarly: while for the very small-
est structures our metrics can be non-negligible, they decrease ex-
ponentially as we increase data structure size. In the case of the
hash table, since there are no restarts and we use per-bucket locks,
the time spent waiting for very small hash tables is somewhat larger
than for the other structures. This can be addressed by using finer-
grained locks: i.e, use per-node locks instead of per-bucket locks.
Nevertheless, since the hash tables used in practice are usually large
in size, we use per-bucket locks throughout the paper.

The conclusion we can draw from this experiment is that there
are indeed some extreme cases in which blocking data structures
exhibit a non-negligible percentage of delays. However, these cases
require extremely small data structures, a very high degree of con-
currency and relatively high update ratios. We argue that such par-
ticular situations are rare in practice in the context of CSDSs. In
fact, we have not observed such highly contested structures in pop-
ular practical systems which use CSDSs. In the majority of cases,
even under high contention, blocking CSDSs still behave practi-
cally wait-free.

5.4 Unresponsive threads

We now look at a scenario in which threads become slow. In the
first instance, we cause a thread to be delayed for a random inter-
val between 1000 and 100000 ns every 10 updates, while holding
locks. This range of delays captures many of the events that might
occur in practice, such as accessing data from memory, SSD, or
sending packets over the network. In essence, given that threads
usually hold locks for short intervals only, this experiment looks at
a worst-case scenario, where delays only happen while the locks
are held. We present results for a workload having 20 concurrent
threads, using data structures consisting of 2048 key-value pairs
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Figure 8: Delayed requests and time spent waiting for locks as a function of structure size.

and 10% update operations. In Figure 9, we provide results for the
time spent waiting for locks and the number of restarted requests.
Given that BST-TK uses trylocks [22], the waiting time for locks is
normally 0. However, to better capture the effects of a slow thread
on this algorithm, we depict the average time spent by threads on
retries due to trylock failures. We note that threads spend at most
1% of their execution time waiting for locks. In fact, aside from
the hash table, the percentages for the other data structures are sig-
nificantly lower. We can lower this percentage for the hash table
as well by replacing the per-bucket locks with finer grained locks
for the linked lists representing each bucket. The percentage of
restarted requests is also small: at most 0.015% for the skip-list.
Thus, even under such workloads with temporary delays, the prac-
tically wait-free behavior of blocking CSDSs is not affected.

There is of course a limit up to which threads can be delayed
before the system behavior is affected and practical wait-freedom
jeopardized. In essence, an unresponsive thread might be problem-
atic if (i) the delay happens while a thread is holding a lock and
(ii) the thread is unresponsive for a large period of time. We find
that such a scenario is possible, for example, in workloads where
the number of threads significantly outnumbers the available cores
(multi-programming). In an example using 4 threads per hardware
context (160 threads in total), we find that around 3300 context
switches occur every second. Roughly, that means that every thread
executes for 12 ms, after which it is swapped out for 37 ms. Al-
though critical sections in our algorithms are very short, a few of
these context switches are bound to happen while locks are held. In
such scenarios, while algorithms’ performance is affected regard-
less of their progress guarantee, we find this to be more obvious in
the case of blocking algorithms, particularly under workloads with
higher update ratios.

To address this issue, we propose using hardware features re-
cently introduced on modern architectures, such as Intel’s Transac-
tional Synchronization Extensions (TSX) [33], which allow us to
elide locks. One characteristic of Intel’s TSX implementations is
the fact that hardware transactions are aborted when interrupts oc-
cur. While this is often regarded as a limitation [47, 61], we use
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Figure 9: Percentage of time spent waiting for locks and percent-
age of requests restarted for blocking search data structures when a

thread repeatedly suffers delays.
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the abort-on-interrupt characteristic of TSX to our advantage, as it
enables us to maintain the practically wait-free behavior of CSDS
algorithms even in the case of frequent context switches, 1/O, or
other interrupts: even if a thread is within a critical section when
the interrupt occurs, the hardware transaction is aborted and locks
are not held when threads are not scheduled. This technique does
not change the blocking nature of the algorithms: since Intel TSX
is best-effort only, we need to provide a fall-back path which uses
the actual locks for the situation when a speculative execution of
a critical section is repeatedly aborted. The effectiveness of this
approach is thus contingent on hardware transactions not aborting
extremely frequently.

As we have observed in our evaluation, and as we will further
show in Section 6, the probability of contention between two threads
is small. Therefore, only a very limited percentage of updates will
be repeatedly aborted due to data conflicts, even when contention
is high. In addition, the short critical sections in the write phase do
not trigger interrupts in the common case. While it is possible for
page faults to occur within a critical section, we argue that this is
a fairly rare event, and, given that by using TSX we can re-try the
optimistic transactional approach multiple times before reverting
back to the pessimistic path, this does not jeopardize wait-freedom.
Additionally, TSX also provides us with a degree of tolerance to
failed threads. Although in general one would stop a concurrent
system rather than work with corrupted state, using TSX-enabled
locks could also prevent failed threads from leaving the system in
an inconsistent state, or holding locks after crashing.

We validate our hypothesis using a 3 GHz 4-core (8 hardware
threads) Intel Haswell Core 17-4770 machine. The processor has
32 KB L1, 256 KB L2, and 8 MB L3 caches. Our algorithms
remain unchanged: we only add TSX instructions to the acquire
and release methods of the locks. Except for BST-TK, which uses
ticket trylocks, all the other algorithms use test-and-set locks. We
show results for a workload using 32 concurrent threads (8/physical
core), with data structures consisting of 1024 key-value pairs and
workloads with varying update ratios. Given the frequent context
switches, measuring the amount of time threads spend waiting to
acquire locks is not an appropriate metric here. Instead, we mea-
sure the number of operations that fail to elide the locks and fall
back to normal lock acquisition: it is only these operations that
have the potential of delaying other threads for longer amounts of
time. We report this as a fraction of the total number of lock acqui-
sition calls. The results are shown in Table 2. We note that in most
cases the percentage of operations that acquire the locks is well be-
low 1%. This number is slightly larger in the case of the skip-list,
which needs to take multiple locks per update. The conclusion we
can draw from this experiment is that the probability of a thread
being de-scheduled while holding a lock is extremely small: an in-
terrupt would have to occur while a thread is (i) in the write phase
of an update operation and (ii) after the thread failed repeatedly to



| Update ratio || Linked list | Skip list | Hash table | BST |

20 0.001 0.011 0.001 0.000
50 0.001 0.012 0.001 0.000
100 0.001 0.014 0.002 0.001

Table 2: Fraction of critical sections falling back to acquiring locks
using 8 threads/physical core (32 threads in total) with data struc-
tures of size 1024.

| Update ratio || Linked list | Skip list | Hash table | BST |

20 1.11 10.6 2.46 2.21
50 1.23 20.21 3.06 2.65
100 2.26 53.28 2.75 2.56

Table 3: Throughput improvements of TSX-enabled versions vs.
default implementations using 8 threads/physical core (32 threads
in total) with data structures of size 1024.

elide the locks. We theoretically estimate this probability in Sec-
tion 6.

We also measure the increase in throughput we obtain in these
scenarios when using TSX. Table 3 shows the ratio between the
throughput of the TSX-enhanced versions of the algorithms and
the default implementations. We note important improvements in
all data structures. The benefits of using TSX are particularly im-
pressive in the case of the skip list. This is due to the lager number
of locks per update operation, which increases the potential of a
thread being de-scheduled while holding a lock.’

The behavior revealed in the previous experiments allows us to
conclude that TSX indeed enables us to maintain practically wait-
free behavior even in the face of frequent context switches, which is
a scenario particularly well-known for causing issues in the context
of concurrent systems.

Depending on the level of privilege of the code, an alternative to
our solution could be to make the critical sections non-preemptable.
However, even this might be problematic in the context of virtual-
ization: scheduling multiple virtual machines in the presence of
locks is a well-known challenge [19, 36, 55, 59]. Essentially, the
guest OS does not have control over the scheduling decisions of
the hypervisor. Our proposed approach would maintain the practi-
cal wait-freedom of CSDS algorithms even in such a situation, and
may prove beneficial for other applications in virtualized environ-
ments as well.

In this section, we have shown that blocking algorithms behave
practically wait-free on structures of different sizes, with different
percentages of updates, under non-uniform workloads, under ex-
treme contention and with frequently unresponsive threads. While
it is extremely difficult for an evaluation to address every possible
scenario, we argue that these experiments cover most situations that
arise in practical systems using CSDSs. Thus, given the behavior of
blocking CSDSs observed in this section, we conclude that in prac-
tice, for the vast majority of workloads, blocking CSDSs behave
practically wait-free.

6. THE BIRTHDAY PARADOX

In essence, the explanation for the wait-free behavior of blocking
CSDSs is that the probability of threads being delayed due to con-
tention is very small. We say that a conflict occurs when a thread

3We notice no important difference between the default and TSX-
enabled implementations in other experiments used in this paper.
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is blocked or restarted by another thread. In state-of-the-art CSDS
algorithms, a thread can generally encounter a conflict only during
the write phase of an update operation. We provide an estimation
of this conflict probability using an analogy with the birthday para-
dox.

Assuming threads that continuously issue requests, we first esti-
mate the fraction of time a thread spends doing update operations
(in a concurrent execution, including the acquisition and release of
locks):

u X dury
u X dury + (1 —u) X dury

fu= )]
Here u is the update ratio (the fraction of operations that are up-
dates), dur,, is the average duration of an update, and dur,. is the
average duration of a read.

We then estimate the fraction of time a thread spends in its write
phase, where d,, is the average duration of the write phase, and d),
is the average duration of the parse phase (recall that in state-of-the-
art algorithms updates have a parse phase and an update phase):

dy
du + dp

It is then a matter of computing the probability of conflict between
threads concurrently executing their write phase. This is highly
specific to the data structure, the implementation, and the request
distribution. In general however, it can be reduced to variations of
the birthday paradox: the probability of randomly chosen variables
being similar enough to each other to cause conflicts. We denote by
B, (k,n) the probability that if k threads are concurrently execut-
ing their write phases on a structure s of size n, at least one conflict
will arise.
The probability of conflict in a system with ¢ threads is thus:

fw:fu>< 2

t

Pcon flict = Z <Z> fwk(l — fw)tikBs(k,n) (3)

k=1

We now provide numeric examples for some of the structures
and workloads employed in this paper.

6.1 Hash table

Our hash table implementation has the particularity of using one
lock per bucket. Hence, in the above equations, dy, is O: the lock is
acquired immediately after the update starts. In the case of the hash
table, since conflicts only appear if two threads want to write to
the same bucket concurrently, the problem reduces to the classical
version of the birthday paradox. We therefore have:

1) (n— i)

nk—1

Bia(k,n) =1 - “)
We first assume a uniform workload for simplicity (see below for
a non-uniform case). In this scenario, an update operation takes
approximatively twice as long as a read operation. We assume a
scenario with 1024 buckets and 20 threads, with 10% of the op-
erations being updates. f, is then 0.18, f,, has the same value
(given that d,, is 0), and thus, using the formulas above, we obtain
Peonslict = 0.0058. Therefore, the probability of any thread being
delayed due to concurrency at any point in time is about 0.58%, a
small enough percent to lead to wait-free behavior.

6.2 Linked list

In the case of other data structures, this computation is slightly
more complex. For example, in our linked list, in which a remove
operation has to lock two consecutive nodes, we can use the solu-
tion to the "almost birthday paradox" [1] to provide an upper bound



to the probability of conflict. In this case, we have:

(n—k—1)!

B =1-
u(k,n) (n — 2k)Ink-1

&)
‘We provide a numerical example, considering a slightly higher con-
tention example, with a list of 512 elements, 40 concurrent threads
and 20% updates. An important distinction with the hash table is
that the parse phase dominates the latency of an update operation.
In fact, on average, the write phase takes only around 10% of the
parse phase duration. That also means that updates are only one
tenth more expensive than reads. Applying the presented formulas,
we obtain f,, ~ 0.0215. We apply the formula for computing the
probability of conflict in the case of the almost birthday paradox
and obtain pconfrice = 0.0021. In the case of the linked list, the
probability of conflict is thus 0.21%, again a percentage permitting
wait-free executions.

6.3 Uniform vs. non-uniform workloads

In the above, we have considered uniform workloads. Of course,
one could also repeat the computations considering non-uniform
accesses. In that case, a variation of the birthday paradox using
non-uniform probability distributions would have to be employed.
For instance, using a Poisson approximation to model the probabil-
ity of conflicts in such scenarios, we have:

k n
Bnanfunifor'm(k>n) =1- 6_(2) Zi:l P? (6)

Here, p; denotes the probability of element ¢ in the structure to be
accessed. Using our linked list example from above and a Zipfian
workload with s = 0.8, the probability of conflict is 0.47%. This
value is slightly larger than in the uniform case, but still well below
1%, allowing practically wait-free executions.

These examples do not take into account slow threads, assuming
similar speeds for all participants. One could model a slow thread,
by assuming that while a thread 50, Writes to a set of memory
locations, the other threads do multiple operations, writing to mul-
tiple such sets of locations. We give below an intuition for the
probability of conflict when using TSX to avoid threads holding
locks being interrupted.

6.4 TSX-based algorithms

In the algorithm versions in which the critical sections are wrapped
with TSX instructions, speculative execution can be attempted sev-
eral times. We assume each transactional region is tried five times
before falling back to actually taking the locks. In these versions of
the algorithms, conflicts occur if data that is being written during
the critical section is read or written by another thread, or if data
read during the critical section is written by another thread. Hence,
while as before, only threads which are in the write phase may be
the victims of a conflict, in this case all other threads may be caus-
ing the conflict, even those in the process of reading data. We can
continue to use Equation 2 in order to estimate the probability of
a conflict. However, given that threads during their read or parse
phases also need to be taken into account, the computation of the
term B (k, n) will be different, as we will illustrate in the follow-
ing. With five re-tries before reverting to locking, we can estimate
the probability of a thread reverting to locking as piock = Pon Flict

We use the same hash table and linked list examples as above.
In the case of the hash table, by taking reads into account when
computing the probability of conflict with k current writers on a
hash table of size n, we have:

n —
Bhtftsx(kzn) =1- (
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With the same numeric values as before, piocr = 0.0005%.
In the case of the TSX-enhanced linked list, we have:
) ) t—k

®)

For our linked list example, this results in p;ocr, = 0.001% (in the
case of this fairly contended linked list, the probability of at least a
re-try of the transactional region is however non-negligible: 16%).

(n—k—1)!
(n — 2k)Ink—1

(n—2k)(n—2k—1
nin—k—1)

Bi—tse (k7 TL) =1-

It is important to note the significance of the low probabilities
of conflict computed throughout this section: it simply means that
there is a 1% chance that some thread in the system is delayed at
any point in time. This delay, as shown by our practical evaluation,
is likely to be insignificant for any particular thread. In addition,
after such small delays the thread quickly returns to its steady state,
with no changes to the parameters considered in this section.

7. BEYOND SEARCH DATA STRUCTURES

In the previous sections, we focused our attention on search data
structures. One of the main reasons we are able to obtain a prac-
tically wait-free behavior for a large spectrum of workloads in the
case of state-of-the-art CSDSs is the low probability of conflicts
between concurrent operations: accesses are distributed over all
the nodes contained in the structure. In this section, we briefly
present the limits of our conclusion when applied to concurrent ob-
jects other than search data structures.

7.1 Intuition

Intuitively, in the case of data structures such as queues, stacks,
priority queues, and counters, the accesses are not distributed among
multiple memory addresses, but rather concentrated on a small num-
ber of “hotspots”. In this case, blocking algorithms essentially se-
rialize operations by only allowing one (or a small number) to ex-
ecute at a time. Thus, each thread spends a significant amount of
time waiting for its turn. HTM-based techniques, which mitigate
delays due to interrupts for search data structures, are also not ap-
plicable for such data structures: virtually all hardware transactions
would repeatedly abort due to data conflicts. In a search data struc-
ture, it is only possible to encounter similar scenarios if (i) only a
handful of nodes in the CSDS are accessed (ii) continuously by a
large number of threads (iii) with a large fraction of the accesses
being updates.

7.2 Experimentation

We quantify the extent to which these characteristics hinder prac-
tical wait-freedom using standard lock-based algorithms for a queue
and a stack. Figure 10 shows the fraction of time threads spend
waiting for locks in the case of these data structures. We use 20
concurrent threads, with 50% of the operations being inserts (en-
queue/push), and 50% removes (dequeue/pop). The structures con-
tain 1024 nodes. We note that the fraction of time threads spend
waiting quickly approaches 1 as we increase the number of threads.
This behavior is clearly not compliant with practical wait-freedom.

In the case of such data structures therefore, one can expect
to obtain better performance by using lock-free or wait-free algo-
rithms, to the design of which much work has been dedicated [16,
26, 35,38, 46,56,60]. Another technique which has proved effec-
tive for such data structures is flat combining [25]. A further av-
enue which has been pursued in recent years in order to reduce the
contention for any particular node in such structures is to relax the
semantics of the data structure operations [4, 12, 62].
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8. RELATED WORK

Asynchronized concurrency [9] is a set of patterns for the de-
sign of CSDS algorithms resulting in implementations with nearly-
optimal throughput. The choice between blocking or lock-free CSDS
algorithms is shown to not be of fundamental importance from the
point of view of performance (i.e., throughput, average latency)
as long as these patterns are applied. However, the authors only
focus on the aggregate, system-wide performance metrics, and do
not study metrics indicative of the behavior of individual requests.
Similarly, Gramoli [21] studies different classes of concurrent data
structures, and observes no inherent difference in aggregate through-
put between lock-free and lock-based search data structures. In this
paper, we look at CSDSs through the perspective of a different cri-
terion: practical wait-freedom.

We are not the first to ask whether algorithms with weaker progress

guarantees do not actually provide wait-freedom, given some as-
sumptions about the execution environment. We are however the
first to look at blocking algorithms. In doing so, we also provide
the first practical quantification of the effects of progress guaran-
tees on CSDSs. Ellen et al. [17] show that under an unknown-
bound synchronous model, obstruction-free algorithms can behave
practically wait-free. Herlihy and Shavit [29] suggest that on real-
istic schedulers, lock-free algorithms behave in a wait-free manner.
Alistarh et al. [3] prove that assuming a stochastic scheduler which
determines the ordering of accesses to a memory location, lock-free
algorithms behave practically wait-free. Our work suggests that in
the case of CSDSs, given the fact that the probability of contention
for any memory location is low, the characteristics of the scheduler
governing the order of memory accesses might not be a determin-
ing factor.

Michael [45] also studies the practical trade-offs between differ-
ent progress guarantees. However, his analysis only discusses non-
blocking algorithms, and does not focus on CSDSs, but mostly on
objects where a single point of contention is likely, such as coun-
ters and queues. As we have shown in this paper, the properties of
state-of-the-art concurrent algorithms for search data structures are
significantly different from other concurrent structures.

Rajwar and Goodman [54] propose a hardware mechanism for
transactions and identify it as conductive to non-blocking behavior
in lock-based programs. However, the transactional support they
propose provides starvation freedom, which is not the case in prac-
tical implementations such as Intel TSX. In the context of blocking
CSDSs, we show that HTM support is needed for wait-free behav-
ior in a particular set of circumstances only. This observation is,
we believe, interesting in its own right. We also show that wait-
free behavior is possible even with best-effort transactional mem-
ory which may revert to locking, and explain why this conclusion
does not extend to other concurrent structures beyond CSDSs.
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9. CONCLUDING REMARKS

The main conclusion we can draw from this paper is that, prac-
tically, one can achieve the behavior of wait-free CSDS algorithms
in terms of individual thread progress with blocking implementa-
tions. The nature of search data structures is such that there is no
single contention point in the structure, rendering locks less prob-
lematic than they might be for structures such as concurrent queues,
stacks, and counters. Our conclusions only concern CSDSs: we
do not claim blocking implementations of objects such as queues
and stacks are practically wait-free. It is also important to note
that we do not claim that every blocking CSDS algorithm is prac-
tically wait-free. Rather, we considered state-of-the-art blocking
algorithms, which generally have synchronization-free reads and
writes with minimal and extremely fine-grained synchronization.
We find such practically wait-free algorithms for each data struc-
ture we study. In addition to showing that these algorithms are prac-
tically wait-free, this work also represents the first detailed quan-
tification of the effects of a progress guarantee on the behavior of
practical CSDSs. Moreover, we have shown how new technologies
such as Intel TSX can be leveraged to provide the desired perfor-
mance characteristics of CSDSs. We also note that while the ex-
periments presented in this paper were run on an Intel Xeon server,
we have verified our conclusions on other architectures as well, in-
cluding servers from AMD and Oracle.

Acknowledgements. This work has been supported in part by a
VMware Fellowship.

10. REFERENCES

[1] Morton Abramson and WOJ Moser. More birthday surprises.
American Mathematical Monthly, pages 856-858, 1970.
Yehuda Afek, Dalia Dauber, and Dan Touitou. Wait-free
Made Fast. STOC 1995.

Dan Alistarh, Keren Censor-Hillel, and Nir Shavit. Are
Lock-free Concurrent Algorithms Practically Wait-free?
STOC 2014.

Dan Alistarh, Justin Kopinsky, Jerry Li, and Nir Shavit. The
SprayList: A Scalable Relaxed Priority Queue. PPoPP 2015.
ASCYLIB. http://github.com/LPD-EPFL/ASCYLIB.
Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle
Olukotun. A Practical Concurrent Binary Search Tree.
PPoPP 2010.

Nachshon Cohen and Erez Petrank. Efficient Memory
Management for Lock-Free Data Structures with Optimistic
Access. SPAA 2015.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu
Ramakrishnan, and Russell Sears. Benchmarking Cloud
Serving Systems with YCSB. SoCC 2010.

Tudor David, Rachid Guerraoui, and Vasileios Trigonakis.
Asynchronized Concurrency: The Secret to Scaling
Concurrent Search Data Structures. ASPLOS 2015.

Tudor David, Rachid Guerraoui, and Vasileios Trigonakis.
Everything You Always Wanted to Know About
Synchronization but Were Afraid to Ask. SOSP 2013.
Mathieu Desnoyers, Paul E McKenney, Alan S Stern,
Michel R Dagenais, and Jonathan Walpole. User-level
implementations of read-copy update. Parallel and
Distributed Systems, IEEE Transactions on, 23(2):375-382,
2012.

Dave Dice, Yossi Lev, and Mark Moir. Scalable Statistics
Counters. SPAA 2013.

[13] Dana Drachsler, Martin Vechev, and Eran Yahav. Practical

[2

—

13

—

[4

—_

(5]
(6]

[7

—

[8

—_—

[9

—

[10]

(11]

[12]



Concurrent Binary Search Trees via Logical Ordering.
PPoPP 2014.

[14] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck
van Breugel. Non-blocking Binary Search Trees. PODC
2010.

[15] Facebook. RocksDB. http://rocksdb.org.

[16] Panagiota Fatourou and Nikolaos D. Kallimanis. A
Highly-efficient Wait-free Universal Construction. SPAA
2011.

[17] Faith Ellen Fich, Victor Luchangco, Mark Moir, Nir Shavit,
and Sun Microsystems Laboratories. Obstruction-Free
algorithms can be practically wait-free. DISC 2005.

[18] Keir Fraser. Practical Lock-Freedom. PhD thesis, University
of Cambridge, 2004.

[19] Thomas Friebel and Sebastian Biemueller. How to Deal with
Lock Holder Preemption. Xen Summit North America 2008.

[20] Google. LevelDB. http://leveldb.org.

[21] Vincent Gramoli. More Than You Ever Wanted to Know

About Synchronization: Synchrobench, Measuring the

Impact of the Synchronization on Concurrent Algorithms.

PPoPP 2015.

Rachid Guerraoui and Vasileios Trigonakis. Optimistic

Concurrency with OPTIK. PPoPP 2016.

Timothy L Harris. A Pragmatic Implementation of

Non-blocking Linked Lists. DISC 2001.

Steve Heller, Maurice Herlihy, Victor Luchangco, Mark

Moir, III Scherer, William N., and Nir Shavit. A Lazy

Concurrent List-Based Set Algorithm. In Principles of

Distributed Systems, volume 3974. 2006.

Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir.

Flat combining and the synchronization-parallelism tradeoff.

SPAA 2010.

Danny Hendler, Nir Shavit, and Lena Yerushalmi. A Scalable

Lock-free Stack Algorithm. SPAA 2004.

[27] Maurice Herlihy. Wait-free Synchronization. ACM Trans.
Program. Lang. Syst., 13(1):124-149, 1991.

[28] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir
Shavit. A simple optimistic skiplist algorithm. SIROCCO
2007.

[29] Maurice Herlihy and Nir Shavit. On the Nature of Progress.
OPODIS 2011.

[30] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor
Programming, Revised First Edition. 2012.

[31] Maurice P Herlihy and Jeannette M Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems,
12(3):463-492, 1990.

[32] Shane V Howley and Jeremy Jones. A non-blocking internal
binary search tree. SPAA 2012.

[33] Intel. Intel Transactional Synchronization Extensions
Overview. 2013.

[34] Intel Thread Building Blocks.
https://www.threadingbuildingblocks.org.

[35] Amos Israeli and Lihu Rappoport. Efficient wait-free
implementation of a concurrent priority queue.

[36] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav
Har’El, Don Marti, and Vlad Zolotarov. OSv—Optimizing
the Operating System for Virtual Machines. Usenix ATC
2014.

[37] Alex Kogan and Erez Petrank. A Methodology for Creating
Fast Wait-free Data Structures. PPoPP 2012.

[22]

[23]

[24]

[25]

[26]

348

[38] Alex Kogan and Erez Petrank. Wait-free Queues with
Multiple Enqueuers and Dequeuers. PPoPP 2011.

[39] Doug Lea. Overview of package util.concurrent Release

1.3.4. http://gee.cs.oswego.edu/dl/classes/EDU/oswego/cs/

dl/util/concurrent/intro.html, 2003.

Paul E. McKenney, Dipankar Sarma, and Maneesh Soni.

Scaling Dcache with RCU. Linux Journal, 2004(117),

January 2004.

Paul E McKenney and John D Slingwine. Read-copy update:

Using execution history to solve concurrency problems. In

Parallel and Distributed Computing and Systems, pages

509-518, 1998.

Memcached. http://www.memcached.org.

Maged M Michael. High performance dynamic lock-free

hash tables and list-based sets. SPAA 2002.

Maged M Michael. Hazard pointers: Safe memory

reclamation for lock-free objects. Parallel and Distributed

Systems, IEEE Transactions on, 15(6):491-504, 2004.

[45] Maged M. Michael. The Balancing Act of Choosing
Nonblocking Features. ACM Queue, 11(7):50-61, 2013.

[46] Maged M. Michael and Michael L. Scott. Simple, Fast, and
Practical Non-blocking and Blocking Concurrent Queue
Algorithms. PODC 1996.

[47] Mohamed Mohamedin, Roberto Palmieri, Ahmed Hassan,
and Binoy Ravindran. Brief announcement: Managing
resource limitation of best-effort HTM. SPAA 2015.

[48] Monetdb. http://www.monetdb.org.

[49] Mongodb. http://www.mongodb.org.

[50] Mysql. http://www.mysql.com.

[51] Aravind Natarajan and Neeraj Mittal. Fast Concurrent
Lock-free Binary Search Trees. PPoPP 2014.

[52] Oracle. CopyOnWriteArrayList in Java docs.
http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/
CopyOnWriteArrayList.html.

[53] William Pugh. Concurrent Maintenance of Skip Lists.
Technical report, 1990.

[54] Ravi Rajwar and James R. Goodman. Transactional

Lock-free Execution of Lock-based Programs. ASPLOS

2002.

Xiang Song, Jicheng Shi, Haibo Chen, and Binyu Zang.

Schedule Processes, Not VCPUs. APSys 2013.

Hakan Sundell and Philippas Tsigas. Fast and lock-free

concurrent priority queues for multi-thread systems. IPDPS

2003.

Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez

Petrank. Wait-free linked-lists. OPODIS 2012.

Shahar Timnat and Erez Petrank. A Practical Wait-free

Simulation for Lock-free Data Structures. PPoPP 2014.

Volkmar Uhlig, Joshua LeVasseur, Espen Skoglund, and

Uwe Dannowski. Towards Scalable Multiprocessor Virtual

Machines. VM 2004.

Valois, John D. Implementing lock-free queues. ICPDCS

1994.

[61] Zhaoguo Wang, Hao Qian, Haibo Chen, and Jinyang Li.

Opportunities and Pitfalls of Multi-core Scaling Using

Hardware Transaction Memory. APSys 2013.

Martin Wimmer, Jakob Gruber, Jesper Larsson Triff, and

Philippas Tsigas. The lock-free k-LSM relaxed priority

queue. PPoPP 2015.

[40]

[41]

[42]
[43]

[44]

[55]

[56]

(571
(58]

[59]

[60]

[62]





