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1 Foreground/Background Mask Evaluation

Here, we provide a validation and evaluation of our foreground/background
masks. To this end, we made use of 10% of randomly chosen training images
from the Pascal VOC dataset. We then generated foreground/background masks
for these images using our approach, which relies on the activations of the fourth
and fifth layers of the segmentation network pre-trained on ImageNet (i.e., before
fine-tuning it for semantic segmentation). These masks can then be compared
to ground-truth foreground/background masks obtained directly from the pixel
level annotations.

We compare our masks with the objectness criterion of [1] and [2], which
was employed by [3] and [4, 5] for the purpose of weakly-supervised semantic
segmentation. Note that, some approaches such as [6, 2] which have been used
for weakly-supervised semantic segmentation [4, 7, 5] require training data with
pixel-level/bounding box annotations, and thus are not really comparable to
our approach. Note also that a complete evaluation of objectness methods goes
beyond the scope of this paper, which focuses on weakly-supervised semantic
segmentation.

The objectness methods of [1] and [2] produce a per-pixel foreground proba-
bility map. For our comparison to be fair, we further refined these maps using the
same dense CRF as in our approach. In Table 1, we provide the results of these
experiments in terms of mean Intersection Over Union (mIOU) with respect to
the ground-truth masks. Note that our masks are more accurate than those of [1,
2]. In Fig. 1, we show some qualitative results of these three approaches. Note
that this further evidences the benefits of our foreground/background masks. In
particular, our masks yield a much better object localization accuracy.

2 Evaluation of our CheckMask Procedure

In this section, we evaluate the quality of the masks selected using our Check-
Mask procedure. Recall that, in our CheckMask procedure, a user selects one
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Table 1. Comparison of our foreground/background masks with those obtained using
the objectness method of [1] and [2].

Mean IoU

Masks obtained using [1] 52.34%
Masks obtained using [2] 50.20%
Our masks 60.08%

Image Pfusion Objectness Map [1] MCG Map [2] Our Mask Objectness Mask [1] MCG Mask [2]

Fig. 1. Qualitative comparison of our masks with those of [1] and [2]. Note that our
approach yields much better localization accuracy.

Table 2. CheckMask evaluation: Note that the masks selected by a user with our
CheckMask procedure have similar accuracy to the best ones among the M candidates.

Best Mask Worst Mask Random Mask CheckMask

M=30 66.70 34.37 48.39 64.91

mask out of M candidates, such that, according to the user, the chosen mask
best covers the objects of interest. In practice, we used M = 30, which was
obtained by visually inspecting the candidates for 40 validation images. In Ta-
ble 2, we report the mIOU of the selected masks w.r.t. the ground-truth masks
for the training set. Note that a user might still make mistakes. We therefore
also compare the accuracy of the user-selected masks with those obtained by
choosing the best and the worst ones among the M candidates (according to the
ground-truth) and with those obtained by a uniformly random selection. Note
that the accuracy of our CheckMask procedure is very close to that of the best
masks.

In practice, it takes the user roughly 2−3 seconds per image when M = 30, as
suggested in the paper. While lower values for M would require less annotation
time per image, it might also suffer from the fact that none of the candidate
accurately covers the objects of interest. To illustrate this, in Fig. 2, we visualize
the best of user-selected masks for different values M for a few images. Our visual
inspection suggested that M = 30 provides a good trade-off between speed and
accuracy.
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Image M=5 M = 15 M = 30 GT

Fig. 2. Effect of M on the selected mask quality. While lower values of M will require
less annotation time, the candidate masks do not always accurately cover the objects
of interest.
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2. Arbeláez, P., Pont-Tuset, J., Barron, J., Marques, F., Malik, J.: Multiscale com-
binatorial grouping. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. (2014) 328–335

3. Bearman, A., Russakovsky, O., Ferrari, V., Fei-Fei, L.: What’s the point: Semantic
segmentation with point supervision. ArXiv e-prints (2015)

4. Pinheiro, P.O., Collobert, R.: From image-level to pixel-level labeling with con-
volutional networks. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). (June 2015)

5. Wei, Y., Liang, X., Chen, Y., Jie, Z., Xiao, Y., Zhao, Y., Yan, S.: Learning to
segment with image-level annotations. Pattern Recognition (2016)

6. Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.: Bing: Binarized normed gradients for
objectness estimation at 300fps. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). (June 2014)

7. Dai, J., He, K., Sun, J.: Boxsup: Exploiting bounding boxes to supervise convolu-
tional networks for semantic segmentation. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. (2015) 1635–1643


