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Abstract 
 

The aim of this project was to study the 

feasibility of Silicon Fusion Bonding for 

fabrication of capillaries to cool down some 

gas. This project was conducted in 

collaboration with a start up called Bright 

Sensors. 

The first step of this project was to carry out an 

exhaustive review of the bonding techniques in 

literature. Considering this study and the 

advices from CMi staff, we developed our own 

recipe for fusion bonding, consisting of four 

steps: 

1) RCA 

2) 𝑂2 plasma treatment and rehydration  

3) Manual pre-bonding 

4) Annealing 

This process led to good results on patterned 

and non-patterned wafers. An infrared (IR) 

picture of the bonded patterned wafers is 

available below: 

To study the influence of the annealing speed 

we decided to compare 2 recipes with slow or 

fast annealing. The results are summarized in 

the table below: 

 
Slow 

annealing 
Fast annealing 

Non 
patterned 

Success Failure 

Patterned Success Success 

 

As expected, and according to theoretical 

studies, the bonding was successful with a slow 

annealing for both non-patterned and 

patterned wafers. The failure observed for fast 

annealing and non-patterned wafers seems 

also logical since we assumed that this fast 

annealing involves a bad gas evacuation  that 

prevents the bonding from happening. What is 

more surprising is the success for the patterned 

wafers, which is probably due to an 

enhancement of gas evacuation by the 

presence of channels and holes on the wafers’ 

surface. 

Once the wafer bonding was mastered we 

finished our process flow by adding outlets at 

the backside of our wafers, taking care of the 

alignment of existing inlets and future outlets. 

After the end of the process we diced and 

cleaved the wafer to observe the channels with 

SEM: 

It is interesting to note that this channel is well 

defined according to specifications and 

properly opened. We noticed the growth of 

120 nm of 𝑆𝑖𝑂2 on the walls of the 

microchannels, due to 𝑂2 atmosphere and high 

temperature annealing (up to 1000°C). The 

presence of a very thin layer of oxide at the 

interface between both wafers due to the 

bonding reaction itself is also quite remarkable. 

We finally did a trial on low stress Silicon 

Nitride wafers ( 300 nm 𝑙𝑠 − 𝑆𝑖3𝑁𝑥 ), using  

the same recipe which succeeded for Silicon 

fusion bonding. The result was a failure, mainly 

because of roughness of the 𝑙𝑠 − 𝑆𝑖3𝑁𝑥  layer 

we used and because the process needs to be 

adapted for silicon nitride bonding. 

Figure 1: IR picture of patterned wafers bonded (slow annealing) 

Figure 2: SEM picture of a 20 um wide channel 
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Introduction 
 

This project, supervised by Annalisa De Pastina and Prof. Guillermo Villanueva, should have been 

focused on the bonding of Silicon Nitride. A direct application for this technology was A. De Pastina 

doctoral work on silicon nitride hollow micro resonator for biomolecular detection. The silicon nitride 

direct bonding indeed allows a substantial gain of steps in the fabrication of suspended micro channels, 

for example avoiding long wet etchings. 

 

However, this technology quickly seemed a bit too ambitious for a semester project since the silicon 

nitride fusion bonding is a very challenging process. Furthermore a start-up called Bright Sensors 

contacted us and asked us to study the feasibility of the microfabrication of Silicon micro channels 

through silicon direct bonding. Since the technology of silicon bonding seemed to be easier to master 

than silicon nitride, we decided to first focus on this request and, in case of success, to come back to 

silicon nitride bonding. 

 

The commonly used method for encapsulating micro channels etched in silicon is anodic bonding, 

which consists in the bonding of a glass plate on the silicon wafer by applying a very high voltage. The 

reason why Bright Sensors needs to bond silicon onto silicon is the thermal properties of silicon. Since 

they want to use the channels to cool down gas, they need to use materials that have good thermal 

conduction properties, and silicon has much higher thermal conductivity than glass (149 𝑊 ∙ 𝑚−1 ∙

𝐾−1for silicon against 1 𝑊 ∙ 𝑚−1 ∙ 𝐾−1). 

 

This report will be separated in 3 main parts which correspond to the 3 main activities that I have been 

conducting during this project: 

 

- A study of the State of the art about Silicon Fusion Bonding. Several techniques can be used to 

bond silicon wafers. We will describe them, focusing on the one we chose and justifying our 

choice. Then we will try understand what is chemically happening during the bonding process 

we chose. Finally we will have an overview of the existing techniques for characterization of 

the bonding strength. 

 

- We will then precisely describe our process flow, focusing on the problems we encountered 

and on the non-common processes we used. 

 

- Finally we will discuss the results of the bonding through observation of the bonding quality at 

IR microscope and with a study of diced channels through SEM pictures. 
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State of the art and theoretical aspects 
 

Comparison of methods for wafer bonding 
 

Silicon wafer bonding has been used for long for packaging of microelectronics devices. One of the first 

method we found in literature is the use of gold at eutectic temperature1. This method is based on the 

introduction of a thin layer of gold between the 2 wafers2. The gold is deposited by e-beam evaporation 

with a thin layer of titanium to promote adhesion. By annealing up to a temperature of 350°C the 

adhesion of the two wafers is made possible. This method is well-known and efficient, but for cost 

reasons and preference for techniques using no extra materials we focused on simpler and cheaper 

process. 

The best paper we found on silicon fusion bonding without intermediate layer was published by Z.Liu3. 

This paper compares three pre-treatments we could use for wafer bonding: 

- RCA activation of the surface 

 

- HF treatment 

 

- 𝑂2 plasma activation 

 

The results are shown in the following graph : 

 

                                                           
1 Wolffenbuttel and Al 
2 M. Schmidt et Al. 
3 Z.Liu and Al. 

Figure 1: Surface energy of bonded wafers with different pretreatments as function of annealing temperature (Z. 
Liu and Al. 3) 
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It is clear from this graph that the best pretreatment is 𝑂2 plasma, with a very good bonding strength 

starting from 300°C. Furthermore it is relevant to notice that when the annealing temperature is high, 

around 1000°C, all these pretreatment allow a perfect bonding with at the end the same bonding 

strength than bulk silicon. 

It is also described in the paper that we can use both 𝑂2 plasma and RCA activation in order to get 

even better values of bonding strength for low temperatures. It has been decided to try first the 

following process in concertation with the CMi’s staff: 

1. RCA 

 

2. 𝑂2 plasma treatment and rehydration 

 

3. Prebonding 

 

4. Annealing 

The chemical mechanisms happening during this bonding are described in the following paragraph. 

 

 

Bonding chemical mechanisms 
 

The main results presented in this part are extracted from a seminar on Bonding given by Tony Rogers 

of Applied Microengineering Ltd held at EPFL in April 20164. 

Our bonding procedure is realized according to 4 main steps: 

- The first step is a cleaning of the wafer by RCA to have surfaces as clean as possible for the 

bonding. RCA is a chemical cleaning process including four main steps. First the wafers are 

cleaned to remove residual photoresist or dust, then they are put in a bath to remove organic 

compounds, next in another bath of HF to dissolve the native oxide which could have grown 

during the previous step. Finally wafers are placed in a HCl bath to remove metallic 

compounds. 

 

- The following step is an activation of the surfaces to get hydroxyl groups on them. This is done 

first by an 𝐎𝟐 plasma exposure followed by a re-hydration of the wafers. The idea is to have, 

before the pre-bonding, the kind of interface shown in the picture below: 

                                                           
4 T. Rogers seminar, April 2016 

Figure 2: Interface before prebonding (from Tony Roger’s seminar (4)) 
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- The third step is the pre-bonding: the two wafers are placed in close vicinity and they 

spontaneously get in contact if pressed together, due to hydrogen bonds appearing at the 

interface, as we can see in the following picture: 

 

 As it is shown in the above picture the wafers have to be extremely flat and clean for the bonding to 

happen, this explains the use of double side polished wafer for our process. The mean roughness for 

our wafer should thus be less than 1 nm (4). The pre-bonding is reversible: it results from the 

competition between attractive hydrogen and Van Der Waals forces and repulsive forces coming from 

the strain energy of the wafer bow. The bonding is initiate at a contact point and then propagates on 

all the wafers. In our process flow the water necessary for the creation of hydrogen bonds is provided 

by the rehydration step. 

- The last step is necessary to enhance the bonding quality. It is composed of an annealing up 

to 1000°C. During this step several reactions happen: 

 

 From 110°C to 200°C: 

 

𝑆𝑖 + 2𝐻2𝑂 = 𝑆𝑖𝑂2 + 2𝐻2 

 

This reaction produces 𝐻2 that needs to be evacuated to avoid formation of 

voids. 

 

 From 200°C to 400°C: 

 

𝑆𝑖 − 𝑂𝐻 + 𝐻𝑂 − 𝑆𝑖 = 𝑆𝑖 − 𝑂 − 𝑆𝑖 + 𝐻2𝑂 

 

This reaction is responsible for the enhancement of the bonding strength with 

the formation of covalent bonds, it produces 𝐻2𝑂 that will then be dissociated in 

oxygen (used for the bonding) and hydrogen (gas that needs to be evacuated). 

 

 From 700°C to 1000°C, there is no special reaction happening, but we will 

increase the bonded surface and then the bonding strength. Another 

important aspect of this step is that it allows the evacuation of gas through the 

bulk silicon, reducing the issue of voids.  

 

Figure 3: Hydrogen bonds after pre-bonding(from Tony Rogers seminar) 
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We can also think that that the presence of channels will have two opposite effects on the bonding 

quality. The first is a better evacuation of gas produced during the chemical reactions that should 

enhance the bonding quality, the other one is the decrease of the bonded area that will logically reduce 

the bonding strength. 

 

To summarize, in our case the majority of the voids come from the existing microdefect on the wafer’s 

surface and from an excess of chemical reaction byproducts, mainly water and dihydrogen that are 

liberated during the 2 reactions we gave above.5  

 

We should thus pay close attention not to expose our wafers too long to the 𝑂2 plasma to avoid a too 

large quantity of water in the bond that could lead to voids formation.  

We also studied in this report the influence of the annealing speed on the quality of the bonding, we 

tried to see if a fast annealing will lead to a bad evacuation of gas and formation of large voids. 

 

Finally we would like to get an interface looking like the one on the picture below: 

 

 

  

                                                           
5 X.X. Zhang et Al. 

Figure 4: Interface of the 2 wafers after bonding (from Tony Roger’s seminar) 
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Bonding strength characterization 
 

Once both wafers are bonded, a critical point is to determine the strength of the bonding. One main 

issue is the opacity of silicon, which is only transparent in the infrared (IR) region. Several solutions 

have been found in the literature or advised by the CMi staff. 

 

 

 The first and more used method is often called the razor blade method, it is described in the 

paper of L.Chen and AL.6 and used in the paper of Z.Li𝑢3). The idea is to insert a razor between 

the 2 wafers and to measure with an IR microscope the crack length. The bonding strength can 

then be deduced with this formula: 

𝛾 =
3𝐸𝑡𝑤

3 𝑡𝑏
2

32𝐿4
 

Where E is the Young modulus of the wafer, 𝑡𝑤 and 𝑡𝑏 the thickness of the wafer and of the 

razor blade respectively and L the length of crack. 

The scheme represented below illustrates the set-up used for this measurement: 

 

 Unfortunately our labs at EPFL do not have the set-up and the IR microscope to measure the 

crack propagation length, so we had to find other ways to characterize the bonding quality. 

                                                           
6 L.Chen and Al. 

Figure 5: Set-up used in Liu's paper (3) for bonding strength determination (razor blade method) 
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 Another interesting way of measuring the bonding strength is to use the so called “Micro-

chevron” method7. This method is more complicated because it requires an etching step 

during the process to get a special chevron shape at the interface of the 2 wafers where we 

can apply force to measure the bonding strength. Some pictures of this chevron shape are 

represented on figure 6: 

 

This method seems to be more complicated since it needs additional steps during the 

microfabrication process, special equipment for applying pressure and there are not many 

details in literature about how we can finally calculate the bonding strength. 

 

 

 The CMi staff advised us another method based on grinding. The idea is to grind the backside 

until we arrive to the interface of the two wafers, and here we can have an idea of the quality 

of the bonding by observing the bonding and the voids. No literature was found on this 

technique, that is more a handmade method to get an idea of the interface’s quality. 

 

 Another idea we had is not to really determine the bonding strength of our wafers but rather 

to see if the bonding is strong enough for the final application of our device, i.e. to cool down 

liquid or gas. One proper way of qualifying the bonding strength could be to pass liquid through 

and to observe the pressure the channel is able to withstand without leaks or destruction. 

 

 

 Something we could do pretty simply was to use an IR microscope for observation of the 

bonding interface. Since silicon is opaque in visible light and is transparent in infrared we 

decided to use an IR microscope located in CSEM in Neuchâtel. The pictures have been taken 

by Prof. Villanueva after packaging in vacuum of the samples to avoid them to be 

contaminated. 

 

 

 The last idea was, if the bonding was successful, to dice the bonded wafers and cleave them 

so that we could take pictures of the interface and of the channels directly at SEM in the EPFL 

cleanroom. 

                                                           
7 R.A. Allena and Al. 

Figure 6: Geometrical schemes representing the chevron at the interface of both wafers 
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Experimental aspects 
 

First part of the process flow for Bright Sensors 
 

After receiving the specification from the start-up Bright sensors about the channel geometry, we 

decided to start the bonding with their design. We thus conceived the following process flow with a 

patterned wafer and a simple clean wafer just used for the last step with the bonding. The complete 

process flow can be found in Appendix 1 and the runcard in Appendix 2 for more details. 

 

 

 

We will here quickly describe the relevant points on each step of the process flow : 

 

1. The RCA is the first step, used to clean the surface of the wafer and followed by an oxidation 

of each side of the wafer. 

 

2. The first lithography is made with a mask corresponding to the channel we would like to etch 

using positive photoresist AZ ECI with a thickness of 2 microns. 

 

3. Then we etched 𝑆𝑖𝑂2 with a dry etching process. Considering that we wanted to etch 500 nm 

and that we measured an etching rate of 340 nm/min, we etched the oxide for 1’30’’. 

 

4. We removed the photoresist by combining 𝑂2 plasma and wet removing by solvents. At this 

point we could see this on the wafer surface: 

 

Figure 7 : First process flow for Bright Sensors 
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5. Then we did a second photolithography focusing on the inlets. It was really important for the 

alignment to be very precise as shown in the following pictures where we can see on the right 

hand side the alignment for the channels and on the left side the alignment for the marks 

dedicated to it. Since we wanted to realize a deep etching of silicon, for this second lithography 

we used a thick layer of photoresist (5 microns).  

 

6. We etched the 𝑆𝑖𝑂2 at the inlets part exactly as previously using a 1’30’’ etching step. 

 

7. Then we could etch all the silicon through all the wafer. This step was quite tricky because we 

shall take care of the edges of the wafer to not be destroyed by this long etching. We did the 

test and, although the edges are very fragile, they were not broken and could mechanically 

withstand careful manipulation and even automatical dryer. The etching wass done with a 

Bosch process, we measured an etching rate of 7.5 microns/min, so to etch 380 microns we 

deduced an etching duration of 50 minutes. 

 

8. Next the photoresist was removed by 𝑂2 plasma. 

Figure 8: Picture of the wafer after the first photoresist strip 

Figure 9 : Observation of the alignment marks 

800 µm 

80 µm 400 µm 
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9. Afterwards we etched the channel itself by Silicon dry etching. As the depth of the channel 

was about 20𝜇𝑚, an interesting point to note is that for this etching 𝑆𝑖𝑂2 is used as hard mask 

so that we didn’t need another photolithography. The etching of the channels was done by a 

Bosch process for 2’30. 

 

10. Finally we removed all the 𝑆𝑖𝑂2 remaining by a wet etching in B-HF for 10 minutes. We 

obtained a wafer with holes through it corresponding to the inlets for the gas that will be 

delivered in the channels. A picture of the wafer is available below. If the channel is very well 

defined, we can see roughness at the level of the inlet. This comes probably from the deep 

etching of Silicon that also corrodes the mask. 

 

 

11. The last step is the bonding of this wafer with a non-patterned wafer. First we did a RCA 

cleaning in order to have a surface as clean as possible. Then we did a 𝑂2 plasma surface 

activation and a re-hydration immediately followed by the prebonding realized with vacuum 

tweezers. Finally we annealed the pre-bonded wafer to enhance the bonding. 

Here is the picture of a whole wafer just before the bonding step: 

Figure 10: Surface of the patterned wafer before fusion bonding 

Figure 11: Photography of a patterned wafer before bonding 

500 µm 
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The wafer was weakened on the edges by the deep etching that damaged it near the EBR. This 

explains this black circle around the wafer. We were afraid this could prevent the wafers from pre-

bonding but as we will see in the next part it was not a problem for the bonding. 

 

Silicon Fusion Bonding: Experimentally 
 

The fusion bonding is the most challenging step of our process flow, this is the reason why we decided 

to focus mainly on this step. There are four main steps that need to be performed in order to obtain 

direct bonding of silicon wafers: 

1. RCA cleaning, done by the CMi staff on Wednesday every week. After this step we usually 

waited between 1 to 3 days to do the next step. If we were not able to do it before this delay 

we considered the cleanness lost and waited the next week to repeat RCA cleaning. 

 

2. The surface activation to add hydroxyl groups on the wafer’s surface was done in 2 steps. First 

we used the Surfx Atomflow Plasma to activate the surface with 𝑂2 and then we did a 

rehydration by immersing the wafers for 10 minutes in deionized water. A picture of the Surfx 

Atomflow we used for plasma activation is shown below: 

 

3. The prebonding was one of the most critical step of the process since it had to be done 

manually with a by-eye alignment. This step was done immediately after the re-hydration, in 

order to get the best surface activation. The two wafers were delicately placed on a chuck, at 

this point we could observe levitation due to electrostatic forces. To trigger the pre-bonding 

we have to push strongly at one point and then the bonding will be propagated to all the 

surface. The pressure was applied with a plastic pipette pushing at the center of the wafers. 

Some pictures of the chuck and of the manual prebonding are available below 

Figure 12: Surfx Atmosphere plasma used for surface activation (source: CMi website) 
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4. The last step is annealing to enhance the bonding through chemical reactions already described in 

the state of the art paragraph. We waited not more than 10 minutes before pre-bonding and 

annealing, even if according to CMi staff we could have waited a few days. So we had to plan the 

pre-bonding considering the furnace availability to do all these step consecutively, from the  𝑂2 

plasma to the final annealing. We decided to compare two recipes for annealing: one with faster 

annealing (100°C/s ramp up) and another with slower annealing (10°C/min ramp up). The idea is 

to see whether the wafers bonded with fast annealing will show more voids due to a bad 

evacuation of gas. The fast annealing was in the RTA (Rapid Thermal Annealing) and the slower 

one in a furnace. Both recipes are summarized in the following table: 

 

Method for annealing Furnace RTA (Rapid Thermal 

Annealing) 

Annealing duration 3 hours 30 minutes 

Annealing’s speed 10°C/min 100°C/sec 

Temperature range 700-1000°C 100-900°C 

Figure 13: Chuck used for prebonding Figure 14: Prebonding by applying strong force on the levitating wafers 
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A picture of the RTA machine loaded with bonded wafers is represented below: 

  

Figure 15: Pre-bonded wafer before annealing in RTA 
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First results: Comparison of both annealing methods  
 

Slow annealing with furnace 
 

The first bonding has been realized with the support of Dr. G. A. Racine, head of photolithography 

section of CMi at EPFL, who gave us many useful advices, as he already experimented silicon fusion 

bonding a few years ago. We annealed the pre-bonded wafers from 700°C to 1000°C in a 100% 𝑂2 

atmosphere. 

In order to study the influence of the patterning and fabrication processes on the bonding process, we 

have always compared the bonding of two patterned wafers to the bonding of two non patterned 

wafers, adopting exactly the same conditions of annealing and surface activation.  

The pre-bonding occurred successfully in both cases, even if the pre-bonding of the patterned wafer 

was more complicated, maybe because it was my first bonding realized in total autonomy. 

Since silicon is opaque for visible wavelength we have to use special observation tools to look at the 

interface. These observations have been done in Neuchâtel at CSEM with an IR microscope and kindly 

conducted by Prof. G. Villanueva. The pictures for the bonding after annealing are available below: 

 

 

For the non-patterned wafers we observe a good result withonly few voids, just four spots. These voids 

come from small defects on the surface that prevent the bonding from happening properly. This is the 

reason why silicon fusion bonding has to be done in an extremely clean environment. In the literature 

we can read that a class 10 clean room is required (4). Since we don’t have it in CMi we worked in Zone 

3, that is the less frequented and the cleanest part of the clean room. We also tried to do the 

prebonding while this zone was empty. 

For the patterned wafer the result looks pretty good also, even if there are more voids visible. This is 

logical and comes from the fact that during the microchannel fabrication we created some defects on 

the surface, which increased the surface roughness and led to a less clean bonding. It is remarkable to 

see that the bonding is worst near the flat part of the wafer, i.e. the part we used to manipulate it with 

tweezers, that makes sense after what we said above. The weak number of voids lets us think that the 

Figure 16: IR pictures of the bonded interfaces for non patterned (left)  and patterned (right) wafers. 
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annealing is slow enough for the gas to escape from the interface between both wafers. The channels, 

visible on the patterned wafer, may have helped this gas evacuation. 

Considering the bonding of these 2 wafers good enough, we used them for the second part of our 

process flow, patterning the other face of the wafer to make the channels fully operational, as will be 

described later in this report. 

 

Rapid annealing with RTA 
 

To do this additional test we used other two pairs of wafers, one with pattern and another without. 

The pre-bonding was really good, both for patterned wafers and for non-patterned ones. Later the 

annealing was realized with a fast ramp of temperature (100°C/sec). 

 

The results of the annealing were not so good. For the non-patterned wafer the bonding did not resist 

to a test with tweezers, which proves that the bonding was weak. This can furthermore come from the 

fact that we had to abort the first annealing of these wafers because of an issue with a thermocouple 

in the machine and with the loop control of temperature in the RTA. The graph below presents the 

evolution of set temperature and measured temperature as a function of time. 

 

On this step it is pretty clear that the closed loop control is bad, because the measured temperature 

doesn’t follow properly the command curve. To understand this we have to understand how the 

machine implements the temperature control. After entering the recipe the machine automatically 

computes the optimal parameters of a PID controller to get a good servo-control. The problem is that 

these calculations are done for a single wafer and not for 2 pre-bonded wafers, which induces bad 

values of thermal dissipation and thermal inertia in the PID parameters calculation. This can explain 

the fact that the measured temperature doesn’t follow properly the command. Another point that 

could explain the plateau we get around 400°C is the triggering of several reactions that produce gas 
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(mainly 𝐻2). Because of the speed of the annealing the gas doesn’t have time to diffuse through bulk 

silicon and stays at the interface. This can explain why we observed a movement of the wafers one 

respect to another: the pre-bonding is broken by the forces applied by gas and then the bonding occurs 

again when we stay for 30 minutes at 900°C after the diffusion of gas through silicon. 

 

The second pair of patterned wafers was not tested with tweezers in order to keep them bonded and 

observe the quality of the interface with IR microscopy. The picture for the bonding is available below: 

 

 

It is pretty surprising to observe that this bonding looks the same than the one with the slow annealing 

recipe (see Figure 16), with maybe a bit more voids. Since the not patterned wafer, that should have 

been cleaner and less rough, did not survive to the annealing, we did not expect a better result with 

the patterned one. A possible explanation for this phenomena is the presence of channels at the wafers 

interface connected to holes through the wafers thickness, which could have helped the evacuation of 

gas at the interface, allowing thus the bonding to happen properly. It is also interesting to note that an 

annealing time of 30 minutes seems to be sufficient for the bonding to enhance. We tried to separate 

the patterned bonded wafers with tweezers without success, so the bonding seems to be really good 

mechanically. An additional step could be to see if they can resist patterning and dicing and then to 

observe the bonding at SEM, as we did for the slowly annealed wafers, as described in the following 

chapter. 

  

Figure 18: IR picture of bonded wafers with patterning after annealing in the RTA 
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End of the process flow and channels observation 
 

Second part of the process flow for Bright Sensors 
 

As the first steps of the process flow led to good results, we could add some steps to our design to 

pattern the bonded wafer with inlets and outlets so that we can really use these channels. We 

patterned the backside of slowly annealed wafers because they showed good mechanical properties 

when testing the bonding with tweezers and also good pictures at IR microscopy. We did not pattern 

the quickly annealed wafer mainly because of lack of time. The second wafer could have been 

patterned before the bonding, but we thought that this would have probably had a negative impact 

on the bonding, reducing the bonded area and the flatness of the wafer. The end of the process flow 

can be represented as follows: 

 

To align the outlets on the backside of the surface we performed a backside alignment 

photolithography. Since this technique was not available on the usual exposure tool (MaskLess Aligner 

150), we had to fabricate a chromium mask in order to do it with another machine (MA6). 

This step had a little drawback: at the end of the dry etching the plasma will go through the 2 wafers 

and eventually attack the chuck of the machine. This is the reason why the etching time needed to be 

precisely estimated with a calibration. Another possible problem we had to consider was that the 

process flow itself could have destroyed the bonding, for example during spin-coating, baking, dry and 

wet etching. 

However, the bonded wafers (as a reminder those with slow annealing) survived to all these steps 

without issues and led to good results shown in the pictures below: 

Figure 19: End of the process flow Bright Sensors 

Figure 20: Holes etched through the back surface of the bonded wafers (top and bottom view) 

a. b. 
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Figure 20 (a and b) show the wafers at the end of the process after the inlets etching. We can see the 

top of the wafers (on the left: figure 20a.) and its bottom (on the right: figure 20b.). The bonded wafers 

were not perfectly aligned, because during the manual pre-bonding, when we pressed with the pipette 

the two wafers tended to slide one on each other. So we had to use the AMS 200 instead of the Alcatel 

601 for the dry etching because the wafers did not fit into the AMS 200 chuck. The advantage of the 

AMS is that the clamping is realized electrostatically, and not by physical clamp as in the A601. This 

allowed us to process the two wafers even if they were a bit misaligned. The only modification that we 

had to do on the process flow was that, due to 𝑂2 atmosphere and high temperature annealing, we 

observed the growth of a 120 nm thick layer of silicon oxide on the wafer surfaces. We just had to add 

a step for silicon oxide etching before deep silicon etching, as shown in the process flow in Appendix 2 

( Step 12). 

 

SEM channels observation 
 

Preparation of the samples 
 

Once our process flow was finished we wanted to check the quality of our bonding and our channels 

with SEM. This observation required first to dice the bonded wafers in small chips. This has been done 

by Dr. Y. Deillon of CMi staff. After the dicing we have been happy to notice that the wafers were still 

bonded and it was impossible to see the interface between them by eye. To get a picture of the 

channels we needed to have a clean crack along crystalline planes. This explains why we cleaved the 

wafer after we scratched the bonded wafers edge with a diamond pen. The results were good even if 

the cracks were not perfectly flat. 

 

Observation of 40 µm wide channels 
 

Observing with SEM microscope we quickly saw some channels at the interface. Figure 22 shows a 

panoramic view of the interface with a zoom on a channel. 

Figure 21: SEM panoramic observation of the 40 um wide channels 
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The picture on the left shows a view of the cross section of the bonded wafers and the picture on right 

shows a zoom on the channel with its dimensions. The channels are well defined according to the 

specification of the mask. The defects that are visible around the channel are due to the cleaving step, 

which did not create a very smooth and defect-free section. We took more pictures to see more 

precisely the channels and the interface between both wafers: 

 

We can note the formation of 𝑆𝑖𝑂2 on the channels walls during the annealing step with 𝑂2 

atmosphere. This layer was not only present on the wall but on the whole surface of the wafer where 

we could measure a thickness of about 120 nm, as described in the previous part. On the wall the layer 

seems to be around 100 nm thick, which is coherent with the thickness of oxide we measured on the 

wafers after annealing. This oxide can be useful if we want to pass aqueous liquid in the channels 

because it provides a hydrophilic coating. It could also have been simply removed by using HF wet 

etching. 

 

At the interface between both wafers we can observe a thin oxide layer of a few nanometers that is 

coherent with the theory explained in the state of the art. It is also interesting to note that the shape 

of the channel walls makes perfectly visible the scalloping, typical of the Bosch etching process. 

  

Figure 22: SEM pictures of interface and channel wall for 40 um wide channels 
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Observation of 20 µm wide channels 
 

Following the specifications given by the start-up Bright Sensors we designed on the same wafer two 

different kind of channels with different widths: 20 µm and 40 µm. In the first paragraph we showed 

pictures of 40 µm wide channels and here we have some pictures of 20 µm wide channels: 

 

 

We can also notice the formation of 𝑆𝑖𝑂2 on the wall and at the interface between the bonded wafers. 

An interesting point is the illustration of the aspect ratio dependent etching (A.R.D.E.) law  that can be 

summarized as following: “the wider the aperture, the deeper the etching”. We can thus remark that 

with a 40 µm wide opening the channel is 17.2 µm deep whereas with the 20 µm wide opening the 

channel is 15.2 µm deep. The difference is not huge but still not negligible. 

 

Finally we can say that, on the 8 channels we observed with SEM, each of them was properly opened, 

which lets us think that our process flow is good for the creation of micro capillaries in silicon for 

microfluidic application.  

 

The only point that needs to be improved is the backside alignment that requires two holes at the 

edge of the wafer for the second photolithography, so that we can get markers for the alignment. 

  

Figure 23: SEM pictures of interface and channel wall for 20 um wide channels 
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Trial with Silicon Nitride 
 

As a reminder our goal at the beginning was to bond 2 silicon nitride wafers. Since we succeeded in 

the fusion bonding for silicon with surface activation, manual pre-bonding and slow annealing in a 

furnace, we tried to use the same recipe for silicon nitride. It is interesting to specify that similar recipes 

have been reported by Reck and Al.8 for silicon nitride fusion bonding, with promising results. 

 

In our experience we observed a really weak pre-bonding: the first contact to overcome electrostatic 

forces had to be done several times before we could put the wafers in a furnace for 3 hours at 1000°C 

with a temperature ramp of 10°C/min. After the annealing we observed that the bonding totally failed, 

since the wafers appeared separated at the end of the annealing. 

 

We can explain this by the roughness of our surface. The roughness of SiN layer is usually not good 

enough for allowing pre-bonding to happen. As we saw it in the state of the art, the roughness must 

be less than 1 nm. In the paper of K. Reck and Al. they succeed in bonding 2 silicon nitride wafers(with 

a thickness of silicon nitride layer of 75nm) but they had to use special deposition process to get very 

low roughness. The mean roughness 𝑅𝑎 was indeed of 0.13 nm in the paper when the layers deposited 

at CMi exhibits a mean roughness 𝑅𝑎 around 7 nm(H. Musard semester project, Fall 2015, GR-LVT). To 

realize SiN fusion bonding we should thus use special deposition process to get low roughness as 

studied by H. Musard last semester during his semester project at ANEMS group. 

 

To follow in a more precise way the process flow they used in K. Reck paper, we should suppress the 

steps of 𝑂2 plasma and rehydration, and anneal for 8 hours at 1150°C in 𝑁2 atmosphere instead of 𝑂2 

atmosphere. Since we already have some theoretical and practical knowledge on fusion bonding this 

SiN fusion bonding is now much easier to achieve, compared to the beginning of the project. The goal 

will then be to get some pictures like the ones shown in K. Reck paper and visible below:  

                                                           
8 Reck and Al. 

Figure 24: Picture of a channel obtained by Silicon Nitride Fusion Bonding in K. Reck Paper (8) 
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Conclusion 
 

During this semester we demonstrated the feasibility of micro-capillaries fabrication with the 

technology of Silicon Fusion Bonding. After an exhaustive review of silicon bonding existing 

technologies, we determined in collaboration with CMi staff an optimal recipe for Fusion Bonding with 

four steps: RCA, surface activation with 𝑂2 plasma and rehydration, manual pre-bonding and 

annealing. Concerning this last step we compared the influence of the speed of annealing on the 

bonding strength. It seems than the annealing speed plays a significant role only if the wafer are 

bonded without patterning, since this patterning could help gas evacuation. 

 

Using a slow annealing in a furnace we got good results with a good bonding quality for both patterned 

and non-patterned wafers. We did not measure quantitatively the bonding strength but we used 

different ways to characterize the bonding interface and strength: 

 We observed the interface with an IR microscope to check the presence of voids due to bad 

gas evacuation. 

 

 We finished the process flow on the bonded wafers: the fact that they survived the demanding 

remaining steps of the process flow, such as spin-coating, baking, dry and wet etching, dicing 

and cleaving, proved that the bonding is strong enough to withstand these steps. 

 

 We observed the channels at SEM and the channels were well defined, with a very thin layer 

of Silicon oxide at the interface as predicted in the theoretical developments. 

 

 We did not try fluid delivery into the channels because of misalignment issues and lack of time. 

The insertion of liquid in the channels would be useful to see if there are some leaks or not 

and to find the pressure the channels are able to withstand. By fabricating a new chip with 

inlets and outlets properly aligned this test could be conducted and give interesting results. 

 

 

We briefly tried to transfer our results on silicon, to silicon nitride fusion bonding without success. Our 

failure is mainly due to the high roughness of the Silicon Nitride wafer we used, but the use of less 

rough surface and small changes in the bonding process should allow good results in SiN fusion bonding 

since we acquired some precious experience on bonding during this semester. 
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Appendix 
 

Appendix 1: Complete process flow 
 

 
Semestral Project Master Project Thesis Other

 
 

 

Silicon surfaces bonding for suspended micro-channels 

 

Description 
 

The goal of this manipulation is to create micro channels using 2 wafers that will be bonded together. 

The critical part of this manipulation is the bonding o the wafers. 

 

 

Technologies used 

  

Photolithography, dry etching, wet etching, wafer bonding, plasma, annealing. 

Photolith masks 

Mask # 
Critical 

Dimension 

Critical 

Alignment 
Remarks 

1 5um First Mask  Channel definition 

Substrate Type 

Silicon <100>, Ø100mm, 390um thick, Double Side polished, Prime, p type, 0.1-0.5 Ohm.cm 
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Process outline 

 

Step 
Process 

description 
Cross-section after process 

01 

RCA 

500 nm of SiO2 

each side 

           

          

02 

Photolith 

Machine: Rite 

track coater and 

developper,MLA 

150 

PR : AZ-ECI – 2μm 

Mask : CD = 20um 

  

03 

Dry Etch 

Material : SiO2 

Machine: Alcatel 

601E 

Depth : 500nm 
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04 

Resist strip 

Tepla Gigabatch 

UFT remover 

 

05 

Photolithography 

Machine: Rite 

track coater and 

developper, MLA 

150 

PR : AZ-ECI – 5μm 

Mask : CD = 20um 

  

06 

Dry Etch 

Material : SiO2 

Machine: Alcatel 

601E 

Depth : 500nm 

 

07 

Dry Etch 

Material : Si 

Machine: Alcatel 

601E 

Depth : 390µm 
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08 

Resist strip 

Tepla Gigabatch 

 

 

09 

Dry Etch 

Material : Si 

Machine: Alcatel 

601E 

Depth : 20 µm 
 

10 

Wet etching of 

SiO2 

Z2 Plade oxide 

wet bench 
 

11 

12 

13 

Wafer bonding 

Material : Si-Si 

 

11.RCA 

treatement 

 

12.Plasma O2 

treatement 

Machine: Linear-

beam 

atmospheric 

plasma system 

Surfx Atomflo 

400L 

 

13.Annealing : 

Machine: Rapid 

Thermal 

 

Wafer 1 

Wafer 2 

𝑆𝑖𝑂2 

https://cmi.epfl.ch/packaging/home_packaging.php
https://cmi.epfl.ch/packaging/home_packaging.php
https://cmi.epfl.ch/packaging/home_packaging.php
https://cmi.epfl.ch/packaging/home_packaging.php
https://cmi.epfl.ch/packaging/home_packaging.php
https://cmi.epfl.ch/packaging/home_packaging.php
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Processing/ 

MEMS furnace 

14 

Photolith 

Machine: Rite 

track coater and 

developper, MA 

6 (backside 

alignment)     PR : 

AZ-ECI – 5μm 

Mask : CD = 20um 

  

15 

Dry Etch 

Material : Si 

Machine: AMS 

200 

Depth : 390µm 

 

16 

Resist strip 

Tepla Gigabatch 

 

 

 

  

Wafer 2 

Wafer 1 

Wafer 1 

Wafer 2 

Wafer 2 

Wafer 1 

Wafer 2 

𝑆𝑖𝑂2 

𝑆𝑖𝑂2 

𝑆𝑖𝑂2 
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Appendix 2: Runcard 
 

Projet : Silicon Fusion Bonding for Bright Sensors 

Operator : Pierre-Emmanuel 

Created : 13.04.2016  Last revision : 06.06.2016 

Substrates : silicon <100>, 100mm, 380um, double side, Prime, p type, 0.1-0.5 Ohmcm 

        

Step 
N° 

Description Equipement Program / Parameters Target Actual Remarks 

0 
WAFER 
PREPARATION 

          

0,1 Stock out         10 wafers 

0,2 500 nm Wet oxidation           

1 PHOTOLITHOGRAPHY - Mask 1 

1,1 HMDS   Prog. 0       

1,2 Coating Z1/Ritetrack coater AZ ECI EBR 2microns coating       

1,3 Exposure Z5/ MLA Mask 1 provided by ADP     
 Dose 215 mW/cm2 
Defocus -6 

1,4 Development  Z1/ Developer AZ ECI EBR 2microns dvt       

2 
OXIDE DRY 
ETCHING 

          

2,1 Oxide Dry Etch Z2/Alcatel SiO2@A601, 1'30'' 500nm     

2,2 Inspection Z2/uScope         

3 RESIST REMOVAL           

3,1 Plasma removal Z2/Gigabatch Strip_High, 5'       

3,2 UFT removal Z2/UFT remover  70°C       

3,3 Plasma removal Z2/Gigabatch Strip_Low, 3'       

3,4 Drying Z2         

3,5 Inspection Z2/uScope         

4 PHOTOLITHOGRAPHY - Mask 2 

4,1 HMDS   Prog. 0       

4,2 Coating Z1/Ritetrack coater AZ ECI EBR 5microns coating       

4,3 Exposure Z5/ MLA Mask 2 provided by ADP     
Alignment 
 Dose 500 mW/cm2 
Defocus -7 

4,4 Development  Z1/ Developer AZ ECI EBR 5microns dvt       

5 
Oxide DRY 
ETCHING 

          

5,1 Oxide Dry Etch Z2/Alcatel SiO2@A601, 1'30'' 500nm     

5,2 Inspection Z2/uScope         

6 
DRY ETCHING 
SILICON 

          

6,1 Dry Etch of silicon Z2/Alcatel Si_ambiant2@A601, 50' 380um   A bit too much 

6,2 Inspection Z2/uScope         

7 RESIST REMOVAL           

7,1 Plasma removal Z2/Gigabatch Strip_High, 5'       

7,2 UFT removal Z2/UFT remover  70°C       

7,3 Drying Z2         

7,4 Inspection Z2/uScope         

8 
DRY ETCHING 
SILICON 

          

8,1 Dry Etch of silicon Z2/Alcatel Si_ambiant2 A601, 3' 20 microns   
SiO2 used as hard 
mask 

8,2 Inspection Z2/uScope         

9 BHF SiO2 removal           
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9,1 Wet etching of SiO2 Z2/Wet Bench BHF (7:1), 10'       

9,2 Inspection Z2/uScope         

10 Fusion bonding           

10,1 RCA Z3/Cmi staff Full RCA       

10,2 O2 Plasma treatment Z3/SurfAtomFlo 
140 W, 30 L/min He, 0.4 
L/min O2, 10 mm/s 

      

10,3 Rehydratation Z3/WetBenchReclaim 10 min in Trickle Tank       

10,4 Drying Z3/WetBenchReclaim/SRD Full drying program 1       

10,5 Prebonding Z3/WetBenchReclaim Done manually     Critical step 

10,6 Annealing Z3/MEMS Furnace or RTA 
Fast annealing or low 
annealing, O2 atmosphere 

    
Growth of 120 nm 
oxide layer on wafer 

10,7 Inspection IR microscope CSEM       
Done by Prof. 
Villanueva in 
Neuchâtel 

11 PHOTOLITHOGRAPHY - Mask 3 

11,1 HMDS   Prog. 0       

11,2 Coating Z1/Ritetrack coater AZ ECI EBR 5microns coating     
Difficulties to 
establish vacuum 

11,3 Exposure Z6/MA6-BA6 Mask 3 provided by ADP 
 21’’ 
exposure, 
20mW/cm2 

  

Backside Alignment, 
fabrication of a 
mask for this step, 
Done with ADP 

11,4 Development  Z1/ Developer AZ ECI EBR 5microns dvt       

12 
DRY ETCHING 
SILICON 

          

12,1 
Dry Etching of 
remanent SiO2 

Z2/AMS200 SiO2PR AMS 200, 1' 121 nm   

Etching of the small 
layer of SiO2 
appeared during 
annealing 

12,2 Dry Etch of silicon Z2/AMS200 Si_ambient++ AMS 200, 62' 380um   

A bit too much, On 
AMS 200 because 
not well aligned, 
etching of edge and 
SiO2 because no 
EBR 

12,3 Inspection Z2/uScope         

13 RESIST REMOVAL           

13,1 UFT removal Z2/UFT remover  70°C       

13,2 Drying Z2         

13,3 Inspection Z2/uScope         

14 DICING           

14,1 Done by Yvan Deillon Z2/UFT remover         

14,2 Eye inspection         
Bonding survived 
dicing 

15 SEM observation           

15,1 Cleaving Z1/ Cleaving table       
Done with ADP, 
bonding survived 
cleaving 

15,2 SEM observation Z1/ SEM microscope       
Nice pictures, all 
channels visible and 
beautiful 

 

 


