
Algorithmic Composition of Melodies with Deep
Recurrent Neural Networks

Florian Colombo, Samuel P. Muscinelli, Alexander Seeholzer, Johanni Brea
and Wulfram Gerstner

Laboratory of Computational Neurosciences. Brain Mind Institute. École
Polytechnique Fédérale de Lausanne

florian.colombo@epfl.ch

Abstract. A big challenge in algorithmic composition is to devise a
model that is both easily trainable and able to reproduce the long-range
temporal dependencies typical of music. Here we investigate how artificial
neural networks can be trained on a large corpus of melodies and turned
into automated music composers able to generate new melodies coherent
with the style they have been trained on. We employ gated recurrent unit
networks that have been shown to be particularly efficient in learning
complex sequential activations with arbitrary long time lags. Our model
processes rhythm and melody in parallel while modeling the relation
between these two features. Using such an approach, we were able to
generate interesting complete melodies or suggest possible continuations
of a melody fragment that is coherent with the characteristics of the
fragment itself.

Keywords: algorithmic composition, generative model of music, ma-
chine learning, deep recurrent neural networks

1 Introduction

The algorithmic formalization of musical creativity and composition, foreseen as
early as the 19th century [1], has come to fruition in the recent decades with the
advent of modern computer algorithms [2].

Formally, a melody can be seen as a sample from a potentially very sophis-
ticated probability distribution over sequences of notes [2–5]. For monophonic
music, probability distributions could be given by Markov chains, where the
probability of the next note depends only on the current note and the k last
notes [4]. Markov chain models, however, do not capture the long-range tem-
poral structure inherent in music. For example, even a simple melody such as
Brother John is structured in four patterns, each repeated twice, with the first
and last ones starting with the same notes (see Fig. 1). Taking only the last few
notes into account is thus not enough to produce the sequence – rather does the
progression on the long timescale of bars dictate the sequences of notes.

Such rich temporal structure can be captured by models that rely on recur-
rent neural networks (RNN). Particularly well suited to capture these long-range

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148023944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Colombo et al.

temporal dependencies are models based on long short-term memory (LSTM)
units [6] and variants thereof [7–9]. Thanks to automatic differentiation, parallel
use of GPUs, and software packages like theano [10] or torch [11], it has be-
come possible to easily fit such models to large scale data and obtain impressive
results on tasks like text translation [12], speech recognition [13] and text or
code generation [14, 15]. For algorithmic composition of monophonic music, it
has been observed that RNN models based on LSTM units [16, 17] can capture
long-term temporal dependencies far better than RNNs with simple units [18,
19].

Closest to our approach is the work of Eck and Schmidhuber [16] and Franklin
[17]. Eck and Schmidhuber used an LSTM-RNN to generate a fixed Blues chord
progression together with well-fitting improvised melodies. To model polyphonic
music they discretized time into bins of equal duration, which has the disadvan-
tage of using the same representation for one long note, e.g. a half note, and
repeated notes of the same pitch, e.g. two quarter notes. Franklin experimented
with different representations of pitch and duration and used an LSTM-RNN to
reproduce a single long melody. These studies showed that LSTM-RNN’s are well
suited to capture long-range temporal dependencies in music, but they did not
demonstrate that these models can autonomously generate musically convincing
novel melodies of a given style extracted from large datasets.

Here, we present a deep (multi-layer) model for algorithmic composition of
monophonic melodies, based on RNN with gated recurrent units (GRU). We
selected GRUs because they are simpler than LSTM units, but at least equally
well suited to capture long-range temporal dependencies when used in RNNs
(see [8, 20] for comparison studies). Our model represents monophonic music as
a sequence of notes, where each note is given by its duration and pitch. Contrary
to earlier studies, which evaluated LSTM based models of music only on small
and artificial datasets [16, 17], we train our model on a large dataset of Irish folk
songs. We apply the trained model to two different tasks: proposing convincing
continuations of a melody and composing entire new songs.

2 Methods

To devise a statistical model that is able to complete and autonomously produce
melodies, we train multi-layer RNNs on a large corpus of Irish folk songs. In
the training phase, the network parameters are updated in order to accurately
predict each upcoming note given the previously presented notes of songs in a
training set (Fig. 2A). The model, once trained, can then be used to generate
the upcoming notes itself, consequently producing whole new musical sequences.

After introducing our representation of melodies, we give a short introduction
to recurrent neural networks and present the model and the training modalities.
Finally, we explain how the model is used for algorithmic composition.

Algorithmic Composition of Melodies with Deep Recurrent Neural Networks 3

Music
representation

Music
representation

4
4

duration

A2 0 0 0 0 | 0 0 0 0 | 0 0 0 | 0 0 0 | 0 1 0 0 0 0 | 0 1 0 0 0 0 | 0 0 0 | 0 0 0 | 0
G2 0 0 0 0 | 0 0 0 0 | 0 0 1 | 0 0 1 | 1 0 1 0 0 0 | 1 0 1 0 0 0 | 0 0 0 | 0 0 0 | 0
F2 0 0 0 0 | 0 0 0 0 | 0 1 0 | 0 1 0 | 0 0 0 1 0 0 | 0 0 0 1 0 0 | 0 0 0 | 0 0 0 | 0
E2 0 0 1 0 | 0 0 1 0 | 1 0 0 | 1 0 0 | 0 0 0 0 1 0 | 0 0 0 0 1 0 | 0 0 0 | 0 0 0 | 0
D2 0 1 0 0 | 0 1 0 0 | 0 0 0 | 0 0 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 | 0 0 0 | 0
C2 1 0 0 1 | 1 0 0 1 | 0 0 0 | 0 0 0 | 0 0 0 0 0 1 | 0 0 0 0 0 1 | 1 0 1 | 1 0 1 | 0
G1 0 0 0 0 | 0 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 1 0 | 0 1 0 | 0
|| 0 0 0 0 | 0 0 0 0 | 0 0 0 | 0 0 0 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 0 | 0 0 0 | 1

2 0 0 0 0 | 0 0 0 0 | 0 0 1 | 0 0 1 | 0 0 0 0 0 0 | 0 0 0 0 0 0 | 0 0 1 | 0 0 1 | 0
1 1 1 1 1 | 1 1 1 1 | 1 1 0 | 1 1 0 | 0 0 0 0 1 1 | 0 0 0 0 1 1 | 1 1 0 | 1 1 0 | 1
1/2 0 0 0 0 | 0 0 0 0 | 0 0 0 | 0 0 0 | 1 1 1 1 0 0 | 1 1 1 1 0 0 | 0 0 0 | 0 0 0 | 0

pitch

d dccbbaa

Fig. 1. Representation of a simple melody: The nursery rhyme Brother John in
symbolic music notation, represented by pitch and duration matrices. Each column
represents a single note. The four patterns composing the song are labeled by a, b, c
and d.

2.1 Music Representation

Melodies are represented as sequences of notes, where each note is a combination
of its pitch and duration. As such, each note n can be represented by two corre-
sponding one-hot vectors (with only one entry of 1, and 0 for all others) of pitch
p[n] and duration d[n] . These vectors encode pitches and durations present in
the training set. In addition, we include “song ending” and “silence” features as
supplementary dimensions of the pitch vector. Any song can thus be mapped to
a matrix of pitches and a second matrix of durations.

To reduce dictionary sizes as well as redundancies in representations, we chose
to normalize both melody and duration. Melodies are normalized by transposing
every song into C Major/A minor. Durations are normalized as relative to the
most common duration in each song: if, for example, the most common duration
in a song is the quarter note, we would represent eighth notes as “1/2”. For an
example of a melody in this representation see Fig. 1.

2.2 A Brief Introduction to Recurrent Neural Networks

Artificial neural networks have a long history in machine learning, artificial in-
telligence and cognitive sciences (see [21] for a textbook, [22] for recent advances,
[23] for an in-depth historical overview). Here we give a brief introduction for
readers unfamiliar with the topic.

Artificial neural networks are non-linear functions y = fw(x), where input x,
output y and the parameters (weights) w can be elements of a high-dimensional
space. A simple example of an artificial neural network with 2-dimensional in-
and outputs is given by y1 = tanh(w11x1+w12x2) and y2 = tanh(w21x1+w22x2),
which we write in short as y = tanh(wx). Characteristic of artificial neural
networks is that the building blocks consist of a non-linear function σ (like
tanh) applied to a linear function w11x1 + w12x2, which is an abstraction of

4 Colombo et al.

the operation of biological neurons. If these building blocks are nested, e.g.

y = σ3

(
w3σ2

(
w2σ1(w1x)

))
, one speaks of multi-layer (or deep) neural net-

works, with layer-specific weights (w1,w2, . . .) and non-linearities (σ1, σ2, . . .).

Deep neural networks are of particular interest for the approximation of high-
dimensional and non-linear functions. For example, the function of recognizing
object i in photos can be approximated by adjusting the weights such that
output yi is 1 if and only if an image x of object i is given [22]. Formally, the
weights can be adjusted to minimize a cost function, like the averaged square

loss between target and output L(w) = 1
S

∑S
s=1

(
ys − fw(xs)

)2
for some known

input-output pairs (xs,ys). Since artificial neural networks are differentiable in
the parameters w, this cost function is also differentiable and the parameters can
be adjusted by changing them in direction of the gradient of the cost function
∆w ∝ ∇wL(w).

In recurrent neural networks (RNN) the inputs and outputs are sequences
of arbitrary length and dimension. A simple example of a recurrent neural net-
work with one hidden layer is given by h[n] = σ(wxhx[n] + whhh[n − 1]) and
y[n] = σ(whyh[n]), where x[n], h[n], y[n] is the n-th element of the input, hid-
den, output sequence, respectively. This network is recurrent, since each hidden
state h[n] depends on the previous hidden state h[n−1] and, therefore, on all pre-
vious input elements x[1],x[2], . . . ,x[n]. While these recurrent neural networks
can in principle capture long-range temporal dependencies, they are difficult to
fit to data by gradient descent, since the gradient involves the recurrent weights
whh raised to high powers, which vanishes or explodes depending on the largest
eigenvalue of whh [6]. This problem can be avoided by a reparametrization of the
recurrent neural network (LSTM [6], GRU [9], other variants [20]). In Equation
1 we give the update equations for the GRU used in this study.

2.3 Model

To model distributions of pitch and duration, we use two separate multi-layer
RNNs (see Fig. 2A) referred to as the rhythm and melody networks, respectively.
The numbers of output units are equal to the dictionary sizes of our music
representation. The three hidden layers of both the pitch and duration RNNs
are composed of 128 GRUs [9] each, and are connected as shown in Fig. 2B. The
model was implemented using the theano library [10].

For each note n in a musical sequence, the the duration vector d[n] of this
note is presented to the rhythm network, while the melody network receives both
the pitch vector p[n] as well as the duration vector of the upcoming note d[n+1]
as inputs. Each time a note is fed to the model, all internal states are updated
and the rhythm network output gives a distribution over the possible upcoming
durations Pr(d[n+ 1]|d[n]). In the same way, the melody network output gives
a distribution over possible upcoming pitches Pr(p[n+ 1]|p[n],d[n+ 1]).

Algorithmic Composition of Melodies with Deep Recurrent Neural Networks 5

1 2 3

1 2 3multi
layer

RNNs

Input
duration

pitch

Output
duration
pitch

BA

Fig. 2. Network architecture and connectivity: A Each note in a melody is sepa-
rated into pitch and duration components, which are iteratively fed into two multilayer
RNNs as inputs. Network outputs give probability distributions for pitch and duration
of the next note. The rhythm network receives the current duration and pitch while
the melody network receives the current pitch and the upcoming duration as input
(dashed line).B The input layer x projects to all hidden layers h, as well as the output
layer o. The hidden layers h project recurrently between notes (dashed lines) as well
as feeding forward to all higher hidden layers and the output layer.

The update equations for the vector of layer activations hi[n], update gates
zi[n] and reset gates ri[n] at note n for layer i ∈ {1, 2, 3} are given by

hi[n] = zi[n]� hi[n− 1] + (1− zi[n])� h̃i[n] , (1)

h̃i[n] = tanh

(
wyihiyi[n] + ri[n]�whihihi[n− 1]

)
, (2)

zi[n] = σ

(
wyiziyi[n] + whizihi[n− 1] + bi

z

)
, (3)

ri[n] = σ

(
wyiriy

i[n] + whirih
i[n− 1] + bi

r

)
, (4)

where σ(x) = (1 + exp(x))−1 is the logistic sigmoid function, � denotes the
element-wise product and yi is the feed-forward input to layer i, which consists
of both the global inputs x[n] as well as hidden layer activations hj<i[n] (see
Fig. 2B). The update equation for the output unit i activation oi[n] at note n is

oj [n] = Θ
(
wyooy

o[n] + bo
)
j
, (5)

where yo is the feed-forward input of the output layer and Θ(x)j = exj∑
k exk

is

the Softmax function. The Softmax normalization ensures that the values of the
output units sum to one, which allows us to interpret the output of the two
RNNs as probability distributions over pitches and over durations. For example,
the probability of pitch j of an upcoming note is then given by

Pr
(
pj [n+ 1] = 1 | previous notes and θ) = oMelody

j [n] , (6)

where the conditioning on previous notes and the model parameters θ highlights
that the network output o[n] depends on them.

6 Colombo et al.

2.4 Training & Melody Generation

During training, the log-likelihood of model parameters θ for the rhythm and
melody networks are separately optimized by stochastic gradient ascent with
adaptive learning rate [24] (α = 10−3, β1 = 0.9, β2 = 0.999 and ε = 10−8). The
log-likelihood of model parameters θ given the training songs is given by

L(θ) =
1

S

S∑
s=1

1

Ns − 1

Ns−1∑
n=1

log
(
Pr
(
xs
j [n+ 1] = 1 | previous notes and θ

))
, (7)

where S is the total number of songs, Ns the length of song s and xs[n] is the
duration vector ds[n] for the rhythm network and the pitch vector ps[n] for the
melody network. The trainable model parameters θ are the connection matrices
wab for a ∈ {yi, hi}, b ∈ {hi, zi, ri} and wyoo, the gate biases bi

z and bi
r, the

output unit biases bo and the initial state of the hidden units hi[0].
Networks are trained on 80% of songs of the musical corpus and tested on

the remaining 20%. A training epoch consists of optimizing model parameters on
each of randomly selected 200 melodies from the training set, where parameters
are updated after each song. After each epoch, the model performances are
evaluated on a random sample of 200 melodies from the testing and the training
set. The parameters that minimize the likelihood on unseen data from the testing
set are saved and used as final parameters.

Melody generation is achieved by closing the output-input loop of Eqs. 1-
5. In each time step a duration and a pitch are sampled from the respective
probability distributions and used as inputs in the next time step.

3 Results

3.1 Music Corpus

To automatically convert music corpora to our representation, we developed a
toolbox that parses symbolic music files written in the abc notation1 and converts
them into our music representation. The results presented here are based on the
Irish music corpus of Henrik Norbeck2. It contains 2158 Irish tunes with an
averaged length of 136 ± 84 notes. The basic statistics of pitch and duration
transitions are shown in Fig. 3. Due to our normalization procedure, the most
common duration is 1 and there is consequently a high probability of transition
to the unitary duration from any state. Otherwise, shorter durations are mostly
followed by the same or a complementary value, e.g. “3/2” followed by “1/2”.
The most common pitches belong to the diatonic C Major scale. Transition from
natural B, respectively G sharp, have high probability of ending in the closest
C, respectively A, a property inherent to western music in order to resolve a
melody.

1 http://abcnotation.com/
2 http://www.norbeck.nu/abc/

Algorithmic Composition of Melodies with Deep Recurrent Neural Networks 7

BA
D

ur
at

io
n[

n]

Duration[n+1]

Pi
tc

h[
n]

Pitch[n+1]

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Transition probabilies in the music corpus: A Probability of transitions
from durations at note n to note n + 1 color graded from zero (white) to one (blue).
B Same as in panel A, for transitions of a selected range of pitches.

The analysis of the relation between the pitch and duration features revealed
that they are dependent, as expected from music theory. Therefore, we explicitly
modeled the distribution over upcoming pitches as depending on the upcoming
duration (dashed line in Fig. 2A), effectively splitting the joint distribution over
note duration and pitch into conditional probabilities.

3.2 Song Continuation

To study song continuations, we present as input to the trained model the be-
ginnings of previously unseen songs (the seed) and observe several continuations
that our model produces (see Fig. 4). From a rhythmical point of view, it is
interesting to notice that, even though the model had no notion of bars im-
plemented, the metric structure was preserved in the generated continuations.
Analyzing the continuations in Fig. 4A, we see that the A pentatonic scale that
characterizes the seed is maintained everywhere except for continuation number
2. This is noteworthy, since the model is trained on a dataset that does not only
contain music based on the pentatonic scale. Moreover, the rhythmic patterns
of the seed are largely maintained in the continuations. Rhythmical patterns
that are extraneous to the seed are also generated. For example, the pattern n1,
which is the inversion of pattern a, can be observed several times. Importantly,
the alternating structure of the seed (abacabad) is not present in the generated
continuations. This indicates that the model is not able to capture this level
of hierarchy. While less interesting than the first example from the rhythmical
point of view, the seed presented in Fig. 4B, is clearly divided in a tonic area and
a dominant area. Different continuations are coherent in the sense that they also
alternate between these two areas, while avoiding the subdominant area almost
everywhere.

8 Colombo et al.

seed

1

2

3

4

5

seed

1

2

3

4

5

A

tonic

dominant

B

Fig. 4. Example of melody continuation and analysis: A The first line (seed) is
presented as input to the model. The next five lines are five different possible continua-
tions generated by our model. Rhythmical patterns present in the seed are labeled a, b,
c and d. The label n1 points at a new rhythmical pattern generated by the model. Un-
labeled bars show other novel rhythmical patterns that appear only once. B A second
example of song continuation, with analysis of tonal areas.

3.3 Autonomous Song Generation

Here, we assume that the model is able to learn the temporal dependencies in
the musical examples over all timescales and use it to autonomously generate
new pieces of music according to those dependencies. For the results presented
here, we manually set the first two notes of the melody before generating notes
by sampling from the output distributions. This step can be automatized but is

Algorithmic Composition of Melodies with Deep Recurrent Neural Networks 9

Fig. 5. Example of an autonomously generated Irish tune: See text for details.
In this example a coherent temporary modulation to A minor was generated (bar 26).
Worth noticing are passages that are reminiscent of the beginning at bar 13 and at bar
23.

needed in order to observe a distribution over possible upcoming notes at the
model output. We iteratively add notes to the generated musical sequence until
the “song ending” output is sampled.

We observe that the generated melodies (one example is shown in Fig. 5) are
different from those found in the training set while carrying the same features
on many time scales. Interestingly, the model is not explicitly aware of the time
signature of each song, but bars can be easily added a posteriori indicating
that the long-range rhythmical structure is perfectly learned and reproduced
by our model. The generated melodies are produced according to production
rules extracted from the training set, effectively creating an original composition
that carries the features of the examples in the training dataset. The model is
consequently able to generate new pieces of music in a completely autonomous
manner.

4 Discussion

We fitted a statistical model that uses a recurrent neural network to a dataset
of 2158 Irish melodies. Due to its recurrent connections and multiplicative units,
the model is able to capture long-range temporal structure. The model contains
no prior knowledge about a musical style but extracts all relevant features di-
rectly from the data. It can therefore be readily applied to other datasets of
different musical styles. For example, training the model on the Nottingham
Music Database3 yielded similar performance (data not shown).

We studied the model in two different settings. As a tool for composers, it
can provide song continuations that are coherent with the beginning of the song
both in terms of pitches and in terms of rhythmical patterns. The model also

3 http://abc.sourceforge.net/NMD/

10 Colombo et al.

allows the autonomous composition of new and complete musical sequences. The
generated songs exhibit coherent metrical structure, in some cases temporary
modulations to related keys, and are in general pleasant to hear.

Using RNNs for algorithmic composition allows to overcome the limitations
of Markov chains in learning the long-range temporal dependencies of music
[18]. A different class of models, namely artificial grammars, are naturally suited
to generate these long-range dependencies due to their hierarchical structure.
However, artificial grammars have proven to be much harder to learn from data
than RNNs [25]. Therefore, researchers and composers usually define their own
production rules in order to generate music [2]. Attempts have been made to infer
context-free grammars [26] but applications to music are restricted to simple
cases [27].

Evolutionary algorithms constitute another class of approaches that has been
very popular in algorithmic composition [2]. They require the definition of a fit-
ness function, i.e. a measure of the quality of musical compositions (the individ-
uals, in the context of evolutionary algorithms). Based on the fitness function,
the generative process corresponding to the best individuals is favoured and can
undergo random mutations. This type of optimization process is not convenient
for generative models for which gradient information is available, like neural
networks. However, it can be used in rule-based generative models for which
training is hard [28]. A common problem with evolutionary algorithms in music
composition is that the definition of the fitness function is arbitrary and requires
some kind of evaluation of the musical quality. This resulted in fitness functions
often very specific to a certain style. However, similarly to neural networks, fit-
ness functions can be defined based on the statistical similarity of the individuals
to a target dataset of compositions [29].

Because of the ease of fitting these models to data as well as their expres-
siveness, learning algorithmic composition with recurrent neural networks seems
promising. However, further quantitative evaluations are desirable. We see two
quite different approaches for further evaluation. First, following standard prac-
tice in machine learning, our model could be compared to other approaches
in terms of generalization, which is measured as the conditional probability of
held-out test data (songs) of similar style. Second, the generated songs could
be evaluated by humans in a Turing test setting or with a questionnaire follow-
ing the SPECS methodology [30]. Another direction for interesting future work
would be to fit a model to a corpus of polyphonic music and examining the
influence of different representations.

Acknowledgments Research was supported by the Swiss National Science
Foundation (200020 147200) and the European Research Council grant no. 268689
(MultiRules).

References

1. Ada Lovelace. Notes on L Menabrea’s “sketch of the analytical engine invented by
Charles Babbage, esq.”. Taylor’s Scientific Memoirs, 3, 1843.

Algorithmic Composition of Melodies with Deep Recurrent Neural Networks 11

2. Jose D Fernández and Francisco Vico. Ai methods in algorithmic composition: A
comprehensive survey. Journal of Artificial Intelligence Research, pages 513–582,
2013.

3. Kevin Jones. Compositional applications of stochastic processes. Computer Music
Journal, 5(2):45–61, 1981.

4. Charles Ames. The markov process as a compositional model: a survey and tutorial.
Leonardo, pages 175–187, 1989.

5. George Papadopoulos and Geraint Wiggins. Ai methods for algorithmic compo-
sition: A survey, a critical view and future prospects. In AISB Symposium on
Musical Creativity, pages 110–117. Edinburgh, UK, 1999.

6. Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6(2):107–116, 1998.

7. Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget: Con-
tinual prediction with lstm. Neural computation, 12(10):2451–2471, 2000.

8. Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empir-
ical evaluation of gated recurrent neural networks on sequence modeling. arXiv
preprint arXiv:1412.3555, 2014.

9. Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

10. James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-
canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio. Theano: a cpu and gpu math expression compiler. In Proceedings of the Python
for scientific computing conference (SciPy), volume 4, page 3. Austin, TX, 2010.

11. Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7: A matlab-
like environment for machine learning. In BigLearn, NIPS Workshop, number
EPFL-CONF-192376, 2011.

12. Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with
neural networks. In Advances in neural information processing systems, pages
3104–3112, 2014.

13. Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition
with deep recurrent neural networks. In Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on, pages 6645–6649. IEEE, 2013.

14. Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

15. Andrej Karpathy. The unreasonable effectiveness of recurrent neural networks.
http://karpathy.github.io/2015/05/21/rnn-effectiveness/, 2015. [Online;
accessed 1-April-2016].

16. Douglas Eck and Jurgen Schmidhuber. Finding temporal structure in music: Blues
improvisation with lstm recurrent networks. In Neural Networks for Signal Pro-
cessing, 2002. Proceedings of the 2002 12th IEEE Workshop on, pages 747–756.
IEEE, 2002.

17. Judy A Franklin. Computational models for learning pitch and duration using
lstm recurrent neural networks. In Proceedings of the Eighth International Confer-
ence on Music Perception and Cognition (ICMPC8), Adelaide, Australia. Causal
Productions, 2004.

18. Peter M Todd. A connectionist approach to algorithmic composition. Computer
Music Journal, 13(4):27–43, 1989.

12 Colombo et al.

19. Michael C Mozer. Neural network music composition by prediction: Exploring
the benefits of psychoacoustic constraints and multi-scale processing. Connection
Science, 6(2-3):247–280, 1994.

20. Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutskever. An empirical exploration
of recurrent network architectures. In Proceedings of the 32nd International Con-
ference on Machine Learning (ICML-15), pages 2342–2350, 2015.

21. Yoshua Bengio, Ian J Goodfellow, and Aaron Courville. Deep learning. An MIT
Press book in preparation. Draft chapters available at http://www. iro. umontreal.
ca/ bengioy/dlbook, 2015.

22. Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

23. Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85–117, 2015.

24. Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

25. E Mark Gold. Language identification in the limit. Information and control,
10(5):447–474, 1967.

26. Craig G Nevill-Manning and Ian H Witten. Identifying hierarchical strcture in
sequences: A linear-time algorithm. J. Artif. Intell. Res.(JAIR), 7:67–82, 1997.

27. Kris Makoto Kitani and Hideki Koike. Improvgenerator: Online grammatical in-
duction for on-the-fly improvisation accompaniment. In NIME, pages 469–472,
2010.

28. Palle Dahlstedt. Autonomous evolution of complete piano pieces and performances.
In Proceedings of the ECAL Workshop on Music and Artificial Life, Lisbon, Por-
tugal, page 10, 2007.

29. Manuel Alfonseca, Manuel Cebrián, and Alfonso Ortega. Evolving computer-
generated music by means of the normalized compression distance. WSEAS Trans-
actions on Information Science and Applications, 2(9):343–348, 2005.

30. Anna Jordanous. A standardised procedure for evaluating creative systems: Com-
putational creativity evaluation based on what it is to be creative. Cognitive
Computation, 4(3):246–279, 2012.

