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Abstract
Cloud providers typically implement abstractions for net-
work virtualization on the server, within the operating sys-
tem that hosts the tenant virtual machines or containers. De-
spite being flexible and convenient, this approach has funda-
mental problems: incompatibility with bare-metal support,
unnecessary performance overhead, and susceptibility to hy-
pervisor breakouts. To solve these, we propose to offload the
implementation of network-virtualization abstractions to the
top-of-rack switch (ToR). To show that this is feasible and
beneficial, we present VNToR, a ToR that takes over the im-
plementation of the security-group abstraction. Our proto-
type combines commodity switching hardware with a cus-
tom software stack and is integrated in OpenStack Neutron.
We show that VNToR can store tens of thousands of access
rules, adapts to traffic-pattern changes in less than a millisec-
ond, and significantly outperforms the state of the art.

Categories and Subject Descriptors C.2 [COMPUTER-
COMMUNICATION NETWORKS]: Security and protection

Keywords Network virtualization, security groups, SR-
IOV, top-of-rack switch

1. Introduction
Cloud providers are starting to virtualize their networks and
expose to their tenants familiar network abstractions like a
layer-2 broadcast domain, an IP subnet, or a security group.
These abstractions make it easy for tenants to replicate their
physical network organization in the cloud and manage it
with the same familiar processes.
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Cloud providers typically implement network abstrac-
tions on the server, within the operating system (OS) that
hosts the tenant virtual machines (VMs) or containers. The
host OS implements virtual switching, for example Open
vSwitch [37], to provide connectivity to the local VMs and
also opportunistically implements cloud network abstrac-
tions: it performs the encapsulation or translation needed to
provide the abstractions of a layer-2 network and IP sub-
net, and it enforces the access rules dictated by the security
groups. This approach is flexible and convenient: first, it
does not require any changes to network devices, which
are typically hard to reprogram; second, it allows easy
coordination between the deployment of virtual-compute
and virtual-network resources, because both are deployed
through agents running in the same place—the host OS.

Despite its benefits, this approach has significant perfor-
mance and security problems:

(a) Incompatibility with bare-metal support1: For security
reasons, network abstractions must be implemented at an
entity outside the one being governed. For instance, if a
security group specifies that tenant X must not send any
traffic to tenant Y , it does not make sense to let tenant
X itself enforce this rule. Hence, when tenants are given
access to servers, network abstractions must be implemented
somewhere outside the server.

(b) Unnecessary performance overhead: Compute virtu-
alization platforms are designed to avoid host-OS involve-
ment as much as possible, and implementing network ab-
stractions within the host OS violates this mentality. By-
passing the host OS with single-root I/O virtualization (SR-
IOV) [36] and offloading the implementation of network
abstractions elsewhere has tremendous potential for perfor-
mance improvements [17, 34].

(c) Susceptibility to hypervisor breakouts: Bugs in hyper-
visor implementations allow malicious/compromised ten-
ants to escape the confines of their VMs and run commands
at the hypervisor level. Multiple vulnerabilities have been
discovered in recent years (including vmftp [12], Cloud-
Burst [13], KVM Virtunoid [14], and XEN Sysret [15]) that
would allow such a tenant full access to the provider net-
work.

1 Where the cloud provider offers tenants access to physical machines.
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To solve these problems, we propose to offload the imple-
mentation of network abstractions to the top-of-rack switch
(ToR); to show that this is feasible and beneficial, we present
VNToR, a ToR that takes over the implementation of the
security-group abstraction. Security groups are the main
mechanism offered to cloud tenants for controlling their
communications, and they enable tenants to enforce policies
that in a physical network would be enforced by traditional
stateful firewalls. We picked this particular abstraction for
our proof-of-concept, because we consider it the most chal-
lenging one to implement at the ToR (we comment on this
in Section 3).

Others have taken similar approaches: Fastrak imple-
ments certain network abstractions at the ToR, but only for a
few flows selected by the guest OS [34]. In contrast, VNToR
does it for all traffic and without any changes to the guest
OS, which leads to very different technical challenges. As
we were completing our work, Amazon announced they are
also offloading the implementation of security groups, but to
the network interface card (NIC) as opposed to the ToR [40];
their implementation involves a proprietary NIC without
a publicly available technical specification. Microsoft has
gone a similar route with their FPGA-based Azure Smart-
NIC [4]. In contrast, our approach does not require propri-
etary hardware, but only software changes at the ToR.

The main technical challenge we face is that ToRs are
often low-end switches without the resources required for
a straightforward implementation of network abstractions.
More specifically, a typical ToR lacks the amount of data-
path memory needed to store all the access rules needed to
implement security groups (i.e., , the set of access rules dic-
tated by security groups that contain VMs or containers run-
ning in servers connected to the ToR). This is a fundamental
limitation related to the ASIC manufacturing process, which
is unlikely to disappear in the near future [31].

To address this challenge, our ToR exports the abstraction
of a virtual flow table, which fits orders of magnitude more
access rules than the ToR’s data-path memory (the physi-
cal flow table). We provide this abstraction through a sim-
ple, two-level memory hierarchy, where the ToR’s (fast but
small) data-path memory acts as a cache for a much larger
and slower backing store accessible from the ToR’s supervi-
sor engine.

At a high level, the idea of data-path memory as cache
has been explored before, in the context of Software De-
fined Networking (SDN) [22, 42, 43], but the substance of
our work is different. In SDN, what makes caching chal-
lenging is the presence of overlapping rules, because naïve
caching of such rules interferes with forwarding semantics.
Hence, related SDN work focuses on the correctness of the
caching algorithm in the presence of overlapping rules—
an interesting algorithmic problem, which is independent of
underlying-hardware details. In contrast, we set out to elim-
inate the communication overhead due to host-OS involve-

ment, and we must be careful not to move this overhead to
the ToR. Unlike SDN work, our ToR has a concrete, hard
baseline to match: that of a ToR that does not implement
any network abstractions. Hence, we focus on the perfor-
mance of the caching system, which is very much depen-
dent on hardware details like the polling and update rate of
the switch’s data-path memory. We discuss this difference in
Section 3.

In summary, our contribution is the design (§4), imple-
mentation (§5), and evaluation (§6) of VNToR, a system for
state-of-the-art clouds that implements security groups at the
ToR. This requires a ToR that:

• can store tens of thousands of access rules;
• adapt to traffic-pattern changes, typically in less than one

ms;
• while using commodity switching hardware with a mini-

mal amount of data-path memory;
• and without compromising latency or throughput.

Cloud providers can implement this solution today with a
firmware update to their ToRs, which would enable them to
offer bare-metal support and faster communication with SR-
IOV without compromising security. We have implemented
a prototype on top of a 64× 10Gbps Broadcom Trident+
switching ASIC [7] and a low-power XLP supervisor en-
gine [8], and integrated our prototype in OpenStack Neu-
tron [3].

2. Background
In this section, we describe the security-group abstraction
as exposed by current clouds (§2.1); OpenStack and how it
implements security groups (§2.2); and the SR-IOV hyper-
visor bypass technology (§2.3); we then compare existing
security-group implementations (§2.4).

2.1 Security-Group Abstraction
A security group consists of tenant entities and ingress/egress
rules. The entities can be VMs, containers, or physical ma-
chines in the case of bare-metal support, and the rules spec-
ify what traffic the group members can send or receive. A
rule consists of a protocol (typically TCP, UDP, or ICMP),
a destination port or port range, and a remote location that
is either an IP subnet or another security group. Any traffic
between security groups not explicitly allowed by an egress
and ingress rule is denied.

For example, the following rules allow TCP connections
from group A to group B at port 8080:

Group Type Protocol Port Remote loc.
A egress TCP 8080 B
B ingress TCP 8080 A



The first rule is an egress rule associated with group A,
which allows all entities (VMs etc.) from A to initiate TCP
connections to any entity from B at port 8080. The second
rule is an ingress rule associated with group B, which allows
all entities from B to accept TCP connections at port 8080
from any entity from A. If these are the only rules associated
with groups A and B, the entities of these groups cannot send
or receive any other traffic.

2.2 OpenStack and OVS Enforcement
OpenStack is the standard open-source cloud-management
system, and Neutron is its network-management module. It
consists of one centralized controller and multiple agents,
the latter running on all the devices implementing network
abstractions (in current clouds, these are only the servers).
The controller maintains all state related to network abstrac-
tions and distributes it to the relevant agents, which translate
it into configuration and install it on the local device.

Neutron currently enforces the security-group rules at
an Open vSwitch (OVS) running as part of the hypervisor,
and commercial solutions such as VMware NSX [24] use a
similar approach. When a tenant adds a VM to a security
group, the Neutron controller sends the group’s rules to
the Neutron agent running on the VM’s hosting server. In
response, the agent converts the group rules into standard
firewall rules and installs them in the local OVS switch.
Firewall rules are installed in an iptables rule chain,
with connection tracking enabled, associated with the OVS
switch.

2.3 SR-IOV and Security Groups
In traditional compute-virtualization platforms, network I/O
(and I/O in general) always involves the hypervisor [5, 10,
23]; while this approach maximizes flexibility and portabil-
ity, it comes at a performance cost, especially as cloud work-
loads become more network intensive.

SR-IOV was invented precisely to remove this involve-
ment [36]: it enables VMs to interact directly and securely
with NIC drivers, through the help of an I/O memory man-
agement unit (IOMMU). SR-IOV can improve communi-
cation latency dramatically. Figure 1 shows average com-
munication latency between two VMs running on different
servers connected to the same ToR, when both the server
CPUs and the network are underutilized (full experimental
setup in §6.2). For small packets, average latency is 2.5×
smaller with SR-IOV, almost matching bare-metal perfor-
mance, while latency standard deviation is 4× smaller.

SR-IOV has severe implications for security groups:
When VMs bypass the hypervisor and talk directly to the
NIC, the hypervisor cannot enforce security-group rules. As
a result, OpenStack supports SR-IOV (since “Juno” [2]) only
at the cost of a fundamental restriction: security groups are
entirely disabled (§2.4). Amazon supports SR-IOV under the
name Enhanced Networking [1] as part of its Virtual Private
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Figure 1: netperf request/response benchmark.

Cloud product, but implements security groups on a propri-
etary NIC that is not available outside their own cloud [40].

2.4 Validation of the Status Quo
For the record, we tested whether OpenStack and Amazon
expose the security-group abstraction as described in Sec-
tion 2.1 and whether SR-IOV affects isolation. In each of
the two environments, we created two security groups, A
and B, added a VM to each group, and tried to send traffic
between them, while varying the group rules. In some tests
we added both the ingress and egress rule from Section 2.1,
in others one of the two, and in others none. In the “echo”
tests, A establishes a TCP connection with B at port 8080.
In “reverse-path,” B sends a packet with source port 8080 to
an ephemeral destination port on A, without establishing a
connection first. In “invalid,” A sends packets that are nei-
ther part of an established connection nor establish a new
connection (they are not SYN packets).

Table 1 shows the results, which validate our expecta-
tions: Both OpenStack and EC2 expose the security-group
abstraction correctly in the base case where I/O is emulated
through a paravirtual device (“PV IO” columns); in this case,
the hypervisor is not bypassed and rule enforcement and
connection tracking can be implemented at the hypervisor.
The only minor difference is that Amazon does not verify the
existence of SYN flags on the initial packet of a TCP con-
nection. However, in the case where the VMs use SR-IOV,
OpenStack accepts their addition to the security groups, but
then fails to enforce the rules (“SR-IOV-unsafe” column).
Amazon does expose the abstraction correctly, even with
SR-IOV, but at the cost of custom hardware.

For completeness, the rightmost column in Table 1 shows
the results for our solution; we include it under “OpenStack”
because we have integrated it in that platform.

To conclude: Existing approaches to security groups
have fundamental problems: First, none of them are com-
patible with bare-metal support. Second, in the OVS-based
approach, a tenant may escape the confines of their VM,



Test Expected Action Amazon EC2 OpenStack
PV I/O SR-IOV PV I/O SR-IOV unsafe SR-IOV VNToR

T
C

P

Echo test, ingress and egress rules accept
√ √ √ √ √

Echo test, ingress or egress rule only deny
√ √ √

accept
√

Echo test, no rules deny
√ √ √

accept
√

Reverse-path deny
√ √ √

accept
√

Invalid, ingress and egress rules deny accept accept
√

accept
√

Invalid, ingress or egress rule only deny
√ √ √

accept
√

Invalid, no rules deny
√ √ √

accept
√

U
D

P

Echo test, ingress and egress rules accept
√ √ √ √ √

Echo test, ingress or egress rule only deny
√ √ √

accept
√

Echo test, no rules deny
√ √ √

accept
√

Reverse-path deny
√ √ √

accept
√

Enforcement point: OVS or NIC NIC OVS None VNToR

Table 1: Security-group semantics for intra-tenant traffic as exposed by Amazon and OpenStack (
√

means that the expected
action was observed).

gain unauthorized access to the hypervisor, and bypass
security-group rules. Third, to reap the performance ben-
efits of SR-IOV, cloud operators must either disable security
groups or deploy custom hardware on their servers.

3. Our Proposal: Move to the ToR
We set out to solve these problems by moving the imple-
mentation of security groups to the ToR. On top of being
physically outside the server—hence compatible with bare-
metal support—the ToR has the following advantages as an
enforcement point: First, it is the traffic source’s entry point
into the cloud network, hence it can stop unauthorized traf-
fic from affecting legitimate communications. Second, com-
modity ToRs are already equipped to enforce access rules
(albeit a small number of them) within the switching ASIC at
line speed; so, in a sense, we are making access-rule enforce-
ment cheaper by moving it from the server —where it con-
sumes general-purpose processing cycles that could be allo-
cated to other functionality— to the ToR, where it can run
on the existing hardware without any performance penalty.
We consider our approach aligned with the SDN philosophy
of pushing complexity to the network edge: even though we
do add functionality to a network device, we do it at the first
hop from the server without affecting the network core.

The key challenge is the limited rule capacity of commod-
ity switching ASICs, which also arises in the SDN universe.
To address it, SDN proposals use switch datapath memory
as a cache for a backing store located at another switch [43]
or a processor close to the switch [22, 42]. However, that
work focuses on caching algorithms that maintain forward-
ing semantics in the presence of overlapping rules2. In our
context, support for overlapping rules is not crucial, as se-
curity groups do not currently require it—though it is, of
course, a useful feature and can be provided by combining
SDN proposals with ours.

2 For example, caching “deny * from 1.1.1.0/24” while not caching “allow
* from 1.1.1.1/32” incorrectly denies traffic from 1.1.1.1.

What is crucial, in our context, is performance, and exist-
ing caching systems are not fast enough (whether the rules
are overlapping or not). One reason we are moving function-
ality from the hypervisor to the ToR is to eliminate hypervi-
sor overhead; it does not make sense to cancel out this im-
provement by slowing down the ToR. To meet this goal, we
design a caching system tailored to the properties of state-of-
the-art datapath memory, for example, we interleave mem-
ory polls and updates to strike a balance between the fresh-
ness of the poll results and the delay of the memory updates.
Such systems issues have been outside the focus of the re-
lated SDN work.

We consider security groups the most challenging net-
work abstraction to implement at the ToR, because it re-
quires both a large number of accept/deny rules (as many
as the tenant entity pairs that are allowed to communicate
by their security groups) and connection tracking. However,
network virtualization involves more than security groups,
most importantly layer-2 network overlays; to support these,
VNToR would need to implement virtual extensible LAN
(VXLAN) [29], which encapsulates/decapsulates all tenant
traffic that belongs to an overlay and traverses the network
core. Many current-generation commodity switches already
have VXLAN hardware support built-in, hence the only
piece we are currently missing is the VXLAN control pro-
tocol; we need to either add it to our ToR software stack, or
integrate our software stack into an existing one that imple-
ments it.

4. System Design
In this section, we describe the typical ToR platform that
served as our starting point (§4.1), the VNToR architecture
(§4.2), its two main components in detail (§4.3 and §4.4),
and its integration in OpenStack (§4.5).

4.1 Platform
A typical ToR consists of a switching ASIC that implements
all the line-rate packet processing and a supervisor engine
(SupE) that runs all the software needed to manage the
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Figure 2: VNToR architecture.

Data struct. Stored in Type Field Written/updated by Read/polled by

hwTbl ASIC Flow table
matchAction cache manager hw pipeline
counter hw pipeline cache manager

swTbl SupE Hash map

matchAction sw forwarder sw forwarder

counter,weight,weighth
sw forwarder sw forwarder
cache manager cache manager

hwEntry cache manager sw forwarder

minHeap SupE
Min-heap, sorted

ptr (points to swTbl entry) cache manager cache manager
by ptr→ weight

maxHeap SupE
Max-heap, sorted

ptr (points to swTbl entry) sw forwarder cache manager
by ptr→ weight

Table 2: System state.

ASIC. The ASIC has a (physical) flow table that can fit
pSize entries, each one storing a rule (a traffic pattern and
associated action) and a byte counter. A poll operation on
an entry returns the entry’s current counter, and an update
operation replaces the entry’s rule with a new one. The SupE
has access to DRAM that can fit vSize� pSize entries.

One limitation of current ToR platforms is that a poll
or update operation on the ASIC flow table is significantly
slower than packet inter-arrival on a multi-Gbps link: the la-
tency of a poll, denoted by tpoll, is typically several µs, while
the latency of an update, denoted by tup, is tens or even hun-
dreds of µs. We observed such latency numbers in our own
prototype, even though we used a state-of-the-art ASIC and
controlled the ASIC flow table through the vendor’s own
software development kit (SDK). One likely explanation is
that these operations were traditionally not considered time-
critical and were therefore never optimized. Future ToR plat-
forms, with different ASIC hardware/software control mech-
anisms, should improve these operations, but are unlikely to
close the gap between poll/update latency and packet inter-
arrival times (as they are unlikely to significantly increase
flow-table capacity). We designed VNToR such that (a) it
achieves its goals given the poll/update latency of current
ToR platforms and (b) it will be able to leverage the lower

poll/update latency offered by future platforms to scale the
workload churn that it can handle.

4.2 Architecture
Figure 2 shows the VNToR components: apart from the
ASIC, there are parallel software forwarders, a cache man-
ager, and a Neutron agent, all running on the SupE. The
ASIC performs its lookups in its flow table (from now on
“hardware table”). The software forwarders perform their
lookups in a hash map of vSize� pSize entries that is stored
in DRAM (from now on “software table”).

The authoritative security-group rules are stored in the
Neutron agent; when a new flow is observed, this state is
consulted and translated into accept/deny rules that are writ-
ten in the software table.

The hardware table acts as a cache for the software table,
and the two of them together implement the virtual flow table
abstraction. We refer to rules stored in the hardware table as
“cached rules.”

The cache manager continuously polls the hardware ta-
ble, computes a weight for each rule in that table that reflects
the rule’s recent popularity, and replaces the lightest cached
rules with heavier non-cached rules.



Algorithm 1 Cache-Management Algorithm

1: while True do
2: for each rule R cached in hwTbl entry i do
3: r← swTbl’s entry that stores R’s copy
4: r.counter← hwTbl.poll(i)
5: r.weight← rate · (1−h)+ r.weighth ·h
6: minHeap.del(oldest element)
7: minHeap.add(pointer to r)
8: rc← swTbl entry at minHeap.head()
9: rc̄← swTbl entry at maxHeap.head()

10: if rc.weight < rc̄.weight then
11: hwTbl.update(rc.hwEntry,

rc̄.matchAction)
12: rc̄.hwEntry← rc.hwEntry
13: rc.hwEntry← None
14: minHeap.del(pointer to rc)
15: end if
16: end for
17: end while

The ASIC handles all traffic that can be served from
the hardware table and passes the rest to the software for-
warders. More specifically: A packet enters the switch
through the ASIC. If the lookup in the hardware table re-
turns an action other than “forward to the SupE,” the packet
stays in the ASIC until it is dropped or forwarded. Other-
wise, the packet is tagged with its ingress port number and
passed to one of the software forwarders, which processes
the packet, starting from a lookup. If the software lookup
indicates that the packet should be forwarded, the packet
is tagged with its egress port number and passed back to
the ASIC, which removes the tag and forwards the packet
through the designated egress port.

Table 2 summarizes system state: hwTbl is the hard-
ware table and swTbl is the software table. Each element of
swTbl consists of five fields: matchAction (traffic specifica-
tion and associated action), counter (byte counter), weight,
weighth (a past value of weight used for exponential smooth-
ing), and hwEntry (set only if the rule is cached and states
the corresponding hwTbl entry). Moreover, there are two
kinds of heaps that store pointers to swTbl entries: First, the
cache manager maintains in minHeap pointers to recently
polled cached rules, sorted by weight, with the lightest rule
at the head. Second, each software forwarder maintains in
maxHeap pointers to non-cached rules, sorted by weight,
with the heaviest rule at the head. For brevity, when referring
to heap operations, instead of saying that “we insert/remove
a node that points to rule R,” we say that “we insert/remove
rule R.”

4.3 Cache Management
Two facts shaped the design of the cache manager:
(a) In an idealized system, Least Recently Used (LRU)

is the best replacement policy. Before building our proto-
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type, we simulated an idealized system, where operating on
the data structures (including polling/updating hwTbl) takes
zero time. We gave real data-center traces as input to this
system and compared the performance of the most intuitive
replacement policies. In particular, we experimented with
several variants of “least heavily used” (LHU), where each
rule has a weight reflecting how many bytes matched the
rule recently; this weight may correspond to a sliding time
window, or it may be updated at fixed time intervals. LRU
outperformed all LHU alternatives, and in retrospect the in-
tuition is obvious: real traffic is bursty, and LRU ensures all
traffic bursts (but the first packet) are served from the cache.

(b) In a real system, polling and updating hwTbl takes a
long time, with two implications for caching. First, we can-
not implement LRU, because we cannot update hwTbl on
every miss: we can perform up to 1

tup
(a few thousand) up-

dates per second, whereas a switch with multiple 10Gbps
ports may observe packet bursts way above this (at the limit,
19.5M minimum-sized packets per second per port). Sec-
ond, it does not make sense to poll the entire hwTbl and then
update it: doing so takes hundreds of ms—a very long time
in the context of multi-Gbps line rates; by that point, the en-
tries in hwTbl would be irrelevant to the currently observed
traffic.

Our cache-management algorithm (Algorithm 1, illus-
trated in Figure 3 on the right) tries to approximate LRU as
well as hardware limitations allow and to make timely up-
dates based on fresh statistics. More specifically: The cache
manager continuously polls hwTbl (lines 1,2). After polling
cached rule R, it first finds and updates R’s copy in swTbl
(lines 3–5). Next, it updates minHeap (lines 6,7). Finally,
it compares the lightest cached rule (line 8) to the heaviest
non-cached rule (line 9); if the latter is heavier (line 10), then
the two rules are “swapped,” i.e., , one is evicted from hwTbl
and the other inserted in its place (line 11). In case of a swap,
the cache manager also updates swTbl and minHeap accord-
ingly (lines 12–14). A minor point: For simplicity, line 8
references a single maxHeap, whereas in reality there are



as many as the software forwarders, and the cache manager
picks the one with the heaviest rule at the head.

A rule weight reflects the rule’s current popularity, smoothed
with standard exponential averaging: In line 5 of Algo-
rithm 1, rate is the traffic rate currently matching the rule
(computed from counter), while h ∈ [0,1) is a history fac-
tor that determines how much the past matters. History
(weighth) is updated (set to weight) at fixed time intervals
of duration Th.

We define the freshness of cached rule R at a given point
in time as follows: consider R’s copy in swTbl and its counter
field; R’s freshness is the amount of time from the moment
counter’s value was read from hwTbl. Freshness captures
the relevance to current traffic of a rule’s statistics stored in
swTbl. The best (smallest) possible freshness is tpoll, which
holds as soon as the cache manager updates counter (line 3).

The size of minHeap involves the following trade-off: the
smaller it is, the fresher but also the fewer the cached rules
considered for eviction. For instance, if ||minHeap|| = 1,
the only cached rule considered for eviction is the one that
was just polled; on the positive side, this rule is as fresh as
possible; on the negative side, it is unlikely that this happens
to be the lightest cached rule, so replacing it is a suboptimal
decision. At the other end of the spectrum, if ||minHeap||=
pSize, the cache manager considers all the cached rules for
eviction, some of which were polled hundreds of ms earlier.

Regarding complexity, the most expensive operations
performed by the cache manager are the insertions and dele-
tions on minHeap, which are O(log ||minHeap||).

4.4 Software Forwarding
On top of processing packets experiencing a miss in the
hardware pipeline, each software forwarder helps the cache
manager by lazily updating some of the cache-related state.
More specifically, after receiving a new packet, a software
forwarder: (a) Looks the packet up in swTbl; if there is no
matching entry, it checks the Neutron agent’s authoritative
state, translates it into accept/deny rule(s), and inserts them
in swTbl. (b) Identifies the best matching rule R in swTbl
and updates the counter and weight fields. (c) If R is not in
maxHeap, it is inserted. If R is in maxHeap and its weight
increases, maxHeap is rebalanced. (d) Checks whether the
rule at the head of maxHeap has been cached by the cache
manager and, if so, removes it from maxHeap. The interac-
tion between the cache manager and the software forwarders
is illustrated in Figure 3.

The lazy update of the weight field may put the data struc-
tures in a non-intuitive state. First, maxHeap is rebalanced
only when a weight field increases. Second, the swTbl en-
try that corresponds to a non-cached rule R is updated either
when a packet that matches R happens to arrive, or, poten-
tially, when maxHeap is rebalanced—hence, if R is idle, its
weight may become obsolete. As a result of these two points,
the swTbl’s weight fields are not guaranteed to reflect the

rules’ actual weights, and maxHeap is not guaranteed to be
a heap.

Nevertheless, laziness does not affect the cache man-
ager’s replacement decisions. In the end, the only non-
cached rule considered for caching by the cache manager
is the rule at the head of maxHeap. Hence, what matters is
that this rule is the one with the biggest actual weight and the
rule’s weight field is up to date. Both of these properties are
guaranteed, because the moment a new packet matches rule
R and makes R the heaviest rule, it also causes R’s weight
field to be updated and R to move to the head of maxHeap.

Regarding complexity, the most expensive operations
performed by a software forwarder are the ones on maxHeap,
which are O(log ||maxHeap||), where ||maxHeap|| is equal
to the number of non-cached rules (i.e., flows) handled by
the forwarder.

4.5 OpenStack Integration
Our design is not tied to any particular management system,
but we integrated it in OpenStack because it is the open-
source standard and is increasingly deployed in industry.

Integrating VNToR in OpenStack merely requires imple-
menting a Neutron agent that runs on VNToR’s SupE and
whose role is to collect, from the Neutron controller, all the
relevant security-group state. In particular, our agent sub-
scribes for changes to:

• all the local VMs, i.e., those running in the local rack;
• membership information of the security groups where the

local VMs belong;
• membership information of any security group with

which a local VM is allowed to communicate;
• all the other relevant network-wide translations defined

by Neutron, e.g., encapsulating tunnels.

5. Prototype Implementation
In this section, we provide details on our prototype’s hard-
ware (§5.1) and software (§5.2), then describe how we
achieve traffic separation (§5.3).

5.1 Hardware
Our underlying ToR is a 1U reference kit that encloses
a Broadcom Trident+ switching ASIC with 64× 10Gbps
ports [7] and an XLP SupE [8]. The ASIC provides full
bisection bandwidth between the ports and has a hardware
flow table with the properties stated in Table 3. The SupE
has a Netlogic XLP MIPS processor with 4 cores, 16 hard-
ware threads, and 1024MB of DRAM; it runs Linux and
Broadcom’s SDK.

One limitation of our reference kit (that did not affect
our design) is that the ASIC and the SupE communicate
over a PCIe bus that allows maximum throughput 600Mbps
or 170Kpps in each direction. This is a limitation of the
printed circuit board, not of the integrated circuits: both the



Parameter Value
#entries in hwTbl (pSize) 2048
Avg. hwTbl poll latency (tp) 40µs
Avg. hwTbl update latency (tup) 300µs
#entries in swTbl (vSize) 1.2M
#eviction candidates (||minHeap||) 1024
History factor (h) 0.8
Aging interval (Th) 100ms

Table 3: Prototype properties and configuration.

ASIC and SupE are fully equipped to exchange traffic at
10Gbps, but the SupE’s built-in 10GbE NIC is unfortunately
not connectable in our reference kit. Hence, our prototype
could handle a significantly higher cache miss rate with a
proper printed circuit board.

5.2 Software
VNToR software is a multi-threaded process with one thread
implementing the Neutron agent; one thread implementing
the cache manager (§4.3); four threads implementing soft-
ware forwarding (§4.4); and one thread receiving traffic from
the ASIC and dispatching it to the forwarding threads in a
flow-consistent manner.3 Each software thread is pinned to
one SupE hardware thread (so we use only 5 of the 16 hard-
ware threads available). Given the limited ASIC-SupE inter-
connect of our prototype (§5.1), a single forwarding thread
could have handled all traffic coming from the ASIC, but we
implemented 4 threads in order to validate our design, which
calls for parallel software forwarders.

Threads communicate over shared memory, mostly in a
lock-free manner. The forwarders and the cache manager
communicate without locks: a forwarder indicates which is
the heaviest non-cached rule by setting the maxHeap top,
while the cache manager signals the promotion of a rule
to hwTbl by setting the hwEntry field of the rule’s copy in
swTbl. Due to consistent hashing of flows to forwarders, the
forwarders split the swTbl in separate parts, eliminating the
need for locks. The Neutron agent does lock the authoritative
security-group state in order to update it (blocking the for-
warders from reading it), but this happens only when secu-
rity groups for VMs in this rack change, hence it does not af-
fect our prototype performance—and, in any case, we could
use standard techniques like shadow tables to eliminate this
lock.

The forwarders implement connection tracking follow-
ing the iptables ESTABLISHED semantics: When a
forwarder receives a new packet, it first checks whether a
matching entry exists in swTbl. If not, and this is a UDP
packet or a TCP SYN packet, it reads from the Neutron
agent’s state the source’s and the destination’s security

3 The dispatch thread emulates receiver-side scaling [30], which is normally
provided by the NIC hardware and, hence, would be unnecessary if our
SupE’s NIC was connectable.

groups, say A and B, and their rules. If, according to the
rules, the new flow should be allowed, it inserts an exact-
match rule into swTbl that allows traffic from the source to
the destination; in the TCP case, should the corresponding
SYN/ACK packet be received during the standard 30 sec-
ond window, it also inserts an exact-match reverse rule. The
exact-match rules are removed from swTbl following TCP
FIN packets or timeouts.

We set the configuration parameters (Table 3) as follows:
The size of swTbl is determined by the available DRAM.
We set ||minHeap|| such that the freshness of the rules in
minHeap (§4.3), i.e., of the cached rules considered for evic-
tion, is on the same time scale as traffic bursts—about half
a second; this ensures that we do not evict a rule that is cur-
rently matching an ongoing traffic burst but was polled be-
fore the burst started. We set the aging interval Th to the aver-
age time between polls of the same hwTbl entry, i.e., history
is updated every time the cache manager completes an itera-
tion over hwTbl.

5.3 Traffic Separation
In the case of VMs running on the same physical machine, a
performance enhancement in SR-IOV NICs can potentially
circumvent security groups: when an SR-IOV NIC receives
a packet coming from a local SR-IOV device (a local VM)
that has a destination MAC address associated with another
local SR-IOV device, the NIC short-circuits the packet from
one device to the other without sending it to VNToR.

To avoid this, we assign to each SR-IOV virtual function
(each VM) a rack-scoped VLAN ID that uniquely identi-
fies all traffic from the VM, as proposed in FasTrak [34].
This prevents traffic between local VMs from being short-
circuited (because the destination always belongs to a differ-
ent VLAN from the source), ensuring that security groups
are applied correctly. Neutron manages the namespaces and
deploys the VLAN ID assignment to VNToR and the hyper-
visors. A VM cannot change its VLAN ID (only the hyper-
visor can do that), which has the useful side-effect that VMs
cannot spoof each other’s identities (in a traditional virtual-
ization platform, spoofing is prevented through ingress fil-
tering at the hypervisor, however, since we are bypassing the
hypervisor, we need a different approach).

6. Evaluation
After describing our experimental setup (§6.1), we an-
swer four questions: (§6.2) How much does VNToR im-
prove communication performance given a static workload?
(§6.3) Does VNToR maintain this advantage as the workload
becomes increasingly dynamic? What are its performance
limits? (§6.4) Does VNToR’s caching algorithm work well
with realistic data-center traffic?

6.1 Experimental Setup
We use a 10GE switch (characteristics in Table 3), run-
ning either a standard layer-2 stack or our VNToR software;



HW

Dual-socket Intel Xeon E5-2637v2 @ 3.5Ghz,
8 cores, 64GB RAM, Intel 82599 10GE NIC,
TurboBoost and intel_pstate disabled
to reduce variance, IOMMU enabled for SR-IOV.

SW

Ubuntu 15.10 “Wily”
with 4.2.0-25-generic SMP kernel,
OVS version 2.4.0, TCP Nagle disabled
where applicable to improve performance [34].

Table 4: Server characteristics.

and 10 servers (characteristics in Table 4) connected to the
switch. When the servers exchange all-to-all traffic and bot-
tleneck on I/O, the maximum achievable aggregate through-
put4 is close to 187Gbps. vCPUs are always pinned to phys-
ical cores to minimize variance across experiments due to
scheduling.

To generate traffic, we use netperf [38] and iperf3 [18],
respectively, for simple latency and throughput measure-
ments; a benchmark we wrote based on libevent for
measuring performance during churn; and tcpreplay for
replaying traffic traces. We use OpenStack “Liberty” to man-
age the infrastructure (deploy VMs and configure security
groups).

We compare four setups:

• OVS: Standard OpenStack setup. Traffic exchanged be-
tween VMs. Security groups enforced at OVS.

• SR-IOV-unsafe: Traffic exchanged between SR-IOV-
empowered VMs. No security groups.

• SR-IOV+VNToR: Traffic exchanged between SR-IOV-
empowered VMs. Security groups enforced at VNToR.

• Metal+VNToR: Traffic exchanged between native pro-
cesses. Security groups enforced at VNToR.

OVS is the typical cloud setup (§2.2) whose performance
we aim to improve. In SR-IOV-unsafe, communication is
empowered with SR-IOV at the cost of no security-group
enforcement (§2.3). The last two setups correspond to our
system with and without virtualization at the end-point. In
all experiments, there are two access rules for each generated
TCP connection, like the ones in Section 2.1.

We want to show that:

• SR-IOV+VNToR outperforms OVS, i.e., , enforcing se-
curity groups at the ToR improves performance;

• SR-IOV+VNToR performs as well as SR-IOV-unsafe,
i.e., in our solution, security does not come at the cost of
performance;

• SR-IOV+VNToR performs close to Metal+VNToR, i.e.,
in our solution, the cost of virtualization is minimal.

4 We mean data throughput, which is the full bisection bandwidth of
200Gbps minus protocol overhead.
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Figure 5: Throughput of a unidirectional TCP flow. VNToR
promotes the rule at ∼ 6sec and demotes it at ∼ 15sec.

6.2 Baseline: Static Workload
First, we test how much VNToR improves latency and
throughput given a static workload, where all the access
rules fit in the hardware table.

We measure with netperf the request/response la-
tency between two processes running on different servers5,
which is typically used to characterize communication per-
formance in data-centers [19, 26, 34]. In these experiments,
server CPUs and I/O buses are lightly loaded.

Figure 1 shows the results for different message sizes,
and we see that SR-IOV+VNToR significantly outperforms
OVS. For the smallest message size, SR-IOV+VNToR av-
erage latency is 2.5× smaller and latency standard devia-
tion 4× smaller. In this case, the dominant factor is the la-
tency introduced by the networking stack, which is signifi-
cantly lower in SR-IOV+VNToR due to passthrough (§2.3).
The advantage decreases for larger message sizes, as transfer
time also becomes a significant factor; still, for 32KB mes-
sages, SR-IOV+VNToR average latency is 1.6× smaller and
latency standard deviation 2.3× smaller.

Next, we measure with iperf3 aggregate throughput
when 20 process pairs exchange traffic at the highest possi-
ble rate, each pair over 5 parallel TCP connections. In these
experiments, when the processes run natively, the servers
bottleneck on I/O and they achieve the maximum possible
aggregate throughput of 187Gbps—this is precisely why we
chose this experiment configuration.

5 One process sends messages, one at a time, and the other responds.
Request/response latency is the amount of time from the moment the first
process sends a message until it receives a response.
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Figure 6: Request/response benchmark with churn.

Figure 4 shows the results: Metal+VNToR achieves the
maximum possible throughput, while SR-IOV+VNToR is
effectively equal and 1.8× better than OVS.

From both figures we see that SR-IOV+VNToR performs
the same as SR-IOV-unsafe, which confirms that enforcing
security groups at the ToR does not introduce any latency
(relative to no enforcement). This is not a surprise: in these
experiments, the few access rules involved fit and reside in
the hardware table, hence are guaranteed to be processed at
line speed.

6.3 Churn and Breaking Point
Second, we study how VNToR behaves given a dynamic
workload, where the access rules do not fit in the hardware
table and the working set keeps shifting.

We start with a microbenchmark to verify that VNToR be-
haves as expected when a rule is promoted to the hardware
table and when it is demoted back to the software table. We
use iperf3 to establish a single TCP connection between
two processes running on different servers and stream traf-
fic from one to the other at the highest possible rate. We
use tcpdump to capture traffic at the two end-points so that
we measure packet drops, retransmissions, reordering, and
throughput at 10ms intervals. Instead of letting VNToR run
its caching algorithm, in this particular experiment, we ex-
plicitly instrument the cache manager to cache and then evict
the relevant rule at particular points in time.

Figure 5 shows the results, which are as expected: Through-
put is 600Mbps (limited by the PCIe bottleneck between
ASIC and SupE inside the switch) when the rule is not
cached, and 10Gbps (limited by the line rate) when the rule
is cached. The moment the rule is promoted to the hard-
ware table, there is packet reordering (directly proportional
to the amount of buffering in the software forwarder and the
hardware-table update latency tup), but throughput climbs
to line rate within 20ms. Similarly, the moment the rule is
demoted to the software table, there are packet drops and

retransmissions, yet throughput stabilizes back down to the
software level within a few ms without additional penalty.

Next, we create a special benchmark for measuring
VNToR’s performance during a dynamic workload. A fixed
number of process pairs establish TCP connections between
them and exchange requests and responses over each con-
nection. Some of these connections are “elephants,” i.e., they
exchange n-byte messages as fast as possible, and some are
“mice,” i.e., they exchange “minimal traffic,” which we de-
fine as one small message per second. Connections change
from elephant to mouse and vice-versa, such that there are
always e elephant and m mouse connections. The churn
is the rate at which elephant flows become mice and vice
versa. We run this experiment with different churn levels,
and we observe the request/response latency and throughput
achieved by the servers, as well as VNToR behavior.

We set the benchmark parameters such that the dominant
factor in server performance is the latency introduced by
the networking stack at the endpoints and packet processing
at VNToR, not by other server or switch bottlenecks. In
particular, we ensure that:

• the working set of the rules fits in the hardware table;
• the ASIC-SupE interconnect inside the switch is not sat-

urated;
• the servers are neither CPU- nor I/O-bottleneck-ed.

We present results for e = 700 elephant connections, which
yields a working set of 1400 rules, i.e., 70% hardware-table
occupancy; m = 50000 mouse connections, which yields a
few tens of Mbps of mouse traffic; and n = 2897 bytes (two
MTUs), the maximum message size for which the servers
are not CPU-bottlenecked.6

We should clarify that the point of the benchmark is not to
study the scenario where the working set of elephant flows

6 Servers exchange request/response, not bulk traffic. As messages get
larger, copying packets to/from the NIC becomes the dominant factor in
request/response latency and saturates the CPU.



univ1 univ2
Number of flows 556 602 190 064
Duration (sec) 3914 9479
Flows under 1KB 50% 85%
Acceleration 15× 6.5×
Average accelerated rate (Mbps) 378 406

Table 5: Statistics for univ1 and univ2 traces from [6].

exceeds the hardware table. VNToR design does not make
sense in that case: a significant amount of traffic misses at the
hardware table and is redirected to the software forwarders,
saturating the ASIC-SupE interconnect. Instead, the point of
the benchmark is to study the scenario where the total num-
ber of rules far exceeds the hardware-table size, while the
working set fits but keeps shifting, i.e., measure VNToR’s
ability to quickly identify and cache a highly dynamic work-
ing set from among a significantly bigger set.

Figure 6a shows aggregate throughput as a function of
churn, and we see that SR-IOV+VNToR clearly outperforms
OVS for all churn levels. For low churn levels, this is not sur-
prising as the results presented earlier in Figure 1 show that
SR-IOV+VNToR has significantly lower request/response
latency, hence the throughput achieved by a set of connec-
tions exchanging request/response traffic is bound to be sig-
nificantly higher. What is perhaps surprising is that VNToR
maintains the same throughput (which is on par with SR-
IOV-unsafe) until churn reaches 2200 flows/sec (each ele-
phant connection lasts roughly 640ms on average), before
degrading gracefully, sufficient for the expected churn at a
ToR [20].

Figure 6b maps the breaking point of 2200 flows/sec to
internal VNToR behavior: The y-axis is the rate at which
cached rules are replaced, and the x-axis is churn. The 1:1
line corresponds to an ideal system that caches a new rule
for every new elephant flow (hence keeps all elephant traffic
in the hardware pipeline). We see that VNToR follows this
line closely until it reaches 2200 replacements/sec and then
starts falling behind. The impact of delayed and missed re-
placements is directly visible on the software-forwarder traf-
fic, which shoots up at that exact moment (because the hard-
ware pipeline cannot handle all elephant traffic any more)
and quickly saturates the ASIC-SupE 600Mbps bottleneck.

Finally, Figure 6c shows a rule’s time-to-cache (TTC),
measured from the reception of the corresponding flow’s
first packet until the update call to the hardware table com-
pletes. TTC includes the time it takes for the software for-
warder to promote the rule to the top of the max-heap, and
for the cache manager to consider the rule and cache it.
The hardware-table update latency tup = 300µs constitutes
a lower bound for TTC. We see that for a churn of 1000
flows/sec, the median TTC is 628µs (about twice the lower
bound), the 90th percentile is 3.2ms, and the 95th percentile
is 10.4ms.

6.4 Trace-based Study
Finally, we assess VNToR’s caching performance given real-
istic data-center traffic. We use the only two publicly avail-
able data-center traces that we are aware of, captured at a
university data-center in 2010 [6]; Table 5 states their main
characteristics. These traces have many short flows and very
high churn, which makes them interesting workloads for
caching systems. As they are several years old, we “acceler-
ated” them as much as allowed by our server hardware and
pcap-based replay software (by a factor of 15 and 6.5, re-
spectively) while preserving inter-flow arrival times, thereby
creating two more traces.
VNToR handled all four traces with zero packet drops.

While this is an expected outcome given the low rate of the
traces, the interesting question is whether VNToR’s caching
works well for the traces, i.e., whether it succeeds in serving
most of the traffic from the hardware table. To answer, we
measured VNToR’s cache hit rate and replacement rate, and
we compared them to those of an idealized system with
an equally-sized cache and an LRU replacement algorithm.
We chose this comparison point because it outperformed all
idealized alternatives we simulated (§4.3).

For all four traces, traffic has sufficient locality to be
served mostly from the hardware table. For the two original
traces, both VNToR and LRU achieve near-perfect hit rate,
so we only show, in Figure 7, results for the two accelerated
traces: cache hit traffic (handled by the hardware pipeline),
cache miss traffic (handled by a software forwarder), and re-
placement rate. We see that VNToR’s cache miss traffic is
up to a few tens of Mbps (Figs. 7b and 7e), only a small
fraction of the cache hit traffic (Figs. 7a and 7d). As ex-
pected, VNToR trades off hit rate for a lower replacement
rate: VNToR’s miss rate is 4–5 times higher than the ide-
alized LRU’s, but its replacement rate is 2–3 times lower
(Figs. 7c and 7f). As a side-note, in one of the traces, traffic
from elephant flows spikes at the end, but is absorbed by the
cache (Fig. 7a).

7. Related Work
FasTrak also moves the implementation of network abstrac-
tions to the ToR, but only for a small number of latency-
sensitive flows [34]. Hence, that work does not face the chal-
lenge of fitting a large number of access rules in the ToR’s
limited datapath memory.

We have already discussed how we relate to SDN pro-
posals in Section 3: Several use the switch datapath memory
as a cache for a backing store located at another switch, in
the case of DIFANE [43], or a processor close to the switch,
in the case of CAB [42] and CacheFlow [22]. vCRIB pro-
vides the abstraction of a centralized rule repository, while
the rules underneath are deployed on both hypervisor and
switches [33]. In general, the goal is that the network as a
whole exposes the abstraction of a single “Big Switch” [11,
32] implemented in a distributed manner [21]. We share the
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Figure 7: Comparison of VNToR and idealized-LRU caching performance for the accelerated “univ1” (top) and “univ2”
(bottom) traces from [6].

general challenge but have a different focus from this work:
we design and build a caching system that meets a signif-
icantly harder performance baseline, and we achieve this
by tailoring the solution to the properties of state-of-the-art
datapath memory.

The limited computational power of switch supervisor
engines is a recurring motivation for offloading functional-
ity to higher-performing, centralized controllers [16, 43]. In-
deed, FlowVisor [39] rewrites all rules attempting to process
traffic at the SupE to redirect this traffic to the controller. Our
evaluation suggests that a modern SupE provides sufficient
computational power to maintain the state that is necessary
for making fast and intelligent resource-management deci-
sions.

ServerSwitch [27] inserts a switching ASIC as a PCIe
card within a server and can offload excess rules to the
CPU [28]. In contrast, VNToR uses a high-volume commer-
cial 10GigE ASIC in a 1RU form factor and does not require
an expensive, power-hungry server.

Devoflow [16] raises the level of abstraction in the proto-
col between the SDN controller and the switches, in part
by converting wildcard rules into exact-match rules lo-
cally within the switch. Similarly, VNToR similarly converts
OpenStack policies into local match/action rules.

Traffic classification for identifying “heavy” elephant
flows is a well-studied problem [9, 25, 35, 41]; VNToR’s
approach is pragmatic and emphasizes quick, online deci-
sions that scale to large numbers of flows.

8. Conclusion
We presented the design and implementation of VNToR, a
ToR for cloud networks that implements security groups.
Unlike the traditional approach of implementing security
groups at the server (within the OS that hosts tenant enti-
ties), VNToR enables bare-metal support, avoids the perfor-
mance overhead that results from involving the host OS, and
reduces susceptibility to hypervisor exploits. We presented
a VNToR prototype built on top of a standard ToR and inte-
grated in OpenStack. We showed that our prototype imple-
ments security groups correctly, while offering latency and
throughput close to those of the underlying switching ASIC;
as a result, it significantly outperforms a traditional, state-of-
the-art server-based implementation.
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