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Abstract
The focus of this thesis is on developing efficient algorithms for two important problems

arising in model reduction, estimation of the smallest eigenvalue for a parameter-dependent

Hermitian matrix and solving large-scale linear matrix equations, by extracting and exploiting

underlying low-rank properties.

Availability of reliable and efficient algorithms for estimating the smallest eigenvalue of a

parameter-dependent Hermitian matrix A(μ) for many parameter values μ is important in

a variety of applications. Most notably, it plays a crucial role in a posteriori estimation of

reduced basis methods for parametrized partial differential equations. We propose a novel

subspace approach, which builds upon the current state-of-the-art approach, the Succes-

sive Constraint Method (SCM), and improves it by additionally incorporating the sampled

smallest eigenvectors and implicitly exploiting their smoothness properties. Like SCM, our

approach also provides rigorous lower and upper bounds for the smallest eigenvalues on the

parameter domain D . We present theoretical and experimental evidence to demonstrate that

our approach represents a significant improvement over SCM in the sense that the bounds

are often much tighter, at a negligible additional cost. We have successfully applied the ap-

proach to computation of the coercivity and the inf-sup constants, as well as computation of

ε-pseudospectra.

Solving an m × n linear matrix equation A1X B T
1 + ·· · + AK X B T

K = C as an mn × mn linear

system, typically limits the feasible values of m,n to a few hundreds at most. We propose a

new approach, which exploits the fact that the solution X can often be well approximated by a

low-rank matrix, and computes it by combining greedy low-rank techniques with Galerkin

projection as well as preconditioned gradients. This can be implemented in a way where only

linear systems of size m×m and n×n need to be solved. Moreover, these linear systems inherit

the sparsity of the coefficient matrices, which allows to address linear matrix equations as large

as m = n = O(105). Numerical experiments demonstrate that the proposed methods perform

well for generalized Lyapunov equations, as well as for the standard Lyapunov equations.

Finally, we combine the ideas used for addressing matrix equations and parameter-dependent

eigenvalue problems, and propose a low-rank reduced basis approach for solving parameter-

dependent Lyapunov equations.

Keywords: parameter-dependent problems, Hermitian eigenvalue problem, linear matrix

equations, low-rank structure, subspace acceleration, greedy low-rank, pseudospectra compu-

tation, reduced basis method, Lyapunov equation
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Zusammenfassung
Der Fokus dieser Arbeit liegt auf der Entwicklung effizienter Algorithmen für zwei wichtige

Probleme im Bereich der Modellreduktion: der Schätzung des kleinsten Eigenwertes für eine

parameterabhängige hermitische Matrix sowie der Lösung von grossskaligen linearen Matrix-

gleichungen durch die Ausnutzung zugrunde liegender Niedrigrangeigenschaften.

Die Verfügbarkeit von verlässlichen und effizienten Algorithmen zur Schätzung des kleinsten

Eigenwerts einer parameterabhängigen hermitischen Matrix A(μ) für viele Parameterwerte μ

aus einem Gebiet D ⊂RP ist für eine Vielzahl von Anwendungen von Bedeutung. Insbeson-

dere spielen diese eine wichtige Rolle in a posteriori Abschätzungen von Reduzierte-Basis-

Methoden für parametrisierte partielle Differentialgleichungen. Wir schlagen hier einen neuen

Zugang über Unterräume vor, der auf der Successive Constraint Method (SCM) aufbaut und

diese durch die zusätzliche Berücksichtigung von kleinsten Eigenvektoren aus einer Stich-

probe verbessert, wobei gleichzeitg deren Glattheitseigenschaften ausgenutzt werden. Wie

bei SCM ergeben sich aus unserem Zugang untere und obere Schranken für den kleinsten

Eigenwert auf dem Parametergebiet D . Mittels einer theoretischen Analyse und durch nume-

rische Experimente zeigen wir, dass unser Zugang eine signifikante Verbesserung zur SCM

darstellt, der unter geringfügig höheren Kosten oft weitaus engere Schranken ermöglicht. Wir

haben unseren neuen Zugang sowohl erfolgreich auf die Berechnung der Koerzitivitäts- und

der inf-sup-Konstante wie auch auf die Berechnung von ε-Pseudospektren angewendet.

Die Lösung einer m×n linearen Matrixgleichung A1X B T
1 +·· ·+AK X B T

K =C als lineares System

der Grösse mn×mn beschränkt die möglichen Werte für m,n oft auf maximal einige Hunderte.

Wir schlagen hier einen neuen Zugang vor, der ausnutzt, dass die Lösung X oft sehr gut

durch eine Niedrigrangmatrix approximiert werden kann. Wir berechnen diese Approximation

durch eine Kombination von greedy Niedrigrangtechniken, einer Galerkin-Projektion und

vorkonditionierten Gradienten. Unser Zugang ist so implementiert, dass nur lineare Systeme

der Grösse m ×m und n ×n gelöst werden müssen. Ausserdem erben diese linearen Systeme

die Dünnbesetztheit der Koeffizientenmatrizen, so dass auch Matrixgleichungen der Grösse

m = n = O(105) gelöst werden können. Unsere numerischen Experimente zeigen, dass sich die

vorgeschlagene Methode sehr gut für verallgemeinerte Lyapunov-Gleichungen wie auch für

den Standardfall nutzen lässt.

Zuletzt kombinieren wir unsere Ideen zu Matrixgleichungen und parameterabhängigen Eigen-

wertproblemen und schlagen eine Niedrigrang-Reduzierte-Basis-Methode zur Lösung para-

meterabhängiger Lyapunov-Gleichungen vor.
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1 Introduction

This thesis is concerned with extracting and exploiting the low-rank structure in two problems

arising in model reduction. More specifically, we aim at developing efficient algorithms

for estimating the smallest eigenvalues of a parameter-dependent matrix as well as solving

large-scale matrix equations.

In the first part of the thesis, we focus on parameter-dependent eigenvalue problems, present

several applications, and discuss various approaches to address them. In Chapter 3, we

present a novel subspace-accelerated approach for parameter-dependent Hermitian eigen-

value problem and show how it can be used for estimating coercivity and inf-sup constants.

This approach is further optimized for computation of ε-pseudospectra in Chapter 4.

The second part of the thesis is concerned with solving linear matrix equations admitting a

low-rank solution. In Chapter 5, we present a greedy low-rank approach for solving general

linear matrix equations. Furthermore, in Chapter 6, we combine the low-rank methods for

matrix equations with techniques for estimating the smallest eigenvalue from the first part of

the thesis in order to address parameter-dependent symmetric Lyapunov equations.

In the remainder of this chapter we introduce and motivate each of the problems by presenting

few common applications.

1.1 Parameter dependent eigenvalue problems

Suppose we are given a Hermitian matrix A(μ) ∈Cn×n depending on a parameter μ ∈ D , where

D is a compact subset of Rd , and we are interested in computing its smallest eigenvalue

λmin(A(μ)), μ ∈ D , (1.1)

for many different values of μ. In the large-scale setting, say when n > 1000, computation of

the smallest eigenvalue λmin(A(μ)) using a standard eigensolver, such as the Lanczos method,

is computationally affordable only for a few values of μ but becomes infeasible for larger

numbers (e.g., thousands) of parameter values.

1



Chapter 1. Introduction

Without any further assumptions on the dependence of A(μ) on μ, addressing (1.1) is com-

putationally very difficult, especially when d is large. Assuming regularity in A(μ) does not

necessarily help; even when A(μ) depends analytically on μ, the smallest eigenvalue is not

necessarily analytic in μ. In fact, λmin(A(μ)) does inherit analyticity as long as it remains

simple, but, at the eigenvalue crossings, λmin(A(μ)) is only Lipschitz continuous. For larger

values of d , even d > 1, keeping track of eigenvalue crossings is usually not computationally

feasible and, thus, methods for solving (1.1) can exploit the piecewise regularity only implicitly.

Computationally efficient approaches for (1.1) can be derived by additionally assuming that

A(μ) admits an affine linear decomposition with respect to μ: there exist Q ∈ N,Q � n2,

Hermitian matrices A1, . . . , AQ , and functions θ1, . . . ,θQ : D →R such that

A(μ) = θ1(μ)A1 +·· ·+θQ (μ)AQ , ∀μ ∈ D . (1.2)

This assumption is commonly found in the literature when addressing parameter-dependent

problems. The current state-of-the-art approach, the so-called Successive Constraint Method

(SCM) [HRSP07], samples values of λmin(A(μ)) for carefully chosen parameter values inside

D, and uses (1.2) together with linear programming techniques to provide rigorous bounds

for the smallest eigenvalues on whole D. In the first part of the thesis we present a new

subspace approach for (1.1) which builds upon SCM by additionally incorporating the sampled

smallest eigenvectors and implicitly exploiting their smoothness properties. Like SCM, our

approach provides both upper and lower bounds for λmin(A(μ)). We present theoretical and

experimental evidence that the bounds produced by the subspace approach represent a

significant improvement over SCM in the sense that the bounds are often much tighter, at a

negligible additional computational cost.

1.1.1 Applications

Eigenvalue problems of the form (1.1) often arise in model order reduction techniques, such

as the reduced basis method (RBM). Successful application of RBM to a parameter-dependent

symmetric elliptic partial differential equation (PDE), depends on the availability of reliable

a posteriori error estimates, which can be attained by estimating the coercivity constant of

the underlying PDE, see, e.g. [RHP08]. It can be easily shown that, in a discretized setting,

estimation of the coercivity constant is equivalent to (1.1). Moreover, for more general types

of PDEs, instead of the coercivity constants, a posteriori error estimation requires estimates

for the inf-sup constants [HKC+10]. After discretization, this comes down to estimating the

smallest singular values of a parameter-dependent matrix A(μ), or equivalently, estimating

the smallest eigenvalue of the Hermitian matrix A(μ)∗A(μ), again an eigenvalue problem of

the form (1.1).

Another important application of (1.1) is in the computation of ε-pseudospectra [TE05, Part

IX], which requires computation of the smallest singular values of zI − A on a portion of the

complex plane. Since singular values of zI − A are also eigenvalues of (zI − A)∗(zI − A), this

is equivalent to solving the following parameter-dependent Hermitian eigenvalue problem,

2



1.2. Linear matrix equations

which also admits affine linear decomposition w.r.t. x and y :

σmin((x + i y)I − A)2 = λmin
(
((x + i y)I + A)∗((x + i y)I + A)

)
= λmin

(
A∗A − x(A + A∗)− yi (A∗ − A)+ (x2 + y2)I

)
.

Other applications of parameter-dependent eigenvalue problems include computation of

other spectral and pseudospectral properties, e.g. the numerical range [Joh78, Uhl14], the

method of particular solutions [BT05], and the eigenvalue analysis of waveguides [EHS09]. The

related problem of optimizing the extremal eigenvalue(s) of a parameter-dependent Hermitian

matrix appears in a large variety of applications: one-parameter optimization problems play

a critical role in the design of numerical methods [RSS01] and robust control [LO96]; multi-

parameter optimization problems arise from semidefinite programming [HR00] and graph

partitioning [KM06, GBS08].

A problem class closely connected to (1.1) are the stochastic eigenvalues problems, where A

depends on a random field. They can easily be turned into parameter-dependent eigenvalue

problems using the (truncated) Karhunen-Loève expansions, see [AS12, HKL15] for examples.

Several approaches have been proposed to address stochastic eigenvalues problems, including

adaptive sparse grid collocation and stochastic inverse iteration, see [HKL15, MG14]. While

these approaches carry over to the setting of (1.1), they do not provide reliable lower and upper

bounds for λmin(A(μ)) unlike SCM or our proposed approach.

1.2 Linear matrix equations

We are interested in solving large-scale linear matrix equations of the form

Q∑
q=1

Aq X B T
q =C , (1.3)

for given coefficient matrices A1, . . . , AQ ∈Rm×m , B1, . . . ,BQ ∈Rn×n , C ∈Rm×n . Vectorization of

the matrix equation (1.3) turns it into an equivalent linear system

Q∑
q=1

(Bq ⊗ Aq )vec(X ) =: A vec(X ) = vec(C ). (1.4)

The most straightforward approach to solving (1.3) is by computing X ∈Rm×n as the solution

of (1.4), which typically limits the feasible values of m,n to a few hundreds at most. We aim

to find a method that would allow us to address (1.3) as large as m,n of the order of 105, by

exploiting additional structure, such as the fact that X can often be well approximated using a

low-rank matrix or that the coefficient matrices are often very sparse.

For the case Q = 2, the matrix equation (1.3) has been well understood. It reduces to the

3
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so called generalized Sylvester equation and can be solved in O (n3) using the generalized

Bartels-Stewart algorithm [BS72, GLAM92]. It includes the standard Sylvester equation A1X +
X B T

2 =C and the Lyapunov equation A1X + X AT
1 =−C , with C symmetric positive definite, as

particularly important special cases. For larger values of n and m, a number of specialized

approaches have been developed that rely on the assumption that X can be well approximated

using a low-rank matrix, and attempt to compute the low-rank factors directly, resulting in

significant computational and storage savings. It has been shown in [GHK03, Pen00, ASZ02]

that such a low-rank approximation of X exist for Lyapunov equations when the right-hand

side C is of low-rank.

None of these established methods for Lyapunov and Sylvester equations directly generalizes

to the case Q > 2. The existing work for Q > 2 has mostly addressed some special cases of (1.3),

with emphasis on the generalized Lyapunov equation

L (X )+N (X ) = AX + X AT +
Q∑

q=1
Nq X N T

q =−DDT , (1.5)

with L : X 	→ AX +X AT , which appears to be the most frequently encountered instance of (1.3)

with Q > 2. It typically arises in connection with bilinear dynamical systems and stochastic

control. By extending the results for the Lyapunov case, singular value decay bounds for the

solution of (1.5) have been established in [BB13, Mer12] under various conditions on A and

Nq . Existing approaches that exploit the low-rank approximability of the solution include

a fixed point iteration [Dam08] based on splitting L (X )+N (X ) =−DDT , which converges

when L is the dominant part of (1.5), as well as an approach [BB13] that combines a standard

iterative solver, such as CG or BiCGstab, with preconditioning and low-rank truncation of the

iterates.

In the second part of this thesis, we develop low-rank methods for solving the general linear

matrix equations (1.3). The core idea of our approach is motivated by a class of methods

proposed in [AMCK06, Nou10] for solving Fokker-Planck equations and stochastic partial

differential equations. More precisely, we subsequently refine the current approximation to

the solution X by adding a rank-1 correction, which is chosen as a minimizer of a certain target

functional, making the approach a greedy algorithm. Additionally, we propose two techniques

for accelerating convergence: including information from the preconditioned residual, similar

to the techniques considered in [DS14], and performing Galerkin projection.

1.2.1 Applications

The most prominent application of Sylvester, Lyapunov and generalized Lyapunov equations is

in the control theory. In particular, it can be shown that the reachability and the controllability

Gramians of linear

x ′(t ) = Ax(t )+Bu(t ), y(t ) =C x(t ), x(0) = x0, (1.6)
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and bilinear control systems

x ′(t ) = Ax(t )+
Q∑

q=1
Nq uq x(t )+B x(t ), y(t ) =C x(t ), x(0) = x0,

are the solutions of the corresponding Lyapunov and generalized Lyapunov equations (see

e.g. [BD11]), respectively. Gramians play a crucial role in model order reduction for dynamical

systems. They can be used to identify the states that are both hard to reach and hard to observe,

i.e. the states that can be neglected without significantly influencing the system’s transfer

behavior. This idea is implemented in a popular model order reduction technique, also known

as the balanced truncation [Moo81].

1.2.2 Parameter-dependent matrix equations

In applications, the dynamical systems considered above frequently depend on a number

of parameters. For example, the dynamical system (1.6) dependent on d real parameters

(μ(1), . . . ,μ(d)) =μ ∈ D ⊂Rd can be written in the following way

x ′(t ;μ) = A(μ)x(t ;μ)+B(μ)u(t ;μ), y(t ;μ) =C (μ)x(t ;μ), x(0;μ) = x0, ∀μ ∈ D.

Design, control and optimization of such dynamical systems often require repeated model

evaluations for many different parameter values. As explained above, using the balanced

truncation algorithm to construct reduced-order models in such a setting would require com-

puting (approximate) solution of the following large-scale parameter-dependent Lyapunov

equation

A(μ)P (μ)+P (μ)A(μ)T =−B(μ)B(μ)T (1.7)

for each of these parameter values. In case of general parameter-dependence in A(μ) and

B(μ), this is computationally too expensive, and usually not feasible. However, if A(μ) and

B(μ) additionally admit affine linear decomposition w.r.t μ (1.2), the reduced basis method

can be used to accelerate this procedure. After sampling solutions of (1.7) for few values of

μ, the RBM provides accurate approximate solutions to (1.7) on whole D at almost negligible

additional computational cost. We present a specialized version of the reduced basis method

that exploits Kronecker product structure in (1.7) as well as low-rank approximability of X (μ).

1.3 Contributions of this thesis

Chapter 2. We review some basic definitions and concepts related to Hermitian eigenvalue

problems, Lyapunov equations and the reduced basis method that will be used in the subse-

quent chapters.
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Chapter 3. We derive a new subspace approach for computing extremal eigenvalues of

parameter-dependent Hermitian eigenvalue problems. The content of this chapter is mostly

based on ideas discussed in [SK16, Sir16].

While presenting an overview of the current state-of-the-art approach, the Successive Con-

straint Method (SCM), we discuss possible alternatives for the bounding box set used in SCM.

Additionally, we partly explain a numerically observed phenomenon from the literature, that

the SCM upper bounds converge faster than the SCM lower bounds, by proving that the SCM

upper bounds interpolate the derivatives of the smallest eigenvalues and showing by coun-

terexample that the same does not hold for the SCM lower bounds. Finally, we prove that the

SCM lower bounds cannot be improved without taking into account additional information

about A(μ).

We derive our subspace approach as an extension of SCM where we allow sampling of more

than one smallest eigenpair per sampling point. We show that the proposed subspace upper

bounds can be efficiently computed by solving a small dense eigenvalue problem. As one

the key results, we demonstrate that the proposed subspace lower bounds can be computed

at a negligible additional cost using linear programming techniques, and a perturbation

argument that combines the computed values of subspace upper bounds, SCM lower bounds

and eigenvalue residuals.

We show that the subspace bounds are always at least as good as the SCM bounds. Moreover,

we prove that not only the subspace upper bounds interpolate the derivatives of λmin(A(μ)),

but also the subspace lower bounds, which indicates that we can expect locally second order

convergence of the proposed bounds. Furthermore, we show exponential convergence in a

special case when d = 1, A(μ) is analytic in μ, and the smallest eigenvalue stays simple on D .

For a specific case of linear parameter dependence in A(μ), we prove that the subspace lower

bounds are always at least as good approximation to λmin(A(μ)) as the linear interpolation of

the sampled values.

By precomputing the projected matrices similarly as in the reduced basis method, we obtain

an efficient implementation of our approach where the evaluation of the subspace bounds

for fixed μ ∈ D has a computational complexity independent of n. The performance is further

optimized by incorporating the "saturation assumption". We demonstrate on a number of

numerical examples that our approach, as implemented, significantly outperforms SCM both

in terms of iterations and the total computational time.

In addition to the content presented in [SK16, Sir16], we discuss in Section 3.4.2 the impact of

the number of sampled eigenvectors per sample point and the size of the training set on the

performance of our approach. Furthermore, in Section 3.5.3 we include an example from the

literature showing that our subspace approach can for specific cases be successfully applied

to computation of inf-sup constants.
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Chapter 4. We build upon the proposed subspace approach, i.e. Algorithm 3, presented in

Chapter 3 and develop a new projection-based approach for pseudospectra computation. The

content of this chapter is mostly based on [Sir16].

We demonstrate that Algorithm 3 can be extended to pseudospectra computation. More pre-

cisely, we show that solving the parameter-dependent singular value problem σmin(zI − A) is

equivalent to solving Hermitian eigenvalue problem linearly depending on two real parameters

λmin(A∗A − x(A + A∗)− yi (A∗ − A)). However, in order to make Algorithm 3 computationally

efficient in this setting, we take into account the particular problem structure as well as the

demands for high absolute accuracy, and make a number of modifications: we avoid often

numerically unstable computation of the bounding box, accelerate the computation of the

SCM lower bounds by using the simplex method with updating, and make the residual com-

putation more robust. Finally, we accelerate the approach using a "warm start" strategy by

a priori insertion eigenvalues of A inside D into the sample set. Moreover, we show that the

interpolation properties and the a priori convergence results from Chapter 3 naturally extend

to the singular value case.

We test our implementation on a number of examples from the literature, and compare

its performance with few other projection-based approaches. The results indicate that our

approach is particularly suited to the computation of pseudospectra around isolated parts of

the spectrum.

In addition to the content presented in [Sir16], in Section 4.1.1 we discuss the possibility of

using two-sided projections for approximating the smallest singular values. We include a

simple example which clearly indicates that such approaches are not stable.

Chapter 5. We develop a greedy low-rank approach for solving general linear matrix equa-

tions. The content of this chapter is mostly based on the ideas discussed in [KS15].

We derive a basic greedy rank-1 strategy for updating the current approximate solution by

adding a rank-1 correction, which is chosen to minimize the error, either in the energy norm,

if A is symmetric positive definite, or in the norm induced by A T A . A local minimizer of the

target functional can be efficiently computed using the alternating linear scheme (ALS). We

show that the approach can analogously be extended to work with rank-r corrections. For

the special case of symmetric Lyapunov equations, we prove that this algorithm preserves

symmetry and converges to the exact solution monotonically in the Löwner ordering of

positive semidefinite matrices.

We further improve convergence of our greedy low-rank approach by adding information from

the residual preconditioned by one step of sign function iteration for Lyapunov equations and

by performing Galerkin projection on the subspaces spanned by all previous correction terms.

As the computational cost of the Galerkin projection grows very rapidly with the rank of the

subspaces, we limit this effect by performing low-rank truncation of the correction subspaces.
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We test our approach on a number of large-scale examples available in the literature. The

results indicate that our approach is competitive with other available approaches, especially

when the imposed limit on the subspace size is not reached.

Chapter 6. We develop a low-rank approach for solving parameter-dependent symmetric

Lyapunov equations. The content of this chapter is mostly based on [KSSS14].

We use the idea of the reduced basis method (RBM) to address (1.7), but instead of constructing

a subspace out of vectorized solutions vec(P (μ1)), . . . ,vec(P (μM ))Rn2×1, we consider their low-

rank Cholesky factors P (μi ) = L(μi )L(μi )T and collect them into a subspace UM ⊂Rn

UM = range
(
[L(μ1), . . . ,L(μM )]

)
.

The approximate solution is then computed using Galerkin projection of (1.7) onto UM ⊗UM ,

and requires solution of a small-scale Lyapunov equation. Compared to the straightforward

use of RBM, not only is our approach more accurate, but it also guarantees that the approxi-

mate solution is positive semidefinite – a very important property in model order reduction

applications. We define a posteriori error estimates similarly like in RBM. However, by estimat-

ing the error in the Frobenius norm, we can avoid directly estimating the smallest eigenvalue

of n2 ×n2 matrix A (μ) = I ⊗ A(μ)+ A(μ)⊗ I . Instead, a reliable lower bound for λmin(A (μ))

can be constructed using properties of the Kronecker product, and efficiently computed by

estimating the smallest eigenvalue of n ×n matrix A(μ). To further optimize the performance

of our approach, we use the saturation assumption, which significantly reduces the number of

error estimate computations throughout the iterations.
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2 Preliminaries

In this chapter we recall the notation and some basic results for the two main topics of this

thesis: eigenvalue problems and matrix equations.

In Section 2.1, we first provide basic definitions for eigenvalue problems. We present an

overview of the Lanczos method, a popular method for computing extremal eigenvalues of a

symmetric or Hermitian matrix. Furthermore, we shortly discuss and present some important

results on the analyticity of eigenvalues and eigenvalue perturbation theory.

In Section 2.2, we consider Lyapunov equations, one of the most important examples of a linear

matrix equation. We discuss some important properties of the solution, such as definiteness

and low-rank approximability of solutions, and present an approach for solving large-scale

Lyapunov equations that exploits these properties. Furthermore, we discuss some important

applications of Lyapunov equations.

In Section 2.3, we present an overview of the reduced basis method for symmetric coercive

parameter-dependent partial differential equations. For the considered model problem, we

describe an efficient implementation of the offline and the online phase and discuss the choice

of norm and how it influences a posteriori error estimation.

2.1 Eigenvalue problems

Given a matrix A ∈Cn×n , we say that λ ∈C is an eigenvalue of A if there exists a nonzero vector

v ∈Cn×n such that

(A −λI )v = 0.

Such a vector v is called an eigenvector of A associated to the eigenvalue λ and (λ, v) an

eigenpair of A. Since A−λI is singular if and only if det(A−λI ) = 0, we can equivalently define

eigenvalues of A as the roots of the characteristic polynomial

κA(λ) := det(A −λI ) = 0.
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It follows directly that A has n, not necessarily distinct, eigenvalues λ1, . . . ,λn ∈C. The set of

all eigenvalues of A is called the spectrum of A, and it is denoted with λ(A). The eigenvalue λi

is said to be simple if its corresponding multiplicity in the characteristic polynomial is one or,

equivalently, if λi �=λ j , for j �= i .

Eigenvalues are sensitive to small changes in the matrix A. However, if we know that λ̃ is an

eigenvalue of A +E , where E is small in norm, the following theorem [Saa92] proves that λ̃ is

"close" to λ(A).

Theorem 2.1 (Bauer-Fike). If λ̃ is an eigenvalue of A + E ∈ Cn×n and there exists invertible

X ∈Rn×n such that X AX −1 = D = diag(λ1, . . . ,λn), then

min
λ∈λ(A)

|λ− λ̃| ≤ κ(X )‖E‖2,

where κ(X ) is the matrix condition number defined as

κ(X ) = ‖X ‖2‖X −1‖2.

2.1.1 Numerical range

A rough estimate for the spectrum λ(A) can be obtained by computing what is called the

numerical range and denoted with

W (A) := Im(RA) ⊂C,

where RA is the Rayleigh-Ritz quotient associated to the matrix A

RA(v) = v∗Av

v∗v
. (2.1)

The inclusion λ(A) ⊂ W (A) follows immediately from the fact that RA(v) =λ for an eigenpair

(λ, v). Furthermore, it was shown by Hausdorff and Toeplitz [Hau19, Toe18] that W (A) is a

compact and convex subset of the complex plane.

2.1.2 Hermitian eigenvalue problem

A matrix A ∈Cn×n is called Hermitian if it equals its conjugate transpose

A = A∗.

Additional properties hold for eigenvalues and eigenvectors of Hermitian matrices, some of

which we recall in the following:

• All eigenvalues are real

λi ∈R, ∀i = 1, . . . ,n.
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• If λi �=λ j , then the corresponding eigenvectors vi and v j are orthogonal

v∗
j vi = 0.

• A is diagonalizable, i.e. there exists a diagonal matrix D = diag(λ1, . . . ,λn) ∈ Rn×n and

a unitary matrix V = [v1, . . . , vn] ∈ Cn×n (V ∗V = V ∗V = I ) containing the associated

eigenvectors as columns, such that

A = V DV ∗ =
n∑

i=1
λi vi v∗

i . (2.2)

Having only real eigenvalues, we can impose an ordering on the eigenvalues of a Hermitian

matrix A. Without loss of generality, we have λmin(A) =λ1 ≤λ2 ≤ ·· · ≤λn−1 ≤λn =λmax(A). Of

particular interest in many applications, such as checking definiteness, computing condition

number, etc., are the extremal eigenvalues λ1 and λn . Since A = A∗, we have RA(v) = RA(v)∗,

and bearing in mind that W (A) is convex, this immediately implies that W (A) is a real line

segment. In fact, using the eigenvalue decomposition of A (2.2), we obtain the minimax

characterisation of extremal eigenvalues

λmin(A) = min
v∈Cn

RA(v) ≤
∑n

i=1λi (v∗vi )2

v∗v
≤ max

v∈Cn
RA(v) =λmax(A), (2.3)

which proves that W (A) = [λ1,λn] ⊂ R. By slightly modifying (2.3), we also can characterise

the other eigenvalues of A in the following way:

λk = min
U⊂Rn

dim(U )=k

max
v∈U

RA(v) = max
U⊂Rn

dim(U )=n−k+1

min
v∈U

RA(v). (2.4)

2.1.3 Computing extremal eigenvalues of a Hermitian matrix using the Lanczos
method

In the following, we present a short summary of the Lanczos method and its convergence

properties. The presentation is largely based upon [Saa92, Kre14].

Let A ∈ Cn×n Hermitian, x a random starting vector and k ∈N. In the power method where

the dominant eigenvector is approximated simply by repeatedly applying A to x k-times. In

comparison, in the Lanczos method the dominant eigenvector of A is approximated inside

the Krylov subspace

Kk (A, x) = {x, Ax, A2x, . . . , Ak−1x}.

An approximation (μ,u) to the dominant eigenpair of A is chosen inside R×Kk (A, x), by

additionally imposing the Galerkin condition

Au −μu ⊥ Kk (A, x). (2.5)
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Given an orthonormal basis Uk for Kk (A, x), u ∈ Kk (A, x) can be written as u =Uk w for some

w ∈Ck . Furthermore, (2.5) is equivalent to

U∗
k AUk w −μw = 0 ⇐⇒U∗

k AUk w =μw,

making the eigenpairs (μ1, w1), . . . , (μk , wk ) of U∗
k AUk possible choices for (μ, w). Usually, the

eigenvalues μ1 ≤ ·· · ≤ μk are called the Ritz values and vectors U w1, . . . ,U wk are called the

Ritz vectors. In the Lanczos method, the extremal Ritz pairs (μ1,U w1) and (μk ,U wk ) are used

as approximations to the extremal eigenpairs of A.

An orthonormal basis Uk for Kk (A, x) and the projected matrix Hk =U∗
k AUk can be efficiently

computed using the Arnoldi algorithm. It can be shown that this leads to Hk tridiagonal:

Hk =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 β1

β1 α2 β2

β2 α3
. . .

. . .
. . . βk−1

βk−1 αk

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

making it very simple to compute, as demonstrated in Algorithm 1.

Algorithm 1 Lanczos method

Input: Hermitian matrix A ∈Cn×n , starting vector x �= 0, k ∈N.
Output: Orthonormal basis U = [u1, . . . ,uk ] of Kk (A, x).

1: u1 = x/‖x‖2

2: for i = 1, . . . ,k −1 do
3: w = Aui

4: αi = u∗
i w

5: ũi+1 = w −αi ui

6: βi = ‖ui+1‖2

7: ui+1 = ũi+1/βi

8: end for

As k gets larger, the Krylov subspace Kk (A, x) contains increasingly better approximations of

the extremal eigenpairs. Having in mind that

Kk (A, x) = {p(A)x : p polynomial of degree smaller than k},

the convergence of the Lanczos method can be quantified in following way [Saa92, Lemma

6.1]

tan∠(vi ,Kk (A, x)) ≤ min
p∈Pk−1,p(λi )=1

‖p(A)‖2 tan∠(vi , x),

where (λi , vi ) is an eigenpair of A. Since A is diagonalizable (by being Hermitian), this result
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can be further simplified to

tan∠(vi ,Kk (A, x)) ≤ min
p∈Pk−1

max
λ∈Λ̃i

|p(λ)|
|p(λi )| tan∠(vi , x), (2.6)

with Λ̃i = {λ1, . . . ,λi−1,λi+1, . . . ,λn}.

In order to estimate the convergence rate from (2.6), we need to consider polynomials p

that have a large value at λi and small value at the rest of the spectrum, which immediately

motivates the use of Chebyshev polynomials. For the special case when i = 1, we can set p to

be the Chebyshev polynomial of the order k −1 on [λ2,λn]:

p(λ) := Tk−1
(
(2λ−λ2 −λn)/(λn −λ2)

)
,

with Tk the standard Chebyshev polynomial on [−1,1] of the order k −1. For |x| > 1, Tk can

be bounded from below by 1
2 |x|k−1, which allows us to bound |p(λ)|/|p(λi )| in (2.6) in the

following way:

|p(λ)|
|p(λ1)| ≤ 1

Tk−1
(
(2λ1 −λ2 −λn)/(λn −λ2)

) = 1

Tk−1
(−1−2(λ2 −λ1)/(λn −λ2)

)
≤ 1

Tk−1
(−1−2(λ2 −λ1)/(λn −λ1)

) ≤ 1

2

(
1+2(λ2 −λ1)/(λn −λ1)

)1−k ,

which proves the exponential convergence of tan∠(v1,Kk (A, x)) to zero with the rate depen-

dent on the relative gap λ2−λ1
λn−λ1

:

tan∠(v1,Kk (A, x)) ≤ 1

2

(
1+2(λ2 −λ1)/(λn −λ1)

)1−k tan∠(v1, x). (2.7)

Similarly, for the case i = n, we obtain the exponential convergence with the rate dependent

on the relative gap λn−λn−1
λn−λ1

:

tan∠(vn ,Kk (A, x)) ≤ 1

2

(
1+2(λn −λn−1)/(λn −λ1)

)1−k tan∠(vn , x). (2.8)

The bounds (2.7) and (2.8) quantify the approximation quality of the extremal eigenvectors

inside Kk (A, x) but do not say anything about the convergence of the extremal Ritz values μ1

and μk to λ1 and λn , respectively. These errors can be bounded using the minimax charac-

terisation of extremal eigenvalues (2.4), similarly as in [Saa92, Theorem 6.4], in the following
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way

μ1 −λ1 ≤ λn −λ1(
1+2(λ2 −λ1)/(λn −λ1)

)k−1
tan∠(v1, x) (2.9)

λn −μk ≤ λn −λ1(
1+2(λn −λn−1)/(λn −λ1)

)k−1
tan∠(vn , x). (2.10)

Remark 2.2. Suppose that (λn , vn) is the dominant eigenpair of A (|λn | > |λ1|). Similarly as in

the power method, if the starting vector x is chosen to be orthogonal to vn, then the largest Ritz

value μk converges to λn−1 instead of λn. In practice, this can be avoided by taking a random

starting vector.

Remark 2.3. Let εtol > 0 and suppose we are interested in computing � largest eigenvalues of A.

In practice, we usually stop the execution of the Lanczos method when the eigenvalue residual R

becomes small enough

‖R‖2 := ‖AU�−U�Λ�‖2 < εtol,

where Λ� ∈ R�×� is a diagonal matrix containing the � largest Ritz values and U� ∈ Rn×�

contains the corresponding Ritz vectors.

Remark 2.4. The Lanczos method can also be used for computing the extremal eigenvalues of a

generalized symmetric eigenvalue problem

Av =λM v, (2.11)

where A ∈Cn×n is Hermitian and M ∈Cn×n is symmetric positive definite matrix. By computing

the Cholesky decomposition of M = LL∗, we can transform (2.11) into a standard symmetric

eigenvalue problem of the following form

L−1 AL−∗w =λw,

where w = L∗v. When implementing this approach, it is preferable to keep the matrix L−1 AL−∗

in the factorized form, since forming it explicitly would destroy the underlying sparsity pattern.

Remark 2.5. Suppose we are interested in computing the smallest eigenvalue of a symmetric

positive definite matrix A ∈Rn×n coming from a spatial discretization of a partial differential

equation (PDE) with n degrees of freedom. Even though 2.7 proves the exponential convergence

of the Lanczos method, the observed convergence in practice is often very slow for large values of

n. This usually happens when the spectrum of the underlying PDE is unbounded, which results

in relative gaps λ2−λ1
λn−λ1

that approach 0 as n → +∞. Instead, it is preferred to use the inverse

Lanczos method, where, instead of Kk (A, x), we construct the Krylov subspaces Kk (A−1, x)

of A−1. Since computing the smallest eigenvalues of A is equivalent to computing the largest
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eigenvalues of A−1, we can bound the error in the inverse Lanczos method in the following way:

tan∠(v1,Kk (A−1, x)) ≤ 1

2

(
1+2(

1

λ1
− 1

λ2
)/(

1

λ1
− 1

λn
)
)1−k tan∠(v1, x)

= 1

2

(
1+2

λn(λ2 −λ1)

λ2(λn −λ1)

)1−k tan∠(v1, x)

= 1

2

(
1+2(1− λ1(λn −λ2)

λ2(λn −λ1)
)
)1−k tan∠(v1, x)

≤ 1

2

(
1+2(1− λ1

λ2
)
)1−k tan∠(v1, x)

= 1

2

(
1+2((λ2 −λ1)/λ2)

)1−k tan∠(v1, x). (2.12)

We can see that in the case of the inverse Lanczos method, the convergence rate depends only on

the relative gap between λ1 and λ2, which, in the case of PDE discretizations, converges to the

relative gap between the first and second eigenvalues of the PDE eigenvalue problem as n →∞,

and hence it stays bounded away from zero if these two eigenvalues are different. A simple

example of this phenomenon is shown in Figure 2.1, where we present the convergence rates

of both the Lanczos and the inverse Lanczos method when applied to computing the smallest

eigenvalue of the 1D Laplacian with Dirichlet boundary conditions for different values of n.

It is important to note that using Kk (A, x) or Kk (A−1, x) makes a pronounced difference from a

computational point of view, since constructing the latter involves solving linear systems with

A, while forming Kk (A, x) requires just matrix-vector multiplications. However, in certain

cases, the construction of Kk (A−1, x) can be made more efficient by precomputing the LU

decomposition of A at the start.
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Figure 2.1: Logarithms of the convergence rates (2.7) and (2.12) for computing the smallest
eigenvalue of the 1D Laplacian using the Lanczos method and the inverse Lanczos method,
respectively.
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2.1.4 Analyticity of eigenvalue decomposition

Given the eigenvalue decomposition of A, a question which naturally arises is how the eigen-

values and the eigenvectors change when A is perturbed. Let us consider a family of matrices

depending on a parameter μ:

A(μ) : D →Cn×n ,

where D is an open subset of R. If A(μ) is analytic w.r.t. μ ∈ D , a well known result from

eigenvalue perturbation theory [Kat95, Chapter 2,Theorem 1.8] states that there exist analytic

functions λ1(μ), . . . ,λn(μ) and v1(μ), . . . , vn(μ) on D with only finitely many algebraic singu-

larities describing dependence of eigenvalues and eigenvectors w.r.t. μ, respectively. In fact,

the singularities of eigenvalues and eigenvectors occur in the eigenvalue crossings, i.e. μ ∈ D

such that there exist i �= j and λi (μ) =λ j (μ). However, it is important to emphasize that not all

eigenvalue crossing are necessarily singularities of the eigenvalue or the eigenvector functions.

In the specific case when A(μ) is a Hermitian family, the following theorem shows existence

of an analytic extension of the eigenvalues and the eigenvectors functions in a ball around

μ0 ∈ D even if it is not a simple eigenvalue.

Theorem 2.6 (Theorem 1,[Rel69]). Let A(μ) be a family of Hermitian matrices on D. For a fixed

μ0 ∈ D let λ0 be an eigenvalue of multiplicity m of A(μ0). Then the following holds:

• There exist m (not necessarily distinct) complex-valued functions analytic around z =μ0,

denoted by λ1(·), . . . ,λm(·), such that λ j (μ0) = λ0, j = 1, . . . ,m and λ j (z), j = 1, . . . ,m are

eigenvalues of the analytic extension A(z) near z =μ.

• There are no other eigenvalues of A(z) near λ j (z), j = 1, . . . ,m.

• There are m complex-analytic Cn-functions v1(·), . . . , vm(·) such that near z =μ,

v1(z), . . . , vm(z) are the eigenvectors of A(z).

• For z ∈R, we have vi (z)∗v j (z) = δi j .

Theorem 2.6 does not a priori provide a radius rμ0 (λ0) of the analyticity ball for general

Hermitian family A(μ). As shown in the following example, it depends on potential singularities

in the eigenvalue and the eigenvector functions, and thus also on the parametric dependence

in A.

Example 2.7. Consider A : R→C2×2 defined in the following way

A(μ) =
[

1 0

0 −1

]
+μ

[
0 1

1 0

]
.

The eigenvalues of A(μ) are given as ±
√

1+μ2. By extending A to the complex plane, A(z) has

eigenvalues λ±(z) =±
�

1+ z2, complex analytic functions in z for |z| < 1. Even though A(z) is
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analytic in z, the eigenvalue mappings λ±(z) have singularities for z = ±i . Note that A(z) is

Hermitian only for Imz = 0.

If A(μ) is an analytic Hermitian family on B(μ0,R) defined with

A(μ) = A0 +μA1 +μ2 A2 + . . . , |μ−μ0| < R,

such that ‖An‖2 ≤ acn−1,∀n ∈N, for some a > 0 and 0 ≤ c <∞, then a result in [Bau85, Section

8.1.3] allows us to bound rμ0 (λ) from below in the following way:

(
c + 2a

d

)−1 ≤ rμ0 (λ0),

where d = dist(λ0,λ(A0)\{λ0}). In particular, for A(μ) = A0 +μA1, we have c = 0, which results

in

d

2a
≤ rμ0 (λ0). (2.13)

As the lower bound 2.13 matches the radius of analyticity around 0 in Example 2.7, we see that

this lower bound is sharp. Another example of this lower bound in practice can be seen in

Example 2.8.

Example 2.8. Let δ> 0, and let us consider A : [−1,1] →C4×4 defined by A(μ) = A0+μA1, where

A0 =

⎡⎢⎢⎢⎢⎣
δ 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −δ

⎤⎥⎥⎥⎥⎦ , A1 =

⎡⎢⎢⎢⎢⎣
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎥⎦ .

Since A0 has a double zero eigenvalue with a gap of δ to the rest of the spectrum and ‖A1‖2 = 1,

we obtain a lower bound of δ
2 for the analyticity radius of the double eigenvalue at μ= 0. For

general μ ∈ [−1,1] the eigenvalues of A(μ) are given by the following formula

λ1,2,3,4(μ) =±δ

2
±
√

(
δ

2
)2 +μ2,

and, as shown in Figure 2.2a. We can see that there are no other eigenvalue crossings besides the

one at μ= 0 .

For a function f : R→R4 on [−1,1] that admits an analytic extension on the Bernstein ellipse ER

around [−1,1] (foci ±1, sum of half-axes equal to R), the interpolation error of f with N Cheby-

shev nodes on [−1,1] can be bounded by C R+R−1

(RN +R−N )(R+R−1−2) , for some C > 0, see e.g. [MH03].

By estimating the convergence rate of the Chebyshev interpolation for v2 and v3 (eigenvectors

corresponding to the middle two eigenvalues λ2 and λ3), we can estimate Rmax, the maximal

value of R such that ER is contained in the analyticity domain. Assuming that the estimate for

Rmax is correct, we can compute a numerical estimate for the analyticity radius at μ= 0, since

the length of the shorter half-axis
Rmax−R−1

max
2 is bounded by r0(0). In Figure 2.2b, a comparison of

17



Chapter 2. Preliminaries

μ

-1 -0.5 0 0.5 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
λ

1
(μ)

λ
2
(μ)

λ
3
(μ)

λ
4
(μ)

(a) Eigenvalues of A(μ) for μ ∈ [−1,1] in Exam-
ple 2.8.

10
−2

10
−1

10
0

10
−2

10
−1

10
0

δ

r 0(0
)

 

 

numerical estimate
theoretical lower bound

(b) Comparison of theoretical lower bounds
and numerical estimates for r0(0) for different
values of δ in Example 2.8.

the theoretical lower bounds on the analyticity radius and the numerical estimates for different

values of δ is shown. We can see that the numerical estimates and theoretical lower bounds are

approximately equal and that, as expected, the analyticity radius rμ0 (λ0) is proportional to the

eigenvalue gap δ.

Multivariate case

In the multivariate case, when D ⊂Rd , the previous results do not extend and the eigenvalues

and the eigenvectors of A(μ) are not necessarily analytic functions, as can be seen from the

following example.

Example 2.9. Consider A : R2 →C2×2 defined in the following way

A(x, y) = x

[
1 0

0 −1

]
+ y

[
0 1

1 0

]
.

Then A(x1, x2) is analytic in both x and y and Hermitian for real x and y. However, its eigen-

values λ±(x, y) = ±
√

x2 + y2 are not real-analytic with respect to (x, y) in any neighborhood

around zero.

Even though the eigenvalues and the eigenvectors are not necessarily analytic w.r.t. μ, in

practice we usually observe them to be highly regular functions. This behavior was studied

in [AS12] for the following special case of linear parameter dependence

A(μ) = A1 +μ(1) A2 +·· ·+μ(d) Ad+1, ∀μ= (μ(1), . . . ,μ(d)) ∈ D ⊂Rd ,

where the authors show that an eigenpair (λ(μ), v(μ)) can be extended to jointly complex-

analytic function in Cd as long as it remains simple (separated from the rest of the spectrum).
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2.1. Eigenvalue problems

2.1.5 Perturbation analysis

In the following we discuss eigenvalue sensitivity from a more practical point of view. We

present two perturbation results which help us answer the following questions: Given a k-

dimensional subspace U ⊂ Rn , does it approximate an invariant subspace of a Hermitian

matrix A? If yes, can we and how accurately can we compute approximate eigenvalues of A? Is

there a way to determine which eigenvalues of A are approximated?

Let U ∈ Cn×k be an orthonormal basis for U . To measure the distance of U to an invariant

subspace of A, we first need to compute approximate eigenvalues. As will be shown in the

following, good candidates are the eigenvalues of the projected matrix U∗AU . As will be

discussed in Remark 2.12, we may assume without loss of generality that U∗AU equals a

diagonal matrix containing its eigenvalues ΛU = diag(λ(1)
U

, . . . ,λ(k)
U

). Given U and ΛU , similarly

as in the Lanczos method, distance from an invariant subspace can now be measured by

computing the eigenvalue residual R ∈Cn×k

R = AU −UΛU . (2.14)

For i ∈ {1, . . . ,n}, as ΛU is diagonal, (2.14) implies |Aui −λ(i )
U

ui | < ‖R‖2, i = 1, . . . ,k, where ui

is the i -th column of the matrix U . It is easily shown that λ(i )
U

is an exact eigenvalue of a

perturbed Hermitian matrix, as in the setting of Theorem 2.1.

Corollary 2.10. With notation as above, there exists λi ∈σ(A) such that

|λi −λ(i )
U

| < ‖R‖2.

Corollary 2.10 is a direct consequence of Theorem 2.1, taking into account that the correspond-

ing matrix X for A is unitary and thus κ(X ) = 1, and it justifies the choice of λ(i )
U

as approximate

eigenvalues, since it proves that there exists and exact eigenvalue in a neighborhood of radius

‖R‖2 around λ(i )
U

. However, it is still unclear if it is the only eigenvalue in that neighborhood,

or which of n eigenvalues it approximates.

Provided that λ((U⊥)∗AU⊥) is also available, where U⊥ is an orthonormal basis of U ⊥, these

questions are easily answered using the following perturbation result by Li and Li [LL05], where

we set H1 =U∗AU and H2 = (U⊥)∗AU⊥. Assuming that λ(H1) and λ(H2) are sufficiently sepa-

rated, it allows us to identify which of the eigenvalues of the original matrix are approximated

by ΛU = diag(λ(1)
U

, . . . ,λ(k)
U

).

Theorem 2.11 (Theorem 2,[LL05]). Let

A =
[

H1 R

R∗ H2

]
, and Ã =

[
H1 0

0 H2

]

be Hermitian matrices with eigenvalues

λ1 ≤λ2 ≤ . . .λn and λ̃1 ≤ λ̃2 ≤ . . . λ̃n ,
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respectively. Define the eigenvalue gaps

ηi =
⎧⎨⎩dist(λ̃i ,λ(H2)) if λ̃i ∈λ(H1)

dist(λ̃i ,λ(H1)) if λ̃i ∈λ(H2)

η = dist(λ(H1),λ(H2)).

Then for i = 1, . . . ,n, we have

|λi − λ̃i | ≤ 2‖R‖2
2

ηi +
√
η2

i +4‖R‖2
2

(2.15)

≤ 2‖R‖2
2

η+
√
η2 +4‖R‖2

2

. (2.16)

Remark 2.12. Let A ∈Cn×n be a Hermitian matrix and U a k-dimensional subspace in Rn. It is

easy to show there exists an orthonormal basis U ∈Rn×k for U such that U∗AU is diagonal. Let

Ũ ∈Rn×k be any orthonormal basis for U . Since the projected matrix Ũ∗AŨ is also Hermitian,

it admits an eigenvalue decomposition of the form W ΛW ∗ = Ũ∗AŨ , with Λ ∈Rk×k diagonal

and W ∈ Ck×k unitary. It is now easy to see that U := ŨW has the sought properties, it is an

orthonormal basis for U , and (ŨW )∗A(ŨW ) =Λ equals to a diagonal matrix.

2.2 Lyapunov equations

Given n ∈N, A ∈Rn×n , and B ∈Rn×m , we consider the following n ×n Lyapunov equation

AX + X AT =−BB T . (2.17)

In the vectorized form, (2.17) is equivalent to the following linear system

A vec(X ) = (I ⊗ A + A ⊗ I )vec(X ) =−(B ⊗B)vec(Im), (2.18)

where A = I ⊗ A + A ⊗ I . Using the spectral properties of the Kronecker sum, we obtain

that (2.17) has a unique solution if and only if λi +λ j �= 0,∀λi ,λ j ∈ λ(A), which we assume

in the following. By transposing the whole equation (2.17), we see that both X and X T are

solutions, implying that the solution is necessarily symmetric. Furthermore, if A ∈ Rn×n is

stable (i.e. the spectrum lies in the left half of the complex plane λ(A) ⊂C−), the solution X

can be represented in the following way

X =
∫∞

0
e AτBB T e AT τdτ,

which immediately yields that X is necessarily positive semidefinite.
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2.2. Lyapunov equations

In the following, we discuss the conditions that ensure low-rank structure in X and present

an approach that exploits this to efficiently solve large-scale Lyapunov equations. Finally, we

describe the role of Lyapunov equations in model reduction of linear dynamical systems with

control, one of the most important applications.

2.2.1 Low-rank solutions of Lyapunov equations

We have shown that if A is stable, (2.17) has a unique positive semidefinite solution X . Addi-

tionally, it has been shown in [Sab06, KT10] that if A is symmetric, then X exhibits a singular

value decay if m � n. More precisely, there exists a matrix Xk ∈Rn×n of rank km such that

‖X − Xk‖F ≤ 8‖B‖F

λmax(A)
exp

( −kπ2

log(8κ(A)

)
,

where κ(A) is the condition number of A. This implies that X has an exponential eigenvalue

decay:

λk (X )� γk , with γ= exp
( −π2

m log(8κ(A))

)
,

where λk (X ) denotes the k-th largest eigenvalue of X . We see that the decay rate deteriorates

and vanishes as κ(A) →∞. This issue has been resolved in [GK14], where the authors show for

certain situations that as κ(A) →∞ the eigenvalue decay becomes exponential with respect to�
k, instead of k:

λk (X )� γ
�

k , with γ= exp
(−π/

�
2m).

2.2.2 Solving large-scale Lyapunov equations

For n � 5000, a classical approach to solving (2.17) is using a direct method, such as the

Bartels-Stewart algorithm [BS72], which requires O (n3) operations. For larger values of n,

these methods are not computationally feasible as they require the Schur decomposition of

A. Instead, various iterative approaches have been proposed, that achieve computational

advantage by exploiting sparsity in A and the low-rank structure in the solution. In the

following, we follow [Pen00] and describe one of the most popular approaches, the alternating

direction implicit (ADI) iteration.

In the ADI method, the solution X is generated as a limit of the iterates Xi , defined in the

following way:

(A + pi I )Xi−1/2 = −BB T − Xi−1(AT − pi I ),

(A + pi I )X T
i = −BB T − X T

i−1/2(AT − pi I ),

with X0 = 0 and shift parameters p1, p2, · · · ∈C−. This pair of half-iterations is equivalent to the
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iteration step

Xi = (A−pi I )(A+pi I )−1Xi−1(AT −pi I )(AT +pi I )−1−2pi (A+pi I )−1BB T (AT +pi I )−1. (2.19)

It can be shown that the errors Ei = X − Xi satisfy the following expression

Ei = (ri (A)ri (−A)−1)E0(ri (A)ri (−A)−1)T ,

where ri is the polynomial ri (x) = (x − p1I ) · · · (x − p2I ) · · · · · (x − pi I ). Thus, to ensure conver-

gence, the shifts p1, p2, . . . need to be chosen in a way that will guarantee ri (A)ri (−A)−1 ≈ 0.

Assuming that A is diagonalizable, minimizing the spectral radius of ri (A)ri (−A)−1 leads to

the following ADI minimax problem

{p1, . . . , pi } = argmin
p1,...,pi ∈C−

max
x∈λ(A)

|ri (x)|
|ri (−x)| , (2.20)

which indicates criteria for choosing the shifts. As the spectrum λ(A) is usually not available,

in practice, (2.20) is often relaxed by replacing λ(A) with E (compact subset of C such that

λ(A) ⊂ E):

{p1, . . . , pi } = argmin
p1,...,pi ∈C−

max
x∈E

|ri (x)|
|ri (−x)| . (2.21)

The relaxed ADI minimax problem has been solved exactly (see [Wac63]) only for the case of

symmetric A. For the general case, several heuristic strategies for choosing close to optimal

shifts have been proposed, see, e.g. [Pen00, Wac88, FG13].

The ADI method can be implemented in a way that exploits positive definiteness in X as well

as the low-rank structure in X described in Section 2.2.1. In the low-rank version of the ADI

method (LR-ADI), the iterates are substituted by their Cholesky decompositions Xi = Zi Z T
i ,

while the iteration step (2.19) can be written in the following way

Zi = [(A − pi I )(A + pi I )−1Zi−1
√−2pi (A + pi I )−1B ],

with Z1 =√−2pi (A + p1I )−1B . A drawback of LR-ADI is that the memory requirements and

the computational cost per iteration are increasing with each iteration, since the low-rank

factor Zi is enlarged by m in each iteration (rank(Zi ) ≤ mi , where m = rank(B)). However,

in practice, LR-ADI is an efficient method since the required number of iterations is usually

low. Furthermore, the effect of this drawback can be further reduced by performing low-rank

truncation of the iterates.

Other popular methods for solving large-scale Lyapunov equations include the Rational Krylov

projection method [HR92] and the extended Arnoldi method [Sim07]. In these methods, the

approximate solution of the original Lyapunov equation is computed by projecting (2.17)

onto k-dimensional (rational) Krylov subspaces. Solving the projected problem is equivalent

to solving a small-scale k ×k Lyapunov equation which can be solved efficiently using the

22



2.2. Lyapunov equations

Bartels-Stewart algorithm, since, in practice, we usually have k � n. Projection techniques can

also be used to accelerate the convergence of the ADI method. For example, in [BLT09], the

Galerkin projection onto subspace Vk ⊗Vk , where Vk is an orthonormal basis for the column

space of the current ADI iterate Vk = range(Zk ), is used for computing an approximate solution

of the form X̃ = Vk RkV ∗
k .

Remark 2.13. As shown in [HS95, KPT14], Krylov subspace methods for solving Lyapunov

equations can be effectively preconditioned with a few steps of the ADI method. For example,

one step of the ADI method with a single shift p defines the following preconditioner for (2.18)

P −1
ADI = (A − pI )−1 ⊗ (A − pI ). (2.22)

Finding the optimal shift p in (2.22) is equivalent to solving (2.21) with i = 1. As shown

in [Sta91], for the case of a symmetric A, the optimal shift p equals
√
λmax(A)λmin(A).

In a similar fashion, it is possible to derive a preconditioner for (2.18) based on the first � steps

of the sign function iteration for Lyapunov equations [KPT14]. In particular, for �= 1, this gives

rise to the following preconditioner

P −1
sign = 1

2c
(I ⊗ I +c2 A−1 ⊗ A−1), (2.23)

with the scaling factor c =
√ ‖A‖2

‖A−1‖2
, which can be approximated using ‖M‖2 ≈�‖M‖1‖M‖∞,

see, e.g., [SB08]. Other known choices of preconditioners for (2.18) include the classical Jacobi

and SSOR preconditioning [HS95].

Remark 2.14. The ADI method can be extended to address generalized Lyapunov equations of

the form

AX E T +E X AT =−BB T ,

where A,E ∈ Rn×n, B ∈ Rn×m, with E symmetric positive definite and λE − A a stable pencil.

Similarly as in LR-ADI, this extension can be formulated in terms of the low-rank Cholesky

factors Zi , which is also known as the generalized low-rank ADI [Sty08].

2.2.3 Lyapunov equation for Gramians of linear control systems

Suppose we are given the following continuous linear time-invariant dynamical system with

control

x(t ) = Ax(t )+Bu(t ),

y(t ) = C x(t ),

with system matrices A ∈ Rn×n ,B ∈ Rn×m ,C ∈ R�×n , state vector x(t) ∈ Rn , input control

vector u(t) ∈ Rm and output function y(t) ∈ R�. Furthermore, we assume that A is stable

(Im(σ(A)) ⊂ (−∞,0)). The quantity of interest is usually the input-to-output mapping of the
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given dynamical system, which can be very difficult to compute for very large values of n. To

address this problem, we aim to find a reduced-order model

x̃(t ) = Ãx̃(t )+ B̃u(t ),

ỹ(t ) = C̃ x̃(t ),

with Ã ∈Rk×k , B̃ ∈Rk×m ,C̃ ∈R�×k , x̃(t ) ∈Rk , ỹ(t ) ∈R� and k � n.

Ideally, when reducing the state space, we would like to remove states that are either

• hard to reach: input energy to guide the system into the state is very high;

• hard to observe: output energy generated from system being in the state is very low.

This idea is implemented in the balanced truncation algorithm [Moo81, PS82], which pre-

serves stability of the dynamical system and provides computable error bounds. In order to

provide the reduced model, the balanced truncation algorithm relies upon computation of the

controllability Gramian P and the observability Gramian Q which are defined as the unique

symmetric positive semidefinite solutions P,Q ∈Rn×n of the following Lyapunov equations:

AP +PAT = −BB T ,

AT Q +Q A = −C T C .

Given the Cholesky decompositions of the computed Gramians P = P T
C PC and Q =QT

C QC , the

optimal projection bases W,V ∈ Rn×k are extracted as the dominant left and right singular

vectors of PC QT
C , respectively, while the resulting reduced-order model is constructed as

follows

Ã = W T AV , B̃ = W T B , C̃ =CV , x̃(t ) = V x(t ), and ỹ(t ) = C̃ x̃(t ).

2.3 Reduced basis method

The reduced basis (RB) method provides a framework for the solution of parameter-dependent

PDEs [RHP08]. It consists of an offline phase, where solutions of the PDEs are solved for

suitably chosen parameter values and their solutions are collected in a (low-dimensional)

subspace. In the subsequent online phase, approximate solutions are computed inside this

subspace using a Galerkin projection approach. This may speed up the solution process

dramatically, especially if the PDE needs to be solved for many parameter values. A posteriori

error analysis is an important part of the RB method to ensure its reliability.

In this section, we present a short summary of the RB method for parameter-dependent

symmetric elliptic coercive partial differential equation (PDE), which is largely based on the

survey paper [RHP08]. For more details see also [HRS16, QMN16].
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2.3.1 Model problem

Given μ ∈ D ⊂ Rd , we are interested in computing the solution u(μ) ∈ X (Ω) (or an output

quantity l (u(μ)) of the following parametrized PDE given in its weak formulation

a(u(μ), v ;μ) = f (v), ∀v ∈ X , (2.24)

where the parameter domain D is a compact subset of Rd , a(·, ·;μ) : X × X →R is a symmetric

bilinear form for all μ ∈ D , X is a Hilbert space of functions on Ω.

As we consider second-order elliptic partial differential equations, we have H 1
0 (Ω) ⊂ X ⊂ H 1(Ω).

Furthermore, we assume that a(·, ·;μ) is continuous and coercive for all μ ∈ D w.r.t. the inner

product and the induced norm on H 1(Ω). As this implies that a(·, ·;μ) defines the energy inner

product and the induced energy norm on X for all μ ∈ D , instead of (·, ·)H 1(Ω) and ‖ ·‖H 1(Ω), we

equip X with a scalar product and an equivalent norm that is more suitable for a posteriori

error estimation:

(u, v)X = a(u, v ;μ)+τ(u, v)L2(Ω) (2.25)

‖u‖X =
√

(u,u)X ,

where μ is a specifically chosen reference parameter value in D and τ > 0. The choice of τ

is discussed in more detail in Remark 2.16. This allows us to define the coercivity and the

continuity constants α(μ) and γ(μ), respectively, in the following way

α(μ) = inf
u∈X \{0}

a(u,u;μ)

‖u‖2
X

γ(μ) = sup
u∈X \{0}

sup
v∈X \{0}

a(u, v ;μ)

‖u‖X ‖v‖X
.

Our hypothesis on coercivity and continuity of a can now be precisely stated as follows:

∃α0 > 0 : α(μ) >α0, ∀μ ∈ D ; (2.26)

∃γ0 <+∞ : γ(μ) < γ0, ∀μ ∈ D.

Finally, we assume that a admits an affine linear decomposition w.r.t. μ: there exists Q ∈N,

(smooth) functions θ1, . . . ,θQ : D → R, μ-independent symmetric bilinear forms a1, . . . , aQ :

X × X →R such that

a(u, v ;μ) = θ1(μ)a1(u, v)+·· ·+θQ (μ)aQ (u, v), ∀μ ∈ D. (2.27)

As we will see in the following sections, this assumption is crucial for the efficient implementa-
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tion of the RB method.

Remark 2.15. Assumption (2.27) is commonly found in literature concerning parameter-de-

pendent PDEs, linear systems and eigenvalue problems, since deriving computationally efficient

algorithms is usually not possible in case of a general parametric dependence. It holds with

small Q for a(·, ·;μ) arising from a number of important applications such as:

• parameter-dependent PDE with parametrized coefficients on disjoint subdomains or

parametrized geometry(e.g. see [RHP08]),

• truncated Karhunen-Loeve (KL) or Polynomial Chaos (PC) expansion of a random field

(see e.g. [AS12].

In a discretized setting, (2.27) is equivalent to approximating a parameter-dependent Hermitian

matrix A(μ) ∈ Rn×n with Q � n2 constant Hermitian matrices A1, . . . , AQ and corresponding

functions θ1, . . . ,θQ : D →R in the following way:

A(μ) = θ1(μ)A1 +·· ·+θQ (μ)AQ , ∀μ ∈ D .

Even when a(·, ·;μ) and A(μ) do not a priori admit an affine linear decomposition, in certain

cases it may still be possible to approximate them very well by a short affine linear decomposition.

For example, a(·, ·;μ) can be approximated using the Empirical Interpolation Method [BMNP04]

and A(μ) using its discrete version the Matrix Discrete Empirical Interpolation Method [NMA15].

An important specific case of affine linear dependence is when a(·, ·;μ) is an affine function in μ,

which has been studied in more detail in [AS12, CCDS13]. It can be easily shown that in this

case the functions θi are linear functions in μ and a(·, ·;μ) admits the following decomposition:

a(·, ·;μ) = a1(·, ·)+μ(1)a2(·, ·)+·· ·+μ(d)ad+1(·, ·), (2.28)

where μ(i ) denotes the i -th component of μ. In fact, any a(·, ·;μ) satisfying Assumption 2.27 can

be represented in the form (2.28) by setting D := Im(θ) ⊂RQ . Some examples of a(·, ·;μ) satisfy-

ing (2.28) are the cookie example from [KT11] and the thermal block example from [HNPR10].

2.3.2 Finite element discretization

A conforming finite element discretization on Ω with n degrees of freedom of (2.24) leads to

the following parameter-dependent linear system

A(μ)x(μ) = (θ1(μ)A1 + . . .θQ (μ)AQ )x(μ) = b, ∀μ ∈ D, (2.29)

with constant Hermitian matrices A1, . . . , AQ ∈Rn×n . Furthermore, since we are using a con-

forming finite element discretization, i.e. the finite element space is a subspace of X , the
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discretized coercivity constant αn(μ) satisfies

0 <α(μ) = inf
u∈X \{0}

a(u,u;μ)

‖u‖2
X

≤ inf
v∈Rn \{0}

vT A(μ)v

vT X v
=αn(μ), ∀μ ∈ D,

with X = A(μ) + τM ∈ Rn×n denotes the dicretization of the scalar product (2.25), where

M ∈ Rn×n is the mass matrix. As a result, we have that A(μ) is positive definite for all μ ∈ D.

Similarly, we can obtain that the discretized continuity constant satisfies γn(μ) < γ(μ),∀μ ∈ D .

Remark 2.16. Computing the discretized coercivity constant αn(μ) is equivalent to computing

the smallest eigenvalue of the following generalized eigenvalue problem

A(μ)v =λX v, (2.30)

which can be done, for example, using the Lanczos method, see Remark 2.4.

If we denote with λ1 ≤ ·· · ≤ λn the eigenvalues of A(μ)v = λM v, it can be easily shown that
λi

λi +τ , i = 1, . . . ,n, is an eigenvalue of the eigenvalue problem

A(μ)v =λX v. (2.31)

Clearly, the value of constant τ> 0 influences the eigenvalue distribution in (2.31). Applying the

Lanczos method to (2.31) leads to the following convergence rate in (2.7):

1+2
(λ2 −λ1)(λn +τ)

(λn −λ1)(λ2 +τ)
. (2.32)

As described in Remark 2.5, in case of PDE discretizations, the spectrum of the underlying PDE

eigenvalue problem is often unbounded which leads to λn+τ
λn−λ1

≈ 1 as n → ∞. In practice, the

constant τ is often chosen to be equal to λ1. When inserted in (2.32), this leads to a convergence

rate of

1+2
λ2 −λ1

2λ1
, (2.33)

which is independent of the discretization size for sufficiently large values of n and approxi-

mately equal to that of the inverse Lanczos method. Therefore, as described in Remark 2.4, the

eigenvalue problem (2.31) can be solved efficiently by computing the Cholesky decomposition of

X and without inverting A(μ).

The discussion above provides only the convergence rate (2.33) for the Lanczos method when

solving (2.31). However, we hope that, whenever μ is close to μ, the convergence rates of the

Lanczos method for solving (2.30) are not going to be significantly different. Note that μ is often

set to be the "central" point of the parameter domain D.
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2.3.3 Offline phase

In the offline phase of the RB method, we subsequently select M parameter samplesμ1, . . . ,μM ∈
Ξ, where Ξ⊂ D is a training set of finitely many (typically a few thousand) parameter values,

and construct the subspaces V1⊆. . .⊆VM ⊂RN . The parameter samples are selected by a greedy

strategy aiming at to minimizing an estimate of the error. Assuming that the first k samples

have been processed, the (k +1)-th step of this procedure consists of selecting

μk+1 = argmax{Δk (μ) : μ ∈Ξ}, (2.34)

where Δ(μ) is an error estimator, see Section 2.3.5 below. Then, by solving (2.29) with μ=μk+1,

we obtain x(μk+1) and the subspace Vk is extended to a new subspace

Vk+1 = Vk+span{x(μk+1)}

= span{x(μ1), x(μ2), . . . , x(μk+1)}.

2.3.4 Online phase

In the online phase, assuming dim(VM ) = M and that an orthonormal basis V ∈RN×M of

VM is available, we compute using Galerkin projection an approximate solution of the linear

system (2.29) for an arbitrary parameter value μ ∈ D as x̃(μ) = V y(μ), where y(μ) is the solution

of the compressed linear system

(V T A(μ)V )y(μ) = V T b. (2.35)

Since M is usually small, a standard direct solver for linear systems can be used to solve (2.35).

To setup the linear system (2.35) efficiently, we use the affine linear decomposition of A(μ) (2.27)

to obtain

V T A(μ)V = θ1(μ)V T A1V + . . .+θQ (μ)V T AQV.

Having precomputed matrices V T AqV for q = 1, . . . ,Q then allows us to attain a complexity of

O(QM 2 + M 3) for constructing and solving (2.35).

The accuracy of the approximate solution x̃(μ) can be quantified using the error estimator

Δ(μ) described in the next subsection.

2.3.5 Error estimation

Given an approximate solution of the form x̃(μ) = V y(μ) for a fixed parameter sample μ ∈ D ,

the norm of the residual r (μ) = b − A(μ)x̃(μ) can be computed from

‖r (μ)‖2
X = (b − A(μ)V y(μ))T X (b − A(μ)V y(μ))

= bT X b−2bT X A(μ)V y(μ)+y(μ)TV T A(μ)T X A(μ)V y(μ).
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For A(μ) as in (2.29), we have

‖r (μ)‖2
X = bT X b −2

Q∑
q=1

θq (μ)bT X AqV y(μ)

+
Q∑

q1,q2=1
θq1 (μ)θq2 (μ)y(μ)TV T AT

q1
X Aq2V y(μ).

(2.36)

If we precompute and store the parameter-independent quantities bT X AqV and V T AT
q1

X Aq2V

for q, q1, q2 = 1, . . . ,Q, then ‖r (μ)‖X can be computed in O(Q2M 2) operations. The difference

to the true solution x(μ) can then be estimated as

‖x(μ)− x̃(μ)‖X ≤ ‖r (μ)‖X

λmin(A(μ), X )
≤ ‖r (μ)‖X

λLB(μ)
=: Δ(μ), (2.37)

where λmin(A(μ), X ) denotes the smallest eigenvalue of the generalized eigenvalue problem

A(μ)v =λX v and λLB(μ) > 0 is a lower bound for λmin(A(μ), X ). Effective and reliable nonneg-

ative bounds on λmin(A(μ), X ) can be efficiently computed, for example, using the Successive

Constraint Method (SCM) [HRSP07], which will be described in more detail in Section 3.1.

The error estimator Δk (μ) used in (2.34) to guide the sampling strategy in the offline phase is

defined in an analogous way, with V replaced by a basis Vk of Vk .

Remark 2.17. We have seen in Section 2.3.3 that the next parameter sample μk+1 is computed as

the maximizer of the error estimate Δk (μ) on Ξ. In every iteration, this requires recomputing x̃(μ)

and ‖r (μ)‖X on the whole training set Ξ, which can become computationally quite expensive.

Instead, as explained in [HSZ14], we can optimize the search forμk+1 by using the error estimates

from the previous iteration. As k → ∞, the error estimates (2.37) converge to 0. Even though

the convergence is not monotonic, it is reasonable to assume what is known as the saturation

assumption: there exists Csat > 0 such that the following holds

Δ�(μ) <CsatΔk (μ), ∀�> k,∀μ ∈ D . (2.38)

We assume that the elements in Ξ are sorted descendingly according to the error estimate (2.37)

from the previous iteration, and look for μk+1 by iterating over Ξ. We sequentially recompute

x̃(μ) and ‖r (μ)‖X and keep track of the current maximum error estimate Δmax as well as the

point μmax ∈Ξ where it was attained. Reaching a point μ ∈Ξ such that CsatΔk (μ) <Δmax, allows

us to skip all the remaining elements of Ξ, and simply set Δk+1(μ) =Δk (μ), since (2.38) ensures

that their error estimates will be smaller than the current maximum Δmax.

Remark 2.18. The reduced basis method can also be applied to more general PDEs which do

not satisfy the coercivity assumption (2.26), but instead satisfy the inf-sup condition

∃β0 > 0 : β(μ) = inf
u∈X \{0}

sup
u∈X \{0}

a(u, v ;μ)

‖u‖X ‖v‖X
≥β, ∀μ ∈ D.

As explained in [HRS16, Section 6.4], it is often assumed that also the finite element discretization
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of a(·, ·;μ) satisfies the inf-sup condition

∃βn
0 > 0 : βn(μ) = inf

u∈Rn
sup
v∈Rn

uT A(μ)v�
uT X u

�
vT X v

.

Having the inf-sup condition instead of the coercivity assumption requires the use of slightly

different a posteriori error estimates [HKC+10]:

‖x(μ)− x̃(μ)‖X ≤ ‖r (μ)‖X

βn(μ)
≤ ‖r (μ)‖X

βLB(μ)
,

where βLB(μ) is a nonnegative lower bound for βn(μ). Such lower bounds can be efficiently

computed using, for example, the natural-norm SCM [HKC+10].
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3 Low-rank approach for parameter
dependent Hermitian eigenvalue
problem

This chapter is concerned with methods for approximating the smallest eigenvalue of A(μ)

λmin(A(μ)), μ ∈ D , (3.1)

for many different values of μ ∈ D , where A : D → Cn×n is a matrix-valued function on a

compact subset D ⊂Rd such that A(μ) is Hermitian for every μ ∈ D . For simplicity, we assume

that D is a hyperrectangle in Rd . We consider a large-scale setting, where applying a standard

eigensolver, such as the Lanczos method [BDD+00], is computationally feasible only for a few

values of μ but would become too expensive for many (e.g., thousand) parameter values.

As discussed in Section 2.1.4, if A depends analytically on μ then the smallest eigenvalue

inherits analyticity if λmin(A(μ)) remains simple [Kat95]. As shown in [AS12], this can be used

to approximate λmin(A(μ)) very well by high-order Legendre polynomials (for d = 1) or sparse

tensor products of Legendre polynomials (for d > 1 if D is a hypercube). Requiring λmin(A(μ))

to stay simple on the whole of D is, however, a rather strong condition. In general, there are

eigenvalue crossings at which λmin(A(μ)) is Lipschitz continuous only. For larger d , keeping

track of eigenvalue crossings explicitly appears to be a rather daunting task and we therefore

aim at a method for solving (3.1) that benefits only implicitly from piecewise regularity.

One of the simplest approaches to address (3.1) is to use Gershgorin’s theorem [Joh89] for

estimating the smallest eigenvalue, but the accuracy of the resulting estimate is usually in-

sufficient and limits the scope of applications severely. Without any further assumptions on

the dependence of A(μ) on μ, it is usually not possible to improve on this simple approach,

since the smallest eigenvalue of A(μ) is computationally intractable, especially when d is large.

However, several more sophisticated approaches are available if A(μ) also admits an affine

linear decomposition with respect to μ:

A(μ) = θ1(μ)A1 +·· ·+θQ (μ)AQ , ∀μ ∈ D , (3.2)

with Q � n2 , Hermitian matrices A1, . . . , AQ ∈ Cn×n , and functions θ1, . . . ,θQ : D → R. For

example, eigenvalue perturbation analysis can be used to locally approximate the smallest
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eigenvalues [NVP05, VRP02]. Currently, the most commonly used approach is the Successive

Constraint Method (SCM; see [HRSP07]), probably due to its generality and relative simplicity.

Variants of SCM for computing smallest singular values can be found in [SVH+06, HKC+10],

while an extension of SCM to non-linear problems and alternative heuristic strategies have

been proposed in [MN15]. Various subspace approaches based on additional conditions on

the parameter dependencies have been proposed in [MMO+00, PRV+02]. In the context of

eigenvalue optimization problems, subspace acceleration has been discussed in [DVM12,

KV14, MYK14].

We present a subspace-accelerated variant of SCM which can be summarized as follows. Given

M parameter samples μ1,μ2, . . . ,μM , we consider the subspace V containing the eigenvectors

belonging to one or several smallest eigenvalues of A(μi ) for i = 1, . . . , M . The smallest Ritz

value of A(μ) with respect to V immediately yields an upper bound for λmin(A(μ)). A lower

bound is obtained by combining this upper bound with a perturbation argument, which

requires knowledge on the involved eigenvalue gap. We show that this gap can be estimated

by adapting the linear programming approach used in SCM for computing the lower bounds.

Having both the upper and the lower bounds for λmin(A(μ)) enables the definition of an error

estimate that drives the greedy strategy for selecting the next parameter sample μM+1. The

whole procedure is stopped once the error estimate is uniformly small on D or, rather, on a

surrogate of D . The considered numerical experiments indicate that our subspace approach

significantly accelerates convergence compared to SCM.

The rest of this chapter is largely based on [SK16] and is organized as follows. In Section 3.1,

we first give an overview of SCM. Additionally, we discuss its interpolation properties and

point out a limitation on the quality of the lower bounds that can possibly be attained when

solely using the information taken into account by SCM. In Section 3.2, we present our novel

subspace-accelerated approach for solving (3.1). Furthermore, we show that the new approach

has better interpolation properties than SCM and present a priori convergence estimates.

Motivated by the fast convergence of the upper bounds in the novel approach, in Section 3.3,

we also introduce residual-based lower bounds which are less reliable but sometimes converge

much faster. In Section 3.4, we present the full algorithm and discuss implementational

details, while in Section 3.5 we discuss various applications of the approach and present the

accompanying numerical experiments.

3.1 Successive constraint method

In the following, we recall the Successive Constraint Method (SCM) from [HRSP07] and derive

new theoretical properties. The basic idea of SCM is to exploit (3.2) in order to construct

reduced-order models for (3.1) that allow efficient evaluation of lower and upper bounds for

λmin(A(μ)).
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3.1. Successive constraint method

3.1.1 Linear optimization problem for λmin(A(μ))

Assumption 3.2, together with the characterization of the smallest eigenvalue as the minimal

value of the Rayleigh quotient (2.1), allows us to obtain the following expression:

λmin(A(μ)) = min
u∈Cn

u �=0

u∗A(μ)u

u∗u
= min

u∈Cn

u �=0

Q∑
q=1

θq (μ)
u∗Aq u

u∗u

= min
u∈Cn

u �=0

θ(μ)T R(u) = min
y∈Y

θ(μ)T y , (3.3)

where we have defined the vector-valued functions θ : D →RQ , R : Cn \ {0} →RQ as

θ(μ) := [
θ1(μ), . . . , θQ (μ)

]T , R(u) :=
[

u∗A1u

u∗u
, . . . ,

u∗AQ u

u∗u

]T

, (3.4)

and set Y := im(R). It follows from (3.3) that the computation of λmin(A(μ)) is equivalent to

optimizing the linear functional θ(μ) over Y . The constraint set Y is called the joint numerical

range of matrices A1, . . . , AQ , which is generally not convex; see [GJK04]. Thus, standard

optimization techniques cannot be used to reliably solve (3.3). To circumvent this, in SCM,

the set Y is approximated from above and from below using convex polyhedra, which, in turn

allows for the use of standard linear programming (LP) techniques to yield lower and upper

bounds for λmin(A(μ)).

3.1.2 Bounding box

As explained above, in order to compute a lower bound for λmin(A(μ)), we need to construct

a convex polyhedron containing Y . More precisely, we need to find constraint matrices

C ∈Rm×Q and b ∈Rm such that the following linear program is bounded for all θ ∈Θ := {θ(μ) :

μ ∈ D}

miny∈RQ θT y

s.t. C y ≥ b
, (3.5)

and Y is contained in its feasible set. The dual linear program of (3.5) has the following form

maxz∈Rm bT z

s.t. C T z = θ

z ≥ 0

. (3.6)

To ensure that (3.5) is bounded ∀θ ∈Θ, it is sufficient to show that (3.6) is feasible for every

θ ∈Θ, i.e. that for every μ, the coefficient vector θ(μ) can be represented as a non-negative

linear combination of the individual constraints (rows of the matrix C ). The following lemma

will help us generate suitable constraints in (3.5).

Lemma 3.1. Let θ ∈RQ , A1, . . . , AQ ∈Cn×n Hermitian matrices and let Y be their joint numeri-
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cal range. If λmin(θ1 A1 +·· ·+θQ AQ ) =λθ, then

θT y ≥λθ, ∀y ∈ Y . (3.7)

Moreover, there exists yθ ∈ Y such that θT yθ =λθ, i.e. the hyperplane {y : θT y =λθ} is tangential

to Y .

Proof. Let y ∈ Y and let v ∈Rn such that R(v) = y . Then, by the minimax characterization of

eigenvalues (2.3), we have

λθ ≤ v∗(θ1 A1 +·· ·+θQ AQ )v

v∗v
= θT R(v) = θT y,

which proves (3.7) since y was an arbitrary element of Y . Furthermore, if we denote with vθ

an eigenvector corresponding to λθ, then

λθ = v∗
θ

(θ1 A1 +·· ·+θQ AQ )vθ

v∗
θ

vθ
= θT R(vθ).

Since R(vθ) ∈ Y , this completes the proof.

Using Lemma 3.1 2Q times, once for each of the signed canonical basis vectors ±e1, . . . ,±eQ

as θ, yields 2Q linear constraints on Y . We assemble these constraints into the constraint

matrix C and the vector b. Clearly, this choice of C ensures (3.6) to be feasible, as each vector

θ(μ) ∈RQ can always be represented as a non-negative linear combination of canonical basis

vector ±e1, . . . ,±eQ . As discussed above, this is equivalent to (3.5) being bounded, which is

exactly what we wanted to achieve.

Furthermore, it is clear that the constraints obtained using Lemma 3.1 are of the following

type:

λmin(Aq ) ≤ yq ≤λmax(Aq ),∀q = 1, . . . ,Q.

By putting them together, we obtain the bounding box B for Y :

B := [λmin(A1),λmax(A1)]×·· ·× [
λmin(AQ ),λmax(AQ )

]⊆RQ . (3.8)

Remark 3.2. Computing solution of 2Q original-sized eigenvalue problem in (3.8) is com-

putationally not cheap. Moreover, in practice the bounding box constraints in (3.5) usually

provide only a crude approximation to λmin(A(μ)), since θ(μ) is not necessarily close to any of

the canonical basis vectors ±eq . Therefore, it is worth considering possible alternatives to using

B.

Suppose we are given a Q-dimensional hypercube D such that {θ(μ) : μ ∈ D} ⊂ D. As before,

using Lemma 3.1 2Q times, once for each vertex of D as θ, yields 2Q linear constraints on Y . By

definition, these constraints span all vectors θ ∈ D. Assembling them into constraints matrices C
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and b clearly leads to a feasible dual linear program (3.6), making this a possible alternative to

using B. In practice, given μ ∈ D, we can expect this set of constraints to provide a significantly

more accurate approximation to λmin(A(μ)) than B, as the vertices of D are generally closer to

the objective functions θ(μ) than any of the canonical basis vectors.

In general, such a hypercube D is usually not available, whereas constructing the alternative

set of constraints requires solving 2Q original-sized eigenvalue problems, which is usually

computationally too expensive. However, when A(μ) is affine in μ, as in (2.28), D is directly

available as {1}×D. Furthermore, if Q is also small, say Q ≤ 3, solving 2Q eigenvalue problems

is not significantly more computationally expensive than solving 2Q, making this approach a

preferred alternative to using B due to improved approximation quality.

3.1.3 SCM bounds for λmin(A(μ))

Given the sample set S containing M parameter values S = {μ1, . . . ,μM } ⊂ D , let us suppose

we have computed the corresponding eigenpairs (λ1, v1), . . . , (λM , vM ), that is, λi is the smallest

eigenvalue of A(μi ) with eigenvector vi ∈Cn . We now describe how SCM uses this information

to approximate the set Y defined above.

Clearly,

YUB(S ) := {R(vi ) : i = 1, . . . , M } (3.9)

is a subset of Y . Optimizing (3.4) over YUB(S ) instead of Y thus yields an upper bound for

λmin(A(μ)). Note that this is equivalent to optimizing over the convex hull of YUB(S ), since a

solution of the LP can always be attained at a vertex of the convex polyhedron.

To get a lower bound, we use the bounding box B defined in (3.8). However, as previously

mentioned, B alone is often a too crude approximation to Y and we further refine it using the

sampled eigenvalues. Each sampled eigenvalue λi contributes to one additional constraint,

using Lemma 3.1, resulting in

YLB(S ) := {y ∈ B : θ(μi )T y ≥λi , i = 1, . . . , M }.

The property Y ⊂ YLB(S ) follows from the minimax characterization of eigenvalues (2.3):

every y = R(uy ) ∈ Y satisfies θ(μi )T y = u∗
y A(μi )uy /u∗

y uy ≥ minu u∗A(μi )u/u∗u = λi . As

shown in Lemma 3.1, this implies that the convex polyhedron YLB(S ) is tangential to Y at

R(v1), . . . ,R(vM ).

With the sets defined above, we let

λUB(μ;S ) := min
y∈YUB(S )

θ(μ)T y, (3.10)

λLB(μ;S ) := min
y∈YLB(S )

θ(μ)T y. (3.11)
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Since YUB(S ) ⊆ Y ⊆ YLB(S ), it follows that

λLB(μ;S ) ≤λmin(A(μ)) ≤λUB(μ;S )

for every μ ∈ D . While the evaluation of λUB(μ;S ) is trivial, the evaluation of λLB(μ;S )

requires the solution of an LP; see Figure 3.1 for an illustration.

Y

YLB

λLB (μ;S )

R(v1)

R(v2)

θ(μ1)

θ(μ2)

θ(μ)

Figure 3.1: Illustration of the LP defining the lower bound λLB(μ;S ) for Q = 2 and M = 2.

3.1.4 Error estimates and sampling strategy

Assessing the quality of the bounds (3.10)–(3.11) on the entire, usually continuous parameter

domain D is, in general, an infeasible task. A common strategy in SCM, we substitute D by a

training set Ξ⊂ D that contains finitely many (usually, a few thousand) parameter samples.

We then measure the quality of the bounds by estimating the largest relative difference:

max
μ∈Ξ

λUB(μ;S )−λLB(μ;S )

|λUB(μ;S )| . (3.12)

If (3.12) is not sufficiently small, SCM enlarges S by a parameter that attains the maximum

in (3.12) and recomputes the bounds λUB(μ;S ) and λLB(μ;S ). The resulting greedy sampling

strategy is summarized in Algorithm 2.

3.1.5 Computational complexity

Let us briefly summarize the computations performed by SCM. The bounding box B for Y

needs to be determined initially by computing the smallest and the largest eigenvalues of

A1, . . . , AQ . Since each iteration requires the computation of the smallest eigenpair (λi , vi )

of A(μi ), this amounts to solving 2Q + M eigenproblems of size n ×n in total. Verifying the

accuracy of the current approximation on Ξ and selecting the next parameter sample requires

computing λUB(μ;S ) and λLB(μ;S ) for all μ ∈Ξ. In total, this amounts to solving M |Ξ| LP
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Algorithm 2 Successive Constraint Method

Input: Training set Ξ, affine linear decomposition such that A(μ) = θ1(μ)A1 +·· ·+θQ (μ)AQ is
Hermitian for every μ ∈Ξ. Relative error tolerance εSCM.

Output: Set S ⊂Ξ with corresponding eigenpairs (λi , vi ), such that
λUB(μ;S )−λLB(μ;S )

|λUB(μ;S )| < εSCM for every μ ∈Ξ.
1: Compute λmin(Aq ),λmax(Aq ) for q = 1, . . . ,Q, defining B according to (3.8).
2: M = 0, S =�
3: while max

μ∈Ξ
λUB(μ;S )−λLB(μ;S )

|λUB(μ;S )| > εSCM do

4: μM+1 ← argmax
μ∈Ξ

λUB(μ;S )−λLB(μ;S )
|λUB(μ;S )|

5: S ← S ∪μM+1

6: Recompute λUB(μ;S ) and λLB(μ;S ). according to (3.10)–(3.11).
7: M ← M +1
8: end while

problems with Q variables and at most 2Q + M constraints.

3.1.6 Interpolation results

In this section we study interpolation properties of the SCM bounds λUB(μ;S ) and λSLB(μ;S ),

which can be used to provide a priori convergence estimates in the vicinity of the sampled

points, similarly as in the case of eigenvalue optimization [KMMM15].

As also discussed in [HRSP07], it is immediate to see that the bounds produced by SCM

coincide with λmin(A(μ)) for all μ ∈ S . The following theorem shows that the upper bounds

also interpolate the derivatives of λmin(A(μ)) on S .

Theorem 3.3. Let S ⊂ D be finite and consider the upper bound λUB(μ;S ) defined in (3.10).

Given μi ∈ S in the interior of D, assume that θ1, . . . ,θQ : D → R are differentiable at μi and

that λi =λmin(A(μi )) is a simple eigenvalue of A(μi ). Then

∇λUB(μi ;S ) =∇λmin(A(μi )),

with the gradient ∇ with respect to μ.

Proof. Let vi be an eigenvector associated with λi such that ‖vi ‖2 = 1 and set yi := R(vi ) ∈
YUB(S ). By definition (3.10), the relation

λUB(μ;S ) = min
y∈YUB(S )

θ(μ)T y = θ(μ)T yi (3.13)

holds for μ=μi .

We will first prove that yi is the unique minimizer. Let us suppose the contrary, there exist

j ∈ {1, . . . , M } such that R(v j ) = y j �= yi and θ(μi )T yi = θ(μi )T y j = λi , which also gives that
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vi �= v j . However, by the minimax characterization of eigenvalues (2.3), this implies that

both (λi , vi ) and (λi , v j ) are eigenpairs of A(μi ) which contradicts the fact that λi is a simple

eigenvalue. Thus, yi is the unique element of YUB(S ) such that equality holds in (3.13) for

μ=μi .

Furthermore, this implies that the following inequalities

θ(μ)T (yi − y j ) < 0, ∀y j ∈ YUB(S ) such that y j �= yi , (3.14)

hold for μ=μi . Since |YUB(S )| <∞ and θ(μ) is continuous at μi , there exists an open neigh-

borhood Ω⊂ D around μi on which (3.14) is fulfilled. Therefore, yi is the unique minimizer

of (3.10) for all μ ∈Ω, and (3.13) holds on Ω. Consequently,

∂

∂μ(p)
λUB(μi ;S ) = ∂

∂μ(p)
θ(μi )T yi ,

where μ(p) denotes the p-th entry of μ for p = 1, . . . ,d .

On the other hand, the well-known expression for the derivative of a simple eigenvalue [Lan64]

gives

∂

∂μ(p)
λmin(A(μi )) = v∗

i
∂

∂μ(p)
A(μi )vi = v∗

i

( Q∑
q=1

∂

∂μ(p)
θq (μi )Aq

)
vi

=
Q∑

q=1

∂

∂μ(p)
θq (μi ) v∗

i Aq vi = ∂

∂μ(p)
θ(μi )T yi ,

which completes the proof.

As the following example shows, the result of Theorem 3.3 does not extend to the lower bounds

produced by SCM.

Example 3.4. For μ ∈ D := [0,π], let

A(μ) = cos(μ)A1 + sin(μ)A2 = cos(μ)

[
1 0

0 −1

]
+ sin(μ)

[
0 −1

−1 0

]
.

It can be shown that Y , the joint numerical range of A1 and A2, equals the unit circle around 0.

Consider the sample set S = {μ1,μ2,μ3} = {0, π2 ,π}, with

λmin(A(μ1)) =λmin(A(μ2)) =λmin(A(μ3)) =−1.

The resulting lower bound set YLB(S ) is the half-infinite box shown in Figure 3.2. When

minimizing θ(μ)T y for y ∈ YLB(S ), the minimum is attained at the vertex (−1,−1) for μ ∈
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(0,0) (1,0)(-1,0)

θ(μ1)

(0,-1)

θ(μ2)

θ(μ3)R(v1)

R(v2)

R(v3)

Figure 3.2: Joint numerical range Y (red circle) and lower bound set YLB(S ) (yellow area) for
the setting described in Example 3.4.

[π/4,π/2] and at the vertex (1,−1) for μ ∈ [π/2,3π/4]. Hence,

λLB(μ) =
{

−cosμ− sinμ, for μ ∈ [π/4,π/2],

cosμ− sinμ, for μ ∈ [π/2,3π/4],

yielding the following one-sided derivatives at μ=π/2:

λ′
LB((π/2)−) = sin(π/2)−cos(π/2) = 1,

λ′
LB((π/2)+) = −sin(π/2)−cos(π/2)) =−1.

In contrast, the exact eigenvalue is differentiable at π/2. Moreover, λ′
min(A(π/2)) = 0 is different

from both one-sided derivatives of λLB(μ).

As will be discussed in more detail in Section 3.2.5, interpolation properties offer an indication

of the approximation quality in the vicinity of sampled points. Thus, considering Theorem 3.3

and Example 3.4, we can anticipate the lower bounds produced by SCM to be asymptotically

less accurate than the upper bounds, which has been confirmed by numerical experiments in

Section 3.5. This phenomenon has already been observed numerically in [HKC+10], implying

a need to find more accurate lower bounds. However, the following theorem indicates that

such an improvement is not possible without taking additional information on A(μ) into

account.

Theorem 3.5. Let S = {μ1, . . . ,μM } ⊆ D and consider the lower bounds λLB(μ;S ) defined

in (3.11) for a Hermitian matrix-valued function A(μ) in affine linear decomposition (3.2). Let

μ̃ ∈ D. If 2Q +M < n then there exist matrices A1, . . . , AQ ∈Cn×n, defining A(μ) = θ1(μ)A1 +·· ·+
θQ (μ)AQ and B analogously as in (3.8), such that B = B and

λmin(A(μ̃)) =λLB(μ̃;S ), λmin(A(μi )) =λmin(A(μi )) (3.15)
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hold for i = 1, . . . , M.

Proof. Let the columns of V ∈ Cn×(M+2Q) and V⊥ ∈ Cn×(n−M−2Q) form orthonormal bases of

V = span{v1, . . . , vM , w1, . . . , wQ , w1, . . . , wQ } and V ⊥, respectively, where each vi denotes an

eigenvector associated with λmin(A(μi )), while each wi and wi denote eigenvectors associated

with λmin(Ai ) and λmax(Ai ), respectively. Moreover, let yμ̃ ∈ YLB(S ) ⊂RQ denote a minimizer

of (3.11) for μ̃, that is, λLB(μ̃;S ) = θ(μ̃)T yμ̃. The rest of the proof consists of showing that the

matrices defined by

Aq := V V ∗AqV V ∗ + yμ̃,qV⊥V ∗
⊥ , q ∈ {1, . . . ,Q},

satisfy B = B and (3.15).

Given a vector u ∈ Cn of unit norm, we can write u = uV +u⊥ with uV ∈ V and u⊥ ∈ V ⊥. We

have that u∗Aq u = u∗
V

Aq uV + yμ̃,q‖u⊥‖2,∀q = 1, . . . ,Q, where yμ̃,q ∈ [λmin(Aq ),λmax(Aq )], and

u∗
V

Aq uV ∈ [‖uV ‖2λmin(Aq ),‖uV ‖2λmax(Aq )]. Consequently,

λmin(Aq ) ≤ u∗Aq u ≤λmax(Aq ).

Since equality is attained for u = wq and u = w q , we obtain B = B.

To show (3.15) we first note that

u∗A(μ)u =
Q∑

q=1
θq (μ)

(
u∗

V Aq uV + yμ̃,q‖u⊥‖2
2

)= u∗
V A(μ)uV +θ(μ)T yμ̃ ‖u⊥‖2

2 (3.16)

for any μ ∈ D . For μ=μi , this yields

u∗A(μi )u ≥λmin(A(μi ))‖uV ‖2
2 +λmin(A(μi ))‖u⊥‖2

2 =λmin(A(μi ))‖u‖2
2,

where we have used that yμ̃ ∈ YLB(S ) implies θ(μi )T yμ̃ ≥ λmin(A(μi )). Since equality is at-

tained for u = vi , this establishes the second equality in (3.15).

Concerning the first equality in (3.15), we first note that the definition of λLB(μ̃;S ) implies

u∗
V A(μ̃)uV = θ(μ̃)T R(uV )‖uV ‖2

2 ≥λLB(μ̃;S )‖uV ‖2
2.

Inserted into (3.16) for μ= μ̃, this yields

u∗A(μ̃)u ≥λLB(μ̃;S )‖uV ‖2
2 +λLB(μ̃;S )‖u⊥‖2

2 =λLB(μ̃;S )‖u‖2
2.

Since equality is attained by any u ∈ V ⊥, this shows the first equality in (3.15) and thus com-

pletes the proof.

By definition the lower bounds in (3.11) depend only on θ(μ), the bounding box B and the

eigenvalues at μi . Hence, the lower bounds for A(μ), the Hermitian matrix-valued function
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constructed in Theorem 3.5, are identical with those for A(μ). For A(μ), the lower bound

λLB(μ̃;S ) coincides with the exact eigenvalue at an arbitrary fixed μ̃ ∈ D . Hence, additional

knowledge, beyond the eigenvalues at μi , needs to be incorporated to improve the lower

bounds.

3.2 Subspace acceleration

In this section, our new subspace approach is presented that takes eigenvector information

across different parameter samples into account and offers the flexibility to incorporate

eigenvectors for larger eigenvalues as well. The basic idea of this approach is to construct

a low-dimensional subspace V ⊂Rn that approximates {vmin(μ) : μ ∈ D} well, where vmin(μ)

denotes the smallest eigenvector of A(μ).

Given S = {μ1, . . . ,μM } ⊂ D , suppose that for each sample μi we have computed the � ≥ 1

smallest eigenvalues

λi =λ(1)
i ≤λ(2)

i ≤ ·· · ≤λ(�)
i

of A(μi ) along with an orthonormal basis of associated eigenvectors v (1)
i , v (2)

i , . . . , v (�)
i ∈Cn . To

simplify notation, we assume � is constant for each μ1, . . . ,μM , although this is not necessary.

The eigenvectors will be collected in the subspace

V (S ,�) := span{v (1)
1 , . . . , v (�)

1 , v (1)
2 , . . . , v (�)

2 , . . . , v (1)
M , . . . , v (�)

M }. (3.17)

In the subsequent two sections, we discuss how the information in V (S ,�) can be used to

compute tighter bounds for λmin(A(μ)).

3.2.1 Subspace approach for upper bounds

Given the subspace V (S ,�) from (3.17), we define an upper bound set analogously to (3.9):

YSUB(S ,�) := {R(v) : v ∈ V (S ,�)}.

The corresponding upper bound for μ ∈ D is defined as

λSUB(μ;S ,�) := min
y∈YSUB(S ,�)

θ(μ)T y.

Clearly, we have YUB(S ) ⊆ YSUB(S ,�) ⊆ Y and thus

λUB(μ;S ) ≥λSUB(μ;S ,�) ≥λmin(A(μ)).

To evaluate λSUB(μ;S ,�), we first compute an orthonormal basis V ∈Cn×M� of V (S ,�) and
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obtain

λSUB(μ;S ,�) = min
v∈V (S ,�)

θ(μ)T R(v) = min
w∈CM�

‖w‖2=1

θ(μ)T R(V w)

= min
w∈CM�

‖w‖2=1

θ1(μ)w∗V ∗A1V w +·· ·+θQ (μ)w∗V ∗AQV w

= λmin
(
θ1(μ)V ∗A1V + . . .θQ (μ)V ∗AQV

)=λmin(V ∗A(μ)V ). (3.18)

Thus, the computation of λSUB(μ;S ,�) requires the solution of an eigenvalue problem of size

M�× M�, with M� usually much smaller than n.

3.2.2 Subspace approach for lower bounds

We will use a perturbation result to turn the upper bound (3.18) into a lower boundλSLB(μ;S ,�)

for μ ∈ D . For this purpose, we consider for some small integer r ≤ M� the r smallest eigenval-

ues

λSUB(μ;S ,�) =λ(1)
V

≤λ(2)
V

≤ ·· · ≤λ(r )
V

of V ∗A(μ)V , along with the corresponding eigenvectors w1, . . . , wr ∈CM�. Let

W (μ) = span{w1, . . . , wr }

and let U ∈Cn×r be an orthonormal basis of the subspace U (μ) spanned by the Ritz vectors:

U (μ) := V W (μ) = span{V w1, . . . ,V wr }.

Moreover, let U⊥ ∈Cn×(n−r ) be an orthonormal basis of U ⊥(μ) and denote the eigenvalues of

U∗
⊥A(μ)U⊥ by

λ(1)
U ⊥ ≤λ(2)

U ⊥ ≤ · · · ≤λ(n−r )
U ⊥ .

The transformed matrix

[U ,U⊥]∗A(μ)[U ,U⊥] =
[

U∗A(μ)U U∗A(μ)U⊥
U∗

⊥A(μ)U U∗
⊥A(μ)U⊥

]

clearly has the same eigenvalues as A(μ), while the perturbed matrix[
U∗A(μ)U 0

0 U∗
⊥A(μ)U⊥

]
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has the eigenvalues
{
λ(1)

V
, . . . ,λ(r )

V

}∪{
λ(1)

U ⊥ , . . . ,λ(n−r )
U ⊥

}
. Applying Theorem 2.11 to this situation

yields the error bound

∣∣λmin(A(μ))−min
(
λ(1)

V
,λ(1)

U ⊥
)∣∣≤ 2ρ2

δ+
√
δ2 +4ρ2

,

with the residual norm

ρ := ‖U∗
⊥A(μ)U‖2 = ‖A(μ)U −U (U∗A(μ)U )‖2

and the absolute gap δ := |λ(1)
V

−λ(1)
U ⊥|. Rearranging terms thus gives the lower bound

f (λ(1)
U ⊥) ≤λmin(A(μ)), with f (η) := min

(
λ(1)

V
,η
)− 2ρ2

|λ(1)
V

−η|+
√

|λ(1)
V

−η|2 +4ρ2
. (3.19)

This lower bound is not practical so far, as it involves the quantity λ(1)
U ⊥ , which would require

the solution of a large eigenvalue problem of size (n − r )× (n − r ).

Lemma 3.6. The function f : R→R defined in (3.19) is continuous and monotonically increas-

ing.

Proof. As a composition of continuous functions, the function f is clearly continuous. To

prove monotonicity we distinguish two cases. First, let η≥λ(1)
V

. Then

f (η) =λ(1)
V

−2ρ2/
(
η−λ(1)

V
+
√

(η−λ(1)
V

)2 +4ρ2
)
,

which clearly increases as η increases. Now, let η≤λ(1)
V

. Then

f (η) = η−2ρ2/
(
λ(1)

V
−η+

√
(η−λ(1)

V
)2 +4ρ2

)
and

f ′(η) = 1− 2ρ2(
λ(1)

V
−η+

√
(λ(1)

V
−η)2 +4ρ2

)√
(λ(1)

V
−η)2 +4ρ2

.

Showing f ′(η) ≥ 0, and thus establishing monotonicity, is equivalent to

(λ(1)
V

−η)2 +4ρ2 + (λ(1)
V

−η)
√

(λ(1)
V

−η)2 +4ρ2 ≥ 2ρ2

(λ(1)
V

−η)
√

(λ(1)
V

−η)2 +4ρ2 ≥ 0 ≥−(λ(1)
V

−η)2 −2ρ2,

which is trivially satisfied for λ(1)
V

≥ η. This completes the proof.

Lemma 3.6 implies that f (η) remains a lower bound as long as η≤λ(1)
U ⊥ . To summarize, our
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subspace-accelerated lower bound is defined as

λSLB(μ;S ,�) := min
(
λ(1)

V
,η(μ)

)− 2ρ2

|λ(1)
V

−η(μ)|+
√

|λ(1)
V

−η(μ)|2 +4ρ2
(3.20)

for a lower bound η(μ) of λ(1)
U ⊥ .

Determining a lower bound for λ(1)
U ⊥

The lower bound for λ(1)
U ⊥ =λmin(U∗

⊥A(μ)U⊥) needed in (3.20) will be determined by adapting

the ideas from Section 3.1.3. Let us recall that SCM determines a lower bound for λmin(A(μ))

by solving the LP

λLB(μ;S ) = min
y∈YLB(S )

θ(μ)T y, (3.21)

with YLB(S ) := {y ∈ B : θ(μi )T y ≥λi , i = 1, . . . , M } and the bounding box B defined in (3.8). To

simplify the discussion, we always assume in the following that YLB(S ) is a simple polytope

with no degenerate facets. Then there exists an optimizer yμ ∈RQ of (3.21) such that there are

Q, among 2Q +M , linearly independent active constraints [MG07]. In other words, yμ satisfies

a linear system

Θyμ =ψ, (3.22)

where Θ ∈RQ×Q is invertible and each equation corresponds either to a constraint of the form

θ(μi )T yμ =λi or to a box constraint. In the following, we assume that at least one of the active

constraints is a non-box constraint.

Establishing a lower bound forλ(1)
U ⊥ is equivalent to determiningη(μ) such thatη(μ) ≤ u∗

⊥A(μ)u⊥
holds for every u⊥ ∈ U ⊥(μ) with ‖u⊥‖2 = 1. The restriction of u⊥ to a lower-dimensional sub-

space can be used to tighten the non-box constraints in (3.21) and the following lemmas

explain how to achieve that.

Lemma 3.7. Let D ∈Cs×s ,W ∈Ct×s , such that D = diag(di i ) with di i < 0,∀i = 1, . . . , s and W is

of full-rank. If s ≤ t , then

λmin(W DW ∗) =λmin(W ∗W D).

Proof. Let W⊥ ∈ Ct×t−s denote an orthonormal basis of range(W )⊥, that is W ∗W⊥ = 0 and

[W W⊥] is an invertible matrix. The matrix congruence between the matrices

[
D 0

0 0

]
and
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W DW ∗ =
[

W W⊥
][D 0

0 0

][
W W⊥

]∗
implies that λmin(W DW ∗) < 0, as well as:

λmin
(
W DW ∗) = λmin

([
W W⊥

][D 0

0 0

][
W W⊥

]∗ )
= λmin

([
W W⊥

]∗ [
W W⊥

][D 0

0 0

])
=λmin

([
W ∗W D 0

0 0

])
,

where in the second equality we have used the fact that λ(AB) =λ(B A) for square matrices A

and B . The assertion of the lemma now follows from λ
([W ∗W D 0

0 0

])=λ(W ∗W D)∪ {0} and

the fact that λmin
(
W DW ∗)< 0.

Lemma 3.8. LetΛi = diag
(
λ(1)

i , . . . ,λ(�)
i

)
and Vi = [

v (1)
i , . . . , v (�)

i

]
, with the notation as introduced

above. If n − r ≥ r then

u∗
⊥A(μi )u⊥ ≥λi +βi (μ),

where βi (μ) is the smallest eigenvalue of the matrix

(Λi −λi I�)−V ∗
i UU∗Vi

(
Λi −λ(�+1)

i I�
)
.

Proof. Using the spectral decomposition of A(μi ), the result follows from

min
u⊥∈U⊥(μ)
‖u⊥‖2=1

u∗
⊥A(μi )u⊥ ≥ min

u⊥∈U⊥(μ)
‖u⊥‖2=1

u∗
⊥ViΛi V ∗

i u⊥ +λ(�+1)
i u∗

⊥(I −Vi V ∗
i )u⊥ (3.23)

= λ(�+1)
i + min

u⊥∈U⊥(μ)
‖u⊥‖2=1

u∗
⊥Vi

(
Λi −λ(�+1)

i I�
)
V ∗

i u⊥

= λ(�+1)
i +λmin

(
U∗

⊥Vi
(
Λi −λ(�+1)

i I�
)
V ∗

i U⊥
)

= λ(�+1)
i +λmin

(
V ∗

i U⊥U∗
⊥Vi

(
Λi −λ(�+1)

i I�
))

= λ(�+1)
i +λmin

(
(I�−V ∗

i UU∗Vi )
(
Λi −λ(�+1)

i I�
))

= λi +λmin
(
(Λi −λi I�)−V ∗

i UU∗Vi
(
Λi −λ(�+1)

i I�
))

,

where we used in the third equality that the negative eigenvalues of the matrix product

U∗
⊥Vi

(
Λi −λ(�+1)

i I�
)
V ∗

i U⊥ do not change under a cyclic permutation of its factors, as proven

in Lemma 3.7.

Using the values of βi (μ) defined in Lemma 3.8, we update the right-hand side ψ ∈RQ in (3.22)

as follows: If the kth equation corresponds to a non-box constraint θ(μi )T y = λi , we set

ψ̃k :=ψk +βi (μ) = λi +βi (μ) and, otherwise, ψ̃k :=ψk . Since Θ is invertible, the solution of
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the resulting LP

inf
y

θ(μ)T y subject to Θy ≥ ψ̃

is trivially given by

y̌μ :=Θ−1ψ̃. (3.24)

This finally yields the desired lower bound

η(μ) := θ(μ)T y̌μ ≤λ(1)
U ⊥ =λmin(U∗

⊥A(μ)U⊥).

Remark 3.9. The choice of r , the dimension of the Ritz subspace U (μ), requires some consider-

ation. For r = 0, U⊥(μ) =Rn yields no improvement: λSLB(μ;S ,�) = λLB(μ;S ,�). Intuitively,

choosing r = 1 will be most effective when the second smallest eigenvalue of A(μ) is well sepa-

rated from the smallest eigenvalue. Otherwise, one may benefit from choosing slightly larger

values of r . In practice, we choose r adaptively by taking the maximal value of λSLB(μ;S ,�)

over a few small values of r = 0,1,2, . . . , which also ensures that λLB(μ;S ,�) ≤λSLB(μ;S ,�).

3.2.3 Error estimates and sampling strategy

Similarly as in SCM, we substitute D by a finite training set Ξ ⊂ D. We use error estimates

similar to (3.12), with the SCM bounds replaced by the subspace bounds:

Δ(μ;S ,�) = λSUB(μ;S ,�)−λSLB(μ;S ,�)

|λSUB(μ;S ,�)| . (3.25)

We use the same greedy sampling strategy as in SCM. As long as the error estimates (3.25)

are not sufficiently small on whole Ξ, we enrich S by the parameter value that attains the

maximum in (3.25).

3.2.4 Interpolation properties

In this section, we study interpolation properties of the proposed subspace boundsλSUB(μ;S ,�)

and λSLB(μ;S ,�). As will be discussed in the following Section 3.2.5, the significance of these

properties is in their use for deriving a priori convergence estimates in the vicinity of sample

points, which offer an indication of the approximation quality.

By definition, we already know that the bounds from our subspace approach are never worse

than the bounds produced by SCM:

λLB(μ;S ) ≤λSLB(μ;S ,�) ≤λmin(A(μ)) ≤λSUB(μ;S ,�) ≤λUB(μ;S ), (3.26)

with equality at μ = μi ∈ S . Together with Theorem 3.3, these inequalities imply that our
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upper bounds also interpolate the derivatives at μi . The result was independently obtained by

Kangal et al. in [KMMM15, Lemma 2.5].

Corollary 3.10. For any �≥ 1 and any μi ∈ S that satisfies the assumptions of Theorem 3.3, it

holds that

∇λSUB(μi ;S ,�) =∇λmin(A(μi )),

with λSUB(μi ;S ,�) defined as in (3.18).

Proof. By the assumptions, μi is an interior point of D and (3.26) implies that the inequality

λmin(A(μ)) ≤ λSUB(μ;S ,�) ≤ λUB(μ;S ) holds for all μ in a neighbourhood of μi . Combined

with λmin(A(μi )) =λSUB(μi ;S ,�) =λUB(μi ;S ), we get

∂

∂μ(q)
λmin(A(μi )) ≤ ∂

∂μ(q)
λSUB(μi ;S ,�) ≤ ∂

∂μ(q)
λUB(μi ;S ),

for q = 1, . . . ,d . The result ∇λmin(A(μi )) =∇λUB(μi ;S ) of Theorem 3.3 now yields the desired

result.

In contrast to SCM, it turns out that the subspace lower bounds also interpolate the derivative

of λmin(A(μ)) at μ ∈ S . To show this, we need the following lemma.

Lemma 3.11. Let μi ∈ S satisfy the assumptions of Theorem 3.3. For any ε > 0, there is a

neighbourhood Ω⊆ D around μi such that

∣∣λi −λ(1)
V

(μ)| ≤ ε, (3.27)

λ(2)
i −η(μ) ≤ ε, (3.28)

hold for all μ ∈Ω, where λ(1)
V

(·) and η(·) are defined as in Section 3.2.2.

Proof. Since v (1)
i ∈ V (S ,�), we have λ(1)

V
(μi ) = λi and thus the continuity of the smallest

eigenvalue implies that (3.27) holds for all μ in some neighbourhood Ω1 around μi . It remains

to prove (3.28).

In the LP (3.11) for determining λLB(μi ;S ), which is trivially given by λi , the constraint

θ(μi )T y =λi is active. Since we assumed that YLB(S ) is a simple polytope with no degenerate

facets, the continuity of θ(μ) implies that this constraint remains active in a neighbourhood

Ω2: θ(μi )T yμ =λi for all μ ∈Ω2, where yμ is a minimizer of (3.11) for determining λLB(μ;S ).
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By (3.23), the value of βi (μ) defined in Lemma 3.8 satisfies

βi (μ) = min
u⊥∈U⊥(μ)
‖u⊥‖2=1

u∗
⊥ViΛi V ∗

i u⊥ +λ(�+1)
i u∗

⊥(I −Vi V ∗
i )u⊥ −λi

≥ min
u⊥∈span{u(μ)}⊥

‖u⊥‖2=1

u∗
⊥ViΛi V ∗

i u⊥ +λ(�+1)
i u∗

⊥(I −Vi V ∗
i )u⊥ −λi ,

where u(μ) ∈ U (μ) denotes the Ritz vector corresponding to the smallest Ritz value λ(1)
V

(μ).

Let us now consider the eigenvector v (1)
i belonging to the eigenvalue λi = λmin(A(μi )). By

definition, v (1)
i is contained in U (μi ). The simplicity of λi implies that the angle between v (1)

i

and u(μ) becomes arbitrarily small as μ approaches μi . Therefore, for any ε > 0, there is a

neighbourhood Ω3 of μi such that

βi (μ) ≥ min
u⊥⊥v(1)

i
‖u⊥‖2=1

u∗
⊥ViΛi V ∗

i u⊥ +λ(�+1)
i u∗

⊥(I −Vi V ∗
i )u⊥ −λi − ε

2
=λ(2)

i −λi − ε

2
,∀μ ∈Ω3.

In summary, the vector y̌μ defined in (3.24) satisfies

θ(μi )T y̌μ =λi +βi (μ) ≥λi +λ(2)
i −λi − ε

2
=λ(2)

i − ε

2
. (3.29)

By the invertibility of Θ, the vector y̌μ remains bounded in the vicinity of μi . Together with the

continuity of θ(μ), this implies that there is a neighbourhood Ω4 of μi such that

|(θ(μ)−θ(μi ))T y̌μ| ≤ ε

2
, ∀μ ∈Ω4.

Combined with (3.29), this yields

η(μ) = θ(μ)T y̌μ ≥λ(2)
i −ε,

which establishes (3.28). Setting Ω=Ω1 ∩Ω2 ∩Ω3 ∩Ω4 completes the proof.

The following theorem establishes the Hermite interpolation property of the subspace lower

bounds.

Theorem 3.12. Let μi ∈ S satisfy the assumptions of Theorem 3.3 and, additionally, suppose

that r ≤ � and λ(r+1)
i >λ(r )

i . Then

∇λSLB(μi ;S ,�) =∇λmin(A(μi )).

Proof. By Lemma 3.11 and the simplicity of λmin(A(μi )), there is δ0 > 0 such that η(μ) ≥
λ(1)

V
(μ)+δ0 for μ sufficiently close to μi . Hence, the subspace lower bound (3.20) is given by

λSLB(μ;S ,�) =λ(1)
V

(μ)− 2ρ2

δ+
√

δ2 +4ρ2
, (3.30)
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with ρ = ‖U∗
⊥A(μ)U‖2 and δ = |λ(1)

V
(μ)−η(μ)| ≥ δ0. Since λSUB(μi ;S ,�) ≡ λ(1)

V
(μi ), by Corol-

lary 3.10, we have

∇λ(1)
V

(μi ) =∇λSUB(μi ;S ,�) =∇λmin(A(μi )).

Since δ is bounded from below, the result follows from (3.30) if the gradient of ρ2 at μ=μi is

zero. To show the latter, we first observe that the assumptions λ(r+1)
i > λ(r )

i and r ≤ � imply

that the invariant subspace belonging to the r smallest eigenvalues of A(μi ) is simple and

contained in V . Let us recall that W (μ) is the invariant subspace belonging to the r smallest

eigenvalue of V ∗A(μ)V . By minimax characterization of eigenvalues 2.4, the gap between λ(r )
i

and λ(r+1)
i implies an equal or larger gap between r +1-th and r -th eigenvalue of V ∗A(μi )V .

This, together with the Lipschitz continuity of V ∗A(μ)V w.r.t. μ, implies [DK70, Theorem 8.2]

sinΘ(W (μi ),W (μ)) = O (‖μ−μi ‖2).

Since U (μ) = V W (μ),∀μ ∈ D , we have

‖sinΘ(U (μi ),U (μ))‖2 = O (‖μ−μi ‖2).

In other words, there is a basis U for U (μi ) such that U =Ui +O (‖μ−μi ‖2). Thus,

U∗
⊥A(μ)U = U∗

⊥A(μi )Ui +O (‖μ−μi ‖2)

= U∗
⊥(U⊥

i (U⊥
i )∗ +UiU∗

i )A(μi )Ui +O (‖μ−μi ‖2)

= O (‖μ−μi ‖2).

Therefore, we have ∇ρ2 = 0 at μ=μi , which completes the proof.

If μi ∈ S satisfies the assumptions of Theorem 3.3, we have that λ(i )
i is simple, and thus, Theo-

rem 3.12 holds for the choice r = 1, since λ(1)
i < λ(2)

i and r = 1 ≤ �. By the pinching theorem,

this implies that the lower bounds returned by the procedure explained in Remark 3.9 (that is,

adaptively choosing r to maximize λSLB(μ;S ,�)) also satisfy the assertion of Theorem 3.12.

3.2.5 A priori convergence estimates

Using the interpolation results from Corollary 3.10 and Theorem 3.12 we obtain the following

a priori convergence estimates for λSUB(μ;S ,�) and λSLB(μ;S ,�).

Theorem 3.13. Let μi ∈ S be such that λmin(A(μi )) is simple and let h > 0 be such that

λmin(A(μ)), λSUB(μ;S ,�) and λSLB(μ;S ,�) are twice differentiable on B(μi ,h). Then there

exist constants C1,C2 > 0 such that

|λSUB(μ;S ,�)−λmin(A(μ))| < C1h2,

|λSLB(μ;S ,�)−λmin(A(μ))| < C2h2,
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for all μ ∈ B(μi ,h).

Proof. Let μ ∈ B(μi ,h). Expanding λmin(A(μ)) and λSUB(μ;S ,�) around μi using a second-

order Taylor polynomial expansion and using (3.26) and the results of Corollary 3.10, we

obtain

λSUB(μ;S ,�)−λmin(A(μ)) = 1

2

(∇2λSUB(μ̃;S ,�)−∇2λmin(A(μ̂))
)

(μ−μi )2,

for μ̃, μ̂ ∈ [μi ,μ]. The first inequality now holds for

C1 = max
μ̃∈B(μi ,h)

‖∇2λSUB(μ̃;S ,�)‖2 + max
μ̂∈B(μi ,h)

‖∇2λmin(A(μ̂))‖2.

The second inequality can be shown in the same way using (3.26) and Theorem 3.12.

Remark 3.14. To ensure the differentiability conditions on λmin(A(μ)) andλSUB(μ;S ,�) needed

in the assumptions of Theorem 3.13, it is sufficient that the smallest eigenvalues λmin(A(μ)) and

λSUB(μ;S ,�) stay simple on B(μ,h), see [KMMM15]. A simple criterion for differentiability of

λSLB(μ;S ,�) is not available, since (3.20) involves η(μ), which depends on the solution of the

linear program (3.11) λLB(μ;S ) and, thus, is not necessarily smooth around μi .

Since h = O (M 1/d ), the convergence estimates obtained in Theorem 3.13 are of practical

importance only for small values of d = 1,2, . . . . However, if A(μ) is an analytic function in

μ, we can expect much faster convergence than the one guaranteed by Theorem 3.13, as

explained in the following section and observed for the numerical experiments presented in

Section 3.5.

A priori convergence estimates for analytic A(μ) in the one-parameter case

In the following, we analyse the convergence of our subspace bounds for a special case:

We assume that A(μ) depends analytically on one parameter μ ∈ [−1,1] and, moreover, the

eigenvalue λmin(A(μ)) is simple and separated by at least δ0 > 0 from the rest of the spectrum

for all μ ∈ [−1,1].

Let ER denote the open elliptic disc in the complex plane with foci ±1 and the sum of its half

axes equal to R. Under the above assumptions, there is R0 > 1 such that the (suitably normal-

ized) eigenvector v(μ) belonging to λmin(A(μ)) admits an analytic extension v : ER0 →Cn ; see,

e.g., [Kat95, RS78]. Note that v can be chosen to have norm 1 on [−1,1], see [RS78, Theorem

XII.4], but this is not the case on ER0 in general. Let S = {μ1, . . . ,μM } contain the Chebyshev

nodes μi = cos( 2i−1
2M π) and set vi := v(μi ). The corresponding vector-valued interpolating

polynomial is given by

pM (μ) = �1(μ)v1 +·· ·+�M (μ)vM , (3.31)

with the Lagrange polynomials �1, . . . ,�M : [−1,1] →R.
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3.2. Subspace acceleration

Let TM (x) = cos(M arccos(x)) denote M-th Chebyshev polynomial on [−1,1]. The interpola-

tion error can be expressed in the following way [MH03, Lemma 6.6]

v(μ)− pM (μ) =
∫

ER

TM (μ)v(z)

TM (z)(z −μ)
d z,

for any 1 < R < R0, and bounded by

‖v(μ)− pM (μ)‖2 ≤
∫

ER

|TM (μ)|‖v(z)‖2

|TM (z)||z −μ| |d z|. (3.32)

We can further simplify (3.32) using [MH03, Corollary 6.6A], which yields

max
μ∈[−1,1]

‖v(μ)− pM (μ)‖2 ≤ (R +R−1)C

(RM+1 −R−M−1)(R +R−1 −2)
, (3.33)

with C = sup
z∈ER

‖v(z)‖2. This result is utilized in the proof of the following theorem, which shows

exponential convergence of our subspace bounds.

Theorem 3.15. Under the setting described above, the subspace lower and upper bounds for

�= r = 1 satisfy

λSUB(μ;S ,1)−λmin(A(μ)) ≤ CU R−2M , (3.34)

λmin(A(μ))−λSLB(μ;S ,1) ≤ CL R−2M , (3.35)

for every μ ∈ [−1,1], with constants CU ,CL independent of M and μ.

Proof. For �= 1, the subspace used in our bounds takes the form V = span{v1, . . . , vM }. The

interpolating polynomial defined in (3.31) clearly satisfies pM (μ) ∈ V , and hence (3.33) yields

the following bound on the angle between V and v(μ):

min
ṽ∈V

‖ṽ − v(μ)‖2 �R−M . (3.36)

By approximation results for Ritz values [Saa92, Theorem 4.6,Proposition 4.5] and (3.36), we

have

λSUB(μ;S ,1)−λmin(A(μ)) ≤ ‖A(μ)−λmin(A(μ))I‖2

(
1+

γ2
μ

δ2
μ

)
(min

ṽ∈V
‖ṽ − v(μ)‖2)2

� ‖A(μ)−λmin(A(μ))I‖2(1+
γ2
μ

δ2
μ

)R−2M ,

where γμ = ‖V V ∗A(μ)(I −V V ∗)‖2 and δμ equals the distance between λmin(A(μ)) and the

rest of the spectrum of A(μ). Since A(μ) is bounded for all μ ∈ [−1,1], and δμ > δ0, this proves

inequality (3.34) with a constant CU independent of M and μ.
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To prove (3.35), we first note that the arguments from the proof of Theorem 3.12 can be utilized

to show that

λSLB(μ;S ,1) =λSUB(μ;S ,1)− 2ρ2

δ+
√

δ2 +4ρ2
,

for sufficiently large M , where δ > δ0
2 > 0. Since r = 1, the quantity ρ coincides with the

residual of the smallest Ritz vector of A(μ) with respect to V . Approximation results for Ritz

values [Par98, Theorem 11.7.1] and [Saa92, Theorem 4.6], together with (3.36), yield a bound

on ρ

ρ ≤ spread(A(μ))

√√√√1+ γ2
μ

δ2
μ

min
ṽ∈V

‖ṽ − v(μ)‖2

� spread(A(μ))

√√√√1+ γ2
μ

δ2
μ

R−M ,

with δμ and γμ as before, and spread(A(μ)) = |λmax(A(μ)−λmin(A(μ))|. Using similar argu-

ments as for the subspace upper bounds, this proves the second inequality and completes the

proof.

The maximal value of the exponent R in (3.34)–(3.35) depends on the analyticity radii on [−1,1],

which are, as has been already discussed in Section 2.1.4, connected to the gaps between the

smallest and the second smallest eigenvalue, and the variation in A(μ).

Theorem 3.15 covers only the situation when λmin(A(μ) stays simple on [−1,1]. If this is not

the case, we can expect a subexponential convergence rate which detoriates with the number

of eigenvalue crossings on D, since Theorem 3.15 still applies to intervals in between the

eigenvalue crossings.

Remark 3.16. Theorem 3.15 can be extended to the multiparameter case by using tensorized

Chebyshev nodes, following the work in [AS12], which results in subexponential error decay

O (R(−M 1/d )) that deteriorates as the number of parameters grow. Algorithm 3, when applied to

Example 4.9 (with δ= 0.1) from Section 3.5, exhibits similar convergence rate, as presented in

Figure 3.3.

Let W ∈Rn×|Ξ| be the matrix assembled with the vectors v(μ), defined as above, as columns for

each μ ∈Ξ, and let two error indicators, the maximum error estimate (3.25) and the maximum

angle, be defined as follows

Δmax := max
μ∈Ξ

Δ(μ;S ,�), (3.37)

αmax := max
μ∈Ξ

∠(v(μ),V (S ,�)). (3.38)
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Figure 3.3: Convergence of Algorithm 3 for Example 4.9 with δ= 0.1.

First, we compute the smallest values of M such that each of σM+1(W ) < 10−2, Δmax < 10−4,

αmax < 10−2 is fulfilled and present the evolution of the obtained values for M w.r.t. d in

Figure 3.3b. We can see that the required number of iterations to attain fixed precision grows

exponentially with d, indicating that Algorithm 3 also has a convergence rate exp(−M 1/d ).

Moreover, for d = 3, we show the singular value decay of the matrix W as well as the convergence

rate of Δmax and αmax in Figure 3.3a. The results indicate that the sampled subspace V (S ,�) is

close to optimal in approximating the dominant left singular vectors of W .

Relation to linear interpolation

Given a set of sampled functions values, a straightforward idea is to approximate the function

on the whole domain using the linear interpolation. In the following theorem we show that in

the special case when A(μ) is an affine function in μ= (μ(2), . . . ,μ(Q)) as in (2.28):

A(μ) = A1 +μ(2) A2 +·· ·+μ(Q) AQ ,

the subspace lower boundsλSLB(μ;S ,�) are always at least as good approximation toλmin(A(μ))

as the linear interpolation of the sampled values.

Theorem 3.17. Suppose we are given S , defined as above, and μ ∈ conv(S ). Let 1 ≤ i1 < i2 <
·· · < iQ ≤ M such that μ ∈ conv{μi1 , . . . ,μiQ }. We define l (μ) : RQ → R to be the linear function

interpolating λmin(A(μ)) at μi1 , . . . ,μiQ . Then we have

l (μ) ≤λLB(μ;S ),

where λLB(μ;S ) is defined in (3.11). Additionally, there exist 1 ≤ i1 < i2 < ·· · < iQ ≤ M such that

μ ∈ conv{μi1 , . . . ,μiQ } and the corresponding function l satisfies l (μ) =λLB(μ;S ).
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Proof. The dual problem of the lower bound minimization in (3.11) is:

λLB(μ;S ) = max bT z

s.t. zT C = [1,μ(2), . . . ,μ(Q)]T ,

z ≥ 0,

(3.39)

with C and b the corresponding constraint matrices. We can interpret (3.39) as an optimization

problem over all possible representations of μ as a convex combination of the points in S .

Barycentric coordinates of μ on the simplex spanned by μi1 ,μi2 , . . . ,μiQ clearly provide an

admissible point of (3.39), immediately proving l (μ) ≤λLB(μ;S ).

Moreover, there is an optimal point z for (3.39) such that z has only Q non-zero coordinates, as

each non-zero coordinate of z corresponds to one the active constraints in the optimal solution

of the primal problem. This immediately gives that there exist 1 ≤ i1 < i2 < ·· · < iQ ≤ M such

that l (μ) =λLB(μ;S ).

From (3.26), we have λLB(μ;S ) ≤λSLB(μ;S ,�) ≤λmin(A(μ)). Combining this with the results

of Theorem 3.17, we get

l (μ) ≤λSLB(μ;S ,�) ≤λmin(A(μ)),

for all μ ∈ conv(S ) and all functions � obtained as linear interpolation of λmin(A(μ)) on a

simplex in S containing μ. This shows that the subspace upper bounds λSLB(μ;S ,�) are at

least as good approximation to λmin(A(μ)) as the one obtained by linearly interpolating the

computed values of λmin(A(μ)).

3.2.6 Geometric interpretation

In SCM, the joint numerical range Y is approximated using the convex polyhedra YUB and YLB,

as shown in Figure 3.1. As the minimum of the linear program (3.11) can always be attained at a

vertex of the polyhedron, in order to minimize the error in the SCM lower bounds, the vertices

(corners) of YLB need to be as close as possible to Y . In the following, we present numerical

evidence indicating that, given the same sample set S , we are able to "cut the corners" of

YLB and obtain a better approximation of Y by using the proposed subspace-accelerated

approach.

We consider μ ∈ [−1,1] and A(μ) = A1 +μA2, with A1, A2 random Hermitian matrices. Suppose

that �= 1 and S = {−1,1}. Having computed the smallest eigenpairs in the sample points in S ,

we calculate the subspace bounds λSUB(μ; {−1,1},1) and λSLB(μ; {−1,1},1) and compare them

with the SCM bounds λUB(μ; {−1,1}) and λUB(μ; {−1,1}), see Figure 3.4a. The corresponding

approximations to Y are shown in Figure 3.4b, indicating that the subspace-accelerated

approach is indeed able to exploit information about the eigenvalue gaps to "cut the corners"

of YLB. Tighter bounds and a better approximation of Y can be achieved by either increasing

�, as shown in Figures 3.4c and 3.4d for the case � = 2, or by enriching the sample set S ,
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as presented in Figures 3.4e and 3.4f for the case S = {−1,0,1}. Moreover, the numerical

examples presented in Figures 3.4a, 3.4c and 3.4e serve as a experimental evidence for the

theoretical results presented in Sections 3.1.6 and 3.2.4, showing that the SCM upper bound

and both subspace bounds interpolate the derivative of λmin(A(μ)) in the sampled points,

while the SCM lower bound does not.

3.3 Heuristic variants

As we will see later in the numerical experiments section, the existing approaches, such as SCM,

often do not provide satisfactory results, leading to proposals of various heuristic strategies for

approximating the smallest eigenvalues of A(μ). Such approaches (see e.g. [MN15, MMO+00])

provide bounds which are usually very easy to compute and, although not rigorous, in practice

often very accurate.

In some of the numerical experiments (especially in Example 3.24), our subspace-accelerated

version of SCM (Algorithm 3) also exhibits slow convergence, where the subspace lower bounds

converge rather slowly in the initial phase of the algorithm, in contrast to the subspace upper

bounds. This slow convergence can be viewed as a price that needs to be paid in order to

maintain the reliability of the lower bounds. In the following, we propose an alternative that is

heuristic (i.e., its reliability is not guaranteed) and is observed to converge faster in the initial

phase.

The alternative consists of simply subtracting the residual norm from the upper bound:

λSUB(μ;S ,�)−‖A(μ)u −λSUB(μ;S ,�)u‖2, (3.40)

where u with ‖u‖2 = 1 is a Ritz vector belonging to the smallest Ritz value λSUB(μ;S ,�) of

A(μ) with respect to V . A basic first-order perturbation result for Hermitian matrices [Par98,

Theorem 4.5.1] implies that (3.40) constitutes a lower bound for an eigenvalue of A(μ), but

not necessarily the smallest one. There is a risk, especially in the very beginning, that (3.40)

is actually larger than the smallest eigenvalue, see Section 3.5 for examples. However, in all

numerical experiments we have observed that a small number of iterations suffices until (3.40)

becomes a lower bound for the smallest eigenvalue.

Remark 3.18. When using the residual-based lower bound (3.40), it makes sense to also adjust

the error measure (3.12) that drives the sampling strategy to

max
μ∈Ξ

‖A(μ)u −λSUB(μ;S ,�)u‖2

|λSUB(μ;S ,�)| ,

and stop the iteration when this error estimate drops below εSCM.

Remark 3.19. The subspace lower bounds formula (3.20) can also be used to motivate various

heuristic approaches. For example, instead of calculating η(μ) rigorously like in Section 3.2.2,

we can use the computed smallest Ritz values as an estimate for the eigenvalue gaps and, thus,

also to approximate η(μ). Similar reasoning has already been used in [MMO+00, FMPV15],
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Figure 3.4: Illustration of the subspace-accelerated approach and comparison to SCM for
Q = 2 and M = 2.
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where the proposed lower bounds for the smallest eigenvalues rely on the working assumption

that the second smallest computed Ritz value λ(2)
V

is an accurate approximation to the second

smallest eigenvalue of A(μ).

3.4 Algorithm

In this section, we present a summary, in form of Algorithm 3, of our subspace-accelerated

approach introduced in Section 3.2 and discuss its implementation and computational com-

plexity.

Algorithm 3 Subspace-accelerated SCM

Input: Training setΞ⊂ D , affine linear decomposition such that A(μ) = θ1(μ)A1+·· ·+θQ (μ)AQ

is Hermitian for every μ ∈Ξ. Relative error tolerance εSCM.

Output: Set S ⊂Ξ with corresponding eigenvalues λ( j )
i and an orthonormal eigenvector basis

V of V (S ,�), such that λSUB(μ;S ,�)−λSLB(μ;S ,�)
|λSUB(μ;S ,�)| < εSCM for every μ ∈Ξ.

1: Compute λmin(Aq ),λmax(Aq ) for q = 1, . . . ,Q, defining B according to (3.8).
2: M = 0, S =�
3: Set μmax to be a randomly chosen element of Ξ.
4: while Δ(μmax;S ,�) > εSCM do
5: μM+1 ← {μmax}
6: Compute smallest eigenpairs (λ(1)

M+1, v (1)
M+1), . . . , (λ(�)

M+1, v (�)
M+1) of A(μM+1).

7: S ← S ∪μM+1

8: Update V ∗AqV and V ∗A∗
q Aq ′V for all q, q ′ = 1, . . . ,Q.

9: for μ ∈Ξ do
10: if CΔ(μ;S ,�) <Δmax then
11: Exit the for loop.
12: end if
13: Recompute λSUB(μ;S ,�) =λmin(V ∗A(μ)V ).
14: Recompute ρ =

√
λmax(U∗A(μ)∗A(μ)U −ΛU

2) according to (3.41).
15: Recompute yμ = argminy∈YLB(S )θ(μ)T y and updated y̌μ according to (3.24).

16: Recompute η(μ) ← θ(μ)T y̌μ.
17: Recompute λSLB(μ;S ,�) according to (3.20).
18: Recompute Δ(μ;S ,�) according to (3.25) and update Δmax and μmax.
19: end for
20: M ← M +1
21: end while

3.4.1 Computational details

The efficient implementation of our proposed approach for computing upper and lower

bounds for λmin(A(μ)) requires care in order to avoid unnecessary computations. Some

implementation details are discussed in the following.

Computation of λmin(A(μ)). For computing a few smallest eigenpairs of a large-scale Her-
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mitian matrix, it is preferable to use an iterative solver, such as the Lanczos method,

presented in Section 2.1.3, or the LOBPCG [Kny01]. In our implementation we use

the the MATLAB built-in function eigs of the Lanczos method, which is based on

ARPACK [LSY98]. As discussed in Remark 2.5, if it is a priori known that A(μ) posi-

tive definite, it is often advisable to use the inverse Lanczos method instead, together

with the sparse Cholesky factorization.

Computation of V ∗A(μ)V and U∗A(μ)∗A(μ)U . By the affine linear decomposition (3.2),

V ∗A(μ)V = θ1(μ)V ∗A1V +·· ·+θQ (μ)V ∗AQV.

A standard technique in RBM, we compute and store the M�× M� matrices V ∗AqV ,

and update them as new columns are added to V . In turn, the computation of V ∗A(μ)V ,

which is needed to evaluate the upper bound for every μ ∈Ξ, becomes negligible as long

as M�� n. Similarly, the evaluation of U∗A(μ)∗A(μ)U needed for ρ becomes negligible

after the precomputation of V ∗A∗
q Aq ′V for all q, q ′ = 1, . . . ,Q.

Computation of ρ. The quantityρ = ‖A(μ)U−UΛU‖2 withΛU =U∗A(μ)U = diag
(
λ(1)

V
, . . . ,λ(r )

V

)
can be computed by solving an r × r eigenvalue problem:

ρ2 = λmax((A(μ)U −UΛU )∗(A(μ)U −UΛU ))

= λmax(U∗A(μ)∗A(μ)U −ΛU
2). (3.41)

Note that U and ΛU both depend on μ.

Computing λLB(A(μ)). Computationally the most expensive part of computing λSLB(A(μ)) is

solving (3.11). For solving linear programs, in our implementation, we use the interior

point method, as it offers the best time complexity in the general case . However, when

the dimensionality of the problem is small, Q ≤ 3, we use the simplex method instead.

It becomes a viable alternative, especially due to the fact that the linear program (3.11)

changes only slightly from one iteration to the other and the simplex method allows for

updating previously computed solutions. For example, if the newly added constraints

do not cut off the previously optimal vertex, it will stop immediately.

Computation of the next parameter sample μM+1. The next parameter sample μM+1 is com-

puted as the maximizer of the error estimate (3.25) on Ξ. In every iteration, this re-

quires recomputing the bounds λSUB(μ;S ,�) and λSLB(μ;S ,�) on the whole training

set Ξ, which can become computationally quite expensive. Instead, as explained in

Remark 2.17, the search for μM+1 (lines 9–19 in Algorithm 3) can be optimized using

the saturation assumption, which in the current setting takes the following form: there

exists Csat > 0 such that

Δ(μ;S ∗,�) <CsatΔ(μ;S ,�), ∀S ∗ ⊃ S ,∀μ ∈ D . (3.42)
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Using the saturation assumption in the context of parameter-dependent eigenvalue

problems has already been proposed in [CHMR09]. As described in Remark 2.17, using

the error estimates from the previous iteration together with (3.42) often allows us to

skip recomputing Δ(μ;S ,�) for a number of points in Ξ when searching for the next

parameter sample μM+1. In Algorithm 3, we use the same notation as in Remark 2.17

for Δmax and μmax, which are the current maximum error estimate and the point in Ξ

where it was attained, respectively.

It is important to note that the saturation assumption (3.42) can be easily proven with

Csat = 1 for all μ ∈ D such that λSLB(μ;S ,�) and λSUB(μ;S ,�) are of the same sign. For

example, if λSUB(μ;S ,�) > 0 and λSLB(μ;S ,�) > 0, we have

Δ(μ;S ,�) = 1− λSLB(μ;S ,�)

λSUB(μ;S ,�)
< 1.

Since both eigenvalue bounds are monotonically improving throughout the iterations,

this immediately implies that the error estimates Δ(μ;S ,�) are monotonically decreas-

ing, thus proving (3.42) with Csat = 1. The discussion is similar for the case when both

bounds are negative. In the numerical examples considered in Section 3.5, we can see

that maxμ∈ΞΔ(μ;S ,�) < 1 usually holds after only a few iterations, implying that the

bounds are of the same sign on the whole domain, and making the use of the saturation

assumption completely justified.

3.4.2 Parameter value selection

Choice of r . The subspace lower bounds λSLB(μ;S ,�) clearly depend on the choice of r ,

number of the smallest Ritz vectors used in the construction of the subspace U . As

explained in Remark 3.9, r is chosen adaptively for each μ ∈Ξ by taking the maximal

value of λSLB(μ;S ,�) among a few small values of r = 0,1,2, . . . .

Choice of �. Clearly, a larger choice of � can be expected to lead to better bounds. On the

other hand, a larger value of � increases the computational cost. Intuitively, choosing �

larger than one appears to be most beneficial when the gap between the smallest and

second smallest eigenvalues is small or even vanishes. One could, for example, choose

� such that λ(�+1)
i −λ(1)

i exceeds a certain threshold. However, in absence of a priori

information on eigenvalue gaps, it might be the wisest to simply choose � = 1 for all

μi , as shown in Figure 3.5, where we present the convergence rates of Algorithm 3 for

different choices of �.

Choice of Ξ. Depending on d , the training set Ξ is either chosen as a tensorized grid in Rd or

as a subset of Rd containing few thousand randomly selected points. Using a tensorized

grid makes sense only if D is a hyperrectangle and is viable only for small values of

d , say d ≤ 3, whereas in Section 3.5, we consider numerical examples with d up to 9.

Choosing Ξ as a random subset of D is usually a more efficient option and as such,
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is a standard practice in the reduced basis method, see [RHP08, HSZ14]. It is not a

priori clear how many points exactly to include in Ξ, as it depends on the problem,

in particular the dimensionality d . The results presented in Figure 3.6 indicate that

having |Ξ| ≈ 103 is usually sufficient to provide reliable results, as further enrichment

of Ξ does not influence the number of iterations of Algorithm 3, indicating that the

obtained reduced-order model already is good enough on the whole D .
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Figure 3.5: Convergence of Algorithm 3 applied to Example 4.9 with δ= 0.1 and Q = 2,4 for
different choices of �.

3.4.3 Computational complexity

Algorithm 3 summarizes our proposed procedure for computing subspace lower and upper

bounds, taking into account implementational details from Section 3.4.1. Similarly as SCM,

the algorithm requires solution of 2Q + M eigenvalue problems of size n ×n for determining

both the bounding box B at the start and the smallest �+ 1 eigenpairs in each iteration.

Clearly, the latter part will become more expensive than in SCM if �≥ 1. However, we expect

that this increase can be mitigated significantly in practice by the use of block algorithms.

More specifically, when using a block eigenvalue solver such as LOBPCG [Kny01] and efficient

implementations of block matrix-vector products with the matrix A (and its preconditioner),

the computation of � smallest eigenvalues will not be much more expensive as long as �

remains modest.

Computing λSUB(μ;S ,�) and λSLB(μ;S ,�) for all μ ∈Ξ amounts to solving M |Ξ| eigenprob-
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Figure 3.6: The final sample size M in Algorithm 3 applied to Example 4.9 as a function of |Ξ|.

lems of size M�× M�, as well as M |Ξ| LP problems with Q variables and 2Q + M constraints.

As long as M�� n, these parts will be negligible, and the cost of Algorithms 2 and 3 will be

approximately equal. Moreover in practice, as explained in Section 3.4.1, by assuming the

saturation assumption, for a fixed μ ∈Ξ, the bounds λSUB(μ;S ,�) and λSLB(μ;S ,�) do not

have to be recomputed in every iteration, but rather only a few times throughout the execution.

Remark 3.20. As solving a dense k ×k eigenvalue problem has complexity O (k3), computing

subspace upper bounds get significantly more expensive as M gets larger. It is not a priori clear

what is the critical value of M when the subspace-accelerated approach becomes more expensive

than SCM or a direct approach, where for each μ ∈Ξ the eigenvalue problem would be solved

exactly. This depends on a number of different factors such as:

• the ratio between the computational times needed for computing λmin(A(μ)) and solving

a small dense eigenvalue problem V ∗A(μ)V for a single value of μ,

• size of the training set Ξ,

• computational savings due to the saturation assumption (3.42).

This issue can be spotted in Section 4.4, in particular in Example 4.12, where the subspace-

accelerated approach is only slightly faster than the direct approach. Similar problems have

already been addressed in the reduced basis framework for linear systems using a domain

splitting technique, where the algorithm is run on each component of the parameter domain

independently, see [EPR10, HDO11]. If needed, such a domain splitting technique could easily

be integrated in Algorithm 3 as well. However, it is important to emphasize that the idea of

domain splitting is usually most effective when d is not too large and there is an easy way to

split D into a few connected components.
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3.5 Applications and numerical examples

In this section, we report on the performance of our proposed approach for a number of

examples. Algorithms 2 and 3 have been implemented in MATLAB Version 7.14.0.739 (R2012a)

and all experiments have been performed on an Intel Xeon CPU E31225 with 4 cores, 3.1 GHz,

and 8 GB RAM.

We compare Algorithm 3 with Algorithm 2 by computing the maximum relative error ra-

tio (3.12). Additionally, we compare the convergence of the bounds from Sections 3.1 and 3.2

towards the exact smallest eigenvalues by measuring the absolute error

max
μ∈Ξ

|bound(μ)−λmin(A(μ))|, (3.43)

for the corresponding bound, both with respect to the number of iterations and with respect

to the execution time (in seconds).

When implementing and testing Algorithms 2 and 3, we have made the following choices. We

set the relative tolerance to εSCM = 10−4, the maximum number of iterations to Mmax = 200

and the surrogate set Ξ to be a random subset of D containing 1000 elements. The smallest

eigenpairs of A(μi ) have been computed using the MATLAB built-in function eigs, which is

based on ARPACK [LSY98], with the tolerance set to 10−10. For solving the linear program (4.6),

we have used the MOSEK 7 Matlab toolbox [ApS15] implementation of the interior point

method and the simplex method with updating. In all experiments, we have used Algorithm 3

with the number of smallest eigenpairs included in V set to �= 1, since this already provided

significant improvements over Algorithm 2. In the first five iterations of Algorithm 3 we have

worked with the saturation constant set to Csat =+∞ and Csat = 1 in the following iterations.

For choosing r from Section 3.2.2, we have tested all values r = 0,1, . . . ,Q, see Remark 3.9.

3.5.1 Random matrices

We first consider an academic example, where a random dense Hermitian matrix A1 ∈Cn×n is

perturbed, to a certain extent, by random Hermitian matrices A2, . . . , AQ ∈Cn×n :

A(μ) = A1 +μ2 A1 +·· ·+μQ AQ ,

where μ= (μ2, . . . ,μQ ) ∈ D = [0,δ]Q−1.

Example 3.21. We consider Q = 4, n = 1000, δ= 0.2, with A1, A2, A3, A4 having real random

entries from the unit normal distribution. The performances of both algorithms is shown in

Figure 4.3. The convergence of Algorithm 2 flattens after around 25 iterations and does not reach

the desired tolerance, while the convergence of Algorithm 3 is much faster and reaches the desired

tolerance within 47 iterations. We have also considered an optimized version of Algorithm 2,

where where we incorporate the optimized strategy for selecting μM+1 based on the saturation

assumption, as described in Section 3.4.1. Results of this modification on the performance of

Algorithm 2 can be seen in Figure 3.7d. This modification speeds up Algorithm 2 significantly,
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without notably affecting the accuracy. However, Algorithm 3 still outperforms Algorithm 2 both

in terms of the computational time and the accuracy attained. Since Algorithm 3 converges

quickly, there is no need to even consider the residual-based lower bounds from Section 3.3, but

we still include the results in Figure 4.3 for the sake of completeness.
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(a) Convergence of the maximum relative error
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Figure 3.7: Convergence plots for Algorithms 2 and 3 applied to Example 3.21.

3.5.2 Estimation of the coercivity constant

As explained in Section 2.3, a posteriori error estimation in model order reduction techniques

for parametrized PDEs, such as the reduced basis method, requires reliable estimates for the

coercivity constant [RHP08] defined as

α(μ) = inf
u∈X

a(u,u;μ)

‖u‖2
X

, (3.44)

where a(·, ·,μ) is a coercive symmetric bilinear form on X × X representing the weak formula-

tion of a PDE on a domain ΩX and X is a suitable function space. As described in Section 2.3.2,
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a finite element discretization of (3.44) leads to the minimization problem

αn(μ) = inf
v∈Rn

vT A(μ)v

vT X v
, (3.45)

where A(μ) ∈ Rn×n is the matrix discretizing a(·, ·,μ) and X = A(μ)+τM ∈ Rn×n , where M ∈
Rn×n is the mass matrix.

Minimizing (3.45) is clearly equivalent to computing the smallest eigenvalue of the generalized

eigenvalue problem

A(μ)v =λX v.

As in Remark 2.4, we can transform it into a standard eigenvalue problem of the form (3.1) by

computing the (sparse) Cholesky factorization X = LLT :

L−1 A(μ)L−T w =λw.

Hence, the matrices Ai appearing in Assumption 3.2 need to be replaced by

L−1 Ai L−T , i = 1, . . . ,Q.

Note that, as described in Remark 2.4, it is often preferable to keep matrices L−1 Ai L−T in the

factorized form.

In the following, we consider three numerical examples of this type from the rbMIT tool-

box [HNPR10]. We only include brief explanations of the examples; more details can be found

in [HNPR10] and [PR07].

Example 3.22. This example concerns a linear elasticity model of a parametrized body (see

Figure 3.8a). The parameter μ1 determines the width of the hole in the body while the pa-

rameter μ2 determines its Poisson’s ratio. A discretization of the underlying PDE leads to the

matrix A(μ) =∑Q
i=1θi (μ)Ai , with Q = 16, μ= (μ1,μ2) and functions θi (μ) that arise from the

parametrization of the geometry. We choose n = 2183 and D = [−0.1,0.1]× [0.2,0.3]. As can be

seen from Figure 3.8, The results are similar to those presented in Example 3.21, with Algorithm 3

converging in 31 iteration and Algorithm 2 not reaching the desired tolerance.

Example 3.23. This example concerns a stationary heat equation on a parametrized domain

(see Figure 3.9a). The parameter μ1 determines the coefficient in the Robin boundary conditions

while the parameter μ2 determines the length of the domain. A discretization of the underlying

PDE leads to the matrix A(μ) =∑Q
i=1θi (μ)Ai , with Q = 3, μ= (μ1,μ2) and functions θi (μ) arising

from the parametrization of the geometry and boundary conditions. We choose n = 1311 and

D = [0.02,0.5]× [2,8]. As can be seen from Figure 3.9, the results are similar to those observed in

Examples 3.21 and 3.22.

Example 3.24. This example concerns a stationary heat equation on a square domain divided

into blocks (see Figure 3.10a). In each of the subdomains, one of the parameters μ1, . . . ,μ9
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(a) Geometry of the underlying PDE.
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(b) Convergence of the maximum relative error
ratio (3.12).
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(c) Convergence of the error (3.43) for the bounds
w.r.t. iteration.
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Figure 3.8: Convergence plots for Algorithms 2 and 3 applied to Example 3.22.

determines a coefficient of the PDE

div

([
1 −μi

−μi 1

]
∇u

)
= 0 on Ωi , i = 1, . . . ,9.

A discretization of the PDE leads to the matrix A(μ) =∑Q
i=1θi (μ)Ai , where Q = 10, μ= (μ1, . . . ,μ9)

and functions θi (μ) arising from the parametrization of the PDE coefficients. We choose n = 1056

and D = [0.1,0.5]9. As can be seen in Figure 3.10, the performance of both Algorithms 2 and 3 is

not satisfactory, as neither algorithm reaches the desired tolerance, due to the slow convergence

of the SCM and subspace lower bounds. However, Algorithm 3 is significantly faster than Algo-

rithm 2 due to the saturation assumption which reduces the number of bound evaluations per

iteration. Only the subspace upper bounds converges at a satisfactory rate. In this example, the

residual-based lower bounds clearly show their advantage. They become reliable after only 31

iterations.
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(b) Convergence of the maximum relative error
ratio (3.12).
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(c) Convergence of the error (3.43) for the bounds
w.r.t. iteration.
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Figure 3.9: Convergence plots for Algorithm 2 and 3 applied to Example 3.23.

3.5.3 Estimation of the inf-sup constant

In Section 3.5.2 we have seen that the computation of coercivity constants can be formulated

in terms of (3.1). As explained in Remark 2.18, for non-coercive parametrized PDE one may

have to resort to the inf-sup constant [HKC+10] defined as

β(μ) = inf
u∈X

sup
v∈X

b(u, v ;μ)

‖u‖X ‖v‖X
, (3.46)

where b(·, ·,μ) is the bilinear form in the weak formulation of the underlying PDE and X is

the accompanying function space with the norm ‖ ·‖X induced by the scalar product (·, ·)X . A

finite element discretization of (3.46) leads to the minimization problem

βn(μ) = inf
u∈Rn

sup
v∈Rn

uT B(μ)v�
uT X u

�
vT X v

= inf
x∈Rn

sup
y∈Rn

xT L−T B(μ)L−1 y

‖x‖2‖y‖2
(3.47)
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(b) Convergence of the maximum relative error
ratio (3.12).
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(c) Convergence of the error (3.43) for the bounds
w.r.t. iteration.
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(d) Convergence of the error (3.43) for the bounds
w.r.t. time.

Figure 3.10: Convergence plots for Algorithm 2 and 3 applied to Example 3.24.

where, once again, B(μ) and X = LLT are the discretizations of b(·, ·,μ) and (·, ·)X , respectively.

Minimizing (3.47) is equivalent to solving the singular value problem

σmin(L−1B(μ)L−T ),

which, in turn, is equivalent to computing

λmin(L−1B(μ)T X −1B(μ)L−T ), (3.48)

since σmin(B) =
√
λmin(B T B). The expression (3.48) can be recast in terms of (3.1), with

Q(Q +1)/2 terms, and with the matrices Ai , j and functions θi j (μ) for 1 ≤ i < j ≤Q defined as

Ai j = L−1B T
i X −1B j L−T +L−1B T

j X −1Bi L−T

θi j (μ) =
(
1− δi j

2

)
θi (μ)θ j (μ),
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Chapter 3. Low-rank approach for parameter dependent Hermitian eigenvalue problem

where δi j is the Kronecker delta function. The SCM algorithm has already been applied

to (3.48) but only with limited success, since having Q(Q +1)/2 terms in the affine decom-

position of A(μ) further increases the computational cost by making the solution of the LP

problem (3.11) significantly harder. The faster convergence of the subspace-accelerated ap-

proach to (3.48) mitigates this cost to a certain extent.

An illustration of this idea can be seen in the following numerical example, where we apply

both Algorithm 2 and 3 to computation of the inf-sup constants of a convection-diffusion

operator and compare their respective performances.

Example 3.25. We consider an example from [HKC+10] concerning a convection-diffusion

problem on the unit square Ω= [0,1]2 with homogeneous Dirichlet boundary conditions on ∂Ω,

with the parameter-dependent bilinear form b(u, v ;μ) defined as follows

b(u, v ;μ) =μ1

∫
Ω
∇u∇v +μ2

∫
Ω

x1
∂u

∂x1
v −

∫
Ω

x2
∂u

∂x2
v, ∀u, v ∈ X ≡ H 1

0 (Ω) (3.49)

and parameter μ= (μ1,μ2) inside the parameter domain D = [0.1,1]× [1,5].

Similarly as explained in Section 2.3 we consider a "natural-norm" on X induced by the scalar

product

(u, v)X =
∫
Ω
∇u∇v +τ

∫
Ω

uv,

with

τ= min
u∈X

∫
Ω∇u∇u∫
Ω uu

.

We consider a finite element discretization of b(u, v ;μ) on Ω with n = 1009 degrees of freedom,

which yields

B(μ) =μ1B1 +μ2B2 −B3,

where B1,B2,B3 are the discretizations each of the corresponding integrals in (3.49). Using

the procedure explained above, we obtain A(μ) =∑Q
q=1θq (μ)Aq with Q = 6 such that A(μ) =

B(μ)T B(μ) and λmin(A(μ)) = σmin(B(μ))2. The performances of both algorithms applied to

computing λmin(A(μ)) are shown in Figure 3.11, with Figure 3.11b showing the β(μ) surface

plot on a 32×32 regular grid on D. Similarly as in the experiments presented in Section 3.5.2,

Algorithm 3 converges in only 10 iterations, while Algorithm 2 fails to attain the desired tolerance

in 200 iterations.
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(a) Convergence of the maximum relative error
ratio (3.12).

(b) Surface plot of β(μ).
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(c) Convergence of the error (3.43) for the bounds
w.r.t. iteration.
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Figure 3.11: Convergence plots for Algorithm 2 and 3 applied to Example 3.25.

3.6 Conclusion

We have a proposed a new subspace-accelerated approach, given in Algorithm 3, for solving

parameter-dependent Hermitian eigenvalue problem. It builds upon the most commonly

used existing approach, SCM, and improves on it by implicitly exploiting regularity in the

smallest eigenvectors.

We have shown that the subspace acceleration in Algorithm 3 leads to improved interpolation

properties in comparison to SCM, with both subspace bounds interpolating the derivatives of

λmin(A(μ)), which has not been the case for the SCM bounds. Moreover, for A(μ) analytic and

d = 1, the presented results show that we can expect exponential convergence of Algorithm 3

on intervals where λmin(A(μ)) stays simple. In addition, we have demonstrated that the

subspace bounds can be efficiently computed at a per iteration computational cost which is

only slightly larger than in SCM.
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Chapter 3. Low-rank approach for parameter dependent Hermitian eigenvalue problem

Furthermore, we have shown that the better theoretical properties of Algorithm 3 carry over

to numerical experiments. More specifically, when applied to estimation of the coercivity

constant, Algorithm 3 presents a significant improvement over SCM, both in terms of iterations

and the total computational time, on a number of numerical examples from the literature.

Moreover, the proposed approach can be extended to the solution of parameter-dependent

singular value problems, as demonstrated in Example 3.25, where it is applied to estimation of

the inf-sup constant.

We have observed that for problems with small gaps between the smallest eigenvalues and a

large variation in the parameter space, as in Example 3.24, the convergence of the subspace

lower bounds may still not be satisfactory. For such cases, we propose a heuristic approach

using residual-based lower bounds.

70



4 Low-rank approach to pseudospectra
computation

Let A ∈Cn×n be a non-normal matrix and ε> 0. Effects of perturbations on the spectrum of A

λ(A) = {z ∈C : ‖(zI − A)−1‖2 =∞}

can be studied by computing the so-called ε-pseudospectra:

σε(A) := {z ∈C : ‖(zI − A)−1‖2 > ε−1},

which can also be seen as sublevel sets of the function

g (z) = ‖(zI − A)−1‖2 =σmin(zI − A).

By evaluating g (z) on a domain of interest D ⊂ C we obtain σε(A) ∩ D for all ε > 0. In this

chapter, we consider a large-scale setting, where evaluating g (z) exactly using the standard

techniques is computationally feasible only for a few values of z ∈C. Thus, our goal is to com-

pute an approximation g̃ (z) ≈ g (z) on the whole domain D using only few exact computations

of σmin(zI − A).

An example of how pseudospectral images look like can be seen in Figure 4.1. Using a coarse

grid, as in Figure 4.1a, usually does not capture the full variation of ‖(zI − A)−1‖2, making

the use of a finer grid, as in Figure 4.1b, necessary. However, as the exact computation of the

presented resolvent norms on this finer grid takes approximately 10 hours, there is a clear

need for a computationally more efficient way to compute ε-pseudospectra.

Applications of pseudospectra and pseudospectral images include linearized stability analysis

in fluid mechanics [Sch07], the convergence analysis and design of iterative methods [BES05,

TE05], the asymptotic behavior of matrix functions [Hig08, TE05] and operator theory [BG05,

Dav07, DP04, Han08, Tre08]. By definition, pseudospectra can also be used to quantify the

effects of perturbations and uncertainties on computed eigenvalues and eigenvectors. A more

detailed overview of pseudospectra applications can be found in [TE05].

For pseudospectra computation of a large matrix A, the projection-based approach has been
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(a) Coarse 10×10 grid.
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Figure 4.1: Resolvent norms log10 ‖(zI −A)−1‖2, for Example 4.11 with A ∈R9512×9512, evaluated
on D = [−1.2,−0.2]+ [−0.5,0.5]i using the grid-based approach on a rough grid (left) and on a
fine grid (right).

proposed, where given a subspace U ⊂Cn and its orthonormal basis U ∈Rn×k , we have the

following inclusion

σε(A) ⊃σε(U , AU ),

with σε(G , H) = {z ∈C : σmin(zG − H) < ε}, for G , H ∈Cn×k . Existing choices for the subspace

U include Krylov subspaces [TT96, WT01, SG98] or an invariant subspace containing eigen-

vectors belonging to a few eigenvalues in or close to the region of interest [RSH93, GS98]. As

we will see later, in Section 3.5, both approaches often suffer from slow convergence and lack

of means to quantify the obtained accuracy. However, the projection-based approaches have

been successfully applied to computation of pseudospectral quantities [KV14, MMMVB15],

providing a significant improvement over the previous work [BLO03, GO11].

In this chapter, we propose a new projection-based approach inspired by the subspace-

acceleration strategy used in Section 3.2. It is primarily designed to provide highly accurate

approximation to ε-pseudospectra in isolated parts of spectrum, that is, regions in the complex

plane containing only a few eigenvalues of A. As described in the previous paragraph, given a

carefully chosen orthonormal matrix V ∈Rn×k , k � n, σmin(zV − AV ) can be used to recon-

struct g (z). As will be described in Section 4.1.1, after a preprocessing step, σmin(zV − AV ) can

be computed in O (k3) operations for any z ∈C. If v(z) ∈ V , where v(z) is the right singular vec-

tor corresponding to σmin(zI − A), then σmin(zI − A) =σmin(zV − AV ) and the reconstruction

is exact. Clearly, one cannot expect that v(z) ∈ span(V ) for all z ∈ D , but the goal is to find such

V which contains good approximations to v(z) for all z ∈ D .

Recasting σmin((x + i y)I − A), with z = x + i y , into a parameter-dependent Hermitian eigen-

value problem, allows us to efficiently obtain such V using the subspace accelerated version

of SCM presented in Algorithm 3. Despite the dependence on just two real parameters x

and y , the problem remains very challenging due to the need for high absolute accuracy,

required in order to attain reasonably good relative accuracy in the vicinity of the eigenvalues.
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4.1. Existing approaches

Moreover, the particular structure of the problem allows for additional improvements, such

as incorporating the invariant subspace approach for obtaining a good a priori basis and an

optimized computation procedure for the lower bounds.

The rest of this chapter is largely based on [Sir16] and is organized as follows. In Section 4.1, we

first give an brief overview of existing approaches for pseudospectra computation, in particular

the projection-based approaches and discuss the use of two-sided projections. We present our

new projection-based approach to pseudospectra computation in Section 4.2. Additionally, we

discuss the choice of error estimates, the sampling strategy and the interpolation properties.

In Section 4.3, we present the full algorithm together with the complexity analysis, and discuss

its efficient implementation, while in Section 4.4, we present a few numerical experiments

showing the performance of the proposed approach in comparison to some of the existing

methods.

4.1 Existing approaches

In this section, we present short overview of the existing approaches that are commonly used

for pseudospectra computation.

A straightforward way to compute pseudospectra and pseudospectral images is using a grid-

based approach, where g (z) is computed for a finitely many points z1, . . . , zm , typically ar-

ranged on a uniformly spaced rectangular grid, requiring O (mn3) operations. EigTool [Wri02],

the most commonly used software for pseudospectra computation, also uses a grid-based

approach. The approach can be made more efficient if a Schur decomposition A =QTQ∗ is

available, since

σmin(zI − A) =σmin(Q(zI −T )Q∗) =σmin(zI −T ),

where computation of σmin(zI −T ) using the inverse Lanczos method requires solution of just

two triangular linear system per iteration, resulting in total complexity of O (n3 +mn2) opera-

tions [Lui97, Tre99]. However, as T is in general dense, this approach remains computationally

infeasible for large values of n due to memory requirements.

For large-scale sparse A, grid-based approach can be made more efficient by using a sparse

LU decomposition [BH96, Dav06] of zI − A together with the inverse Lanczos method, which

is often faster than computing the full singular value decomposition. Moreover, in case when

σε(A) is computed only for fixed value of ε, path following techniques may be used, typically

requiring fewer evaluations of g (z) than a grid-based approach [BG01, Brü96, MP02]. In addi-

tion to the computation-oriented approaches, the asymptotic behavior of ε-pseudospectra

has been studied in [GMM+15], while a priori estimates for pseudospectra using first-order

approximations have been derived in [Han15].
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Chapter 4. Low-rank approach to pseudospectra computation

4.1.1 Projection-based approaches

As previously mentioned, for large matrices A, projection-based approaches have been pro-

posed. Given a subspace U ⊂Cn , and its orthonormal basis U ∈RN×k , we have the following

inequality

σmin(zI − A) = min
u∈Cn

‖u‖2=1

‖(zI − A)u‖2 ≤ min
u∈U‖u‖2=1

‖(zI − A)u‖2 =σmin(zU − AU )

and the inclusion

σε(U , AU ) ⊂σε(A),

with σε(G , H) = {z ∈C : σmin(zG − H ) < ε}, for G , H ∈CN×k . For a good choice of U , σε(U , AU )

may offer a surprisingly accurate approximation to σε(A), while being significantly cheaper to

compute. After a preprocessing step in which the QR decomposition of the matrix [U , AU ] ∈
Rn×2k is computed, for any i ∈ {1, . . . ,m}, σmin(ziU − AU ) can be computed by solving the

following 2m ×m small singular value problem:

σmin(ziU − AU ) = σmin([U , AU ][zi Ik ,−Ik ]T ) =σmin(QR[zi Ik ,−Ik ]T )

= σmin(R[zi Ik ,−Ik ]T ),

where Ik denotes the k ×k identity matrix, resulting in total complexity of O (nk2 +mk3).

Existing choices for the subspace U include Krylov subspaces [TT96, WT01, SG98]

U = Kk (A,b) = span{b, Ab, A2b, . . . , Ak−1b},

with the starting vector b ∈Rn , which usually provides a good approximation in the outer parts

of the spectrum, and invariant subspaces of A containing eigenvectors belonging to a few

eigenvalues in or close to the region of interest [RSH93, GS98], which usually provides a good

approximation in isolated parts of the spectrum.

Let z ∈C and let us denote with v(z) the right singular vector corresponding to σmin(zI − A).

Then the error of a projection-based approach can be bounded in the following way

σmin(zI − A) ≤ σmin(zU − AU ) = min
u∈U

‖(A − zI )v(z)+ (A − zI )(u − v(z))‖2

≤ σmin(zI − A)+δ‖zI − A‖2,

where δ := dist(v(z),U ) = minu∈U ‖v(z) − u‖2. Unfortunately, δ‖zI − A‖2 is not practically

useful as an error estimate, since it involves v(z), a quantity that is available only by solving

the full-size singular value problem, which is exactly what we are trying to avoid. In fact,

it is not a priori clear why δ should (rapidly) decrease by increasing the size of either the
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4.1. Existing approaches

Krylov or an invariant subspace. This lack of means to quantify the obtained accuracy and the

frequently observed slow convergence are two main disadvatages of existing projection-based

approaches, as we will see later in Section 4.4.

Two-sided projections

The projection-based approaches we have discussed above use one-sided projections on

the subspace U , which rely on accurately approximating the right singular vector v(z) of

σmin(zI − A) to provide reliable pseudospectra estimates. Analogous approaches can be

designed based on approximating the left singular vectors corresponding to σmin(zI − A). A

question which naturally arises is whether it is possible to combine these approaches and

approximate σmin(zI − A) using σmin(V ∗(zI − A)U ), where U and V are orthonormal bases

of the subspaces U and V , respectively. Unfortunately, it turns out that this approach is not

stable as shown in Example 4.1, i.e. we do not necessarily reconstruct σmin(A − zI ) exactly

even when U and V contain the exact smallest singular vectors of zI − A.

Example 4.1. Let z = 1, A be the Landau matrix from Example 4.10 with n = 200, and u

and v the smallest right and left singular vector of I − A, respectively. We consider a uni-

formely spaced grid on [0.95,1.05] × [−0.05,0.05] with seven points in each direction: Ξ =
{(x1, y1), (x2, y2), . . . , (x25, y25) = (1,0), . . . , (x49, y49)}. Let vk and uk be the smallest left and right

singular vectors of (xk + i yk )I − A, respectively. For each k = 1, . . . ,49, we construct the subspaces

Uk and Vk :

Uk = {u1, . . . ,uk }, Vk = {v1, . . . , vk },

and their orthonormal bases Uk and Vk , respectively, and compute the following quantities:

σmin((I − A)Uk ), σmin(V ∗
k (I − A)), σmin(V ∗

k (I − A)Uk ), σmin(W ∗
k (I − A)Uk )

where Wk = [Vk ,Ek ] ∈Rn×(k+5), with Ek ∈Rn×5 random orthonormal matrix orthogonal to Vk .

As expected, σmin((I − A)Uk ) and σmin(V ∗
k (I − A)) converge to σmin(I − A), as the subspaces

Uk and Vk contain more accurate approximation of u and v, respectively. On the contrary,

σmin(V ∗
k (I − A)Uk ) does not necessarily converge to σmin(I − A), as the error is non-zero (as

indicated by the spikes in Figure 4.2), even when u ∈ Uk and v ∈ Vk . This phenomenon can be

explained by looking at the variational characterization of the smallest singular values

σmin(I − A) = inf
u∈Rn \{0}

sup
v∈Rn \{0}

|v∗(I − A)u|
‖u‖‖v‖

σmin(V ∗
k (I − A)Uk ) = inf

u∈Rk \{0}
sup

v∈Rk \{0}

|v∗V ∗
k (I − A)Uk u|
‖u‖‖v‖ = inf

u∈Uk \{0}
sup

v∈Vk \{0}

|v∗(I − A)u|
‖u‖‖v‖ ,

where we see that by multiplying I − A with both Uk and Vk , we also restrict the majorization

domain, and, thus, σmin(V ∗
k (I − A)Uk ) can end up being much smaller than σmin(I − A) for
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Figure 4.2: Comparison of one-sided versus two-sided projection approach.

some values of k. In certain situations this issue can be resolved by enriching one of the subspaces

with a random subspace, as we see that σmin(W ∗
k (I − A)Uk ) converges to σmin(I − A). However,

the use of this idea remains questionable as it is not a priori clear how big Ek should be chosen

to guarantee convergence.

Remark 4.2. It can be shown that using two-sided projections for approximating the largest

singular value does not suffer from the same loss of stability demonstrated above for the smallest

singular value. The largest singular value σmax(A) is the solution of the following maximization

problem:

σmax(A) = max
(u,v)∈(CN \{0})2

|v∗Au|
‖v‖2‖u‖2

.

By restricting u and v to subspaces U and V , respectively, we obtain the following inequality:

σmax(V ∗AU ) ≤σmax(A), (4.1)

where U and V are corresponding orthonormal bases of U and V . Clearly, equality in (4.1) is

attained if and only if the subspaces U and V contain the dominant left and right singular

vectors of A, making this approach stable.

4.2 Subspace acceleration

In this section, we present our new projection-based approach for pseudospectra computation

on a domain of interest D ⊂ C. It is largely based upon the subspace-accelerated approach

for parameter-dependent Hermitian eigenvalue problems described in Chapter 3. Without
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4.2. Subspace acceleration

loss of generality, we assume that D is a rectangle D = [a,b]+ [c,d ]i ⊂C in the complex plane.

Similarly as with parameter-dependent eigenvalues in Chapter 3, assessing the resolvent

norms on the whole continuous domain D is computationally infeasible, we follow standard

practice in pseudospectra computation [TE05] and substitute D by a finite, but rather fine,

uniformly spaced grid Ξ⊂ D .

For z = x + i y ∈C, the computation of g (z) can be viewed as a Hermitian eigenvalue problem

depending on the two real parameters x and y :

g (x + i y)2 = λmin
(
((x + yi )I − A)∗((x + yi )I − A)

)
= λmin

(
A∗A − x(A + A∗)− yi (A∗ − A)+ (x2 + y2)I

)
= λmin

(
Â(x, y)

)+ x2 + y2, (4.2)

where Â(x, y) = A∗A − x(A + A∗)− yi (A∗ − A). Note that each of the matrices A∗A, A + A∗ and

i (A∗ − A) is Hermitian.

Since Â(x, y) admits an affine linear decomposition w.r.t. (x, y), we can use Algorithm 3, and

by sampling � smallest eigenpairs of Â(x, y) for each (x, y) in the sample set S , compute both

an upper bound λSUB(x, y ;S ,�) and a lower bound λSLB(x, y ;S ,�) for λmin(Â(x, y)),

Given λSUB(x, y ;S ,�) and λSLB(x, y ;S ,�), (4.2) allows us to bound σmin(zI − A) in the follow-

ing way:

λSLB(x, y ;S ,�)+ x2 + y2 ≤σ2
min(zI − A) ≤λSUB(x, y ;S ,�)+ x2 + y2.

By taking the square root, the upper bound σSUB(x, y ;S ,�) for σmin(zI−A) can now be defined

as

σSUB(x, y ;S ,�) :=
√

λSUB(x, y ;S ,�)+ x2 + y2, (4.3)

while the lower bound σSLB(x, y ;S ,�) is defined by

σSLB(x, y ;S ,�) =
√

max(λSLB(x, y ;S ,�)+ x2 + y2,0), (4.4)

keeping in mind the non-negativity of the singular values.

Computation of the bounds λSUB(x, y ;S ,�) and λSLB(x, y ;S ,�), and the choice of appropriate

error estimates for driving the sampling procedure is explained in more detail in the following

Sections 4.2.1 and 4.2.2, respectively.

4.2.1 Computation of λSUB(x, y ;S ,�) and λSLB(x, y ;S ,�)

In the following, we adapt the subspace-accelerated approach from Section 3.2 to the compu-

tation of pseudospectra bounds.
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Chapter 4. Low-rank approach to pseudospectra computation

Given a sample set S = {(x1, y1), . . . , (xM , yM )} ⊂ D , suppose that we have computed the �≥ 1

smallest eigenvalues for each sample (xi , yi ) ∈ S :

λi =λ(1)
i ≤λ(2)

i ≤ ·· · ≤λ(�)
i

of Â(xi , yi ) along with an orthonormal basis of associated eigenvectors v (1)
i , v (2)

i , . . . , v (�)
i ∈Cn .

By collecting these eigenvectors into a subspace

V (S ,�) := span{v (1)
1 , . . . , v (�)

1 , v (1)
2 , . . . , v (�)

2 , . . . , v (1)
M , . . . , v (�)

M }

allows us to use Algorithm 3, presented in Section 3.2, to compute the subspace upper bound

λSUB(x, y ;S ,�). By solving the following M�× M� eigenvalue problem

V ∗ Â(x, y)V w =λV w,

where V denotes an orthonormal basis for V (S ,�), we obtain the smallest r ≤ M� eigenvalues

λ(1)
V

≤λ(2)
V

≤ ·· · ≤λ(r )
V

and the corresponding eigenvectors w1, . . . , wr ∈CM�. By the eigenvalue interlacing property

we have

λmin(Â(x, y)) ≤λ(1)
V

,

which allows us to define the subspace upper bound for λmin(Â(x, y)) as:

λSUB(x, y ;S ,�) :=λ(1)
V

.

In terms of lower bounds for λmin(Â(x, y)), by solving the linear program (3.11), we can easily

compute the SCM lower bound λLB(x, y ;S ). However, in practice, this lower bound is not

always a very accurate approximation to λmin(Â(x, y)). By additionaly exploiting the struc-

ture in U and gaps among the sampled smallest eigenpairs of Â(x, y) in S , as explained in

Section 3.2.2, we can calculate a lower bound η(x, y) for Ritz values of Â(x, y) on U⊥

η(x, y) ≤λmin(U∗
⊥ Â(x, y)U⊥),

where U ,U⊥ ∈ Cn×r are orthonormal bases for {w1, . . . , wr } and its orthogonal complement,

respectively. As before, η(x, y) can be computed by simply solving a linear program similar

to (3.11) with updated right-hand side of the constraints, which, in this case, requires solving

just one 3×3 linear system. Following the procedure in Section 3.2, combining the Ritz values of

Â(x, y) and η(x, y), and using the quadratic residual perturbation bounds from Theorem 2.11,

allows us to define the subspace lower bound for λmin(Â(x, y)):

λSLB(x, y ;S ,�) := min
(
λ(1)

V
,η(x, y)

)− 2ρ2

|λ(1)
V

−η(x, y)|+
√

|λ(1)
V

−η(x, y)|2 +4ρ2
, (4.5)
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4.2. Subspace acceleration

with the residual norm ρ = ‖U∗
⊥ Â(x, y)U‖2 = ‖Â(x, y)U −U (U∗ Â(x, y)U )‖2.

Remark 4.3. First, it is worth noting that the smallest eigenvectors of Â(x, y) coincide with

the right singular vectors corresponding to σmin(zI − A). Secondly, our subspace-accelerated

approach for computing upper bounds σSUB(x, y ;S ,�) can be seen as a special case of the

general projection-based approach for the choice of U = V (S ,�):

min
u∈V (S ,�)

‖(zI − A)u‖2 = σmin((zI − A)V )

=
√

λmin(V ∗(zI − A)∗(zI − A)V )

=
√

λmin(V ∗ Â(x, y)V )+ x2 + y2 =σSUB(x, y ;S ,�),

with z = x + i y. In fact, in the invariant subspace approach we construct the subspace by

sampling the right singular vector corresponding to σmin(zI − A) for z ∈ λ(A) (they coincide

with the eigenvectors for the corresponding z ∈λ(A)), while in our approach we generalize this

idea by allowing, both, sampling of the smallest singular vectors for z ∉λ(A) as well as sampling

of more than one smallest singular vector per sampling point.

Bounding box

As explained in Section 3.2.2, to compute of η(x, y) we first need to solve (3.11) and compute

λLB(x, y ;S ). In this specific setting, we would need to solve the following linear program

λLB(x, y ;S ) := mind∈R3 [1, x, y]T d

s.t. [1, xi , yi ]T d ≥ λ(1)
i , i = 1, . . . , M

d ∈ B,

(4.6)

where

B = [λmin(A∗A),λmax(A∗A)]× [λmin(A + A∗),λmax(A + A∗)]

×[λmin(i (A∗ − A)),λmax(i (A∗ − A))]]. (4.7)

As explained in Section 3.1.2, the role of B in (4.6) is to ensure that the solution is finite.

However, for the examples considered in Section 4.4, matrices A∗A, A + A∗ and i (A∗ − A)

often have very small relative gaps between the extremal eigenvalues and the rest of the

spectrum, making the eigenproblems in (4.7) very hard to solve. Moreover, for examples with

a mass matrix, such as Example 4.11, computation of the extremal eigenvalues of the matrix
M−1 A+AT M−T

2 requires inverting a large-scale matrix M , as well as solving a large-scale dense

eigenvalue problem, which is often computationally infeasible.

Yet, in this specific application, since Â(x, y) is affine in (x, y) and d is only 2, we can avoid

computation of B. Instead, as explained in Remark 3.2, we can a priori insert vertices of D
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Chapter 4. Low-rank approach to pseudospectra computation

into S , which requires computation of the � smallest eigenpairs for matrices

Â(a,c), Â(a,d), Â(b,c), Â(b,d).

This modification both reduces the number of full-size eigenvalue problems that need to be

solved (B does not need to be computed anymore) as well as improves the accuracy of the

computed SCM lower bounds λLB(x, y ;S ).

4.2.2 Error estimates and sampling

As described in the previous section, by sampling the smallest eigenpairs of λmin(Â(x, y)) on a

set of samples S , we can compute an upper and a lower bound for λmin(Â(x, y)) on the whole

domain D . In our approach, we use a greedy sampling strategy, adding in each iteration to S

a point from Ξ with the largest error estimate. Similarly as in Section 3.2, for z = x + i y ∈ D,

given λSUB(x, y ;S ,�) and λSLB(x, y ;S ,�), we define the error estimate Δ(x, y ;S ,�), for the

Hermitian eigenvalue problem λmin(Â(x, y)+ (x2 + y2)I ), in the following way:

Δ(x, y ;S ,�) = λSUB(x, y ;S ,�)+ x2 + y2 −λSLB(x, y ;S ,�)− x2 − y2

λSUB(x, y ;S ,�)+ x2 + y2

= λSUB(x, y ;S ,�)−λSLB(x, y ;S ,�)

λSUB(x, y ;S ,�)+ x2 + y2 . (4.8)

In each iteration, we compute Δ(x, y ;S ,�) for all (x, y) ∈ Ξ, and select the one having the

largest error estimate as the next parameter sample point.

4.2.3 Interpolation properties

Using the interpolation results from Section 3.2.4 we obtain that the subspace eigenvalue

bounds λSUB(x, y ;S ,�) and λSLB(x, y ;S ,�) interpolate the exact values of λmin(Â(x, y)):

λmin(Â(x, y)) =λSUB(x, y ;S ,�) =λSLB(x, y ;S ,�) ∀(x, y) ∈ S . (4.9)

Additionally, if λmin(Â(x, y)) is a simple eigenvalue, the subspace bounds also capture the

derivatives

∇λmin(Â(x, y)) =∇λSUB(x, y ;S ,�) =∇λSLB(x, y ;S ,�) ∀(x, y) ∈ S , (4.10)

with the gradient ∇ with respect to (x, y). These interpolation results easily extend to the

singular value bounds σSUB(x, y ;S ,�) and σSLB(x, y ;S ,�) as can be seen from the following

theorem.

Theorem 4.4. For z = x+i y ∈ S , the singular value boundsσSUB(x, y ;S ,�) andσSLB(x, y ;S ,�),
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defined in (4.3) and (4.4), respectively, satisfy

σmin(zI − A) =σSUB(x, y ;S ,�) =σSLB(x, y ;S ,�).

Additionally, if σmin(zI − A) is simple and positive, then

∇σmin(zI − A) =∇σSUB(x, y ;S ,�) =∇σSLB(x, y ;S ,�).

Proof. The first equality follows directly from (4.9) by taking the square root. Since σmin(zI −
A) > 0, by differentiating (4.2) we get

∇σmin(zI − A) = 1

2σmin(zI − A)

(
∇λmin(Â(x, y))+

[
2x

2y

])
.

Simplicity of σmin(zI −A) implies (4.10), which together with the first equality, gives the second

equality.

Using Theorem 4.4 we can formulate an analogous theorem to Theorem 3.13 and obtain a

priori error estimates for σSUB(x, y ;S ,�) and σSLB(x, y ;S ,�).

Theorem 4.5. Let zS = xS + i yS such that σmin(zS I − A) is simple and positive and let h > 0

such that σmin(zI − A),σSUB(x, y ;S ,�) and σSLB(x, y ;S ,�) are twice differentiable on B(zS ,h).

Then there exist constants C1,C2 > 0 such that

|σSUB(x, y ;S ,�)−σmin(zI − A)| < C1h2

|σSLB(x, y ;S ,�)−σmin(zI − A)| < C2h2,

for all z = x + i y ∈ B(zS ,h).

Proof. Let z = x + i y ∈ B(zS ,h). Expanding σmin(zI − A) and σUB(x, y ;S ,�) around zS using

a second-order Taylor polynomial expansion and using the results of Theorem 4.4, we obtain

σUB(x, y ;S ,�)−σmin(zI − A) = (z − zS )2

2

(∇2σmin(z1I − A)−∇2σUB(x2, y2;S ,�)
)

,

for z1, z2 = x2 + i y2 ∈ [zS , z]. The first inequality now holds for

C1 = max
z̃∈B(zS ,h)

‖∇2σmin(z̃ I − A)‖2 + max
z̃=x̃+i ỹ∈B(zS ,h)

‖∇2σUB(x̃, ỹ ;S ,�)‖2.

The second inequality can be shown in the same way.

Remark 4.6. As in Section 3.2.5, to ensure the differentiability conditions on σmin(zI − A) and

σSUB(x, y ;S ,�) needed in the assumptions of Theorem 4.5, it is sufficient that the smallest singu-

lar values σmin(zI − A) and σSUB(x, y ;S ,�) stay simple and positive on B(z,h), see [KMMM15].
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A simple criterion for differentiability of σSLB(x, y ;S ,�) is not available, since (4.5) involves

η(x, y), which depends on the solution of the linear program λLB(x, y ;S ), which is not necessar-

ily smooth around (xi , yi ).

Remark 4.7. The requirement for positivity of σmin in Theorems 4.4 and 4.5 is artificial and

can be fixed by using the "signed" singular values as in the case of the analytic SVD [BGBMN91].

In practice, since Â(x, y) is an analytic function in x and y , as already discussed in Section 3.2.4,

we can expect much faster convergence than the one guaranteed by Theorem 4.5. Numerical

experiments shown in Section 4.4 support this.

Additionally, as Â(x, y) is an affine linear function w.r.t x and y , we can apply Theorem 3.17 to

show that using the subspace lower bounds λSLB(x, y ;S ,�) for approximating λmin(Â(x, y)) is

always at least as good as linearly interpolating the computed values of λmin(Â(x, y)).

4.3 Algorithm

In this section we present a summary, in form of Algorithm 4, of our subspace-accelerated

approach for pseudospectra computation introduced in Section 4.2 and discuss its implemen-

tation and computational complexity.

4.3.1 Implementation details

The efficient implementation of Algorithm 4 requires care in order to avoid unnecessary

computations. Some implementation details are discussed in the following.

Initialization of the sample S . As explained in Section 4.2.1, we initialize S to contain the

vertices of the domain D :

S = {(a,c), (a,d), (b,c), (b,d)}.

For certain problems, it makes sense to a priori add additional points from D to S .

To make the error estimates (4.8) sufficiently small, we require high absolute accuracy

in regions around the eigenvalues of A. In numerical experiments we observe that S

eventually always contains many points very close to the exact eigenvalues of A. We use

this observation, and combine our approach with the invariant subspace approach, to

"warm start" the algorithm by inserting eigenvalues of A inside D into the initial sample.

In practice, this is usually enough to ensure high absolute accuracy in the proximity

of the eigenvalues of A. Such eigenvalues of A can be efficiently computed by simply

computing the eigenvalues closest to the centre of D . However, in order not to make the

sample S too large, we limit the number of the exact eigenvalues included in S to 20

closest to the center of D , unless stated otherwise.

Computation of λmin(Â(x, y)). As can be seen in (4.2), computing the smallest eigenpairs of

82



4.3. Algorithm

Algorithm 4 Subspace acceleration for pseudospectra computation

Input: A ∈Cn×n , uniformely spaced gridΞ on D = [a,b]+[c,d ]i ⊂C, �. Relative error tolerance
εtol.

Output: Sample set S ⊂ D with corresponding eigenvalues λ( j )
i and an eigenvector basis V

of V (S ,�) such that λSUB(x,y ;S ,�)−λSLB(x,y ;S ,�)
λSUB(x,y ;S ,�)+x2+y2 < εtol for every (x, y) ∈Ξ.

1: Initialize the sample set S = {(a,c), (a,d), (b,c), (b,d)}∪ (λ(A)∩D).
2: Compute the � smallest eigenpairs of Â(x, y), for all (x, y) ∈ S .
3: Compute an orthonormal basis V for V (S ,�), matrices in the affine linear expansion of

V ∗ Â(x, y)V and R.
4: Compute λSUB(x, y ;S ,�) and λSLB(x, y ;S ,�) for all (x, y) ∈Ξ.
5: (xmax, ymax) ← argmax(x,y)∈ΞΔ(x, y ;S ,�).
6: while Δ(xmax, ymax;S ,�) > εtol do
7: S ← S ∪ {(xmax, ymax)}.
8: Compute the � smallest eigenpairs of Â(xmax, ymax).
9: Update the orthonormal basis V for V (S ,�), matrices in the affine linear expansion of

V ∗ Â(x, y)V and recompute R.
10: for (x, y) ∈Ξ do
11: if CΔ(x, y ;S ,�) <Δmax then
12: Exit the for loop.
13: end if
14: Recompute λSUB(x, y ;S ,�) =λmin(V ∗ Â(x, y)V ).
15: Recompute the residual norm ρ according to (4.11).
16: Recompute λLB(μ;S = argminy∈YLB(S )θ(μ)T y and updated y̌μ according to (3.24).

17: Recompute yμ = argminy∈YLB(S )θ(μ)T y and updated y̌μ according to (3.24).

18: Recompute η(μ) ← θ(μ)T y̌μ.
19: Recompute λSLB(x, y ;S ,�) according to (4.5).
20: Recompute Δ(x, y ;S ,�) according to (4.8) and update Δmax and (xmax, ymax).
21: end for
22: end while
23: Compute σSUB(x, y ;S ,�) and σSLB(x, y ;S ,�) for all (x, y) ∈Ξ.
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Â(x, y) is equivalent to computing the smallest singular values and associated singular

vectors of the matrix zI − A. However, numerically this is not equivalent. When comput-

ing λmin(Â(x, y)) directly, we are working with a matrix of squared condition number. To

avoid that, we solve the singular value problem instead, by computing the smallest eigen-

pairs of the extended matrix

[
0 zI − A

(zI − A)∗ 0

]
using the inverse Lanczos method. For

a dense matrix A, this can be made more efficient by first computing the Schur decompo-

sition of A =QTQT , see [Lui97, TE05], since σmin(Q(zI −T )QT ) =σmin(zI −T ). In this

case, each iteration of the inverse Lanczos method requires solving just two triangular

linear systems. For a large-scale sparse matrix A, the inverse Lanczos method can be

made more computationally efficient by first computing a sparse LU factorization of

zI − A. We assume this method to be accurate and efficient for all (x, y) ∈Ξ.

Computation of the residual norm ρ. Efficient and accurate computation of the residual ρ

is very important for the accuracy of the lower bounds. The application of the technique

used in Algorithm 3 requires precomputation of matrices in the affine linear expansion

of V ∗ Â(x, y)∗ Â(x, y)V , one of which is V ∗(A∗A)∗A∗AV . We can expect V ∗(A∗A)∗A∗AV

to be extremely ill-conditioned even for moderate κ(A). To avoid this, we pay a slightly

higher price and compute in each iteration the QR decomposition of the following

n ×4M� matrix

QR = [A∗AV , (A + A∗)V , i (A∗ − A)V ,V ].

For any (x, y) ∈ D , this allows computation of ρ by solving the following small 4M�× r

singular value problem

ρ = ‖U∗
⊥ Â(x, y)U‖2 = ‖Â(x, y)U −U (U∗ Â(x, y)U )‖2

= ‖Â(x, y)V W −V W Λ‖2

= ‖[A∗AV , (A + A∗)V , i (A∗ − A)V ,V ][W T ,−xW T ,−yW T ,−ΛW T ]T ‖2

= ‖R[W T ,−xW T ,−yW T ,−ΛW T ]T ‖2, (4.11)

where W ∈RM�×r is such that U = V W and Λ= diag
(
λ(1)

V
,λ(2)

V
, · · · ,λ(r )

V

)
.

Updating of λLB(Â(x, y)). As explained in Section 3.4.1, computationally the most expensive

part of computing λSLB(Â(x, y)) is solving (4.6). In general, the interior point method is

proposed for solving (4.6). However, for this specific application, the simplex method

proves to be far superior, since the linear program (4.6) has just three variables. Addi-

tionally, as we incrementally build (4.6), the simplex method, unlike the interior-point

method, allows us to take advantage of previously computed solutions and just slightly

update them to compute the new ones. In practice, we observe that this modification

significantly reduces the computational time.

Stopping criterion. Given the prescribed tolerance εtol > 0, we stop the execution of Algo-
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rithm 4 when

max
(x,y)∈Ξ

Δ(x, y ;S ,�) = max
(x,y)∈Ξ

λSUB(x, y ;S ,�)−λSLB(x, y ;S ,�)

λSUB(x, y ;S ,�)+ x2 + y2 < εtol. (4.12)

However, for (x, y) ∈Ξ close to an eigenvalue of A, fulfilling (4.12) requires the absolute

error λSUB(x, y ;S ,�)−λSLB(x, y ;S ,�) to be very small which can not always be attained

due to inexact computation of λmin(Â(x, y)). To circumvent this issue, we additionally

prescribe an absolute tolerance εabs > 0 and for points (x, y) ∈Ξ satisfying either

λSUB(x, y ;S ,�)−λSLB(x, y ;S ,�) < εabs

or

λSUB(x, y ;S ,�)+ x2 + y2 < εabs.

In these cases, we set λSLB(x, y ;S ,�) to the value of λSUB(x, y ;S ,�), assuming that

λSUB(x, y ;S ,�) already is a very good approximation to σmin((x + i y)I − A).

Computation of λmin(Â(x, y)) for x + i y ∈λ(A).

As mentioned above, we "warm start" our approach by initializing S to contain the exact

eigenvalues of A inside D . However, for z = x + i y ∈λ(A), the inverse Lanczos method can not

be directly applied since (zI − A)−1 is not defined. Knowing that the smallest singular value

is 0, it is possible to extract the non-singular part of zI − A, by deflating the directions of the

smallest singular vectors, and compute the subsequent singular values and vectors.

Without loss of generality, we can assume that x = y = 0. Furthermore, we assume that zero is

a simple eigenvalue of A. Suppose v1 and u1 are the left and the right singular vectors of A

corresponding to the singular value zero:

v∗
1 A = 0, Au1 = 0. (4.13)

By Remark 2.2, we know that the Lanczos method will converge to the second largest eigenvec-

tor, if the starting vector is orthogonal to the dominant eigenvector. Thus, when computing

the subsequent left (right) singular vectors using the Lanczos method, we need to choose an

initial starting vector which is orthogonal to v1 (u1). However, in order to successfully apply

the Lanczos method to this setting, we need to be able to efficiently solve the following linear

systems

for a given v ∈ {v1}⊥ find u ∈ {u1}⊥ s.t. Au = v, (4.14)

for a given u ∈ {u1}⊥ find v ∈ {v1}⊥ s.t. A∗v = u, (4.15)

which are similar to the correction equation in Jacobi-Davidson SVD [Hoc01]. In the following
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Lemma 4.8, we describe the procedure for solving (4.14), while (4.15) can be addressed in a

similar way.

Lemma 4.8. Let A have a simple zero singular value with corresponding singular vectors

v1,u1, and an LU decomposition PAQ = LU , where P,Q are permutation matrices, L has a

unit diagonal, and the last row of U is zero. Let v ∈ Cn be such that v∗v1 = 0 and let H =
I −2w w T /‖w‖2, w ∈Cn be the Householder reflector such that Hu1 = e1. Then, there exist γ ∈C

and an invertible matrix Ũ ∈Cn−1×n−1 such that

UQT H = UQT −γUQT e1wT (4.16)

=
[

0 Ũ

0 0

]
. (4.17)

Moreover, solving (4.14) is equivalent to solving the following linear system for u ∈ {u1}⊥[
0 Ũ

0 0

]
Hu = L−1P v =

[
ṽ

0

]
, (4.18)

with ṽ ∈Cn−1, whose solution u is given as

u = H

[
0

Ũ−1ṽ

]
. (4.19)

Proof. From the fact that the last row of U is zero, we have en = (0, . . . ,0,1) ∈ ker(U∗), and thus

also

e∗
nUQT H = 0. (4.20)

As P T L is invertible, 0 = Au1 = P T LUQT u1 implies that

UQT u1 =UQT He1 = 0. (4.21)

which, when combined with (4.20) and the simplicity of the zero singular value, yields (4.17).

Moreover, since the vector w in the definition of H is given as w = u1 + sign((u1)1)e1, the

identity (4.21) also implies (4.16) with γ= 2 sign((u1)1)
‖w‖2 .

Since H 2 = I and P T L is invertible, (4.14) can be equivalently written as

P T LUQT H Hu = P T L

[
0 Ũ

0 0

]
Hu = v ⇐⇒

[
0 Ũ

0 0

]
Hu = L−1P v.

Thus, to prove (4.18), it is sufficient to show that there exists ṽ ∈Cn−1 such that

L−1P v =
[

ṽ

0

]
. (4.22)
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As v∗
1 A = v∗

1 P T LUQT = 0, we have that (v∗
1 P T L)∗ ∈ ker(U∗) = span{en}, or equivalently since

P T L is invertible:

v∗
1 P T L =αe∗

n ⇒ v∗
1 =αe∗

nL−1P,

for some nonzero α ∈C. Since v∗
1 v = 0, this implies

v∗
1 v =αe∗

nL−1P v = 0 ⇒ e∗
nL−1P v = 0, (4.23)

which immediately yields (4.22), and proves (4.18). Clearly, u as in (4.19) is a good candidate

for the solution of (4.18). In fact, it can be easily verified that this choice of u also satisfies the

orthogonality condition in (4.14):

u∗
1 u = u∗

1 H

[
0

Ũ−1ṽ

]
= e∗

1

[
0

Ũ−1 ỹ

]
= 0,

which proves (4.19) and concludes the proof.

As indicated in (4.16), multiplying U with QT H usually does not destroy the underlying sparsity

pattern, i.e. Ũ has approximately equal number of nonzero elements as U . This was also

the case in all of the numerical examples considered in Section 4.4, and thus, in the actual

implementation, the computation of u was further accelerated by computing a sparse LU

decomposition of Ũ . Full procedure for the solution of (4.14) is summarized in Algorithm 5.

Algorithm 5 Solving the deflated linear system (4.14).

Input: A vector v ∈ {v1}⊥, LU decompositions A − zI = P T LUQT and Ũ = P̂ T L̂ÛQ̂T , with Ũ
defined as in (4.17), the singular vectors v1 and u1 corresponding to σmin(zI − A) and a
Householder reflector H such that Hu1 = e1.

Output: Vector u ∈ {u1}⊥ such that (A − zI )u = v .
1: Compute v̂ = L−1P v by solving a triangular linear system.
2: Extract the first n −1 components of v̂ into ṽ .
3: Compute û = Q̂Û−1L̂−1P̂ ṽ by solving two tringular linear systems.

4: Compute u = H

[
0
û

]
.

4.3.2 Parameter value selection

Choice of Ξ. As previously discussed in Sections 3.4.2 and 4.2, for d = 2, it is reasonable to

choose Ξ⊂C as a finite uniform grid on D . The complexity and the quantity of features

in the underlying pseudospectral image dictate the required resolution and thus also the

number of grid points needed in each of the directions. In practice, for the numerical

examples considered in Section 4.4, we have used Ξ to be a 100×100 uniform grid on D .

Choice of �. Using a larger value of �, number of the smallest eigenvectors included in V (S ,�)

per sample point, leads to better bounds, but on the other hand, it increases the compu-
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tational cost. As explained in Section 3.4.2, given eigenvalue gaps between few smallest

eigenvalues, � should be chosen to maximize the eigenvalue gap λ(�+1)
i −λ(�)

i . In the ab-

sence of a priori information on eigenvalue gaps, the experiments in Chapter 3 indicated

the choice of � = 1 to be optimal. However, in the examples presented in Section 4.4

we observe the gap between the first few smallest eigenvalues to be very small and the

performance of Algorithm 4 improved significantly by using a slightly larger value for �.

In our implementation, we have used �= 6 for all (x, y) ∈ D , as this usually ensured the

eigenvalue gap λ(�+1)
i −λ(1)

i to be sufficiently large for our approach to provide satisfying

convergence.

4.3.3 Algorithm and computational complexity.

Algorithm 4 summarizes our proposed approach explained in the previous sections, taking

into account implementational details from Section 4.3.1. The algorithm requires solution

of M singular value problems of size n ×n for computing the exact smallest singular values

and vectors of zI − A, one for each z ∈ S . Computing λSUB(μ;S ,�) and λSLB(μ;S ,�) for all

(x, y) ∈Ξ in every iteration amounts to solving at most M |Ξ| eigenproblems of size at most

M�× M�, as well as at most M |Ξ| LP problems with 3 variables and up to M constraints. As

long as M� � n, these parts will be negligible, and the computational cost of Algorithm 4

will be dominated by the cost of computing the exact singular values and vectors. Moreover,

as explained in Section 3.4.1, by the saturation assumption, we do not have to recompute

the bounds λSUB(μ;S ,�) and λSLB(μ;S ,�) for all (x, y) ∈Ξ in every iteration. In practice, the

bounds for specific (x, y) ∈Ξ are recomputed only a few times throughout the execution.

4.4 Numerical experiments

In this section, we report on the performance of our proposed approach for a number of large-

scale examples available in the literature and compare it with some of the existing approaches

discussed in Section 4.1. Algorithm 4 has been implemented and tested in the same computing

environment already described in Section 3.5.

When implementing and testing Algorithm 4, we have made the following choices. Unless

stated otherwise, we set the error tolerance εtol to 0.1, the absolute tolerance εabs to 10−8,

the maximum number of sampled points to Mmax = 100 and Ξ to be 100×100 uniformely

spaced grid on D. The smallest singular values and the corresponding singular vectors of

zI − A have been computed, as explained in Section 4.3.1, using the MATLAB built-in function

eigs, which is based on ARPACK [LSY98], with the tolerance set to 10−10. For solving the

linear program (4.6), we have used MOSEK 7 Matlab toolbox [ApS15] implementation of the

simplex method with updating. In all experiments, we have used Algorithm 4 with the number

of smallest eigenpairs included in V (S ,�) set to � = 6. In the first three iterations we have

worked with the saturation constant set to Csat =+∞ and Csat = 1 in the following iterations.

For choosing r from Section 3.2, we have tested all values r = 0,1, . . . ,3�, as explained in
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Section 4.3.1.

4.4.1 Comparison with other approaches

As can be seen in Examples 4.9 – 4.14, in terms of computational time, Algorithm 4 is signifi-

cantly faster than the grid-based approach, while providing satisfying accuracy. However, in

some examples, especially Example 4.12, the speedup is not great, even though Algorithm 4

solves the full-size singular value problem only a couple of times. As the subspace V (S ,�) gets

larger, the amount of time spent in computing the subspace upper bounds λSUB(x, y ;S ,�) is

no more negligible in comparison to exact computation of σmin(zI − A). As already discussed

in Remark (3.20), this issue can be adressed by splitting the parameter domain and solving a

few smaller problems. However, how exactly to incorporate this idea into Algorithm 4 remains

an open question and may be interesting for future research.

Additionally, we compare the performance of Algorithm 4 against two other projection-based

approaches presented in Section 4.1, namely the Krylov subspace approach and the invariant

subspace approach. On a smaller 30×30 uniformely spaced grid Ξ̃, we compute the exact

smallest singular valuesσmin(zI−A), as well as the approximationsσkry(x, y ;k) andσinv(x, y ;k)

for few values of k ∈N, where

σkry(x, y ;k) = σmin(zU kry
k − AU kry

k )

σinv(x, y ;k) = σmin(zU inv
k − AU inv

k ),

with U arn
k and U inv

k the k-dimensional Krylov subspace of matrix A and the k-dimensional

invariant subspace spanned by the eigenvectors corresponding to eigenvalues closest to D,

respectively. In Figures 4.3c – 4.8c, we present the convergence rates towards the exact values

of σmin((x + i y)I − A):

max
(x,y)∈Ξ̃

σkry(x, y ;k)2 −σmin((x + i y)I − A)2

σmin((x + i y)I − A)2 , and (4.24)

max
(x,y)∈Ξ̃

σinv(x, y ;k)2 −σmin((x + i y)I − A)2

σmin((x + i y)I − A)2 (4.25)

w.r.t. the subspace size k and compare them to the corresponding convergence rates for the

computed subspace bounds λSUB(x, y ;S ,�) and λSLB(x, y ;S ,�):

max
(x,y)∈Ξ̃

λSUB(x, y ;S ,�)−σmin((x + i y)I − A)2

σmin((x + i y)I − A)2 (4.26)

max
(x,y)∈Ξ̃

λSLB(x, y ;S ,�)−σmin((x + i y)I − A)2

σmin((x + i y)I − A)2 (4.27)
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w.r.t. the dimesionality of the subspace V (S ,�). We can observe that the convergences of

σkry(x, y ;k)2 and σinv(x, y ;k)2 usually flatten after first few iterations, while the subspace upper

bounds λSUB(x, y ;S ,�) provide a very accurate approximation to σmin((x + i y)I − A)2 after

only a few iterations. The corresponding relative error 4.26 is often very small already at the

beginning due to the "warm start" strategy and this very fast convergence to the exact values

could be used as a motivation for deriving a heuristic version of our approach. Eventually, when

Algorithm 4 finishes, we usually observe that even the subspace lower bounds λSLB(x, y ;S ,�)

provide a more accurate approximation than the other two approches.

4.4.2 Dense matrices

We first consider two moderately sized dense matrices A (n ≤ 5000), such that it is still possible

to compute their Schur decomposition A = QTQ∗. We compute approximate pseudospec-

tra σε(T ), and compare the results obtained using Algorithm 4 and other approaches for

pseudospectra computation. For more details, see Examples 4.9 and 4.10.

Example 4.9. We consider the example random_demo.m from EigTool [Wri02], where A ∈Rn×n

is a random matrix whose entries are drawn from the normal distribution with mean 0 and

variance 1/N . As N →∞, spectral abcissa of A converges to 1. We choose N = 2000 and set D =
[0.95,1.05]+ [−0.05,0.05]i to be a region in the complex plane around the right-most part of the

spectrum. The observed matrix A has four eigenvalues inside D. The spectrum of A (blue dots)

in the region around D (red square) is shown in Figure 4.3a, whereas in Figure 4.3b we can see

the convergence of the maximum error estimate in Algorithm 4 w.r.t. iteration. The Algorithm 4

reaches the desired tolerance in 26 iterations with the computational time of 1613 seconds,

while the exact computation using a grid-based approach would take around 22000 seconds.

In Figure 4.3e we see the computed ε-pseudospectra for ε = 10−1,10−2, while in Figure 4.3d

the surface plot of σSUB(x, y ;S ,�) is presented. We see that with prescribed tolerance εtol, the

upper and the lower bounds for ε-pseudospectra almost completely overlap. The convergence

of the maximum relative error for λSUB(x, y ;S ,�),λSLB(x, y ;S ,�),σkry(x, y ;k)2,σinv(x, y ;k)2

w.r.t. the subspace size is shown in Figure 4.3c.

Example 4.10. We consider the example landau_demo.m from EigTool [Wri02], with matrix

A representing an integral equation from laser theory [Lan78]. We choose N = 4000 and D =
[0.8,1.2]+[−0.2,0.2]i , a region in the complex plane around the right-most part of the spectrum.

There are five eigenvalues of A inside D which we initially include in S . The spectrum of A

(blue dots) in the region around D (red square) is shown in Figure 4.4a, whereas in Figure 4.4b

we can see the convergence of the maximum error estimate in Algorithm 4 w.r.t. to iteration.

The Algorithm 4 reaches the desired tolerance in only 4 iterations with the computational time

of 637 seconds, while the exact computation using a grid-based approach would take around

80000 seconds. In Figure 4.4e, we see the computed ε-pseudospectra for ε= 10−1,10−2. while in

Figure 4.4d the surface plot of σSUB(x, y ;S ,�) is presented. The convergence of the maximum

relative error for λSUB(x, y ;S ,�),λSLB(x, y ;S ,�),σkry(x, y ;k)2,σinv(x, y ;k)2 w.r.t. the subspace

size is shown in Figure 4.4c.
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Figure 4.3: Application of Algorithm 4 to Example 4.9.

4.4.3 Sparse matrices

For a large-scale sparse matrix A, computing the Schur decomposition of A is rarely possible

and almost never justified. We consider four large sparse matrices A and compute approxi-

mate pseudospectra σε(A), and compare the results obtained using Algorithm 4 with other

approaches for pseudospectra computation. As explained in Section 4.3.1, we use the sparse

LU decomposition of A to speed up the computation of λmin(Â(x, y)). For more details, see

Examples 4.11 – 4.14.

Example 4.11. This example arises in fluid dynamics, as a model of a flow over obstacle, with

the Reynolds number equal to 100, linearized around steady state, using Q2-Q1 mixed finite

elements using IFISS [ERS07]. We are given matrices A and M of size N = 9512 representing

finite elements discretizations of the operator and the mass matrix, respectively. We compute

pseudospectra of the matrix M−1 A in D = [−1.2,−0.2]+ [−0.5,0.5]i , a region in the complex

plane around the right-most part of the spectrum. There are three eigenvalues of A inside

D which we initially include in S . The spectrum of A (blue dots) in the region around D

(red square) is shown in Figure 4.5a, whereas in Figure 4.5b we can see the convergence of

the maximum error estimate in Algorithm 4 w.r.t. to iteration. The Algorithm 4 reaches the

desired tolerance in 36 iterations with the computational time of 2355 seconds, while the exact

91



Chapter 4. Low-rank approach to pseudospectra computation

0.4 0.6 0.8 1 1.2 1.4 1.6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6
Domain D and σ(A)

x

y

(a) The domain D (red) and the
eigenvalues of A (blue).

1 1.5 2 2.5 3
10

−1

10
0

10
1

10
2

iteration

Convergence of subspace SCM

 

 

maximum error estimate

(b) Maximum relative error es-
timate (4.8) w.r.t. iteration.

0 20 40 60 80
10

−10

10
−5

10
0

10
5

Maximum relative error

subspace size

 

 

σ
kry
2

σ
inv
2

λ
SUB

λ
SLB

(c) Convergence of maximum
relative errors w.r.t. to the sub-
space size (4.24)– (4.27).

0.8
1

1.2

−0.2
0

0.2
−4

−3

−2

−1

0

x

Smallest singular values

y

(d) Surface plot of computed upper bounds
σSUB(x, y ;S ,�) (4.3) on D .

Subspace approach pseudospectra

 

 

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

σ
SUB

σ
SLB

σ(A)

(e) {10−1,10−2}-pseudospectra computed us-
ing Algorithm 4.

Figure 4.4: Application of Algorithm 4 to Example 4.10.

computation using a grid-based approach would take around 11000 seconds. In Figure 4.5e,

we see the computed ε-pseudospectra for ε = 10−1,10−2,10−3,10−4. while in Figure 4.5d the

surface plot of σSUB(x, y ;S ,�) is presented. The convergence of the maximum relative error for

λSUB(x, y ;S ,�),λSLB(x, y ;S ,�),σkry(x, y ;k)2,σinv(x, y ;k)2 w.r.t. the subspace size is shown in

Figure 4.5c.

Example 4.12. We consider the MATPDE example from the Matrix Market [MMa07] collec-

tion of non-Hermitian eigenvalue problems, where the matrix A is a five-point central finite

difference discretization of the two-dimensional variable-coefficient linear elliptic equation.

Size of the matrix A is N = 2961 and we choose D = [0,0.1]+ [0,0.1]i , region in the complex

plane around the left-most part of the spectrum. In this region there are six eigenvalues of

A which we initially include in S . The spectrum of A (blue dots) in the region around D

(red square) is shown in Figure 4.6a, whereas in Figure 4.6b we can see the convergence of

the maximum error estimate in Algorithm 4 w.r.t. to iteration. The Algorithm 4 reaches the

desired tolerance in 14 iterations with the computational time of 686 seconds, while the exact

computation using a grid-based approach would take around 877 seconds. In Figure 4.6e,

we see the computed ε-pseudospectra for ε = 10−2,10−3,10−4. while in Figure 4.6d the sur-

face plot of σSUB(x, y ;S ,�) is presented. The convergence of the maximum relative error for
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Figure 4.5: Application of Algorithm 4 to Example 4.11.

λSUB(x, y ;S ,�),λSLB(x, y ;S ,�),σkry(x, y ;k)2,σinv(x, y ;k)2 w.r.t. the subspace size is shown in

Figure 4.6c.

Example 4.13. We consider the BRUSSEL example from the Matrix Market [MMa07] collection

of non-Hermitian eigenvalue problems, where the matrix A arises in chemical engineering

as a discretization of a 2D reaction-diffusion model. Size of the matrix A is N = 3200 and we

choose D = [−0.5,0.5]+ [1.5,2.5]i , region in the complex plane around the right-most part of

the spectrum. In this region there are three eigenvalues of A which we initially include in S . In

this example, we observe that the subspace containing the sampled smallest singular vectors

V (S ,�) can be well approximated by a subspace containing lot less than M� vectors. Instead of

simply using the QR decomposition like in other examples, here we compute the orthonormal

basis V using the truncated singular value decomposition with the tolerance set to 10−10. The

spectrum of A (blue dots) in the region around D (red square) is shown in Figure 4.7a, whereas

in Figure 4.7b we can see the convergence of the maximum error estimate in Algorithm 4

w.r.t. to iteration. The Algorithm 4 reaches the desired tolerance in 35 iterations with the

computational time of 365 seconds, while the exact computation using a grid-based approach

would take around 1580 seconds. In Figure 4.7e, we see the computed ε-pseudospectra for ε=
10−1,10−2. while in Figure 4.7d the surface plot of σSUB(x, y ;S ,�) is presented. The convergence
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Figure 4.6: Application of Algorithm 4 to Example 4.12.

of the maximum relative error for λSUB(x, y ;S ,�),λSLB(x, y ;S ,�),σkry(x, y ;k)2,σinv(x, y ;k)2

w.r.t. the subspace size is shown in Figure 4.7c.

Example 4.14. We consider the H2plus example from the Matrix Market [MMa07] collec-

tion of non-Hermitian eigenvalue problems, where the matrix A arises in quantum chem-

istry as a discretization of a model for H+
2 in an electromagnetic field. Size of the matrix A

is N = 2534 and we choose D = [2.5,3.5] + [−0.5,0.5]i , region in the complex plane around

the right-most part of the spectrum. In this region there are six eigenvalues of A which we

initially include in S . The spectrum of A (blue dots) in the region around D (red square) is

shown in Figure 4.8a, whereas in Figure 4.8b we can see the convergence of the maximum

error estimate in Algorithm 4 w.r.t. to iteration. The Algorithm 4 reaches the desired tolerance

in only 5 iterations with the computational time of 191 seconds, while the exact computa-

tion using a grid-based approach would take around 8000 seconds. In Figure 4.8e, we see the

computed ε-pseudospectra for ε = 3 · 10−1,10−1,3 · 10−2,10−2. while in Figure 4.8d the sur-

face plot of σSUB(x, y ;S ,�) is presented. The convergence of the maximum relative error for

λSUB(x, y ;S ,�),λSLB(x, y ;S ,�),σkry(x, y ;k)2,σinv(x, y ;k)2 w.r.t. the subspace size is shown in

Figure 4.8c. The relative error for σinv(x, y ;k)2 increases for larger values of k due to the fact that

not all eigenvectors included in the invariant subspace have converged.
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Figure 4.7: Application of Algorithm 4 to Example 4.13.

4.5 Conclusion

We have proposed a novel projection-based approach inspired by the greedy sampling strate-

gies, given in Algorithm 4. It is primarily designed to provide highly accurate approximations

of ε-pseudospectra in isolated parts of the spectrum, containing only few eigenvalues of A.

We have shown that the singular value problem σmin(zI − A) can be recasted into a Hermitian

eigenvalue problem linearly depending on two real parameters. The presented approach uses

this characterization, and builds upon the subspace-accelerated approach for approximating

the smallest eigenvalues of a parameter-dependent Hermitian matrix presented in Algorithm 3

and discussed in Chapter 3. Taking into account the particular problem structure and demands

for high absolute accuracy, we have modified Algorithm 3 in order to make our approach

computationally efficient and competitive. In particular, we have made the approach more

numerically stable, accelerated the computation of the lower bounds, as well as introduced a

"warm start" strategy. Additionally, we have extended the interpolation results from Chapter 3

to the proposed singular value bounds, allowing us to provide a priori error estimates.

Moreover, we have compared the performance of our approach to few other existing ap-
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Figure 4.8: Application of Algorithm 4 to Example 4.14.

proaches on a number of examples discussed in the literature. For larger values of n, our

approach is significantly faster than the grid-based approach, while providing satisfactory

accuracy. In comparison to the other projection-based approaches, our approach provides

higher relative accuracy w.r.t. to the subspace size, especially in the proposed upper bounds

σSUB(x, y ;S ,�), as well as the rigorous error estimates. Moreover, to our knowledge it is the

first approach which provides certified upper bounds for ε-pseudospectra, enabling localiza-

tion of eigenvalues.
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5 Greedy low-rank approach to linear
matrix equations

We consider the numerical solution of large-scale linear matrix equations of the form

Q∑
q=1

Aq X B T
q =C , (5.1)

for given coefficient matrices A1, . . . , AQ ∈ Rm×m , B1, . . . ,BQ ∈ Rn×n , C ∈ Rm×n . Equation can

also be seen as a linear system

Q∑
q=1

(Bq ⊗ Aq )vec(X ) =: A vec(X ) = vec(C ). (5.2)

The matrix equation (5.1) is uniquely solvable if and only if A ∈Rmn×mn is invertible, which

will be assumed throughout this chapter.

For Q = 2, the matrix equation (5.1) reduces to the so called generalized Sylvester equation,

within which particularly important special cases are the standard Sylvester equation A1X +
X B T

2 =C and the Lyapunov equation A1X +X AT
1 =−C , with C symmetric positive definite. The

efficient numerical solution of Lyapunov and Sylvester equations has been studied intensively

during the last decades, and significant progress has been made; we refer to [BS13, Sim13] for

recent surveys. In particular, a number of approaches have been developed for Q = 2 that avoid

the explicit computation and storage of the m×n matrix X . Such methods attempt to compute

a low-rank approximation to X and store only the low-rank factors. As already discussed in

Section 2.2.2 for the case of Lyapunov equations, one popular approach which implements

this idea is the ADI method, which has also been extended to solving the Sylvester equation

in [BLT09]. Of course, this requires that X can be well approximated by a low-rank matrix at

the first place, that is, that the singular values of X have a strong decay. As already discussed in

Section 2.2.1, such a decay has been shown for Lyapunov equations with a low-rank right-hand

side C .

However, none of the established methods for Lyapunov and Sylvester equations generalizes

to the case Q > 2. In fact, the recent survey paper by Simoncini [Sim13] states: The efficient

numerical solution to . . . [reference to equation (5.1)] thus represents the next frontier for linear
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matrix equations . . . Among the existing work addressing Q > 2, particular attention has been

paid to the generalized Lyapunov equation

AX + X AT +
Q∑

q=1
Nq X N T

q =−DDT . (5.3)

In fact, this appears to be the most frequently encountered instance of (5.1) for Q > 2 and

typically arises in connection with bilinear dynamical systems. By extending results for the

Lyapunov case, singular value decay bounds for X have been established in [BB13, Mer12],

under various conditions on A and Nq .

As already discussed in Remark 2.13, iterative methods for solving Lyapunov equations can

be successfully preconditioned with, for example, few steps of the ADI method. In a similar

fashion, the ADI preconditioning has been used in the fixed point iteration proposed by

Damm [Dam08] for solving (5.3). The iteration is based on the splitting L (X )+N (X ) =−DDT

of (5.3) with the Lyapunov operator L : X 	→ AX + X AT . This iteration converges if L is the

dominant part of (5.3), that is, the spectral radius of L −1N is smaller than 1.

A rather different approach by Benner and Breiten [BB13] treats (5.3) as an n2×n2 linear system

in the entries of X . Based on ideas from [EB10, KT11], a standard iterative solver, such as CG

or BiCGstab, is combined with low-rank truncation of the iterates. This approach requires the

availability of a preconditioner to ensure fast convergence. There is evidence [KT11] that fast

convergence is crucial to avoid an excessive growth of the numerical ranks during intermediate

iterations. Natural candidates for preconditioners are L or approximations thereof, such as

one iteration of the ADI method, especially if L is the dominant part. Numerical experiments

reported in [BB13] demonstrate that this approach performs remarkably well.

In this chapter, we develop a framework of low-rank methods for addressing the general

linear matrix equation (5.1). Our approach is very much inspired by a class of methods

proposed in [AMCK06, Nou10] for solving Fokker-Planck equations and stochastic partial

differential equations, see [CAC10] for a survey of recent developments. The basic idea is to

subsequently refine the current approximation to the solution X by adding a rank-1 correction.

This correction is chosen to minimize a certain target functional, which renders the approach

a greedy algorithm. As we will see, this basic approach may require further improvement to

perform well for a larger range of applications. We will discuss two techniques for improving

convergence: adding information from the preconditioned residual, similar to the techniques

considered in [DS14], and performing Galerkin projection.

The rest of this chapter is largely based on [KS15] and is organized as follows. In Section 5.1,

we explain the basic algorithm using greedy rank-1 updates. For the special case of stable

symmetric Lyapunov equations, this algorithm is shown to preserve symmetry of the solution.

As shown in Section 5.2, the performance of this basic algorithm is improved by using Galerkin

projections. In Section 5.3, we discuss the incorporation of preconditioners into the method.

Finally, a variety of numerical experiments is presented in Section 5.4.
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5.1. Greedy rank-1 approach

5.1 Greedy rank-1 approach

In this section, we describe the basic greedy rank-1 strategy for approximating the solution X

of (5.1). Starting from the zero initial guess X0 = 0, a sequence of approximations X1, X2, X3, . . .

with rank(X j ) ≤ j is constructed as follows. Given the current approximation X j , the next

approximation takes the form

X j+1 = X j +u j+1vT
j+1, (5.4)

where the rank-1 correction u j+1vT
j+1 is chosen to minimize the approximation error. If the

system matrix A defined in (5.2) is symmetric positive definite, we may use the energy norm

induced by A to measure the error. Otherwise, we will use the residual norm. In the following,

we will discuss details for these two choices. For notational convenience, we will identify the

matrix representation A ∈Rmn×mn with the corresponding linear operator

A : Rm×n →Rm×n , A : X 	→
Q∑

q=1
Aq X B T

q .

5.1.1 Symmetric positive definite case

Let us assume that A is symmetric positive definite. Then the linear operator A induces the

scalar product 〈Y , Z 〉A = tr(Y T A (Z )) on Rm×n along with the corresponding norm ‖Y ‖A =�〈Y ,Y 〉A . We choose the correction u j+1vT
j+1 in (5.4) such that the approximation error

measured in this norm is as small as possible. This yields the minimization problem

min
u,v

‖X − X j −uvT ‖2
A = min

u,v

〈
X − X j −uvT , X − X j −uvT 〉

A

= ‖X − X j ‖2
A +min

u,v

〈
uvT ,uvT 〉

A −2tr
(
vuT A (X − X j )

)
= ‖X − X j ‖2

A +min
u,v

〈
uvT ,uvT 〉

A −2tr
(
vuT C j

)
,

where we set C j := A (X − X j ) =C −A (X j ) and X is the solution (5.1). Ignoring the constant

term, we thus obtain u j+1vT
j+1 from the minimization of the functional

J (u, v) := 〈
uvT ,uvT 〉

A −2tr
(
vuT C j

)
. (5.5)

Note that J is convex in each of the two vectors u, v but it is not jointly convex. This setting is

well suited for the alternating linear scheme (ALS), see [OR00]. Note that a minor complication

arises from the non-uniqueness in the representation of uvT by the factors u, v : J(u, v) =
J (λu,λ−1v) for any λ �= 0. In ALS, this can be easily addressed by normalizing the factor that is

currently not optimized.
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In the first half-iteration of ALS, we consider v with ‖v‖2 = 1 to be fixed and optimize for u:

û = argmin
u

J (u, v) = argmin
u

〈
uvT ,uvT 〉

A −2tr
(
vuT C j

)
= argmin

u

Q∑
q=1

tr
(
vuT Aq uvT B T

q

)−2tr
(
vuT C j

)
= argmin

u

Q∑
q=1

(uT Aq u)(vT Bq v)−2uT C j v. (5.6)

The matrix

Â :=
Q∑

q=1
(vT Bq v)Aq (5.7)

amounts to (vT ⊗ I )A (v ⊗ I ) and thus inherits the positive definiteness from A . Therefore,

the solution of the unconstrained linear-quadratic optimization problem (5.6) is given by the

solution of the linear system Âû =C j v .

In the second half-iteration of ALS, we fix the normalized u ← û/‖û‖2 and optimize for v . By

the same arguments, the minimizer v̂ is given by the solution of the linear system B̂ v̂ =C T
j u,

with

B̂ :=
Q∑

q=1
(uT Aq u)Bq . (5.8)

The described procedure is summarized in Algorithm 6.

Algorithm 6 ALS for minimizing (5.5).

Choose random vectors u, v such that ‖v‖2 = 1.
while not converged do

Solve linear system Âû =C j v with Â defined in (5.7).
Normalize u ← û/‖û‖2.
Solve linear system B̂ v̂ =C T

j u with B̂ defined in (5.8).
Normalize v ← v̂/‖v̂‖2.

end while

We refer to [OR00] concerning the convergence of Algorithm 6 to a local minimum of (5.5),

which is not necessarily the global minimum. Let us emphasize, however, that in our setting

there is no need to let Algorithm 6 converge to high accuracy and we stop it after a few

iterations.

Remark 5.1. The system matrices Â and B̂ in (5.7)–(5.8) are linear combinations of the coeffi-

cient matrices A1, . . . , AQ and B1, . . . ,BQ , respectively. They therefore inherit the sparsity of these

matrices, which allows to use a sparse direct solver [Dav06] for solving the linear systems in
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Algorithm 6. In the special case of a Lyapunov equation AX + X AT =C , we have

Â = A + (vT Av)I , B̂ = A + (uT Au)I .

Remark 5.2. Similar to the discussion in [Nou08], the procedure above can be extended to work

with rank-r corrections UV T , where U ∈Rm×r and V ∈Rn×r , instead of rank-1 corrections. As

before, if X j is the current approximate solution and C j = C −A (X j ), the rank-r correction

U j+1V T
j+1 is computed by minimizing the following functional on Rn×r ×Rn×r :

J (U ,V ) = 〈UV T ,UV T 〉A −2tr(V U T C j ). (5.9)

The first half-step of ALS for (5.9) then consists of fixing V (normalized to have orthonormal

columns) and optimizing for U . The resulting linear system takes the form of a linear operator

equation Â (Û ) =C j V with

Â : Rm×r →Rm×r , Â : Y 	→
Q∑

q=1
Aq Y (V T BqV )T . (5.10)

For the special case of a Lyapunov equation, we have Â : Y 	→ AY +Y (V T AV )T . After computing

a Schur decomposition of the r × r matrix V T AV , the linear operator equation Â (Û ) = C j V

decouples into r linear systems, see, e.g., [Sim13, Sec. 4.3].

For Q > 2, such a decoupling is usually impossible and one therefore has to solve an mr ×mr

linear system for the matrix representation Â =∑Q
q=1 V T BqV ⊗ Aq . The unfavorable sparsity

pattern and the size of Â make the application of a sparse direct solver to this linear system

expensive, see [BB12] for a related discussion.

Combining Algorithm 6 with the basic iteration (5.4) for rank-1 updates leads to Algorithm 7.

Algorithm 7 Greedy rank-1 updates.

Input: Matrices A1, . . . , AQ ,B1, . . . ,BQ ,C defining a symmetric positive definite linear matrix
equation (5.1), number of updates R.

Output: Rank-R approximation XR to the solution of (5.1).
X0 = 0
C0 =C
for j = 0,1, . . . ,R −1 do

Apply Algorithm 6 with right-hand side C j to determine rank-1 correction u j+1vT
j+1.

X j+1 ← X j +u j+1vT
j+1

C j+1 ←C j −∑Q
q=1 Aq u j+1vT

j+1B T
q

end for

Assuming that a fixed number alsit of inner iterations in Algorithm 6 is used, Algorithm 7

requires the solution of 2R×alsit linear systems of size m×m or n×n. According to Remark 5.1,

these linear systems inherit the sparsity from the coefficient matrices. Note that XR is not
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stored explicitly, but in terms of its low-rank factors [u1, . . . ,uR ] ∈ Rm×R , [v1, . . . , vR ] ∈ Rn×R .

Similarly, the updated right-hand side C j is stored implicitly, as a sum of the matrix C and j

rank-Q correction terms. Note that we only need to perform matrix-vector multiplications

with C j and C T
j . To perform this efficiently, it is sufficient that C is sparse or has moderate rank.

For example, if C has rank RC � min{m,n} and is given in factorized form, a matrix-vector

multiplication with C j can be performed in O((m+n)r ) operations with r = RC +QR . However,

in contrast to many algorithms for large-scale matrix equations [Sim13], it is not necessary

that C is of (very) low rank, see Section 5.4.2 for an example.

5.1.2 Symmetric indefinite and nonsymmetric cases

In the case when A is not symmetric positive definite, we use the residual norm to measure the

error. Applying the derivation of Section 5.1.1 to the normal equation leads to the minimization

of the functional

J (u, v) := 〈
uvT ,uvT 〉

A T A −2tr
(
vuT A T (C j )

)
(5.11)

for determining the best rank-1 correction. The symmetric positive definite linear operator

A T A has the form

A T A : Rm×n →Rm×n , A T A : X 	→
Q∑

q1,q2=1
AT

q1
Aq2 X B T

q2
Bq1 .

As before, we use ALS to address the minimization of (5.11). The first half-iteration takes the

form

ũ = argmin
u

J (u, v) = 〈
uvT ,uvT 〉

A T A −2tr
(
vuT A T (C j )

)
= argmin

u

Q∑
q1=1

Q∑
q2=1

(uT AT
q1

Aq2 u)(vT B T
q2

Bq1 v)−2
Q∑

q1=1
(uT AT

q1
C j Bq1 v). (5.12)

The matrix

Ã :=
Q∑

q1=1

Q∑
q2=1

(vT B T
q2

Bq1 v)AT
q1

Aq2

amounts to (vT ⊗ I )A T A (v ⊗ I ) and thus inherits the positive definiteness from A T A . There-

fore, the solution of the unconstrained linear-quadratic optimization problem (5.12) is given

by the solution of the linear system Ãũ =∑Q
q=1 AT

q C j Bq v .

In the second half-iteration of ALS, we fix the normalized u ← ũ/‖ũ‖2 and optimize for v .

By the same arguments, the minimizer v̂ is given by the solution of the linear system B̃ ṽ =
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∑Q
q=1(AT

q C j Bq )T u, with

B̃ :=
Q∑

q1=1

Q∑
q2=1

(uT AT
q2

Aq1 u)B T
q1

Bq2 .

Using the described procedure instead of Algorithm 6 in Algorithm 7 then yields the basic

greedy rank-1 algorithm for indefinite and nonsymmetric A .

5.1.3 Numerical example

The approach described in Section 5.1.2 considers A T A instead of A . This squares the condi-

tion number, which is well known to slow down convergence of classical iterative methods for

solving linear systems. Our greedy low-rank methods are no exception.

To illustrate this point, we consider a generalized Lyapunov equation

AX + X AT + N1X N T
1 =−DDT (5.13)

from the discretization of a 2D heat equation with bilinear boundary control, see Example 5.10

below for more details. We have used 50 discretization points in each direction, resulting in

matrices of size n = 2500. The corresponding n2 ×n2 system matrix A is symmetric, but not

positive definite; it has one negative eigenvalue.

The bottom curves in the plots of Figure 5.1 show the singular values of the exact solution X

for (5.13). Since the ( j+1)th singular value is the 2-norm error of the best rank- j approximation

to X , the singular values represent a lower bound for the error of the iterates obtained from any

greedy rank-1 algorithm. As can be seen in Figure 5.1a, Algorithm 7 based on the residual norm

converges quite slowly or may even stagnate. We now modify (5.13), by dividing the matrices

Ni by 2. In turn, the matrix A becomes definite. As seen in Figure 5.1b, the convergence of

Algorithm 7 based on the residual norm does not benefit from this modification. However,

the positive definiteness allows us to use the energy norm, which significantly speeds up

convergence, see Figure 5.1c. Although the error curve is still not close to the best possible

convergence predicted by the singular values, this clearly shows that it is preferable to use

the energy norm formulation whenever possible. However, in the indefinite case, further

improvements are needed to attain satisfactory convergence.

5.1.4 Symmetry in the solution

In most of the conducted numerical experiments, we observed that ALS, Algorithm 6, con-

verges to a symmetric solution for symmetric right-hand sides. In the following we show this

property for the special case of symmetric Lyapunov equations.

In order to prove the symmetry in the solution, we first need to address the fact that the

low-rank representation of the iterates in the rank-r ALS is not unique, since for any invertible
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(a) Indefinite case: greedy low-
rank based on residual norm
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(b) Definite case: greedy low-
rank based on residual norm
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(c) Definite case: greedy low-
rank based on energy norm

Figure 5.1: Convergence of basic greedy rank-1 algorithm for the generalized Lyapunov equa-
tion (5.13) arising from the discretization of 2D heat equation with bilinear boundary control.

R ∈Rr×r we have

UV T = (U R)(V R−T )T , ∀U ,V ∈Rn×r . (5.14)

In the following Lemma 5.3 and Theorem 5.4 we show that UV T is symmetric positive semidef-

inite if and only if U and V can be chosen so that U = V , i.e. there exists invertible R ∈Rr×r

such that U R = V R−T .

Lemma 5.3. Suppose we are given U ,V ∈ Rn×r such that rank(U ) = rank(V ) = r . There exists

an invertible matrix R ∈Rr×r such that the matrices Ũ :=U R,Ṽ := V R−T ∈Rn×k satisfy Ũ T Ũ =
Ṽ T Ṽ .

Proof. The proof follows the idea used in the balanced truncation algorithm [ASZ02] for

balancing the Gramians. Let C T
U CU and C T

V CV be the Cholesky decompositions of the matrices

U T U and V T V , respectively. By computing the singular value decomposition of the matrix

CU C T
V we obtain

CU C T
V =UΣΣV T

Σ .

By setting R :=C−1
U UΣΣ

1/2 we obtain the following expressions for Ũ and Ṽ :

Ũ = U R =UC−1
U UΣΣ

1/2,

Ṽ = V R−T = V C T
UU−T

Σ Σ−1/2.
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We can now easily verify that Ũ and Ṽ satisfy the statement of the lemma

Ũ T Ũ = Σ1/2U T
Σ C−T

U U T UC−1
U UΣΣ

1/2

= Σ1/2U T
Σ C−T

U C T
U CU C−1

U UΣΣ
1/2 =Σ,

Ṽ T Ṽ = Σ−1/2U−1
Σ CU V T V C T

UU−T
Σ Σ−1/2

= Σ−1/2U−1
Σ CU C T

V CV C T
UU−T

Σ Σ−1/2

= Σ−1/2U−1
Σ UΣΣV T

Σ VΣΣU T
Σ U−T

Σ Σ−1/2 =Σ.

Theorem 5.4. Let U ,V ∈ Rn×r , both of full column rank, such that U T U = V T V . If UV ∗ is

symmetric positive semidefinite, then U = V .

Proof. Let U = QU RU and V = QV RV be the QR decompositions of the matrices U and V ,

respectively. By construction, we have

RT
U RU =U T U = V T V = RT

V RV .

Since both RU and RV are upper triangular and the Cholesky decomposition of U T U is unique,

we have that RU = RV . Given the eigenvalue decomposition of RU RT
U =UΣΣU T

Σ , we obtain the

SVD decomposition of UV T :

UV T =QU RU RT
U QT

V = (QUUΣ)Σ(QV UΣ)T . (5.15)

Since UV T is symmetric positive semidefinite, (5.15) is also an eigenvalue decomposition,

which immediately gives QU =QV and proves the theorem.

We can now prove that every local minimum of (5.9) for the Lyapunov equation with symmet-

ric positive definite A and positive semidefinite right-hand side C is necessarily symmetric

positive semidefinite.

Lemma 5.5. Let us consider the Lyapunov equation AX +X A =C , where A is symmetric positive

definite and C is symmetric positive semidefinite. Let (U∗,V∗), where U∗,V∗ ∈Rn×r both have

full column rank, be a local minimum of the corresponding rank-r functional J(U ,V ) :=〈
UV T ,UV T

〉
A −2tr

(
V U T C

)
. Then, the matrix U∗(V∗)T is symmetric positive semidefinite.

Proof. Let (U∗,V∗) be a local minimum of J (U ,V ). As seen in (5.14),

J (U ,V ) = tr
(
V T AV U T U +U T AUV T V

)−2tr
(
U T CV )

is invariant under rescaling: J(U ,V ) = J(U R,V R−T ) for every invertible R ∈Rr×r . Hence, by

Lemma 5.3, we may assume w.l.o.g. that U T∗ U∗ = V T∗ V∗. Under these restrictions, Theorem 5.4

proves that U∗V∗T is symmetric positive semidefinite if and only if U∗ = V∗.
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In contradiction to the statement of the lemma, let us suppose that U∗ �= V∗. Since fU∗(V ) :=
J(U∗,V ) is strictly convex and its unique minimum is given by V∗. In particular, this implies

J(U∗,V∗) < J(U∗,U∗). Analogously, J(U∗,V∗) < J(V∗,V∗). Adding these two inequalities, one

gets

2tr
(
U T

∗ U∗V T
∗ AV∗ +V T

∗ V∗U T
∗ AU∗

)−4tr
(
U T

∗ CV∗
)

<2tr
(
U T

∗ U∗U T
∗ AU∗ +V T

∗ V∗V T
∗ AV∗

)−2tr
(
U T

∗ CU∗
)−2tr

(
V T

∗ CV∗
)
.

Since we have U T∗ U∗ = V T∗ V∗, this is equivalent to

−2tr
(
U T∗ CV∗

) < − tr
(
U T∗ CU∗

)− tr
(
V T∗ CV∗

)
⇔ 0 < − tr

(
(U∗ −V∗)T C (U∗ −V∗)

)
,

which leads to a contradiction , since C is positive semidefinite.

Remark 5.6. The assumption in Lemma 5.5 that both U∗ and V∗ have full column rank is not

restrictive. For U∗V T∗ of rank-�, with �< r , we can always find Ũ∗,Ṽ∗ ∈Rn×� of full rank, such

that Ũ∗Ṽ T∗ =U∗V T∗ which will again be a local minimum of a reduced rank-� ALS functional.

We can use Lemma 5.5 to prove the following theorem, which establishefffffffffffffs that in this

special case, Algorithm 7 converges monotonically from below to the exact solution, providing

always symmetric positive semidefinite approximate solutions. This is important, since in

some applications positive definiteness of the solution is further exploited.

Theorem 5.7. Let us consider the Lyapunov equation

AX + X A =C (5.16)

where A is symmetric positive definite and C is symmetric positive semidefinite. Assuming that

Algorithm 6 always converges to a local minimum, the application of Algorithm 7 to (5.16) results

in a monotonically increasing (in the Löwner ordering; see [Sio68]) sequence of approximations

0 = X0 ≤ X1 ≤ ·· · ≤ XR ≤ ·· · ≤ X . (5.17)

Proof. We will prove (5.17) by induction. Initially, we have that X0 = 0 and C0 = C are both

symmetric positive semidefinite. Suppose that after j iterations of Algorithm (7) the approxi-

mate solution X j and the corresponding updated right-hand side C j =C − AX j −X j A are both

symmetric positive semidefinite. The next greedy rank-1 update U j+1V T
j+1 is a local minimizer

of (5.9) for the updated equation A(X − X j )+ (X − X j )A = C j . Lemma 5.5 yields U j+1 = Vj+1

due to the positive (semi)definiteness of both A and C j . In turn, the new approximate solu-

tion X j+1 = X j +U j+1U T
j+1 ≥ X j is also symmetric positive semidefinite, while the updated

right-hand side now has the form

C j+1 =C j − AU j+1U T
j+1 −U j+1U T

j+1 A.
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This also implies that in an ALS half-iteration with V =U j+1 fixed, U j+1 is the solution of (5.10),

providing the following equivalent expressions it satisfies

U j+1U T
j+1 AU j+1 + AU j+1W = C jU j+1

"(
C jU j+1 −U j+1U T

j+1 AU j+1
)
W −1 = AU j+1, (5.18)

with W =U T
j+1U j+1. This also implies

U T
j+1 AU j+1W +W U T

j+1 AU j+1 = U T
j+1C jU j+1

"
U T

j+1 AU j+1W −1 +W −1U T
j+1 AU j+1 = W −1U T

j+1C jU j+1W −1. (5.19)

The positive semidefiniteness of C j+1 now follows from

yT C j+1 y = yT C j y − yT (C jU j+1 −U j+1U j+1 AU j+1
)
W −1U T

j+1 y

− yT U j+1W −1(C jU j+1 −U j+1U T
j+1 AU j+1

)T y

= yT C j y − yT C jU j+1W −1U T
j+1 y − yT U j+1W −1U T

j+1C j y

+ yT U j+1U T
j+1 AU j+1W −1U T

j+1 y + yT U j+1W −1U T
j+1 AU j+1U T

j+1 y

= yT C j y − yT C jU j+1W −1U T
j+1 y − yT U j+1W −1U T

j+1C j y

+ yT U j+1W −1U T
j+1C jU j+1W −1U T

j+1 y

= (y −U j+1W −1U T
j+1 y)T C j (y −U j+1W −1U T

j+1 y) ≥ 0,

where we have used (5.18) in the first equality and (5.19) in the third equality. This proves the

induction step and finishes the proof.

Theorem 5.7 itself is of limited practical relevance, as it requires the availability of exact

local minima. In practice, we stop Algorithm 6 (very) early and only obtain approximate

local minima. The result of Theorem 5.7 may then still be used as a theoretical justification

for choosing the subspaces U and V equal, resulting in computational savings in our main

algorithm, Algorithm 9 below.

5.2 Galerkin projection

In this section, we combine greedy rank-1 updates with Galerkin projection, similarly to the

techniques presented in Section 2.2.2.

107



Chapter 5. Greedy low-rank approach to linear matrix equations

After R iterations of Algorithm 7 the approximate solution takes the form

XR =
R∑

j=1
u j vT

j .

Following the idea for accelerating the ADI method using Galerkin projection in Section 2.2.2,

we consider the column space U = span({u1, . . . ,uR }) and the row space V = span({v1, . . . , vR })

of XR (XR ∈ U ⊗V by construction), and hope to obtain an improved approximation to X by

choosing the best approximation from V ⊗U . For this purpose, let the columns of U ,V ∈Rn×R

form orthonormal bases of U and V , respectively. Then every element in V ⊗U takes the form

U Y V T for some R ×R matrix Y .

If A is symmetric positive definite, we arrive at the minimization problem

min
Z∈V ⊗U

‖X − Z‖2
A

= min
Z∈V ⊗U

tr
(
X T C

)+〈Z , Z
〉
A −2tr

(
Z T C

)
,

= min
Y ∈RR×R

tr
(
X T C

)+〈U Y V T ,U Y V T 〉
A −2tr

(
V Y T U T C

)
= min

Y ∈RR×R
tr
(
X T C

)+vec(Y )T (V ⊗U )T A (V ⊗U )vec(Y )−2vec(Y )T (V ⊗U )T vec(C ).

This minimization problem is strictly convex and has the unique solution YR given by the

solution of the linear system

Q∑
q=1

(V T ⊗U T )(Bq ⊗ Aq )(V ⊗U )vec(YR ) = (V T ⊗U T )vec(C ). (5.20)

This can be viewed as a Galerkin projection of the original equation (5.1) onto the subspace

V ⊗U .

If A is not symmetric positive definite, minimizing the residual yields YR as the solution of the

linear system

Q∑
q1=1

Q∑
q2=1

(V T ⊗U T )(Bq1 ⊗Aq1 )T (Bq2 ⊗Aq2 )(V ⊗U )vec(YR ) =
Q∑

q1=1
(V T ⊗U T )(Bq1 ⊗Aq1 )T vec(C ).

(5.21)

Combining greedy rank-1 updates, Algorithm 7, with Galerkin projection yields Algorithm 8.

Remark 5.8. Both, (5.20) and (5.21), amount to solving a dense linear system of size R2 ×R2.

This is performed by an LU decomposition, which requires O (R6) operations and thus limits R

to moderate values, say R ≤ 100. A notable exception occurs for (5.20) when Q = 2. Then (5.20)

is a generalized Sylvester equation and can be solved with O (R3) operations [GLAM92]. For the

general case, one may be able to exploit the Kronecker structure (5.20) and (5.21) by using the
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5.2. Galerkin projection

Algorithm 8 Greedy rank-1 updates with Galerkin projection.

Input: Matrices A1, . . . , AQ ,B1, . . . ,BQ ,C defining a linear matrix equation (5.1), number of
updates R.

Output: Rank-R approximation XR to the solution of (5.1).
X0 = 0
C0 =C
for j = 0,1, . . . ,R −1 do

Apply Algorithm 6 with right-hand side C j to determine rank-1 correction u j+1vT
j+1.

Orthonormalize u j+1 w.r.t. U and append to U .
Orthonormalize v j+1 w.r.t. V and append to V .
Y j+1 ← solution of the Galerkin equation (5.20) or (5.21)
X j+1 ←U Y j+1V T

C j+1 ←C −∑Q
q=1 Aq X j+1B T

q

end for

preconditioned conjugate gradient method. This, however, requires the availability of a good

preconditioner.

5.2.1 Numerical example

We reconsider the example from Section 5.1.3, with n = 400 (20 discretization points in each

direction) and n = 2500 (50 discretization points in each direction). In both cases, the corre-

sponding operator A is indefinite, and therefore the residual based formulation needs to be

used. Figure 5.2 shows the convergence improvement obtained from the use of Galerkin pro-

jection. Clearly, a significant improvement sets in much earlier for n = 400 than for n = 2500.
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(a) Indefinite case: n = 400
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(b) Indefinite case: n = 2500

Figure 5.2: Convergence of error ‖X j −X ‖2 for Algorithm 8 vs. the basic greedy rank-1 algorithm
applied to the generalized Lyapunov equation (5.13).
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5.3 Preconditioning

The example from Section 5.2.1 shows that the use of greedy low-rank techniques and Galerkin

projection is not sufficient to attain quick convergence for ill-conditioned problems. It is

sometimes possible to construct an efficient preconditioner P for a general linear matrix

equation A (X ) = C . For example, suitable preconditioners for the generalized Lyapunov

equation (5.3) can often be obtained from preconditioners for the Lyapunov operator X 	→
AX + X AT . The usual way of using preconditioners when solving linear systems consists of

replacing A (X ) = C by the preconditioned equation P −1(A (X )) = P −1(C ). This, however,

bears a major disadvantage: Assuming that P −1 can be represented by a sum of L Kronecker

products, the composition P −1 ◦A is a sum of Q ·L (instead of Q) Kronecker products. This

significantly increases the cost of Algorithms 7 and 8.

In this section, we therefore suggest a different way of incorporating preconditioners, inspired

by the Alternating minimal energy method (AMEn) from [DS14]. In AMEn, a low-rank ap-

proximation of the residual is used to enrich the subspaces in the Galerkin projection. Our

approach follows the same idea, but uses a preconditioned residual instead of the residual. In

turn, information from 1 step of the preconditioned Richardson iteration is injected into the

subspaces.

The preconditioned residual in step j + 1 of Algorithm 8 is given by P −1(C j ), with C j =
C −∑Q

q=1 Aq X j B T
q . Of course, this matrix is not computed explicitly but represented in terms

of its low-rank factors, exploiting the fact that C j itself is given in terms of low-rank factors

and P −1 is a short sum of Kronecker products. Still, the rank of P −1(C j ) is usually quite high

and needs to be truncated further. As we will discuss in Remark 5.9 below, from a theoretical

point of view it would be desirable to truncate P −1(C j ) within a (small) prescribed accuracy.

However, this may require a large rank and, thus, quickly lead to impractically large dimensions

of the subspaces U and V . Following [DS14], we therefore truncate P −1(C j ) to fixed rank,

say rank 5. The matrices containing the corresponding dominant left and right singular

vectors are denoted by Ures and Vres, respectively. These vectors are added to U and V before

performing the Galerkin projection. In effect, the dimension of the subspaces spanned by U

and V grows more quickly compared to Algorithm 8. In particular, the solution of the linear

systems (5.20) or (5.21) becomes rapidly expensive, see Remark 5.8. To diminish this effect,

we perform another low-rank truncation after every Galerkin projection. This requires the

computation of an SVD of the (small) matrix Y j+1. If possible, the tolerance for performing

this truncation should be kept small, say tol= 10−10, as it ultimately determines the accuracy

of the approximate solution.

Remark 5.9. Assuming that the truncation of the preconditioned residual P −1(C j ) is performed

within a prescribed accuracy, the optimality properties of the Galerkin projection imply that

Algorithm 9 converges at least as fast as the inexact steepest descent method applied to the

preconditioned linear system P −1(A (X )) = P −1(C ). As explained in more detail in [DS14, Sec

4.2], this implies linear convergence with a rate determined by the condition number of P −1 ◦A
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5.3. Preconditioning

Algorithm 9 Greedy rank-1 updates with Galerkin projection and preconditioned residuals.

Input: Matrices A1, . . . , AQ ,B1, . . . ,BQ ,C defining a linear matrix equation (5.1), number of
updates R.

Output: Low-rank approximation XR to the solution of (5.1).
X0 = 0
C0 =C
for j = 0,1, . . . ,R −1 do

Apply Algorithm 6 with right-hand side C j to determine rank-1 correction u j+1vT
j+1.

Compute approximate left/right dominant singular vectors Ures, Vres of P −1(C j ).
Orthonormalize [u j+1,Ures] w.r.t. U and append to U .
Orthonormalize [v j+1,Vres] w.r.t. V and append to V .
Y j+1 ← solution of the Galerkin equation (5.20) or (5.21).
Truncate Y j+1 to lower rank.
X j+1 ←U Y j+1V T

C j+1 ←C −∑Q
q=1 Aq X j+1B T

q

end for

and the truncation level.

5.3.1 Preconditioners

It remains to discuss examples of effective preconditioners for which P −1 is represented as a

short sum of Kronecker products. As mentioned above, we can use a preconditioners for the

Lyapunov operator X 	→ AX + X AT in the case of a generalized Lyapunov equation (5.3). As

discussed in [KPT14], such preconditioners can be derived from iterative methods for solving

Lyapunov equations. For our setting we consider the following two, which are presented in

more detail in Remark 2.13:

1. One step of the ADI method with a single shift p

P −1
ADI = (A − pI )−1 ⊗ (A − pI )−1.

Suitable choices for p are discussed in, e.g., [BS13]. For the case of a symmetric A, the

optimal p equals
√

λmax(A)λmin(A).

2. One step of the sign function iteration for Lyapunov equations gives rise to the precon-

ditioner

P −1
sign = 1

2c
(I ⊗ I +c2 A−1 ⊗ A−1), (5.22)

with the scaling factor c =
√ ‖A‖2

‖A−1‖2
.

The application of P −1
ADI and P −1

sign to a matrix of rank � requires the solution of 2� linear

systems with the (shifted) matrix A. To optimize this step, the LU factors are computed only
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Chapter 5. Greedy low-rank approach to linear matrix equations

once and reused in every iteration.

5.3.2 Numerical example

Figure 5.3 shows the convergence of Algorithm 9 for the example from Sections 5.1.3 and 5.2.1

for n = 2500. We used the preconditioner P −1
sign from (5.22). The convergence, compared

to Algorithm 5.2, clearly improves, to the extent that the method becomes practical for this

example. This comes at the expense of a faster increase of the rank, which makes the Galerkin

projection more expensive. To limit this increase, we apply a more aggressive truncation

strategy and cap the rank at 50. This procedure is explained in more detail in Section 5.4 below.
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Figure 5.3: Convergence of error ‖X j − X ‖2 and ranks of X j for Algorithms 8 and 9 applied to
the generalized Lyapunov equation (5.13).

5.4 Numerical experiments

In this section, we first report on the performance of Algorithm 9 for a number of large-scale

examples available in the literature and then we perform a more detailed study of the impact of

the individual parts of our algorithm on its performance. Algorithm 9 has been implemented

and tested in the same computing environment already described in Section 3.5.

Unless stated otherwise, we have made the following choices in the implementation of Algo-

rithm 9:

ALS iterations. The number of ALS iterations (see Algorithm 6) in the greedy rank-1 procedure

is fixed to 5.

Preconditioner. The sign function based preconditioner P −1
sign from (5.22) is used.

Truncation of residual. The preconditioned residual P −1(C j ) is replaced by its best rank-5

approximation. This truncation is performed by combining QR decompositions with an
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5.4. Numerical experiments

SVD, exploiting the fact that the rank of P −1(C j ) is not full but given by the product of

rank(C j ) with the Kronecker rank of P −1 (which is 2 for P −1
sign).

Truncation of iterates. As explained in Section 5.3, we truncate Y j+1 to lower rank such that

all singular values below the relative tolerance tol= 10−10 are neglected and the maximal

rank maxrank is never exceeded. This strategy bears the risk that little new information

can be added once maxrank is reached. To avoid this, we have implemented a restart

strategy when this happens: Every 10 iterations the current approximation is truncated

more aggressively to rank 0.6×maxrank.

In all experiments below, we measure the convergence of Algorithm 9 by computing the

relative residual norm

‖C −A (X j )‖F /‖C‖F .

5.4.1 Generalized Lyapunov equations

Generalized Lyapunov equations typically arise from bilinear control problems of the form

ẋ(t ) = Ax(t )+
Q∑

q=1
Nq x(t )uq (t )+Du(t ), x(0) = x0, (5.23)

with the state vector x(t ) ∈Rn and the control u(t ) ∈R�. The controllability Gramian [BD11]

for (5.23) plays an important role in model reduction of bilinear systems and is given by the

solution of the generalized Lyapunov equation (5.3).

In the following, we consider two examples of bilinear control systems, a bilinear boundary

control problem and the Carleman bilinearization of an RC circuit.

Example 5.10. Following [BB13, Dam08], we consider the heat equation on the unit square

with bilinear boundary control: where Γ1,Γ2,Γ3,Γ4 are the boundaries of ]0,1[2. After a stan-

∂

∂t
z =Δz in ]0,1[2,

	n ·∇z = 0.5 ·u · (z −1) on Γ1,

z = 0 on Γ2,Γ3,Γ4,
(0,0)

(0,1) (1,1)

(1,0)

Γ1

Γ2

Γ3

Γ4

dard finite difference discretization, the controllability Gramian is obtained as the solution of

the generalized Lyapunov equation

AX + X AT + N1X N T
1 =−DDT , (5.24)

where A ∈ Rn×n is the discretization of the 2D Laplace operator. The matrices N1,D arise

from the Neumann boundary control on Γ1 and therefore have O(
�

n) nonzero columns. The
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Chapter 5. Greedy low-rank approach to linear matrix equations

corresponding n2 ×n2 system matrix A = I ⊗ A + A ⊗ I + N1 ⊗ N1 turns out to be symmetric,

but indefinite; most of its eigenvalues are negative and only a few are positive.

The convergence of Algorithm 9 for n = 10000 and the maximal rank maxrank= 90 is shown

in Figure 5.5. The execution time spent per iteration significantly increases as the size of
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Figure 5.5: Convergence of relative residual norm for Algorithm 9 applied to Example 5.10
(indefinite case).

the subspaces U and V grows, mainly due to the increased cost of constructing and solving

the Galerkin system (5.21) and partly due to the orthogonalization that has to be performed.

When increasing n further, we would need to work with even larger values of maxrank to attain

reasonable convergence.

Inspired by the experiments in [BB13], we consider a slight modification of this example,

dividing the matrices Ni by 2. In turn, the matrix A becomes definite and Algorithm 9

can be based on the energy norm. Also, the singular value decay of X appears to improve.

Figure 5.6 shows the obtained results for n = 250000. Even though n is larger than in Figure 5.5,

Algorithm 9 converges significantly faster and attains a higher accuracy with the same maximal

rank.

For both examples, the convergence of Algorithm 9 is clearly sublinear. This appears to be

typical for algorithms based on greedy low-rank strategies, see, e.g., [CEL11].

Compared to the results for n = 562500 reported in [BB13] for the preconditioned CG with

low-rank truncation, our algorithm seems to perform slightly worse in terms of attainable

accuracy vs. the rank of the approximate solution. $

Example 5.11. This example is taken from [BS06] and concerns a scalable RC ladder with n0

resistors described by

vt = f (v)+bu(t ), (5.25)
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Figure 5.6: Convergence of relative residual norm for Algorithm 9 applied to Example 5.10
(definite case).

where

f (v) =

⎛⎜⎜⎜⎜⎝
−g (v1)− g (v1 − v2)

g (v1 − v2)− g (v2 − v3)
...

g (vn0−1 − vn0 )

⎞⎟⎟⎟⎟⎠ , g (v) = exp(40v)+ v −1.

Using Carleman bilinearization, the nonlinear control problem (5.25) can be approximated

by a bilinear control problem of the form (5.23). In turn, we obtain a generalized Lyapunov

equation

AX + X AT + N X N T =−DDT

with X ∈R(n0+n2
0)×(n0+n2

0) and

A =
[

A0 A1

0 I ⊗ A0 + A0 ⊗ I

]
,

and A0 is a tridiagonal matrix and A1 arises from the coupling of first and second order terms.

According to our experiments, it is beneficial for this example to skip the greedy rank-1

procedure entirely and only include information from the preconditioned residual in U and

V . The resulting convergence for n0 = 500, that is n = 250500, and maxrank= 70 is displayed

in Figure 5.7. The algorithm converges quickly to an accuracy below 10−3, after which the

convergence slows down due to imposed limit on the subspace size.

For reference, we also include the results for a modification discussed in [BB13], where the

matrix N is divided by 2. Figure 5.8 shows nearly the same convergence behavior. Compared

to the results reported in [BB13], the convergence of our algorithm is significantly faster until

the imposed limit on the subspace size is reached. $
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Figure 5.7: Convergence of relative residual norm for Algorithm 9 (without greedy rank-1)
applied to Example 5.11.
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Figure 5.8: Convergence of relative residual norm for Algorithm 9 (without greedy rank-1)
applied to Example 5.11 with N replaced by N /2.
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Figure 5.9: Convergence of relative residual norm for Algorithm 9 applied to Example 5.12.

The following example is concerned with a stochastic control problem.

Example 5.12. This example is taken from [BB13] and arises from the control of a dragged

Brownian particle, whose motion is described by the Fokker-Planck equation. We refer

to [HSBTZ13] for a detailed explanation of this example. After discretization, the resulting

generalized Lyapunov equation has size n = 10000 and is of the form (5.24). The matrix N1 is

sparse and has full rank 10000, while the right-hand side has rank 1.

As can be seen in Figure 5.9, Algorithm 9 converges quickly for this example and requires

less than 0.5 seconds to attain an accuracy below 10−8. According to [BB13, Table 1], the

preconditioned BiCG with low-rank truncation requires around 10 seconds for the same

example in a computing environment that is comparable to ours. $

5.4.2 Lyapunov equation with right-hand sides having a singular value decay

As mentioned in the introduction, one of the most important special cases of (5.1) is the

Lyapunov equation

AX + X AT =C , (5.26)

where A,C ∈ Rn×n . There are numerous numerical methods that specifically target (5.26),

see [BS13, Sim13]. For large-scale equations, most existing strategies crucially depend on a

low-rank right-hand side, that is

C =−DDT , with D ∈Rn×�, �� n.

In particular this is the case for methods that make use of Krylov subspaces based on A and D .

The dimension of these subspaces grows proportionally with �, rendering these techniques

impractical for larger values of �.

In contrast, Algorithm 8 does not require such a low-rank assumption on the right-hand side
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to perform efficiently; we only need to be able to perform fast matrix-vector multiplications

with C . Of course, Algorithm 8 can only attain reasonable convergence if the solution X has a

strong singular value decay. For this purpose, it is not necessary that C has low rank. As the

following example demonstrates, it sometimes suffices that C has a (possibly weaker) singular

value decay.

Example 5.13. Consider the 2D Poisson equation on the unit square:

Δu(ξ) = f (ξ), ξ ∈Ω= ]−1,1[2

u(ξ) = 0 ξ ∈ ∂Ω.

The standard finite difference discretization with n grid points in each coordinate yields an

n2 ×n2 linear system of the form

(L ⊗ I + I ⊗L)vec(X ) = vec(F ),

where L is the discretization of the 1D Laplace operator and F contains the values of f at the

grid points. This is equivalent to the Lyapunov equation

LX + X LT = F.

In our experiments, we have used f (ξ1,ξ2) = exp((ξp
1 +ξ

p
2 )

1
p ) with p = 10 and n = 40000. This

results in a matrix F with a relatively slow singular value decay. There are several established

techniques to multiply with such a matrix F implicitly and efficiently. For simplicity, we have

used ACA (Adaptive Cross Approximation [BR03]) to replace F with a matrix of rank �= 92,

which corresponds to an error indicator of 9.7×10−8 in ACA. The resulting convergence of

Algorithm 8 (with 3 ALS iterations in Algorithm 6) is shown in Figure 5.10. The observed
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Figure 5.10: Convergence behavior for the Lyapunov equation arising from 2D Poisson equa-
tion with non-low-rank righthand side.

execution times are very small compared to majority of other examples, due to the fact that

each iteration only requires the solution of n ×n tridiagonal linear systems and a small-scale

Sylvester equation. $
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5.4.3 Detailed numerical study of components of Algorithm 9

The purpose of the following numerical experiments is to consider the different parts of

Algorithm 9 separately and assess their impact on its performance.

Greedy rank-1 updates vs. preconditioned residuals

In Algorithm 9, the bases U and V are enriched by adding information from the greedy rank-1

update and the preconditioned residual. The purpose of the following three experiments is to

assess the impact of these two enrichment steps separately. Except for the third experiment, we

always truncate the preconditioned residuals to rank 1, so that only 1 vector is added to each

basis, equilibrating with the enrichment gained from the greedy rank-1 update. Truncating to

rank 1 instead of a higher rank also has the advantage that it enables us to essentially turn off

low-rank truncation (we only truncate singular values below 10−14).

Example 5.14. We first consider a synthetic, well-conditioned example of (5.1) for Q = 3 and

n = 3000. The coefficient matrices are given by

Ai = Ri +RT
i

2
+ n

8
In , Bi = Si +ST

i

2
+ n

8
In , i = 1, . . . ,3,

and C = e1eT
1 , where the matrices Ri and Si are random matrices generated with the Matlab

function randn. No preconditioner is used; P = I . From the numerical results shown in

Figure 5.11, it can be concluded, for this particular example, that the enrichment gained from

greedy rank-1 updates is much more significant compared to the residuals. However, the

approach using just the residuals is significantly faster due to the fact that the residual does

not require the solution of (dense) linear systems unlike for the greedy rank-1 updates. $
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Figure 5.11: Convergence of Algorithm 9 with different enrichement strategies for Exam-
ple 5.14.

Example 5.15. We consider the generalized Lyapunov equation from Example 5.10 for a

119



Chapter 5. Greedy low-rank approach to linear matrix equations

modest size, n = 2500, and use the standard sign-function based preconditioner. As can

be seen in Figure 5.12, greedy rank-1 updates are still more important than preconditioned

residuals but, in contrast to Example 5.14, combining both approaches yields a significant

convergence improvement. $
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Figure 5.12: Convergence of Algorithm 9 with different enrichement strategies for Exam-
ple 5.15.

Example 5.16. We consider the generalized Lyapunov equation from Example 5.11 with n =
2550, and the standard preconditioner. In contrast to the previous example, we have observed

that truncating the preconditioned residuals to rank 2 instead of rank 1 has a non-negligible

impact on the convergence. To illustrate this effect, we have used rank-2 truncation when only

the preconditioned residuals are included in the enrichment (red curves in Figure 5.13). It turns

out that this yields better convergence and requires less time compared to combining greedy

rank-1 updates and rank-1 truncated preconditioned residuals (green curves in Figure 5.13),

let alone using only greedy rank-1 updates (blue curves in Figure 5.13). $
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Figure 5.13: Convergence of Algorithm 9 with different enrichement strategies for Exam-
ple 5.16.

From the three experiments above, no clear conclusion can be drawn. For some examples the

greedy rank-1 updates constitute the most important parts of the subspaces, while for others

the preconditioned residuals become more important.
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5.5. Conclusion

Low-rank truncation

As explained in the beginning of this section, the size of the bases U and V is kept under control

by a low-rank truncation of the current approximation. All singular values below the relative

tolerance tol = 10−10 are neglected and the rank is limited to the maximal rank maxrank.

The purpose of the following experiment is to assess the impact of the latter truncation

criterion on the overall performance. To limit the overall rank growth, we always truncate the

preconditioned residuals to rank 1. Two vectors are added to each basis in each iteration, one

from the greedy rank-1 update and one from the (preconditioned) residual. We compare the

implementation of Algorithm 9 with maxrank = ∞ (we only truncate singular values below

10−12) and with maxrank= 45, combined with restarting every 16 iterations.

Example 5.17. We consider the generalized Lyapunov equation from Example 5.10 with

n = 1600, and the standard preconditioner. From the numerical results shown in Figure 5.14,

we observe the expected effect that truncation slows down convergence. On the other hand, it

can be clearly seen from Figure 5.14c that the implementation with truncation produces good

results in significantly smaller amounts of time. $
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Figure 5.14: Convergence of Algorithm 9 with truncation based on maxrank= 45 vs. maxrank=
∞ for Example 5.17.

5.5 Conclusion

We have developed a novel low-rank approach for addressing large-scale linear matrix equa-

tions, based on greedy low-rank updates, Galerkin projection and residual preconditioning.

In principle, greedy low-rank methods are applicable to any linear matrix equation whose

solution can be well approximated with a low-rank matrix. However, in practice, these methods

need to be combined with Galerkin projection and preconditioning strategies in order to

ensure satisfactory convergence speed for a wider range of applications. We have further

improved the performance of our approach by incorporating low-rank truncation and a

restarting strategy.

The resulting solver, Algorithm 9, is demonstrated to perform quite well for problems that

have been discussed earlier in the literature, especially those for which the imposed limit on
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Chapter 5. Greedy low-rank approach to linear matrix equations

the subspace size is not reached. For more challenging problems that feature larger ranks, the

need for constructing and solving the Galerkin systems (5.20)–(5.21) may become a bottleneck.

One way to overcome this is to stop our method when a certain rank is reached, and use the

approximate result as an initial guess for the iterative methods discussed in [BB13].
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6 Low-rank approach to parameter
dependent symmetric Lyapunov equa-
tions

Suppose we are given a large-scale control system, similar to the one considered in Sec-

tion 2.2.3, where the system matrices E , A ∈Rn×n , B ∈Rn×m and C ∈Rl×n additionally depend

on a parameter μ ∈ D ⊂Rd :

E(μ)ẋ(t ) = A(μ)x(t )+B(μ)u(t ),

y(t ) = C (μ)x(t ).
(6.1)

Such systems frequently arise from the spatial discretization of partial differential equations

(PDEs), in which the parameters are used to model the variation of geometries and material

properties to be optimized. As discussed in Section 2.2.3, simulation of (6.1), for a fixed μ ∈ D ,

can be accelerated by computing a reduced-order model. However, in a parameterized setting,

it is often essential to enable fast simulations for many different parameter values in D, and

computing a reduced-order model for each of them separately is usually computationally too

costly.

In the last two decades, several model reduction approaches have been developed for param-

eterized systems. These include multivariate moment matching based on (rational) Krylov

subspaces, interpolation-based techniques, and the reduced basis method. None of these

methods can be considered as optimal. In this chapter, we develop a model reduction ap-

proach based on the balanced truncation, presented in more detail in Section 2.2.3. As

previously discussed, computation of the reduced-order model for a fixed μ ∈ D using the

balanced truncation, requires computation of Gramians P (μ) and Q(μ), which are defined as

the unique symmetric positive semidefinite solutions of the Lyapunov equations

A(μ)P (μ)E(μ)T +E(μ)P (μ)A(μ)T = −B(μ)B(μ)T, (6.2)

A(μ)T Q(μ)E(μ)+E(μ)T Q(μ)A(μ) = −C (μ)TC (μ), (6.3)

respectively, provided that E(μ) is nonsingular and all eigenvalues of the matrix pencil A(μ)−
λE (μ) have negative real part. Thus, in order to determine the reduced-order models for many

parameter values, we need to compute (approximate) solutions of the Lyapunov equations
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Chapter 6. Low-rank approach to parameter dependent symmetric Lyapunov equations

(6.2) and (6.3) for all these parameters. In this chapter, we present a low-rank reduced basis

method for approximating solutions to parameter-dependent Lyapunov equations on the

whole parameter domain.

The rest of this chapter is largely based on [KSSS14] and is organized as follows. In Section 6.1,

we first give a short overview of parametric model reduction. In Section 6.2, we discuss using

the reduced basis method for solving Lyapunov equations and present our low-rank reduced

basis approach for solving (6.2). In particular, we discuss the choice of the solution subspace

and the a posteriori error estimates. In Section 6.3, we present the full algorithm and discuss

implementational details, while in Section 6.4 we present the performance of the approach on

a few numerical experiments.

6.1 Parametric model reduction

In this section, we present a short overview, largely based on the recent survey paper [BGW15],

of the most important challenges arising in the parametric model reduction, along with some

of the approaches to overcome them.

As explained in Section 2.2.3, for a fixed value of μ ∈ D , a common approach to calculating a

reduced model for (6.1) is to compute low-dimensional subspaces V (μ),W (μ) and their bases

V (μ),W (μ) ∈Rn×r using a model reduction technique, such as the balanced truncation, and

project the system matrices onto V (μ) and W (μ). However, computation of V (μ) and W (μ)

using the balanced truncation involves solving Lyapunov equations of the form (6.2) and (6.3),

which is for large values of n computationally feasible only for a few different parameter values

μ ∈ D .

Suppose that we have computed the reduced-order models and their projection bases V (μi ) ∈
Rn×r and W (μi ) ∈ Rn×r for a few parameter samples μ1, . . . ,μM . Given this information, a

question which naturally arises is, whether it is possible to approximate reduced-order models

all over the parameter domain D , and if yes, how to do it efficiently. Some of the approaches

that have already been discussed in the literature include:

Global bases. Large computational cost of computing different projection subspaces for each

μ ∈ D can be avoided by instead constructing global bases V and W out of sampled local

bases

W = span{W (μ1), . . . ,W (μM )}, V = span{V (μ1), . . . ,V (μM )}.

Global bases W and V can be efficiently constructed, for example, using the (truncated)

singular value decomposition (SVD). For each μ ∈ D , this allows computation of reduced-

order models by simply projecting the system matrices onto V and W . Examples where

global bases have been used include moment matching techniques, see e.g. [BF14], as

well as the interpolation-based techniques, see e.g. [BBBG11].

Interpolation of local bases. Depending on the problem, the global bases may become im-
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6.1. Parametric model reduction

practically large, resulting in reduced-order models which are not much smaller than the

original. Instead, as explained in [AF08], good approximate local bases V (μ) and W (μ)

for any given μ ∈ D can be computed by interpolating the sampled local bases U (μi ) and

V (μi ), i = 1, . . . , M on a tangent space to a Grassmanian manifold of all r -dimensional

subspaces in Rn . Implementing this approach first requires mapping of the sampled

local bases to the tangent space at a reference point, which consists of computing O(M)

SVDs of n ×r matrices. Now, computing approximate local bases V (μ) and W (μ) for any

given μ ∈ D consists of interpolating at the tangent space, and mapping the result back to

the space of all r -dimensional subspaces in Rn , which requires a thin SVD computation.

Finally, having computed local bases V (μ) and W (μ), reduced-order models are again

obtained by simply projecting the system matrices onto V (μ) and W (μ).

Interpolation of reduced models. Computation of reduced-order models from approximate

local bases still requires projecting system matrices onto them. As discussed in [AF11,

PMEL10], this can be avoided by interpolating the exactly computed reduced-order

models at μ1, . . . ,μM . Implementing this approach first requires congruence transfor-

mation of the sampled local bases so that the computed reduced-order models are

expressed in the same generalized coordinate system, which can be achieved by solving

O(M) Procrustes problems. After this transformation, for any given μ ∈ D , the reduced

system matrices can either be interpolated directly [PMEL10], or on a manifold [AF11],

similarly to the interpolation of local bases above.

For a more detailed discussion on these and other approaches, we refer to [BGW15].

It is important to note that in case of general parametric dependence in system matrices,

using either global or locally interpolated bases is not computationally viable. As evaluat-

ing the reduced models first requires explicit computation of A(μ) and then, subsequently,

multiplication with V and W , the computational cost of these approaches heavily depends

on the dimension n of the original problem. However, it is possible to overcome this issue

in certain special cases, such as when A(μ) (and other system matrices) admits affine linear

decomposition w.r.t. μ:

A(μ) = θ1(μ)A1 +·· ·+θQ (μ)AQ , (6.4)

with θ1, . . . ,θQ : D → R and A1, . . . , AQ ∈ Rn×n . As discussed in Section 2.3.4, if Q � n2, pre-

computing the matrices W T AqV , q = 1, . . . ,Q enables constructing of Ar (μ) in the following

way

Ã(μ) = θ1(μ)W T A1V +·· ·+θQ (μ)W T AQV , ∀μ ∈ D,

with a computational cost that is independent of n. Moreover, as discussed in Remark 2.15,

even if the system matrices do not explicitly satisfy (6.4), methods such as MDEIM can some-

times be used to find accurate approximations of system matrices which admit affine linear

decomposition.
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Chapter 6. Low-rank approach to parameter dependent symmetric Lyapunov equations

6.2 Reduced basis method for Lyapunov equations

In this section, we will sketch how the reduced basis (RB) method, described in more details

in Section 2.3, can be used to derive a global bases approach for solving Lyapunov equations.

From now on, we consider Lyapunov equations of the form

−A(μ)X (μ)E −E X (μ)A(μ) = BB T , (6.5)

where we assume that

1. neither E nor B depend on the parameters;

2. E is symmetric, positive definite and A(μ) is symmetric, negative definite for all μ ∈ D ;

3. A(μ) admits affine linear decomposition w.r.t. μ (6.4).

The purpose of the first assumption is mainly to simplify the discussion. Our algorithms can

be trivially extended to parameter-dependent E and B . On the other hand, as explained in

Section 2.3, the last two assumptions are essential for the RB method. The second assumption

is central to the error estimators we are using since it ensures that the system (6.5) is positive

definite, and as discussed in Remark 2.18, dropping it would require the use of different

estimators. The third assumption enables efficient construction of the compressed linear

systems as well as the residual computation. As already discussed in Remark 2.15, the third

assumption is commonly found in the literature; in many problems it either arises naturally or

can be attained by techniques such as Empirical Interpolation method [BMNP04].

As explained in Section 2.2, the Lyapunov equation (6.5) can be equivalently written as the

n2 ×n2 linear system

A (μ)x(μ) = b, (6.6)

with A (μ) = −E ⊗ A(μ) − A(μ) ⊗ E , b = vec(BB T ) and x(μ) = vec(X (μ)). When applying the

plain reduced basis (RB) method directly to the n2 ×n2 linear system (6.6), without exploiting

the particular structure of A (μ), the high dimensionality n2 of the solution space leads to

inefficiencies. For example, after M iterations of the offline phase, the complexity for orthonor-

malizing and storing V is O(n2M 2) and O(n2M), respectively. This puts a limitation on the

size n that can be handled; n can be at most a few thousand. Another major disadvantage

is that the approximate solution X̃ (μ) obtained in the online phase is not guaranteed to be

positive semidefinite, a property that is highly desirable in model reduction applications.

In the following, we show how the RB method can be modified and accelerated for the Lya-

punov equation (6.5) by exploiting the structure in A (μ) and by making use of low-rank

properties of X (μ).
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6.2.1 Low-rank structure in the offline phase

As already discussed in Section 2.2.1, when m � n, it is known that the singular values of the

solution X (μ) to (6.5) decay very quickly. Hence, X (μ) can be well approximated by a low-rank

matrix of the form L(μ)L(μ)T , where the low-rank Cholesky factor L(μ) has mμ � n columns.

The offline phase proceeds as described in Section 2.3.3, with the notable difference that for

each sample μ1, . . . ,μM instead of the n ×n (or n2 ×1 when vectorized) solutions X (μ j ) we

collect the low-rank Cholesky factors L(μ j ) ∈Rn×m j in a subspace

UM = range(LM ) ⊂Rn ,

where LM = [L(μ1),L(μ2), . . . ,L(μM )] ∈Rn×(m1+···+mM ). In the absence of approximation error,

we have VM ⊂ UM ⊗UM , where VM is the subspace containing vectorized snapshots, as in the

plain RB method. For an orthonormal basis U of UM , this means that any vector v ∈ VM can

be represented as

v = (U ⊗U )vec(Y ) = vec(U Y U T ), (6.7)

for some (small) matrix Y . The dimension of UM is given by

N = m1 +·· ·+mM ,

which can be – depending on m – significantly larger than M , the dimension of VM . Similarly

to the discussion in Section 6.1 on the applicability of global bases as they increase in size, it is

imperative to keep the dimensionality of UM under control. To attain a smaller value for N ,

while building the basis U , we repeatedly apply column compressions to matrix LM using the

truncated singular value decomposition (SVD) with relative truncation tolerance tolcompr.

The offline phase is stopped either after the maximum number of iterations Mmax or when a

satisfactory level of accuracy has been attained:

ΔM (μ) < εLRRB, ∀μ ∈ D,

where ΔM (μ) are the error estimates to be defined in Section 6.2.3 and εLRRB is the prescribed

absolute tolerance on the values of error estimates.

6.2.2 Low-rank structure in the online phase

The online phase proceeds as described in Section 2.3.4, with the subspace VM replaced by

UM ⊗UM . In view of (2.35) and (6.7), this means that we have to solve the compressed linear

system

((U ⊗U )T A (μ)(U ⊗U ))y(μ) = (U ⊗U )T b,
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which is equivalent to solving the compressed Lyapunov equation

−Ã(μ)Y (μ)Ẽ − ẼY (μ)Ã(μ) = B̃ B̃ T , (6.8)

with Ã(μ) =U T A(μ)U , Ẽ =U T EU and B̃ =U T B for the unknown Y (μ) ∈RN×N . As indicated

in Section 2.2.2, (6.8) can be efficiently solved in O(N 3) operations using the Bartels-Stewart

algorithm [BS72]. The approximate solution of (6.5) is then obtained as

X̃ (μ) =U Y (μ)U T . (6.9)

The compressed matrices Ã(μ) and Ẽ inherit the negative/positive definiteness from A(μ) and

E , respectively. Hence, both Y (μ) and X̃ (μ) are guaranteed to stay positive semidefinite, in

contrast to the approximate solutions obtained using the plain RB method.

To setup the Lyapunov equation (6.8) efficiently, we use the affine linear decomposition of

A(μ) to obtain:

Ã(μ) =U T A(μ)U = θ1(μ)U T A1U + . . .+θQ (μ)U T AQU .

Again, the precomputation of U T AqU for q = 1, . . . ,Q, as well as U T EU and U T B , allows us

to reduce the complexity to O(QN 2) for constructing the coefficient matrices and O(N 3) for

solving (6.8).

6.2.3 Low-rank structure in the error estimator

The computation of the error estimates proceeds as described in Section 2.3.5, with the

approximate solution x̃(μ) = V y(μ) replaced by x̃(μ) = (U⊗U )vec(Y (μ)) which can be reshaped

as X̃ (μ) in (6.9). For a fixed parameter sample μ ∈ D , the Frobenius norm of the residual

R(μ) = BB T + A(μ)X̃ (μ)E +E X̃ (μ)A(μ)

can be computed as

‖R(μ)‖2
F = (

b −A (μ)x̃(μ)
)T (b −A (μ)x̃(μ)

)
= bT b −2bT A (μ)(U ⊗U )vec(Y (μ))

+vec(Y (μ))T(U ⊗U )TA (μ)A (μ)(U ⊗U )vec(Y (μ)).
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Again, by taking the affine linear decomposition of A(μ) into account we obtain

‖R(μ)‖2
F = tr

(
(B TB)(B TB)

)
+4

Q∑
q=1

θq (μ)tr
(
(B TEU )Y (μ)(U T Aq B)

)
+2

Q∑
q1,q2=1

θq1 (μ)θq2 (μ)tr
(
Y (μ)(U T Aq2 Aq1

U )Y (μ)(U TEEU )
)

+2
Q∑

q1,q2=1
θq1 (μ)θq2 (μ)tr

(
Y (μ)(U T Aq1 EU )Y (μ)(U T Aq2 EU )

)
,

(6.10)

where tr(·) denotes the trace of the corresponding matrix.

Having precomputed B TEU , U T Aq B , U T Aq EU , U TEEU and U T Aq2 Aq1U for q, q1, q2 = 1, . . . ,Q

then allows us to attain a complexity of O(Q2N 3) for computing ‖R(μ)‖F .

The difference to the true solution X (μ) of the Lyapunov equation (6.5) in the Frobenius norm

can be estimated as

‖X (μ)− X̃ (μ)‖F ≤ ‖R(μ)‖F

λmin(A (μ))
≤ ‖R(μ)‖F

λLB(μ)
=: Δ(μ), μ ∈ D, (6.11)

where λLB(μ) is a positive lower bound for λmin(A (μ)). Here, using the Frobenius norm is

suitable because it allows efficient computation of such lower bounds λLB(μ). The eigenvalue

properties of the Kronecker product and the minimax characterization of eigenvalues yield

the following lower bound on λmin(A (μ)):

λmin(A (μ)) = min
v∈Rn2

vT (−A(μ)⊗E −E ⊗ A(μ))v

vT v

≥ min
v∈Rn2

vT (−A(μ)⊗E)v

vT v
+ min

v∈Rn2

vT (−E ⊗ A(μ))v

vT v

= 2λmin(E)λmin(−A(μ)) ≥ 2λmin(E)λLB(−A(μ)) =: λLB(μ), (6.12)

where λLB(−A(μ)) denotes a positive lower bound for the smallest eigenvalue of the symmetric

positive definite n × n matrix −A(μ), which can be efficiently computed either using SCM

(Algorithm 2) or the subspace-accelerated SCM (Algorithm 3).

6.3 Algorithm

In this section, we present a summary, in form of Algorithm 10, of our low-rank reduced basis

approach for Lyapunov equations introduced in Section 6.2 and discuss its implementation

and computational complexity.
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Algorithm 10 Offline phase of the Low-rank Reduced Basis method for Lyapunov equations

Input: Training set Ξ⊂ D, E ∈Rn×n ,B ∈Rn×m affine linear decomposition such that A(μ) =
θ1(μ)A1 +·· ·+θQ (μ)AQ ∈Rn×n is symmetric negative definite for every μ ∈Ξ. Error toler-
ance εLRRB.

Output: Reduced model for computation λLB (μ) produced by Algorithm 3 and a low-rank
basis U for Cholesky factors such that Δ(μ) < εLRRB for every μ ∈Ξ.

1: Compute λmin(E).
2: Use Algorithm 3 to compute λmin(−A(μ)) for all μ ∈ Ξ, as well as a reduced model for

evaluating λmin(−A(μ)) on D .
3: Compute λLB(μ) according to (6.12) for all μ ∈Ξ.
4: Set M = 0 and μmax to be a randomly chosen element of Ξ.
5: while ΔM (μmax) > εLRRB do
6: μM+1 ←μmax

7: Compute L(μM+1) by solving (6.6) for μ=μM+1.
8: Set UM+1 = UM + range(L(μM+1)) and update the truncated orthonormal basis U .
9: Set M ← M +1.

10: Update the projected matrices U T AqU ,U TEU ,U TB ,B TEU , U T Aq B , U T Aq EU , U TEEU
and U T Aq2 Aq1U for q, q1, q2 = 1, . . . ,Q.

11: for μ ∈Ξ do
12: if CsatΔM (μ) <Δmax then
13: Exit the for loop.
14: end if
15: Recompute Y (μ) according to (6.8).
16: Recompute ‖R(μ)‖F according to (6.10).
17: Recompute ΔM (μ) according to (6.11).
18: Update Δmax and μmax.
19: end for
20: end while
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6.3. Algorithm

6.3.1 Computational details

In the following we discuss some details of an efficient implementation of Algorithm 10.

Computation of λLB(μ). Computation of a lower bound for λmin(A (μ)) requires estimating

λmin(−A(μ)) on D . As previously mentioned, we can use Algorithm 2 or Algorithm 3 to

compute non-negative lower bounds on the whole parameter domain. In our imple-

mentation, we use Algorithm 3 with the same training set Ξ, and the number of sampled

eigenpairs � set to 1. In contrast to Section 3.5, we set the prescribed tolerance εSCM

to 0.1, since computing more accurate estimates to λmin(−A(μ)) will not significantly

affect the values of the error estimates (6.11). The rest of the settings is as described in

Section 3.5.

Updating U . Suppose that we are given the truncated SVD of LM =UΣV T from the previous

iteration, where Σ= diag(σ1, . . . ,σN ). Given the new low-rank Cholesky factor L(μM+1) ∈
Rn×mM+1 , LM+1 can be written in the following form

LM+1 = [UΣV T ,L(μM+1)] =
[
U L(μM+1)

][Σ
ImM+1

][
V T

ImM+1

]
.

The SVD of LM+1 can now be efficiently computed by first computing the QR decom-

position of [U ,LM+1] = QU RU , followed by computing the SVD decomposition of the

matrix RU

[
Σ

ImM+1

]
, and computing the updated matrices U and V in the end. The

QR decomposition and the updated matrices U and V can be computed in O(nN 2),

while computing SVD requires O(N 3) operations, resulting in the total computational

cost of O(nN 2 + N 3). Finally, the obtained singular value decomposition is compressed

by truncating the singular values σi such that σi /σ1 < tolcompr.

Updating the projected matrices. Before computing the projected matrices in line 10 of Algo-

rithm 10, it is preferable to first form the products A1U , . . . , AQU ,EU , which can be done

in O(n2N ) operations. This allows computation of the projected matrices in O(Q2N 2n)

operations, resulting in the total computational cost of O(Qn2N +Q2N 2n).

Computation of the next parameter sample μM+1. The next parameter sample μM+1 is com-

puted as the maximizer of the error estimate (6.11) on Ξ. In every iteration, this requires

recomputing the approximate solution Y (μ) and the residual norm ‖R(μ)‖F on the

whole training set Ξ, which can become computationally quite expensive. As described

in Remark 2.17, the search for μM+1 (lines 11–19 in Algorithm 10) can be optimized using

the saturation assumption (2.38), which combined with the error estimates from the

previous iteration often allows us to skip recomputations for a number of points in Ξ.

Moreover, as in Remark 2.17, we denote with Δmax and μmax the current maximum error

estimate and the point in Ξ where it was attained, respectively. In the implementation,

we have worked with Csat = +∞ in the first five iterations of Algorithm 10, and with

Csat = 1 in the following iterations.
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Chapter 6. Low-rank approach to parameter dependent symmetric Lyapunov equations

Computation of L(μ). For computing the low-rank Cholesky factor L(μ), it is preferable to

use a method which computes the low-rank factor of the solution directly and is also

able to exploit sparsity in A(μ) and E . One of such approaches is Algorithm 9 in Chap-

ter 5 which seems to be very competitive for solving Lyapunov equations with low-rank

right-hand side (see Example 5.13). As previously discussed in Section 2.2.2, the al-

ternatives include the approaches based on the ADI method [Pen00] or the extended

Arnoldi method [Sim07], which often compute an accurate approximation in only a few

iterations, where each iteration consists of solving a linear system with shifted matrices

A(μ)−τE . In our implementation, we have used the implementation by Stykel of the

Generalized low-rank ADI method, which was already discussed in Remark 2.14.

6.3.2 Computational complexity

In addition to the computational cost of Algorithm 3 which is discussed in Section 3.4.3, the

computational cost of performing M iterations of Algorithm 10 is

O
(
MkLYAPmcLS + MQN n2+ M(N 3 +Q2N 2n)+ M‖Ξ‖(N 3 +Q2N 3)

)
,

where N is the number of columns in U , and ‖Ξ‖ is the number of elements in Ξ.

The first term O
(
MkLYAPmcLS

)
corresponds to the computational cost of solving M Lyapunov

equations for the sampled parameters values, where kLYAP is the number of iterations in the

Lyapunov solver, and cLS is the computational cost of solving one linear system with a shifted

matrix A(μ)−τE . For example, if A(μ) and E are sparse with bandwidth ρ, cLS can be estimated

at a cost of O
(
nρ2

)
, which corresponds to the computational cost of computing sparse LU

factorization for A(μ)−τE . The second term O
(
MQN n2

)
corresponds to the computational

cost of computing products AiU and EU in each iteration, while the third term O
(
M 3 +

MQ2N 2n
)

corresponds to the computational cost of computing U and the projected matrices

in line 10 of Algorithm 10. The fourth term O
(
M‖Ξ‖N 3

)
corresponds to the computational cost

of computing the approximate solutions Y (μ), while the fifth term O
(
M‖Ξ‖Q2N 3

)
corresponds

to the computational cost of computing the error estimates (the residual norms ‖R(μ)‖F )

throughout the iterations.

It is important to note that the contributions to the obtained computational cost of n and

‖Ξ‖ are independent, so both can be chosen large if necessary. Moreover in practice, as

explained in Section 6.3.1, by assuming the saturation assumption, we can expect reduced

contributions of the fourth and the fifth term to the overall complexity, since, for a fixed μ ∈Ξ,

the approximate solution Y (μ) and ‖R(μ)‖F do not have to be recomputed in every iteration,

but rather only a few times throughout the execution.

In the online phase, the computational cost for calculating the approximate solution of the

Lyapunov equation and the accompanying error estimator is O(QN 2 + N 3) and O(Q2N 3),

respectively, and thus independent of n.
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Defining the lower bound λLB(μ) as in (6.12) is very important, since using Algorithm 3 to

estimate the smallest eigenvalues of A(μ) is significantly cheaper than to estimate the smallest

eigenvalues of A (μ), as the most computationally demanding part of Algorithm 3 is usually

the computation of exact eigenpairs, which depends on the matrix size.

Remark 6.1. The attained level of accuracy in Algorithm 10 clearly depends on the truncation

tolerance tolcompr used in the truncated SVD. Therefore, tolcompr needs to be chosen in accor-

dance with εLRRB. However, choosing a very small value for tolcompr may result in large values

of N and, thus, lead to high computational costs.

6.4 Numerical examples

In this section, we present several numerical experiments to illustrate the properties of the

low-rank RB method, given in Algorithm 10 and described in Section 6.2. Algorithms 3 and 10

have been implemented and tested in the same computing environment already described in

Section 3.5.

We present convergence of the maximum error estimate (6.11) and evolution of the ranks of

U , both with respect to the number of iterations and with respect to the execution time (in

seconds). Additionally, we simulate the online phase of RB method, where we compute the

error estimates and the exact error for the computed approximate solutions of the Lyapunov

equation (6.5) at 100 randomly selected parameter values that do not belong to Ξ.

When implementing and testing Algorithm 10, we have made the following choices. We set

the error tolerance to εLRRB = 10−4, the maximum number of iterations to Mmax = 25 and the

surrogate set Ξ to be a random subset of D containing 1000 elements. The exact Cholesky

factors L(μi ) have been computed with the tolerance set to 10−10. For running Algorithm 3,

we have used the same training set Ξ.

Example 6.2. We consider the parameter-dependent Lyapunov equation associated with an

example from [KT11, Section 4]. The matrices E , A(μ) ∈Rn×n arise as the stiffness and the mass

matrix, respectively, from the finite element discretization of a stationary heat equation on a

square domain Ω containing d disjoint discs, as shown in Figure 6.1. The heat conductivity

coefficient in each of these discs is governed by a parameter μ(q); thus A(μ) depends on d

parameters and can be written as

A(μ) = A1 +
d∑

q=1
μ(q) Aq+1, ∀μ ∈ D,

with A1, . . . , Ad+1 the discretizations of the Laplace operator on each of the subdomains. Each

of the parameters μ( j ) is assumed to be in the interval [0.1,10], resulting in D = [0.1,10]d . The

training set Ξ is chosen as a random subset of D consisting of 1000 parameter samples. We have

set the truncation tolerance for the truncated SVD to tolcompr = 10−8.

Figure 6.2 shows the performance of Algorithm 10 for the case d = 1. For this example, only
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one iteration of Algorithm 3 is sufficient to provide reliable lower bounds for the smallest

eigenvalue of A(μ). The ranks of the exact Cholesky factors L(μ) are approximately equal to 20

for all sampled μi , giving mi = 20, while after M = 4 iterations, the dimension of the resulting

subspace (after truncation) UM is N = 53. The error estimates and the exact error for the

computed approximate solutions of the Lyapunov equation (6.5) at 100 randomly selected

parameter values that do not belong to Ξ can be seen in Figure 6.2c.

We have also considered a more challenging version of the problem with d = 4, where n = 1580,

and presented the results in Figure 6.3. For this example, Algorithm 3 converges in 10 iterations,

the rank of Cholesky factors is approximately 25, which, after the maximum M = 25 iterations,

results in U of dimension 198. Even though the desired tolerance of 10−4 in Algorithm 10 has

not been reached, the true errors evaluated for 100 randomly selected parameter samples in

D are all below the prescribed tolerance, as can be seen in Figure 6.3c. In order to attain the

prescribed tolerance in the error estimates, it is necessary either to increase the allowed number

of iterations, or to reduce the truncation tolerance tolcompr = 10−8. However, based on the fact

that the ranks of U are starting to stagnate after around 20 iterations, increasing the number

of iterations would probably not help, which indicates the need for a smaller value of tolcompr

than 10−8.

Motivated by the increasing computational cost of Algorithm 10 as rank(U ) = N gets larger, in

the following, we additionally consider a slightly modified version of Algorithm 10. Instead of

constructing a single basis U for UM with tolcompr = 10−8, we construct two bases, U and Ũ ,

with tolcompr = 10−4 and tolcompr = 10−8, respectively. The basis U is used as before, for the error

estimation in the offline phase (Algorithm 10), while Ũ is used later for computing approximate

solutions in the online phase. This approach can be considered as heuristic, since there is no

guarantee that Ũ ⊗Ũ is a notably better solution space than U ⊗U . In practice, as we can see

from the results presented in Figure 6.4, this modification leads to a decrease in ranks of U ,

resulting in a significant reduction in the execution time, while the accuracy in the online phase

appears to be unaffected. Basis Ũ has approximately equal rank, and provides roughly the same

accuracy level as does U which was constructed with tolcompr = 10−8 and shown in Figure 6.3c.

Further investigation of this or a similar idea may be interesting for future research.

6.5 Conclusion

We have developed a low-rank version of the reduced basis method for solving parameter-

dependent symmetric Lyapunov equations.

We have modified the reduced basis method in a way that the low-rank Cholesky factors are

sampled instead of sampling the vectorized solutions of size n2 ×1. Consequently, the solution

subspace UM is constructed as the range of the concatenated sampled low-rank Cholesky

factors. This modification leads to computation of an approximate solution X̃ (μ) inside the

tensorized product UM ⊗UM , which not only improves accuracy, but also guarantees that

X̃ (μ) is positive semidefinite for all μ ∈ D. Moreover, we have shown that, by computing a
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Figure 6.1: Finite element mesh used in Example 6.2.
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Figure 6.2: The performance of Algorithm 10 for Example 6.2 with d = 1.

posteriori error estimates in the Frobenius norm, estimation of the smallest eigenvalue of

a n2 × n2 matrix A (μ) can be avoided. Instead, it is sufficient to compute a positive lower

bound for the smallest eigenvalues of A(μ) ∈Rn×n . Furthermore, by incorporating low-rank

truncation, we have mitigated the growth in dim(UM ).

The resulting solver, Algorithm 10, is demonstrated to perform well for a problem that has

been discussed earlier in the literature. However, for more challenging problems which require

even larger values of dim(UM ), repeated computation of approximate solutions (2.35) might

become a bottleneck. For such cases, we propose a heuristic approach where the sampling

is driven by error estimates based on a coarser approximation to UM , whereas a finer one is

used to compute approximate solutions in the online phase.
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Figure 6.3: The performance of Algorithm 10 for Example 6.2 with d = 4.
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Figure 6.4: The performance of a modified version of Algorithm 10 with two orthonormal basis,
U and Ũ , for UM , as described in Example 6.2 with d = 4.
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7 Conclusion

In this thesis, we have discussed the development of efficient algorithms for two numerical

linear algebra problems arising in model reduction, estimation of the smallest eigenvalues of a

parameter-dependent matrix, and solving linear matrix equations. The following contributions

have been made.

In Chapter 3, we have presented new theoretical results about the existing state-of-the-art

approach for estimating the smallest eigenvalues of a parameter-dependent Hermitian matrix

A(μ), the Successive Constraint Method (SCM), which indicate its limitations and explain the

slow convergence often observed in practice. We have demonstrated that these issues can

be overcome by additionally incorporating subspace acceleration techniques, which implic-

itly exploit regularity in the smallest eigenvectors, resulting in a per iteration computational

cost which is only slightly larger than in SCM. We have shown that our proposed subspace-

accelerated approach (Algorithm 3) has better interpolation properties than SCM, with both

subspace bounds interpolating the partial derivatives of λmin(A(μ)). Furthermore, if A(μ) is an-

alytic and d = 1, we present results which indicate that we can expect exponential convergence

of Algorithm 3 on intervals where λmin(A(μ)) stays simple. These improved theoretical proper-

ties of Algorithm 3 are reflected in the numerical experiments, where Algorithm 3 presents a

significant improvement over SCM, both in terms of iterations and the total computational

time, on a number of numerical examples from the literature. We have successfully applied

our approach to the estimation of coercivity and inf-sup constants. We have observed that

for problems with small gaps between the smallest eigenvalues and a large variation in the

parameter space the convergence of the subspace lower bounds may still not be satisfactory

and for such cases we propose a heuristic approach using residual-based lower bounds.

In Chapter 4, we have shown that the singular value problem σmin(zI − A) can be recasted into

a Hermitian eigenvalue problem linearly depending on two real parameters. As parameter-

dependent Hermitian eigenvalue problems can be successfully addressed using Algorithm 3,

this motivates the development of a novel projection-based approach (Algorithm 4) for compu-

tation of ε pseudospectra, which builds upon Algorithm 3 by additionally taking into account

the specific problem structure and demands for high absolute accuracy. This requires several

modifications in order to make Algorithm 4 computationally efficient and competitive to
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other existing approaches, such as making the residual computation more numerically stable,

accelerating the computation of the lower bounds, and introducing a "warm start" strategy.

The new approach is particularly suited for computation of ε-pseudospectra in isolated parts

of the spectrum, containing only few eigenvalues of A. Additionally, we have shown that the

interpolation results from Chapter 3 naturally extend to the proposed singular value bounds,

allowing us to provide a priori error estimates. We have compared the performance of Algo-

rithm 4 to other existing approaches on a number of examples discussed in the literature. For

larger values of n, the approximation of pseudospectra using Algorithm 4 is significantly faster

than by using the straightforward grid-based evaluation, while providing satisfactory accuracy.

In comparison to other projection-based approaches, Algorithm 4 provides higher relative ac-

curacy w.r.t. to the subspace size, especially in the proposed upper bounds σSUB(x, y ;S ,�), as

well as the rigorous error estimates. Moreover, to our knowledge, it is the first approach which

provides certified upper bounds for ε-pseudospectra, enabling localization of eigenvalues.

In Chapter 5, we have developed a novel low-rank approach (Algorithm 9) based on greedy

low-rank updates for addressing large-scale linear matrix equations whose solution can be

well approximated with a low-rank matrix. Furthermore, the greedy low-rank updates in

Algorithm 9 are combined with Galerkin projection and preconditioning strategies in order to

ensure satisfactory convergence speed. The performance of our approach is further optimized

by incorporating low-rank truncation and a restarting strategy. We have demonstrated that

our solver, Algorithm 9, performs quite well for problems that have been discussed earlier in

the literature, especially those for which the imposed limit on the subspace size is not reached.

For more challenging problems that feature larger ranks, the need for constructing and solving

the Galerkin systems may become a bottleneck.

In Chapter 6, we have developed a low-rank version of the reduced basis method for solving

parameter-dependent symmetric Lyapunov equations (Algorithm 10). Instead of sampling the

vectorized solutions of size n2 ×1 as in the standard reduced basis method, in Algorithm 10

the low-rank Cholesky factors are sampled, and consequently, the solution subspace UM

is constructed as the range of the concatenated sampled low-rank Cholesky factors. The

approximate solutions X̃ (μ) are computed inside the tensorized product UM ⊗UM , which

not only improves accuracy, but also guarantees that X̃ (μ) is symmetric positive semidefinite

for all μ ∈ D. Moreover, we have shown that, by computing a posteriori error estimates in

the Frobenius norm, the estimation of the smallest eigenvalue of the n2 ×n2 operator matrix

can be avoided. Instead, it is sufficient to compute a positive lower bound for the smallest

eigenvalues of A(μ) ∈Rn×n , which can be done efficiently using Algorithm 3. Furthermore, by

incorporating low-rank truncation, we have mitigated the growth in dim(UM ). The resulting

solver, Algorithm 10, is demonstrated to perform well for a problem that has been discussed

earlier in the literature.
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[GK14] Luka Grubišić and Daniel Kressner, On the eigenvalue decay of solutions to oper-

ator Lyapunov equations, Systems Control Lett. 73 (2014), 42–47. MR 3270953

142



Bibliography

[GLAM92] J. D. Gardiner, A. J. Laub, J. J. Amato, and C. B. Moler, Solution of the Sylvester

matrix equation AX B T +C X DT = E , ACM Trans. Math. Software 18 (1992), no. 2,

223–231. MR 1167892

[GMM+15] F. Gong, O. Meyerson, J. Meza, M. Stoiciu, and A. Ward, Explicit bounds for

the pseudospectra of various classes of matrices and operators, arXiv preprint

arXiv:1505.05931 (2015).

[GO11] N. Guglielmi and M. L. Overton, Fast algorithms for the approximation of the

pseudospectral abscissa and pseudospectral radius of a matrix, SIAM J. Matrix

Anal. Appl. 32 (2011), no. 4, 1166–1192. MR 2854608

[GS98] S. K. Godunov and M. Sadkane, Computation of pseudospectra via spectral

projectors, Linear Algebra Appl. 279 (1998), no. 1-3, 163–175. MR 1637865

(99i:65046)

[Han08] A. C. Hansen, On the approximation of spectra of linear operators on Hilbert

spaces, J. Funct. Anal. 254 (2008), no. 8, 2092–2126. MR 2402104 (2009c:47004)

[Han15] A. Hannukainen, Convergence analysis of GMRES for the Helmholtz equation via

pseudospectrum, arXiv preprint arXiv:1505.08072 (2015).

[Hau19] F. Hausdorff, Der Wertvorrat einer Bilinearform, Math. Z. 3 (1919), no. 1, 314–316.

MR 1544350

[HDO11] B. Haasdonk, M. Dihlmann, and M. Ohlberger, A training set and multiple bases

generation approach for parameterized model reduction based on adaptive grids

in parameter space, Math. Comput. Model. Dyn. Syst. 17 (2011), no. 4, 423–442.

MR 2823471

[Hig08] N. J. Higham, Functions of matrices, SIAM, Philadelphia, PA, 2008.

[HKC+10] D. B. P. Huynh, D. J. Knezevic, Y. Chen, J. S. Hesthaven, and A. T. Patera, A natural-

norm successive constraint method for inf-sup lower bounds, Comput. Methods

Appl. Mech. Engrg. 199 (2010), no. 29-32, 1963–1975. MR 2654002 (2011e:65085)

[HKL15] H. Hakula, V. Kaarnioja, and M. Laaksonen, Approximate methods for stochastic

eigenvalue problems, Appl. Math. Comput. 267 (2015), 664–681. MR 3399080

[HNPR10] D. B. P. Huynh, N. C. Nguyen, A. T. Patera, and G. Rozza, rbMIT software [Soft-

ware], 2010, MIT, Cambridge, US.

[Hoc01] M. E. Hochstenbach, A Jacobi-Davidson type SVD method, SIAM J. Sci. Comput.

23 (2001), no. 2, 606–628, Copper Mountain Conference (2000).

[HR92] D. Y. Hu and L. Reichel, Krylov-subspace methods for the Sylvester equation,

Linear Algebra Appl. 172 (1992), 283–313.

143



Bibliography

[HR00] C. Helmberg and F. Rendl, A spectral bundle method for semidefinite program-

ming, SIAM J. Optim. 10 (2000), no. 3, 673–696. MR 1741192 (2002b:90095)

[HRS16] J. S. Hesthaven, G. Rozza, and B. Stamm, Certified reduced basis methods for

parametrized partial differential equations, SpringerBriefs in Mathematics,

Springer, Cham; BCAM Basque Center for Applied Mathematics, Bilbao, 2016,

BCAM SpringerBriefs. MR 3408061

[HRSP07] D. B. P. Huynh, G. Rozza, S. Sen, and A. T. Patera, A successive constraint linear

optimization method for lower bounds of parametric coercivity and inf-sup

stability constants, C. R. Math. Acad. Sci. Paris 345 (2007), no. 8, 473–478. MR

2367928 (2008j:93061)

[HS95] M. Hochbruck and G. Starke, Preconditioned Krylov subspace methods for Lya-

punov matrix equations, SIAM J. Matrix Anal. Appl. 16 (1995), no. 1, 156–171.

MR 1311424 (95k:65045)

[HSBTZ13] C. Hartmann, B. Schäfer-Bung, and A. Thöns-Zueva, Balanced averaging of

bilinear systems with applications to stochastic control, SIAM J. Control Optim.

51 (2013), no. 3, 2356–2378.

[HSZ14] J. S. Hesthaven, B. Stamm, and S. Zhang, Efficient greedy algorithms for high-

dimensional parameter spaces with applications to empirical interpolation and

reduced basis methods, ESAIM Math. Model. Numer. Anal. 48 (2014), no. 1,

259–283. MR 3177844

[Joh78] C. R. Johnson, Numerical determination of the field of values of a general complex

matrix, SIAM J. Numer. Anal. 15 (1978), no. 3, 595–602. MR 0474755

[Joh89] , A Gersgorin-type lower bound for the smallest singular value, Linear

Algebra Appl. 112 (1989), 1–7. MR 976325 (90a:15022)

[Kat95] T. Kato, Perturbation theory for linear operators, Classics in Mathemat-

ics, Springer-Verlag, Berlin, 1995, Reprint of the 1980 edition. MR 1335452

(96a:47025)

[KM06] Y. Kim and M. Mesbahi, On maximizing the second smallest eigenvalue of a

state-dependent graph Laplacian, IEEE Trans. Autom. Control 51 (2006), no. 1,

116–120. MR 2192798 (2006g:05128)

[KMMM15] F. Kangal, K. Meerbergen, E. Mengi, and W. Michiels, A subspace method for large

scale eigenvalue optimization, arXiv preprint arXiv:1508.04214 (2015).

[Kny01] A. V. Knyazev, Toward the optimal preconditioned eigensolver: Locally optimal

block preconditioned conjugate gradient method, SIAM J. Sci. Comput. 23 (2001),

no. 2, 517–541. MR MR1861263 (2003g:65050)

144



Bibliography

[KPT14] D. Kressner, M. Plešinger, and C. Tobler, A preconditioned low-rank CG method

for parameter-dependent Lyapunov matrix equations, Numer. Linear Algebra

Appl. 21 (2014), no. 5, 666–684. MR 3266228

[Kre14] D. Kressner, Lectures notes in computational linear algebra, 2014.
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