Low-rank methods for parameter-dependent eigenvalue
problems and matrix equations

THESE N° 7137 (2016)

PRESENTEE LE 2 SEPTEMBRE 2016
A LA FACULTE DES SCIENCES DE BASE
ALGORITHMES NUMERIQUES ET CALCUL HAUTE PERFORMANCE - CHAIRE CADMOS
PROGRAMME DOCTORAL EN MATHEMATIQUES

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Petar SIRKOVIC

acceptée sur proposition du jury:

Prof. F. Nobile, président du jury
Prof. D. Kressner, directeur de thése
Prof. Z. Drmac, rapporteur
Prof. E. Mengi, rapporteur
Prof. J. Hesthaven, rapporteur

(Pr

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Suisse
2016






Acknowledgements

This thesis is based on my research conducted from September 2012 to May 2016 at EPFL and
during a research stay at Virginia Tech University in March 2014.

First of all, I would like to thank my thesis advisor, Prof. Daniel Kressner, for giving me
this opportunity, guiding me through my PhD studies with a lot of helpful and constructive
comments and suggestions, as well as teaching me how to write scientific texts. I have learned
a lot from him, both scientifically as well as about the academic community in general.

Furthermore, I would like to thank the members of my PhD commitee, Prof. Zlatko Drmac,
Prof. Jan Hesthaven, Prof. Fabio Nobile and in particular Prof. Emre Mengi for his detailed and
constructive comments on the thesis.

Likewise, I would like to express my gratitude to Prof. Mark Embree, and Prof. Serkan Gugercin
for their hospitality and help during my stay at Virginia Tech, as well as for the many encourag-
ing and insighful scientific discussions.

Financial support by the Swiss National Science Foundation under the SNSF research module
A Reduced Basis Approach to Large-Scale Pseudospectra Computations within the ProDoc
Efficient Numerical Methods for Partial Differential Equations is thankfully acknowledged.

I'would also like to thank all of my colleagues, fellow PhD students at EPFL, and in particular
my officemates Agnieszka, Ana, Cedric, Christine, Michael, for all the discussions and laughs,
both work and non-work related. I am especially grateful to Annick, Christine, and Jonas for
being real friends who were there for me in times of need, and Michael for being an older
"scientific" brother and paving the way for me. Moreover, I want to thank all of my friends
in Lausanne, in particular Alberto, Amos, Maja, Marie, Marko, Momchil, and Viljami, as well
as all the friends in Zagreb, for all the support and fun we had together during the past years,
which has recharged my emotional batteries on numerous occasions.

Finally, I want to thank my family for their unconditional support and love throughout the
years, Katarina for showing me that true love is just as mathematics, based on understanding
which makes things simple, rather than complicated, and in particular Ana for keeping up
with me on a daily basis and being there for me in some of the hardest moments of my life.

Lausanne, July 2016 PS.






Abstract

The focus of this thesis is on developing efficient algorithms for two important problems
arising in model reduction, estimation of the smallest eigenvalue for a parameter-dependent
Hermitian matrix and solving large-scale linear matrix equations, by extracting and exploiting
underlying low-rank properties.

Availability of reliable and efficient algorithms for estimating the smallest eigenvalue of a
parameter-dependent Hermitian matrix A(y) for many parameter values p is important in
a variety of applications. Most notably, it plays a crucial role in a posteriori estimation of
reduced basis methods for parametrized partial differential equations. We propose a novel
subspace approach, which builds upon the current state-of-the-art approach, the Succes-
sive Constraint Method (SCM), and improves it by additionally incorporating the sampled
smallest eigenvectors and implicitly exploiting their smoothness properties. Like SCM, our
approach also provides rigorous lower and upper bounds for the smallest eigenvalues on the
parameter domain D. We present theoretical and experimental evidence to demonstrate that
our approach represents a significant improvement over SCM in the sense that the bounds
are often much tighter, at a negligible additional cost. We have successfully applied the ap-
proach to computation of the coercivity and the inf-sup constants, as well as computation of
e-pseudospectra.

Solving an m x n linear matrix equation A; XB] +---+ AxXBL = C as an mn x mn linear
system, typically limits the feasible values of m, n to a few hundreds at most. We propose a
new approach, which exploits the fact that the solution X can often be well approximated by a
low-rank matrix, and computes it by combining greedy low-rank techniques with Galerkin
projection as well as preconditioned gradients. This can be implemented in a way where only
linear systems of size m x m and n x n need to be solved. Moreover, these linear systems inherit
the sparsity of the coefficient matrices, which allows to address linear matrix equations as large
as m = n = 0(10%). Numerical experiments demonstrate that the proposed methods perform
well for generalized Lyapunov equations, as well as for the standard Lyapunov equations.

Finally, we combine the ideas used for addressing matrix equations and parameter-dependent
eigenvalue problems, and propose a low-rank reduced basis approach for solving parameter-
dependent Lyapunov equations.

Keywords: parameter-dependent problems, Hermitian eigenvalue problem, linear matrix
equations, low-rank structure, subspace acceleration, greedy low-rank, pseudospectra compu-
tation, reduced basis method, Lyapunov equation
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Zusammenfassung

Der Fokus dieser Arbeit liegt auf der Entwicklung effizienter Algorithmen fiir zwei wichtige
Probleme im Bereich der Modellreduktion: der Schitzung des kleinsten Eigenwertes fiir eine
parameterabhdngige hermitische Matrix sowie der Losung von grossskaligen linearen Matrix-
gleichungen durch die Ausnutzung zugrunde liegender Niedrigrangeigenschaften.

Die Verfiigbarkeit von verldsslichen und effizienten Algorithmen zur Schitzung des kleinsten
Eigenwerts einer parameterabhingigen hermitischen Matrix A(u) fiir viele Parameterwerte u
aus einem Gebiet D c R” ist fiir eine Vielzahl von Anwendungen von Bedeutung. Insbeson-
dere spielen diese eine wichtige Rolle in a posteriori Abschdtzungen von Reduzierte-Basis-
Methoden fiir parametrisierte partielle Differentialgleichungen. Wir schlagen hier einen neuen
Zugang liber Unterrdume vor, der auf der Successive Constraint Method (SCM) aufbaut und
diese durch die zusétzliche Beriicksichtigung von kleinsten Eigenvektoren aus einer Stich-
probe verbessert, wobei gleichzeitg deren Glattheitseigenschaften ausgenutzt werden. Wie
bei SCM ergeben sich aus unserem Zugang untere und obere Schranken fiir den kleinsten
Eigenwert auf dem Parametergebiet D. Mittels einer theoretischen Analyse und durch nume-
rische Experimente zeigen wir, dass unser Zugang eine signifikante Verbesserung zur SCM
darstellt, der unter geringfiigig hoheren Kosten oft weitaus engere Schranken erméglicht. Wir
haben unseren neuen Zugang sowohl erfolgreich auf die Berechnung der Koerzitivitits- und
der inf-sup-Konstante wie auch auf die Berechnung von e-Pseudospektren angewendet.

Die Losung einer m x n linearen Matrixgleichung A; X BlT +---+Ax XB I? = C als lineares System
der Grésse mn x mn beschriankt die moglichen Werte fiir m, n oft auf maximal einige Hunderte.
Wir schlagen hier einen neuen Zugang vor, der ausnutzt, dass die Losung X oft sehr gut
durch eine Niedrigrangmatrix approximiert werden kann. Wir berechnen diese Approximation
durch eine Kombination von greedy Niedrigrangtechniken, einer Galerkin-Projektion und
vorkonditionierten Gradienten. Unser Zugang ist so implementiert, dass nur lineare Systeme
der Grosse m x m und n x n gelost werden miissen. Ausserdem erben diese linearen Systeme
die Diinnbesetztheit der Koeffizientenmatrizen, so dass auch Matrixgleichungen der Grosse
m=n=0(10° gelost werden konnen. Unsere numerischen Experimente zeigen, dass sich die
vorgeschlagene Methode sehr gut fiir verallgemeinerte Lyapunov-Gleichungen wie auch fiir
den Standardfall nutzen ldsst.

Zuletzt kombinieren wir unsere Ideen zu Matrixgleichungen und parameterabhingigen Eigen-
wertproblemen und schlagen eine Niedrigrang-Reduzierte-Basis-Methode zur Lésung para-
meterabhingiger Lyapunov-Gleichungen vor.
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|§ Introduction

This thesis is concerned with extracting and exploiting the low-rank structure in two problems
arising in model reduction. More specifically, we aim at developing efficient algorithms
for estimating the smallest eigenvalues of a parameter-dependent matrix as well as solving
large-scale matrix equations.

In the first part of the thesis, we focus on parameter-dependent eigenvalue problems, present
several applications, and discuss various approaches to address them. In Chapter 3, we
present a novel subspace-accelerated approach for parameter-dependent Hermitian eigen-
value problem and show how it can be used for estimating coercivity and inf-sup constants.
This approach is further optimized for computation of e-pseudospectra in Chapter 4.

The second part of the thesis is concerned with solving linear matrix equations admitting a
low-rank solution. In Chapter 5, we present a greedy low-rank approach for solving general
linear matrix equations. Furthermore, in Chapter 6, we combine the low-rank methods for
matrix equations with techniques for estimating the smallest eigenvalue from the first part of
the thesis in order to address parameter-dependent symmetric Lyapunov equations.

In the remainder of this chapter we introduce and motivate each of the problems by presenting
few common applications.

1.1 Parameter dependent eigenvalue problems

Suppose we are given a Hermitian matrix A(u) € C**" depending on a parameter u € D, where
D is a compact subset of R?, and we are interested in computing its smallest eigenvalue

Amin(A(W), peED, (1.1)

for many different values of u. In the large-scale setting, say when n > 1000, computation of
the smallest eigenvalue Anin (A(1)) using a standard eigensolver, such as the Lanczos method,
is computationally affordable only for a few values of u but becomes infeasible for larger
numbers (e.g., thousands) of parameter values.
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Without any further assumptions on the dependence of A(u) on y, addressing (1.1) is com-
putationally very difficult, especially when d is large. Assuming regularity in A(u) does not
necessarily help; even when A(u) depends analytically on p, the smallest eigenvalue is not
necessarily analytic in p. In fact, Anin(A(u)) does inherit analyticity as long as it remains
simple, but, at the eigenvalue crossings, Amin (A(1)) is only Lipschitz continuous. For larger
values of d, even d > 1, keeping track of eigenvalue crossings is usually not computationally
feasible and, thus, methods for solving (1.1) can exploit the piecewise regularity only implicitly.

Computationally efficient approaches for (1.1) can be derived by additionally assuming that
A(p) admits an affine linear decomposition with respect to u: there exist Q € N,Q < n?,

Hermitian matrices A,..., Ag, and functions 01, ...,0¢ : D — R such that
A(p) =01(WA +---+0g(WAg, VYueD. 1.2)

This assumption is commonly found in the literature when addressing parameter-dependent
problems. The current state-of-the-art approach, the so-called Successive Constraint Method
(SCM) [HRSP07], samples values of Anin (A(w)) for carefully chosen parameter values inside
D, and uses (1.2) together with linear programming techniques to provide rigorous bounds
for the smallest eigenvalues on whole D. In the first part of the thesis we present a new
subspace approach for (1.1) which builds upon SCM by additionally incorporating the sampled
smallest eigenvectors and implicitly exploiting their smoothness properties. Like SCM, our
approach provides both upper and lower bounds for Ay (A(w)). We present theoretical and
experimental evidence that the bounds produced by the subspace approach represent a
significant improvement over SCM in the sense that the bounds are often much tighter, at a
negligible additional computational cost.

1.1.1 Applications

Eigenvalue problems of the form (1.1) often arise in model order reduction techniques, such
as the reduced basis method (RBM). Successful application of RBM to a parameter-dependent
symmetric elliptic partial differential equation (PDE), depends on the availability of reliable
a posteriori error estimates, which can be attained by estimating the coercivity constant of
the underlying PDE, see, e.g. [RHPO08]. It can be easily shown that, in a discretized setting,
estimation of the coercivity constant is equivalent to (1.1). Moreover, for more general types
of PDEs, instead of the coercivity constants, a posteriori error estimation requires estimates
for the inf-sup constants [HKC* 10]. After discretization, this comes down to estimating the
smallest singular values of a parameter-dependent matrix A(u), or equivalently, estimating
the smallest eigenvalue of the Hermitian matrix A(u)* A(u), again an eigenvalue problem of
the form (1.1).

Another important application of (1.1) is in the computation of e-pseudospectra [TE05, Part
IX], which requires computation of the smallest singular values of zI — A on a portion of the
complex plane. Since singular values of zI — A are also eigenvalues of (zI — A)* (zI — A), this
is equivalent to solving the following parameter-dependent Hermitian eigenvalue problem,
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which also admits affine linear decomposition w.r.t. x and y:

Omin(x+1y) ] — A)? Amin((x+ip I+ A" (x+iy) 1+ A)

= Amin(A*A=x(A+ A") = yi(A* — A+ (x* +yH)]I).

Other applications of parameter-dependent eigenvalue problems include computation of
other spectral and pseudospectral properties, e.g. the numerical range [Joh78, Uhl14], the
method of particular solutions [BT05], and the eigenvalue analysis of waveguides [EHS09]. The
related problem of optimizing the extremal eigenvalue(s) of a parameter-dependent Hermitian
matrix appears in a large variety of applications: one-parameter optimization problems play
a critical role in the design of numerical methods [RSS01] and robust control [LO96]; multi-
parameter optimization problems arise from semidefinite programming [HR00] and graph
partitioning [KM06, GBS08].

A problem class closely connected to (1.1) are the stochastic eigenvalues problems, where A
depends on a random field. They can easily be turned into parameter-dependent eigenvalue
problems using the (truncated) Karhunen-Loéve expansions, see [AS12, HKL15] for examples.
Several approaches have been proposed to address stochastic eigenvalues problems, including
adaptive sparse grid collocation and stochastic inverse iteration, see [HKL15, MG14]. While
these approaches carry over to the setting of (1.1), they do not provide reliable lower and upper
bounds for Apmin(A()) unlike SCM or our proposed approach.

1.2 Linear matrix equations
We are interested in solving large-scale linear matrix equations of the form

Q
lAqXBg =C, (1.3)
q:

for given coefficient matrices Ay, ..., Ag € R™*™, By,...,Bg e R"*"", C e R"*". Vectorization of
the matrix equation (1.3) turns it into an equivalent linear system

3 (Bg ® Ag)vec(X) =: o/ vec(X) =vec(C). (1.4)
q=1
The most straightforward approach to solving (1.3) is by computing X € R”*" as the solution
of (1.4), which typically limits the feasible values of m, n to a few hundreds at most. We aim
to find a method that would allow us to address (1.3) as large as m, n of the order of 10°, by
exploiting additional structure, such as the fact that X can often be well approximated using a
low-rank matrix or that the coefficient matrices are often very sparse.

For the case Q = 2, the matrix equation (1.3) has been well understood. It reduces to the
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so called generalized Sylvester equation and can be solved in @ (n®) using the generalized
Bartels-Stewart algorithm [BS72, GLAM92]. It includes the standard Sylvester equation A; X +
X BZT = C and the Lyapunov equation Ay X + X Air = —C, with C symmetric positive definite, as
particularly important special cases. For larger values of n and m, a number of specialized
approaches have been developed that rely on the assumption that X can be well approximated
using a low-rank matrix, and attempt to compute the low-rank factors directly, resulting in
significant computational and storage savings. It has been shown in [GHKO03, Pen00, ASZ02]
that such a low-rank approximation of X exist for Lyapunov equations when the right-hand
side C is of low-rank.

None of these established methods for Lyapunov and Sylvester equations directly generalizes
to the case Q > 2. The existing work for Q > 2 has mostly addressed some special cases of (1.3),
with emphasis on the generalized Lyapunov equation

Q
LX)+ N (X)= AX+XA"+ Y NyXN; =-DD’, (1.5)
q=1

with £ : X — AX+X AT, which appears to be the most frequently encountered instance of (1.3)
with Q > 2. It typically arises in connection with bilinear dynamical systems and stochastic
control. By extending the results for the Lyapunov case, singular value decay bounds for the
solution of (1.5) have been established in [BB13, Mer12] under various conditions on A and
Ny. Existing approaches that exploit the low-rank approximability of the solution include
a fixed point iteration [Dam08] based on splitting £ (X) + .4 (X) = —DD’, which converges
when £ is the dominant part of (1.5), as well as an approach [BB13] that combines a standard
iterative solver, such as CG or BiCGstab, with preconditioning and low-rank truncation of the
iterates.

In the second part of this thesis, we develop low-rank methods for solving the general linear
matrix equations (1.3). The core idea of our approach is motivated by a class of methods
proposed in [AMCKO06, Noul0] for solving Fokker-Planck equations and stochastic partial
differential equations. More precisely, we subsequently refine the current approximation to
the solution X by adding a rank-1 correction, which is chosen as a minimizer of a certain target
functional, making the approach a greedy algorithm. Additionally, we propose two techniques
for accelerating convergence: including information from the preconditioned residual, similar
to the techniques considered in [DS14], and performing Galerkin projection.

1.2.1 Applications

The most prominent application of Sylvester, Lyapunov and generalized Lyapunov equations is
in the control theory. In particular, it can be shown that the reachability and the controllability
Gramians of linear

x'(£) = Ax(t) + Bu(t), y(r)=Cx(1), x(0)=xo, (1.6)
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and bilinear control systems

x'(1) = Ax(0) + i Ngugx(t)+Bx(1), y(t)=Cx(t), x(0)=xo,
q=1

are the solutions of the corresponding Lyapunov and generalized Lyapunov equations (see
e.g. [BD11]), respectively. Gramians play a crucial role in model order reduction for dynamical
systems. They can be used to identify the states that are both hard to reach and hard to observe,
i.e. the states that can be neglected without significantly influencing the system’s transfer
behavior. This idea is implemented in a popular model order reduction technique, also known
as the balanced truncation [Moo81].

1.2.2 Parameter-dependent matrix equations

In applications, the dynamical systems considered above frequently depend on a number
of parameters. For example, the dynamical system (1.6) dependent on d real parameters
W, ..., ) = ye D c R? can be written in the following way

X (W =Awx(Gw +Bwultp, yGw=Cwx(tw), xO;u=x), VYueD.

Design, control and optimization of such dynamical systems often require repeated model
evaluations for many different parameter values. As explained above, using the balanced
truncation algorithm to construct reduced-order models in such a setting would require com-
puting (approximate) solution of the following large-scale parameter-dependent Lyapunov
equation

AP +PwAwT = -BwBw’ (1.7)

for each of these parameter values. In case of general parameter-dependence in A(u) and
B(w), this is computationally too expensive, and usually not feasible. However, if A(u) and
B(u) additionally admit affine linear decomposition w.r.t u (1.2), the reduced basis method
can be used to accelerate this procedure. After sampling solutions of (1.7) for few values of
1, the RBM provides accurate approximate solutions to (1.7) on whole D at almost negligible
additional computational cost. We present a specialized version of the reduced basis method
that exploits Kronecker product structure in (1.7) as well as low-rank approximability of X (u).

1.3 Contributions of this thesis

Chapter 2. We review some basic definitions and concepts related to Hermitian eigenvalue
problems, Lyapunov equations and the reduced basis method that will be used in the subse-
quent chapters.
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Chapter 3. We derive a new subspace approach for computing extremal eigenvalues of
parameter-dependent Hermitian eigenvalue problems. The content of this chapter is mostly
based on ideas discussed in [SK16, Sir16].

While presenting an overview of the current state-of-the-art approach, the Successive Con-
straint Method (SCM), we discuss possible alternatives for the bounding box set used in SCM.
Additionally, we partly explain a numerically observed phenomenon from the literature, that
the SCM upper bounds converge faster than the SCM lower bounds, by proving that the SCM
upper bounds interpolate the derivatives of the smallest eigenvalues and showing by coun-
terexample that the same does not hold for the SCM lower bounds. Finally, we prove that the
SCM lower bounds cannot be improved without taking into account additional information
about A(u).

We derive our subspace approach as an extension of SCM where we allow sampling of more
than one smallest eigenpair per sampling point. We show that the proposed subspace upper
bounds can be efficiently computed by solving a small dense eigenvalue problem. As one
the key results, we demonstrate that the proposed subspace lower bounds can be computed
at a negligible additional cost using linear programming techniques, and a perturbation
argument that combines the computed values of subspace upper bounds, SCM lower bounds
and eigenvalue residuals.

We show that the subspace bounds are always at least as good as the SCM bounds. Moreover,
we prove that not only the subspace upper bounds interpolate the derivatives of Ayin (A(1)),
but also the subspace lower bounds, which indicates that we can expect locally second order
convergence of the proposed bounds. Furthermore, we show exponential convergence in a
special case when d = 1, A(u) is analytic in y, and the smallest eigenvalue stays simple on D.
For a specific case of linear parameter dependence in A(u), we prove that the subspace lower
bounds are always at least as good approximation to Anin (A(u)) as the linear interpolation of
the sampled values.

By precomputing the projected matrices similarly as in the reduced basis method, we obtain
an efficient implementation of our approach where the evaluation of the subspace bounds
for fixed p € D has a computational complexity independent of n. The performance is further
optimized by incorporating the "saturation assumption". We demonstrate on a number of
numerical examples that our approach, as implemented, significantly outperforms SCM both
in terms of iterations and the total computational time.

In addition to the content presented in [SK16, Sir16], we discuss in Section 3.4.2 the impact of
the number of sampled eigenvectors per sample point and the size of the training set on the
performance of our approach. Furthermore, in Section 3.5.3 we include an example from the
literature showing that our subspace approach can for specific cases be successfully applied
to computation of inf-sup constants.



1.3. Contributions of this thesis

Chapter 4. We build upon the proposed subspace approach, i.e. Algorithm 3, presented in
Chapter 3 and develop a new projection-based approach for pseudospectra computation. The
content of this chapter is mostly based on [Sir16].

We demonstrate that Algorithm 3 can be extended to pseudospectra computation. More pre-
cisely, we show that solving the parameter-dependent singular value problem o i (zI — A) is
equivalent to solving Hermitian eigenvalue problem linearly depending on two real parameters
Amin(A*A—x(A+ A*) — yi(A* — A)). However, in order to make Algorithm 3 computationally
efficient in this setting, we take into account the particular problem structure as well as the
demands for high absolute accuracy, and make a number of modifications: we avoid often
numerically unstable computation of the bounding box, accelerate the computation of the
SCM lower bounds by using the simplex method with updating, and make the residual com-
putation more robust. Finally, we accelerate the approach using a "warm start" strategy by
a priori insertion eigenvalues of A inside D into the sample set. Moreover, we show that the
interpolation properties and the a priori convergence results from Chapter 3 naturally extend
to the singular value case.

We test our implementation on a number of examples from the literature, and compare
its performance with few other projection-based approaches. The results indicate that our
approach is particularly suited to the computation of pseudospectra around isolated parts of
the spectrum.

In addition to the content presented in [Sirl6], in Section 4.1.1 we discuss the possibility of
using two-sided projections for approximating the smallest singular values. We include a
simple example which clearly indicates that such approaches are not stable.

Chapter 5. We develop a greedy low-rank approach for solving general linear matrix equa-
tions. The content of this chapter is mostly based on the ideas discussed in [KS15].

We derive a basic greedy rank-1 strategy for updating the current approximate solution by
adding a rank-1 correction, which is chosen to minimize the error, either in the energy norm,
if o/ is symmetric positive definite, or in the norm induced by «# T o¢. A local minimizer of the
target functional can be efficiently computed using the alternating linear scheme (ALS). We
show that the approach can analogously be extended to work with rank-r corrections. For
the special case of symmetric Lyapunov equations, we prove that this algorithm preserves
symmetry and converges to the exact solution monotonically in the Lowner ordering of
positive semidefinite matrices.

We further improve convergence of our greedy low-rank approach by adding information from
the residual preconditioned by one step of sign function iteration for Lyapunov equations and
by performing Galerkin projection on the subspaces spanned by all previous correction terms.
As the computational cost of the Galerkin projection grows very rapidly with the rank of the
subspaces, we limit this effect by performing low-rank truncation of the correction subspaces.

7
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We test our approach on a number of large-scale examples available in the literature. The
results indicate that our approach is competitive with other available approaches, especially
when the imposed limit on the subspace size is not reached.

Chapter 6. We develop a low-rank approach for solving parameter-dependent symmetric
Lyapunov equations. The content of this chapter is mostly based on [KSSS14].

We use the idea of the reduced basis method (RBM) to address (1.7), but instead of constructing
a subspace out of vectorized solutions vec(P (1)), ...,vec(P(u M))[R"2 1 we consider their low-
rank Cholesky factors P(u;) = L(u;) L(u;) T and collect them into a subspace Uy; c R"

U = range([L(K1), ..., L))

The approximate solution is then computed using Galerkin projection of (1.7) onto %y; ® %y,
and requires solution of a small-scale Lyapunov equation. Compared to the straightforward
use of RBM, not only is our approach more accurate, but it also guarantees that the approxi-
mate solution is positive semidefinite — a very important property in model order reduction
applications. We define a posteriori error estimates similarly like in RBM. However, by estimat-
ing the error in the Frobenius norm, we can avoid directly estimating the smallest eigenvalue
of n? x n® matrix < (W) =1 A(u)+ A(u) ® 1. Instead, a reliable lower bound for Amin (< (1))
can be constructed using properties of the Kronecker product, and efficiently computed by
estimating the smallest eigenvalue of n x n matrix A(u). To further optimize the performance
of our approach, we use the saturation assumption, which significantly reduces the number of
error estimate computations throughout the iterations.



YA Preliminaries

In this chapter we recall the notation and some basic results for the two main topics of this
thesis: eigenvalue problems and matrix equations.

In Section 2.1, we first provide basic definitions for eigenvalue problems. We present an
overview of the Lanczos method, a popular method for computing extremal eigenvalues of a
symmetric or Hermitian matrix. Furthermore, we shortly discuss and present some important
results on the analyticity of eigenvalues and eigenvalue perturbation theory.

In Section 2.2, we consider Lyapunov equations, one of the most important examples of a linear
matrix equation. We discuss some important properties of the solution, such as definiteness
and low-rank approximability of solutions, and present an approach for solving large-scale
Lyapunov equations that exploits these properties. Furthermore, we discuss some important
applications of Lyapunov equations.

In Section 2.3, we present an overview of the reduced basis method for symmetric coercive
parameter-dependent partial differential equations. For the considered model problem, we
describe an efficient implementation of the offline and the online phase and discuss the choice
of norm and how it influences a posteriori error estimation.

2.1 Eigenvalue problems

Given a matrix A € C"*", we say that A € C is an eigenvalue of A if there exists a nonzero vector
v e C'""*"" such that

(A-ADv=0.

Such a vector v is called an eigenvector of A associated to the eigenvalue 1 and (A, v) an
eigenpair of A. Since A— A1 is singular if and only if det(A— AI) = 0, we can equivalently define
eigenvalues of A as the roots of the characteristic polynomial

Ka(A) :=det(A—AI) =0.



Chapter 2. Preliminaries

It follows directly that A has n, not necessarily distinct, eigenvalues 11,...,4, € C. The set of
all eigenvalues of A is called the spectrum of A, and it is denoted with A(A). The eigenvalue 1;
is said to be simple if its corresponding multiplicity in the characteristic polynomial is one or,
equivalently, if A; # A}, for j # i.

Eigenvalues are sensitive to small changes in the matrix A. However, if we know that Ais an
eigenvalue of A + E, where E is small in norm, the following theorem [Saa92] proves that Ais
"close" to A(A).

Theorem 2.1 (Bauer-Fike). If A is an eigenvalue of A+ E € C"™" and there exists invertible
X € R™" such that XAX ™! = D = diag(A4, ..., A,), then

min |A—A| <x(X)|Ell,,
AEA(A)

wherex (X) is the matrix condition number defined as

K(X) = I X[20X M.

2.1.1 Numerical range

A rough estimate for the spectrum A(A) can be obtained by computing what is called the
numerical range and denoted with

W(A):=Im(R,) cC,

where R, is the Rayleigh-Ritz quotient associated to the matrix A

v*Av

Ri(v) = o (2.1)

The inclusion 1(A) € W (A) follows immediately from the fact that R4(v) = A for an eigenpair
(A4, v). Furthermore, it was shown by Hausdorff and Toeplitz [Haul9, Toel8] that W (A) is a
compact and convex subset of the complex plane.

2.1.2 Hermitian eigenvalue problem

A matrix A e C"™" is called Hermitian if it equals its conjugate transpose
A= A"

Additional properties hold for eigenvalues and eigenvectors of Hermitian matrices, some of
which we recall in the following:

* All eigenvalues are real
AieR, Vi=1,...,n.

10
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* If A; # A}, then the corresponding eigenvectors v; and v; are orthogonal

%
vjvi:O.

e Ais diagonalizable, i.e. there exists a diagonal matrix D = diag(1y,...,1,) € R"*" and
a unitary matrix V = [vy,...,v,] € C™" (V*V = V*V = ]) containing the associated
eigenvectors as columns, such that

n
A=VDV* =) Ajvv}. (2.2)
i=1

Having only real eigenvalues, we can impose an ordering on the eigenvalues of a Hermitian
matrix A. Without loss of generality, we have Apin (A) = A1 <A <+~ < A1 < Ajy = Amax(A). Of
particular interest in many applications, such as checking definiteness, computing condition
number, etc., are the extremal eigenvalues A1, and 1,,. Since A= A*, we have Ra(v) = R4(v)¥,
and bearing in mind that W (A) is convex, this immediately implies that W (A) is a real line
segment. In fact, using the eigenvalue decomposition of A (2.2), we obtain the minimax
characterisation of extremal eigenvalues

Y At y)?

Amin(A) =min R4 (v) <
veCn v¥v

<maxR(v) = Amax(A), (2.3)
veCn

which proves that W(A) = [A1,1,,] € R. By slightly modifying (2.3), we also can characterise
the other eigenvalues of A in the following way:

Ar= min maxRs(v) = max min R4 (v). (2.4)
UR"  veWU 9 cR" vEU
dim(U)=k dim(U)=n—k+1

2.1.3 Computing extremal eigenvalues of a Hermitian matrix using the Lanczos
method

In the following, we present a short summary of the Lanczos method and its convergence
properties. The presentation is largely based upon [Saa92, Kre14].

Let A € C'"*" Hermitian, x a random starting vector and k € N. In the power method where
the dominant eigenvector is approximated simply by repeatedly applying A to x k-times. In
comparison, in the Lanczos method the dominant eigenvector of A is approximated inside
the Krylov subspace

Fi(A, x) = {x, Ax, A%x,..., AK Ty}

An approximation (y, u) to the dominant eigenpair of A is chosen inside R x £} (A4, x), by
additionally imposing the Galerkin condition

Au—-pu L £ (A x). (2.5)

11
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Given an orthonormal basis Uj. for £} (A, x), u € %3 (A, x) can be written as u = Uy w for some
w € C*. Furthermore, (2.5) is equivalent to

Ui AU w —pw =0 <= U AU w = pw,

making the eigenpairs (u1, w1), ..., (Lk, wy) of U;; AUy possible choices for (1, w). Usually, the
eigenvalues y; < --- < uy are called the Ritz values and vectors Uwy, ..., Uwy are called the
Ritz vectors. In the Lanczos method, the extremal Ritz pairs (u;, Uw,) and (ug, Uwy) are used
as approximations to the extremal eigenpairs of A.

An orthonormal basis Uy, for (4, x) and the projected matrix Hy = U, AU can be efficiently
computed using the Arnoldi algorithm. It can be shown that this leads to Hj tridiagonal:

a P
.51 ap ﬁz
Hy = B as . ,
Br-1
Br—1  ak

making it very simple to compute, as demonstrated in Algorithm 1.

Algorithm 1 Lanczos method

Input: Hermitian matrix A € C"*", starting vector x # 0, k € N.
Output: Orthonormal basis U = [uy,..., ur] of £ (A, x).

1 up = x/|xll2

2. fori=1,...,k—1do

3 w=Au;
4 a;=u;w
5 Ujr1 = W — QiU
6:  Bi=luinle
7 Ui = Uil Bi
8: end for

As k gets larger, the Krylov subspace £ (A, x) contains increasingly better approximations of
the extremal eigenpairs. Having in mind that

K1(A, x) = {p(A)x: p polynomial of degree smaller than &},

the convergence of the Lanczos method can be quantified in following way [Saa92, Lemma
6.1]

tan Z(v;, £ (A, X)) < min Ip(A)l2tan Z(v;, x),
pEPk—lvP(Ai)zl

where (1;, v;) is an eigenpair of A. Since A is diagonalizable (by being Hermitian), this result

12
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can be further simplified to

A
tan Z(v;, £ (A, x)) < min max P

tan Z(v;, x), (2.6)
pePr1 aeq; |p(A)] !

with A; = {A1,..0, Ai—1, Ais1,eens Anl.

In order to estimate the convergence rate from (2.6), we need to consider polynomials p
that have a large value at A; and small value at the rest of the spectrum, which immediately
motivates the use of Chebyshev polynomials. For the special case when i = 1, we can set p to
be the Chebyshev polynomial of the order k—1 on [A2, A,]:

pA) = Ti1 (RA= A2 = 1) (Ay — A2)),

with T} the standard Chebyshev polynomial on [-1, 1] of the order k — 1. For |x| > 1, T} can
be bounded from below by %lek_l, which allows us to bound |p(1)|/|p(A;)] in (2.6) in the
following way:

[p(D)] - 1 _ 1
IpPADl T (@M =A2=A) (A —22))  Tr—1(—1-2(A2— A1)/ Ay = A2)

! —1 1-k
| _ 1+2A = A)D) /(A=A ,
k—l( 1 2(12—/11)/(/1,1—/11)) <2( (A2 D/ (An 1))

IA

which proves the exponential convergence of tan £ (v, £ (A4, x)) to zero with the rate depen-
Ap=Ay.
=1

dent on the relative gap 5= o

tan Z(vy, £3 (A, X)) < %(1 +2A2 = A/ Ay — Al))l_ktané(vl, Xx). 2.7)

Similarly, for the case i = n, we obtain the exponential convergence with the rate dependent

on the relative gap A{—fgf:

tan Z(v, Hi(A X)) < =(1+2(A, = A1)/ (A — A1) tan £ (v, 2). 2.8)

N | =

The bounds (2.7) and (2.8) quantify the approximation quality of the extremal eigenvectors
inside £} (A4, x) but do not say anything about the convergence of the extremal Ritz values
and g to A; and A, respectively. These errors can be bounded using the minimax charac-
terisation of extremal eigenvalues (2.4), similarly as in [Saa92, Theorem 6.4], in the following

13
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way
A=A
H1—A1 < n_ 2 7 tanZ(v1, x) 2.9)
(1+2(A2=AD /(A = AD)
An—Hr < tan Z(vy, X). (2.10)

(1+2An = A1)/ Ay — A7)

Remark 2.2. Suppose that (A, v,,) is the dominant eigenpair of A (1A,| > |A11). Similarly as in
the power method, if the starting vector x is chosen to be orthogonal to v,,, then the largest Ritz
value . converges to A,_1 instead of A,,. In practice, this can be avoided by taking a random
starting vector.

Remark 2.3. Let ey > 0 and suppose we are interested in computing ¢ largest eigenvalues of A.
In practice, we usually stop the execution of the Lanczos method when the eigenvalue residual R
becomes small enough

IRll2 := AU, = UgA¢ll2 < Etols

where Ay € R“*? is a diagonal matrix containing the ¢ largest Ritz values and U, € R’
contains the corresponding Ritz vectors.

Remark 2.4. The Lanczos method can also be used for computing the extremal eigenvalues of a
generalized symmetric eigenvalue problem

Av =AMy, (2.11)

where A€ C"*"" is Hermitian and M € C"*"* is symmetric positive definite matrix. By computing
the Cholesky decomposition of M = LL*, we can transform (2.11) into a standard symmetric
eigenvalue problem of the following form

LYAL " w=Aw,

where w = L* v. When implementing this approach, it is preferable to keep the matrix L™ AL™*
in the factorized form, since forming it explicitly would destroy the underlying sparsity pattern.

Remark 2.5. Suppose we are interested in computing the smallest eigenvalue of a symmetric
positive definite matrix A € R"*" coming from a spatial discretization of a partial differential
equation (PDE) with n degrees of freedom. Even though 2.7 proves the exponential convergence
of the Lanczos method, the observed convergence in practice is often very slow for large values of
n. This usually happens when the spectrum of the underlying PDE is unbounded, which results
in relative gaps /’%ijll that approach 0 as n — +oo. Instead, it is preferred to use the inverse
Lanczos method, where, instead of #i(A, x), we construct the Krylov subspaces #;.(A™!, x)

of A~L. Since computing the smallest eigenvalues of A is equivalent to computing the largest

14
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eigenvalues of A™1, we can bound the error in the inverse Lanczos method in the following way:

_ 1 1 11 1 .4
tan Z(vy, Ap(A %) < 5(1+2(A—1—A—2)/(A—1—A—n))1 “tan Z(vy, x)
1 AnA2 = A1) \1-k
= —(1+2——M— tan Z(vq, x)
2! Azmn—m) !
1 A Ay —=A2) \1-k
= —(1+201-—= tan Z(vy,
2( +2( ﬂz(ﬂn—/h))) an Z(vy, x)
<

1 M1
S(1+20- )1—;))1 “tan Z(v1, %)

= %(1+2((/12—Al)//lz))l_ktané(vl,x). (2.12)

We can see that in the case of the inverse Lanczos method, the convergence rate depends only on
the relative gap between A and A, which, in the case of PDE discretizations, converges to the
relative gap between the first and second eigenvalues of the PDE eigenvalue problem as n — oo,
and hence it stays bounded away from zero if these two eigenvalues are different. A simple
example of this phenomenon is shown in Figure 2.1, where we present the convergence rates
of both the Lanczos and the inverse Lanczos method when applied to computing the smallest
eigenvalue of the 1D Laplacian with Dirichlet boundary conditions for different values of n.

It is important to note that using ;. (A, x) or X.(A™1, x) makes a pronounced difference from a
computational point of view, since constructing the latter involves solving linear systems with
A, while forming #.(A, x) requires just matrix-vector multiplications. However, in certain
cases, the construction of Z.(A™,x) can be made more efficient by precomputing the LU
decomposition of A at the start.

——Lanczos method
——inverse Lanczos method

—_
o

-
o
N

-
o
&

-
o
A

logarithm of the convergence rate

5 ‘
10 10! 102 103

n
Figure 2.1: Logarithms of the convergence rates (2.7) and (2.12) for computing the smallest
eigenvalue of the 1D Laplacian using the Lanczos method and the inverse Lanczos method,

respectively.
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2.1.4 Analyticity of eigenvalue decomposition

Given the eigenvalue decomposition of A, a question which naturally arises is how the eigen-
values and the eigenvectors change when A is perturbed. Let us consider a family of matrices
depending on a parameter (:

A(u) : D —C™",

where D is an open subset of R. If A(u) is analytic w.r.t. u € D, a well known result from
eigenvalue perturbation theory [Kat95, Chapter 2,Theorem 1.8] states that there exist analytic
functions Ay (W), ..., A, (@) and vy (W),..., v, (1) on D with only finitely many algebraic singu-
larities describing dependence of eigenvalues and eigenvectors w.r.t. i, respectively. In fact,
the singularities of eigenvalues and eigenvectors occur in the eigenvalue crossings, i.e. p€ D
such that there exist i # j and A;(u) = 1;(u). However, it is important to emphasize that not all
eigenvalue crossing are necessarily singularities of the eigenvalue or the eigenvector functions.

In the specific case when A(u) is a Hermitian family, the following theorem shows existence
of an analytic extension of the eigenvalues and the eigenvectors functions in a ball around
Ho € D even if it is not a simple eigenvalue.

Theorem 2.6 (Theorem 1,[Rel69]). Let A(u) be a family of Hermitian matrices on D. For a fixed
Lo € D let Ay be an eigenvalue of multiplicity m of A(uo). Then the following holds:

* There exist m (not necessarily distinct) complex-valued functions analytic around z = p,
denoted by A1(),..., Am ("), such that A j(uo) = Ao, j =1,...,mand Aj(z),j =1,...,m are
eigenvalues of the analytic extension A(z) near z = .

* There are no other eigenvalues of A(z) near 1j(z),j=1,...,m.

e There are m complex-analytic C" -functions v, (-),..., U (-) such that near z = y,
V1(2),...,vm(z) are the eigenvectors of A(z).

* ForzeR, we have v;(z)*v;(z) =6;;.
Theorem 2.6 does not a priori provide a radius ry,(1¢) of the analyticity ball for general
Hermitian family A(u). As shown in the following example, it depends on potential singularities

in the eigenvalue and the eigenvector functions, and thus also on the parametric dependence
in A.

Example 2.7. Consider A: R — C*>*? defined in the following way

0
+
’

The eigenvalues of A(u) are given as ++/1 + u?. By extending A to the complex plane, A(z) has
eigenvalues A+ (z) = +V' 1+ z2, complex analytic functions in z for|z| < 1. Even though A(z) is

01
'u10

Alp) =
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analytic in z, the eigenvalue mappings A4 (z) have singularities for z = +i. Note that A(z) is
Hermitian only for Imz = 0.

If A(p) is an analytic Hermitian family on B(ug, R) defined with
A() = Ag+ AL+ 112 Ag+ ..., |—pol <R,

such that || A,ll2 < ac* 1, VneN, for some a >0 and 0 < ¢ < oo, then a result in [Bau85, Section
8.1.3] allows us to bound ry, (1) from below in the following way:

2a._
(c+ g) < Ty (Ao),

where d = dist(1g, 1(Ap) \{Ao}). In particular, for A(u) = Ag + Ay, we have ¢ = 0, which results
in

d
5 = Ty (Ao). (2.13)

As the lower bound 2.13 matches the radius of analyticity around 0 in Example 2.7, we see that
this lower bound is sharp. Another example of this lower bound in practice can be seen in
Example 2.8.

Example 2.8. Letd >0, and let us consider A: [-1,1] — C**4 defined by A(u) = Ay + pA1, where

6 0 0 O 01 0 0

0O 0 0 o0 1 0 0 O
Ap = , A=

0O 0 0 O 0 0 0 1

00 0 -6 0 01 O

Since Ao has a double zero eigenvalue with a gap of § to the rest of the spectrum and || A |l = 1,
we obtain a lower bound of % for the analyticity radius of the double eigenvalue at 1 = 0. For
general € [-1,1] the eigenvalues of A(u) are given by the following formula

i\/(g)2+u2,

and, as shown in Figure 2.2a. We can see that there are no other eigenvalue crossings besides the
oneatu=0.

N>

AMp23a(p) ==

For a function f : R — R* on [~1,1] that admits an analytic extension on the Bernstein ellipse Eg
around [-1,1] (foci +1, sum of half-axes equal to R), the interpolation error of f with N Cheby-
shev nodes on [-1, 1] can be bounded by C (RN+R§V-:{?R_41—R‘1—2) , for some C > 0, see e.g. [MHO3].
By estimating the convergence rate of the Chebyshev interpolation for v, and vs (eigenvectors

corresponding to the middle two eigenvalues A, and 13), we can estimate Rmax, the maximal
value of R such that Eg is contained in the analyticity domain. Assuming that the estimate for
Rmax is correct, we can compute a numerical estimate for the analyticity radius at 1 = 0, since
the length of the shorter half-axis % is bounded by r¢(0). In Figure 2.2b, a comparison of
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T
—— numerical estimate
— theoretical lower bound|

2 . . . 102 .
-1 -0.5 0 0.5 1 107 107! 10°
i 3

(a) Eigenvalues of A(u) for p € [-1,1] in Exam- (b) Comparison of theoretical lower bounds
ple 2.8. and numerical estimates for ry(0) for different
values of § in Example 2.8.

the theoretical lower bounds on the analyticity radius and the numerical estimates for different
values of 6 is shown. We can see that the numerical estimates and theoretical lower bounds are
approximately equal and that, as expected, the analyticity radius ry,(Ao) is proportional to the
eigenvalue gap .

Multivariate case

In the multivariate case, when D c R, the previous results do not extend and the eigenvalues
and the eigenvectors of A(u) are not necessarily analytic functions, as can be seen from the
following example.

Example 2.9. Consider A:R?> — C?*? defined in the following way

+01
le

1
Alx,y) =
Con=xly

Then A(xy, x») is analytic in both x and y and Hermitian for real x and y. However, its eigen-
values 1. (x,y) = £1/x% + y? are not real-analytic with respect to (x, y) in any neighborhood
around zero.

Even though the eigenvalues and the eigenvectors are not necessarily analytic w.r.t. y, in
practice we usually observe them to be highly regular functions. This behavior was studied
in [AS12] for the following special case of linear parameter dependence

Aw=A+pP A+ +u DAy, VYu=@W,.. y 9 eDcRrY,

where the authors show that an eigenpair (A1(u), v(u)) can be extended to jointly complex-
analytic function in C? as long as it remains simple (separated from the rest of the spectrum).
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2.1.5 Perturbation analysis

In the following we discuss eigenvalue sensitivity from a more practical point of view. We
present two perturbation results which help us answer the following questions: Given a k-
dimensional subspace % < R", does it approximate an invariant subspace of a Hermitian
matrix A? If yes, can we and how accurately can we compute approximate eigenvalues of A? Is
there a way to determine which eigenvalues of A are approximated?

Let U € C"** be an orthonormal basis for %. To measure the distance of % to an invariant
subspace of A, we first need to compute approximate eigenvalues. As will be shown in the
following, good candidates are the eigenvalues of the projected matrix U* AU. As will be
discussed in Remark 2.12, we may assume without loss of generality that U* AU equals a
diagonal matrix containing its eigenvalues Ag, = diag(/t(l), e Agj)). Given U and Ag,, similarly
as in the Lanczos method, distance from an invariant subspace can now be measured by
computing the eigenvalue residual R € C"*¥

R=AU-UAy. (2.14)

@
Ut
is the i-th column of the matrix U. It is easily shown that Aﬁz’; is an exact eigenvalue of a

Forie{l,...,n}, as Ay is diagonal, (2.14) implies |Au; — A, u;l < ||Rll2,i = 1,..., k, where u;

perturbed Hermitian matrix, as in the setting of Theorem 2.1.

Corollary 2.10. With notation as above, there exists A; € g (A) such that

1A= A1 < IRl

Corollary 2.10 is a direct consequence of Theorem 2.1, taking into account that the correspond-
ing matrix X for Ais unitary and thus x(X) = 1, and it justifies the choice of /1(@’2 as approximate
eigenvalues, since it proves that there exists and exact eigenvalue in a neighborhood of radius
IR]l» around Ag}. However, it is still unclear if it is the only eigenvalue in that neighborhood,
or which of n eigenvalues it approximates.

Provided that A((U,)* AU, ) is also available, where U, is an orthonormal basis of 27+, these
questions are easily answered using the following perturbation result by Li and Li [LL05], where
we set H; = U* AU and H, = (U)* AU, . Assuming that A(H;) and A(H>) are sufficiently sepa-
rated, it allows us to identify which of the eigenvalues of the original matrix are approximated
by A = diag(A}),..., A).

Theorem 2.11 (Theorem 2,[LL05]). Let

H;
R* H,

H 0

, and A=
0 H

A=

be Hermitian matrices with eigenvalues
/11 =< Ag < /1” dl’ld;\il 512 < In,
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respectively. Define the eigenvalue gaps

G dist(d;, A(H1)) ifA; € A(Hz)

dist(A(Hy), A(Hp)).

{ dist(2;, A(H)) if A; € A(HY)

3
Il

Then fori=1,...,n, we have

2
A=Al < 2181, (2.15)
ni+1/m5 +4IRII3
2|IRII5
< 2 (2.16)

n+\/n?+4IRI3

Remark 2.12. Let A€ C"*" be a Hermitian matrix and % a k-dimensional subspace inR". It is
easy to show there exists an orthonormal basis U € R"™¥ for % such that U* AU is diagonal. Let
U € R"™* be any orthonormal basis for % . Since the projected matrix U* AU is also Hermitian,
it admits an eigenvalue decomposition of the form WAW* = U* AU, with A € R*** diagonal
and W € C*** ynitary. It is now easy to see that U := UW has the sought properties, it is an
orthonormal basis for U, and (OW)*A(UW) = A equals to a diagonal matrix.

2.2 Lyapunov equations
Given neN, Ae R™", and B € R, we consider the following n x n Lyapunov equation
AX+XAT =-BB'. (2.17)
In the vectorized form, (2.17) is equivalent to the following linear system
dvec(X)=UI® A+ A® )vec(X)=—-(B® B)vec(l,,), (2.18)

where of = I ® A+ A® I. Using the spectral properties of the Kronecker sum, we obtain
that (2.17) has a unique solution if and only if A; + 1; # 0,VA;,1; € A(A), which we assume
in the following. By transposing the whole equation (2.17), we see that both X and X' are
solutions, implying that the solution is necessarily symmetric. Furthermore, if A € R"*" is
stable (i.e. the spectrum lies in the left half of the complex plane 1(A) < C_), the solution X
can be represented in the following way

A T AT
X:f e "BB" e "dr,
0

which immediately yields that X is necessarily positive semidefinite.
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2.2. Lyapunov equations

In the following, we discuss the conditions that ensure low-rank structure in X and present
an approach that exploits this to efficiently solve large-scale Lyapunov equations. Finally, we
describe the role of Lyapunov equations in model reduction of linear dynamical systems with
control, one of the most important applications.

2.2.1 Low-rank solutions of Lyapunov equations

We have shown that if A is stable, (2.17) has a unique positive semidefinite solution X. Addi-
tionally, it has been shown in [Sab06, KT10] that if A is symmetric, then X exhibits a singular

Rnxn

value decay if m <« n. More precisely, there exists a matrix X € of rank km such that

X - Xillp < BIBllr ex ( ~kn® )
IE = Y (A P Tog 8 () )’

where x (A) is the condition number of A. This implies that X has an exponential eigenvalue
decay:

—72

A0 < y*, with y = exp(——————
KX SyT withy eXp(mlog(SK(A))

),

where 1, (X) denotes the k-th largest eigenvalue of X. We see that the decay rate deteriorates
and vanishes as k(A) — oo. This issue has been resolved in [GK14], where the authors show for
certain situations that as x (A) — co the eigenvalue decay becomes exponential with respect to
vk, instead of k:

Ae(X) < y‘/E, with y = exp(—n/v2m).

2.2.2 Solving large-scale Lyapunov equations

For n < 5000, a classical approach to solving (2.17) is using a direct method, such as the
Bartels-Stewart algorithm [BS72], which requires @ (n®) operations. For larger values of 7,
these methods are not computationally feasible as they require the Schur decomposition of
A. Instead, various iterative approaches have been proposed, that achieve computational
advantage by exploiting sparsity in A and the low-rank structure in the solution. In the
following, we follow [Pen00] and describe one of the most popular approaches, the alternating
direction implicit (ADI) iteration.

In the ADI method, the solution X is generated as a limit of the iterates X;, defined in the

following way:

(A+piDXisz = -BB'=Xi1(AT = pil),
(A+p;DX] = -BB"-X[,,(A"-p;D),

with Xy = 0 and shift parameters py, p2,--- € C_. This pair of half-iterations is equivalent to the
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iteration step
Xi=(A-piDA+p: D' Xi 1 (AT =pi D AT +p; D =2pi(A+p; D BB (AT +p; D7, (2.19)
It can be shown that the errors E; = X — X; satisfy the following expression
E;i = (ri(Ari(=A Y E(ri (A (-A™H T,

where r; is the polynomial r; (x) = (x = p1 ) ---(x = pI) - -+ -~ (x— piI). Thus, to ensure conver-
gence, the shifts py, p2, ... need to be chosen in a way that will guarantee r;(A)r; (-A) 1 ~o0.
Assuming that A is diagonalizable, minimizing the spectral radius of r; (A)r; (- A)~1leads to
the following ADI minimax problem

. [r; (x)]
{p1,..., pil = argmin max (2.20)

)
1y pi€C_ XEAMA) |77 (= X)]

which indicates criteria for choosing the shifts. As the spectrum A(A) is usually not available,
in practice, (2.20) is often relaxed by replacing A(A) with E (compact subset of C such that
A(A) c E):

. 7 ()]
{p1,..., pil = argmin max (2.21)

p1,..,pieC_ Y€E [ri (=x)|

The relaxed ADI minimax problem has been solved exactly (see [Wac63]) only for the case of
symmetric A. For the general case, several heuristic strategies for choosing close to optimal
shifts have been proposed, see, e.g. [Pen00, Wac88, FG13].

The ADI method can be implemented in a way that exploits positive definiteness in X as well
as the low-rank structure in X described in Section 2.2.1. In the low-rank version of the ADI
method (LR-ADI), the iterates are substituted by their Cholesky decompositions X; = Z; ZiT,
while the iteration step (2.19) can be written in the following way

Zi=[(A-piD(A+piD"' Zi_1\/-2pi(A+ p; D' B],

with Z; = \/=2p;(A+ p1)"' B. A drawback of LR-ADI is that the memory requirements and
the computational cost per iteration are increasing with each iteration, since the low-rank
factor Z; is enlarged by m in each iteration (rank(Z;) < mi, where m = rank(B)). However,
in practice, LR-ADI is an efficient method since the required number of iterations is usually
low. Furthermore, the effect of this drawback can be further reduced by performing low-rank
truncation of the iterates.

Other popular methods for solving large-scale Lyapunov equations include the Rational Krylov
projection method [HR92] and the extended Arnoldi method [Sim07]. In these methods, the
approximate solution of the original Lyapunov equation is computed by projecting (2.17)
onto k-dimensional (rational) Krylov subspaces. Solving the projected problem is equivalent
to solving a small-scale k x k Lyapunov equation which can be solved efficiently using the
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2.2. Lyapunov equations

Bartels-Stewart algorithm, since, in practice, we usually have k <« n. Projection techniques can
also be used to accelerate the convergence of the ADI method. For example, in [BLT09], the
Galerkin projection onto subspace Vi ® Vi, where V. is an orthonormal basis for the column
space of the current ADI iterate 7} = range(Zy), is used for computing an approximate solution
of the form X = V. Ry 8

Remark 2.13. As shown in [HS95, KPT14], Krylov subspace methods for solving Lyapunov
equations can be effectively preconditioned with a few steps of the ADI method. For example,
one step of the ADI method with a single shift p defines the following preconditioner for (2.18)

2L =A-phte(A-pD. (2.22)

Finding the optimal shift p in (2.22) is equivalent to solving (2.21) with i = 1. As shown
in [Sta91], for the case of a symmetric A, the optimal shift p equals \/ Amax(A) Amin (4).

In a similar fashion, it is possible to derive a preconditioner for (2.18) based on the first ¢ steps
of the sign function iteration for Lyapunov equations [KPT14]. In particular, for ¢ = 1, this gives
rise to the following preconditioner

71 - Lier+atoa 2.23
Gan = 5 @1+ P AT 0 AT, (2.23)
with the scaling factor ¢ = “L‘ﬂ'ﬁz , which can be approximated using || M|l2 = v/ M1 1M || oo,

see, e.g., [SBO8]. Other known choices of preconditioners for (2.18) include the classical Jacobi
and SSOR preconditioning [HS95].

Remark 2.14. The ADI method can be extended to address generalized Lyapunov equations of
the form

AXET + ExAT =-BBT,

where A, E e R"™", B e R™ "™, with E symmetric positive definite and AE — A a stable pencil.
Similarly as in LR-ADI, this extension can be formulated in terms of the low-rank Cholesky
factors Z;, which is also known as the generalized low-rank ADI [Sty08].

2.2.3 Lyapunov equation for Gramians of linear control systems

Suppose we are given the following continuous linear time-invariant dynamical system with
control

x(t) = Ax(t) + Bu(p),
y() = Cx(1),

with system matrices A € R, B € R™™, C € R’*", state vector x(¢) € R”, input control
vector u(t) € R™ and output function y(#) € R’. Furthermore, we assume that A is stable
(Im(o (A)) < (—00,0)). The quantity of interest is usually the input-to-output mapping of the
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given dynamical system, which can be very difficult to compute for very large values of n. To
address this problem, we aim to find a reduced-order model

(1) = AX(t) + Bu(p),
y(t) = Cx(1),

with A € RF*k B e RF*™ C e R”**, %(1) e R¥, 7(1) e R and k < n.

Ideally, when reducing the state space, we would like to remove states that are either

* hard to reach: input energy to guide the system into the state is very high;

* hard to observe: output energy generated from system being in the state is very low.

This idea is implemented in the balanced truncation algorithm [Moo81, PS82], which pre-
serves stability of the dynamical system and provides computable error bounds. In order to
provide the reduced model, the balanced truncation algorithm relies upon computation of the
controllability Gramian P and the observability Gramian Q which are defined as the unique
symmetric positive semidefinite solutions P, Q € R"*" of the following Lyapunov equations:

AP+PAT = -BBT,
ATQ+0QA -cTc.

Given the Cholesky decompositions of the computed Gramians P = Pg Pcand Q= Qg Qc, the
optimal projection bases W,V € R**¥ are extracted as the dominant left and right singular
vectors of PCQ(T:, respectively, while the resulting reduced-order model is constructed as
follows

A=wTav, B=wTB, C=cCV, (1 =Vx(),and j(t) = Cx(1).

2.3 Reduced basis method

The reduced basis (RB) method provides a framework for the solution of parameter-dependent
PDEs [RHPO08]. It consists of an offline phase, where solutions of the PDEs are solved for
suitably chosen parameter values and their solutions are collected in a (low-dimensional)
subspace. In the subsequent online phase, approximate solutions are computed inside this
subspace using a Galerkin projection approach. This may speed up the solution process
dramatically, especially if the PDE needs to be solved for many parameter values. A posteriori
error analysis is an important part of the RB method to ensure its reliability.

In this section, we present a short summary of the RB method for parameter-dependent
symmetric elliptic coercive partial differential equation (PDE), which is largely based on the
survey paper [RHP08]. For more details see also [HRS16, QMN16].
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2.3. Reduced basis method

2.3.1 Model problem

Given pue D c [RRd, we are interested in computing the solution u(u) € X(Q) (or an output
quantity /(u(u)) of the following parametrized PDE given in its weak formulation

a(u(w,v;w) = f(v), VrveX, (2.24)

where the parameter domain D is a compact subset of R?, a(-,-; 1) : X x X — R is a symmetric
bilinear form for all u € D, X is a Hilbert space of functions on Q.

Aswe consider second-order elliptic partial differential equations, we have H& Q) c XcHY(Q).
Furthermore, we assume that a(-,-; ) is continuous and coercive for all u € D w.r.t. the inner
product and the induced norm on H'(Q). As this implies that af(-,-; u) defines the energy inner
product and the induced energy norm on X for all u € D, instead of (-,-) ;) and || - [| ;1 (), We
equip X with a scalar product and an equivalent norm that is more suitable for a posteriori
error estimation:

(u, V) x a(u, v;p) +7(u, V)12 (2.25)

lulx = VW wx,

where  is a specifically chosen reference parameter value in D and 7 > 0. The choice of T
is discussed in more detail in Remark 2.16. This allows us to define the coercivity and the
continuity constants a(u) and y(u), respectively, in the following way

a(u, u; 1)
ueX\(0}  [luf

a(u, v; W)
y() = sup _
uex\ioy vex\ioy lullxllviix

a(w)

Our hypothesis on coercivity and continuity of a can now be precisely stated as follows:

Jag>0: a(yw) >ag, YUED; (2.26)
Fyo < +oo: v <yo, VYpeD.

Finally, we assume that a admits an affine linear decomposition w.r.t. u: there exists Q € N,
(smooth) functions 6y,...,0¢ : D — R, py-independent symmetric bilinear forms ay,...,aq :
X x X — R such that

a(u, v;p) =01 (way (u,v) +---+0g(Wag(u,v), VYueD. (2.27)
As we will see in the following sections, this assumption is crucial for the efficient implementa-
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tion of the RB method.

Remark 2.15. Assumption (2.27) is commonly found in literature concerning parameter-de-
pendent PDEs, linear systems and eigenvalue problems, since deriving computationally efficient
algorithms is usually not possible in case of a general parametric dependence. It holds with
small Q for a(-,-; u) arising from a number of important applications such as:

* parameter-dependent PDE with parametrized coefficients on disjoint subdomains or
parametrized geometry(e.g. see [RHP08]),

e truncated Karhunen-Loeve (KL) or Polynomial Chaos (PC) expansion of a random field
(seee.g. [ASI2].

In a discretized setting, (2.27) is equivalent to approximating a parameter-dependent Hermitian
matrix A(u) € R™" with Q < n? constant Hermitian matrices A, ..., Ag and corresponding
functions 04,...,0¢ : D — R in the following way:

AW =0y (WA +--+0g()Ag, YpeD.

Even when a(-,-; 1) and A(u) do not a priori admit an affine linear decomposition, in certain
cases it may still be possible to approximate them very well by a short affine linear decomposition.
For example, a(-,-; u) can be approximated using the Empirical Interpolation Method [BMNP04]
and A(u) using its discrete version the Matrix Discrete Empirical Interpolation Method [NMA15].

An important specific case of affine linear dependence is when a(-,-; 1) is an affine function in ,
which has been studied in more detail in [AS12, CCDS13]. It can be easily shown that in this
case the functions 0; are linear functions in yu and a(-,-; u) admits the following decomposition:

a5 =ai() +pPas( )+ + pPagi (), (2.28)
where u¥ denotes the i-th component of . In fact, any a(-,-; ) satisfying Assumption 2.27 can
be represented in the form (2.28) by setting D := Im(0) c R9. Some examples of a(-,; u) satisfy-
ing (2.28) are the cookie example from [KT11] and the thermal block example from [HNPR10].

2.3.2 Finite element discretization

A conforming finite element discretization on Q with n degrees of freedom of (2.24) leads to
the following parameter-dependent linear system

AW x(w) = 01 (WA, +...00WAQx(W =b, YueD, (2.29)

with constant Hermitian matrices Ay, ..., Ag € R"*". Furthermore, since we are using a con-
forming finite element discretization, i.e. the finite element space is a subspace of X, the
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discretized coercivity constant a* (u) satisfies

aw,w;p) . v A(pv
O<a(u= inf ———< inf ————=a"(w), VYueD,
) uex\10)  flul% veRM\0} vT Xv W, Ve
with X = A(p) + M € R™" denotes the dicretization of the scalar product (2.25), where
M e R is the mass matrix. As a result, we have that A(u) is positive definite for all u € D.
Similarly, we can obtain that the discretized continuity constant satisfies y" (1) < y(u), Vi € D.

Remark 2.16. Computing the discretized coercivity constant a" (u) is equivalent to computing
the smallest eigenvalue of the following generalized eigenvalue problem

A(Wv=2AXp, (2.30)

which can be done, for example, using the Lanczos method, see Remark 2.4.

If we denote with A < --- < A, the eigenvalues of A(u)v = AMv, it can be easily shown that

f}r =, i =1,...,n, is an eigenvalue of the eigenvalue problem

A@v=AXv. (2.31)

Clearly, the value of constant T > 0 influences the eigenvalue distribution in (2.31). Applying the
Lanczos method to (2.31) leads to the following convergence rate in (2.7):
(A2 =A) (A +7)

1+2(/1n—/11)(/12+r)' (2.32)

As described in Remark 2.5, in case of PDE discretizations, the spectrum of the underlying PDE
eigenvalue problem is often unbounded which leads to /{1"—:{1 =~ 1 as n — oco. In practice, the
constant 1 is often chosen to be equal to A,. When inserted in (2.32), this leads to a convergence

rate of

10—
M2 /11,
201

1+ (2.33)

which is independent of the discretization size for sufficiently large values of n and approxi-
mately equal to that of the inverse Lanczos method. Therefore, as described in Remark 2.4, the
eigenvalue problem (2.31) can be solved efficiently by computing the Cholesky decomposition of
X and without inverting A(1).

The discussion above provides only the convergence rate (2.33) for the Lanczos method when
solving (2.31). However, we hope that, whenever u is close to [, the convergence rates of the
Lanczos method for solving (2.30) are not going to be significantly different. Note that i is often
set to be the "central" point of the parameter domain D.
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2.3.3 Offline phase

In the offline phase of the RB method, we subsequently select M parameter samples yy, ..., iy €
=, where E c D is a training set of finitely many (typically a few thousand) parameter values,
and construct the subspaces 7, <...S % <RN. The parameter samples are selected by a greedy
strategy aiming at to minimizing an estimate of the error. Assuming that the first k samples

have been processed, the (k + 1)-th step of this procedure consists of selecting

Ui+1 = argmax{Ar(u) : € =}, (2.34)

where A(u) is an error estimator, see Section 2.3.5 below. Then, by solving (2.29) with pu = 41,
we obtain x(ux+1) and the subspace 74 is extended to a new subspace

Vet Vie+span{x(tis+1)}

span{x(u), x(2),..., X(Ur+1)}.

2.3.4 Online phase

In the online phase, assuming dim(%);) = M and that an orthonormal basis VeRY*M of
¥y is available, we compute using Galerkin projection an approximate solution of the linear
system (2.29) for an arbitrary parameter value € D as X(u) = Vy(u), where y(u) is the solution
of the compressed linear system

VTAWV)yw =VvTh. (2.35)

Since M is usually small, a standard direct solver for linear systems can be used to solve (2.35).
To setup the linear system (2.35) efficiently, we use the affine linear decomposition of A(u) (2.27)
to obtain

VIAWV =01V A lV+...+00wVT AgV.

Having precomputed matrices VTAqV for g=1,...,Q then allows us to attain a complexity of
O(QM2 + M3) for constructing and solving (2.35).

The accuracy of the approximate solution X(u) can be quantified using the error estimator
A(w) described in the next subsection.

2.3.5 Error estimation

Given an approximate solution of the form X(u) = Vy(u) for a fixed parameter sample p € D,
the norm of the residual r(u) = b— A(u)X(u) can be computed from

I3 = (b= A Vyu) " X(b— A Vy(u)
= bTXb-2b" XA Vyw)+yw) "VTAW T XA Vy(w.
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For A(u) asin (2.29), we have

Q
Ir@l% = b"Xb-2) 0,(wb XA, Vy ()
7= 2.36)

Q
+ Y 0, (WO, Wy VTAL XAg, Vy(u).
q1,92=1

If we precompute and store the parameter-independent quantities b” XA,V and VT Af XAg,V
for q,q1,q> =1,...,Q, then ||r ()| x can be computed in O(Q?M?) operations. The difference
to the true solution x(u) can then be estimated as

Irlix — _ Irlix _
Amin(A(W), X) = Ag()

lx(u) —xX(Wlx < A, (2.37)
where Amin (A(1), X) denotes the smallest eigenvalue of the generalized eigenvalue problem
A(wv =AXv and A () > 0is a lower bound for Amin (A(w), X). Effective and reliable nonneg-
ative bounds on Apin (A(u), X) can be efficiently computed, for example, using the Successive
Constraint Method (SCM) [HRSP07], which will be described in more detail in Section 3.1.

The error estimator Ay (u) used in (2.34) to guide the sampling strategy in the offline phase is
defined in an analogous way, with V replaced by a basis V. of 7.

Remark 2.17. We have seen in Section 2.3.3 that the next parameter sample |ii.+1 is computed as
the maximizer of the error estimate A (1) on E. In every iteration, this requires recomputing X (|4)
and ||r ()l x on the whole training set 2, which can become computationally quite expensive.
Instead, as explained in [HSZ14], we can optimize the search for ;.. by using the error estimates
from the previous iteration. As k — oo, the error estimates (2.37) converge to 0. Even though
the convergence is not monotonic, it is reasonable to assume what is known as the saturation
assumption: there exists Cgat > 0 such that the following holds

Ap() < CeatAr (W), Y€>k YueD. (2.38)

We assume that the elements in E are sorted descendingly according to the error estimate (2.37)

[from the previous iteration, and look for py.., by iterating over =. We sequentially recompute
X(w) and ||r (W)l x and keep track of the current maximum error estimate Amax as well as the
point max € Z where it was attained. Reaching a point u € E such that Cgqe A (1) < Amax, allows
us to skip all the remaining elements of £, and simply set Ap.1 (1) = A (w), since (2.38) ensures
that their error estimates will be smaller than the current maximum Amax.

Remark 2.18. The reduced basis method can also be applied to more general PDEs which do
not satisfy the coercivity assumption (2.26), but instead satisfy the inf-sup condition

M>,B, VyeD.

JBo>0:P6(u) = inf =
ho>0:pw= Inf sup TulxTvix

As explained in [HRS16, Section 6.4], it is often assumed that also the finite element discretization
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of a(-,+; 1) satisfies the inf-sup condition

T
N . R u Alpv
o >0:P (H)_l}g'@f”ggugl uTXuvvTXv

Having the inf-sup condition instead of the coercivity assumption requires the use of slightly
different a posteriori error estimates [HKC* 10]:

()l x - ()Nl x
B ~ P’

where B (W) is a nonnegative lower bound for f"(1). Such lower bounds can be efficiently

lx(u) —x(Wllx <

computed using, for example, the natural-norm SCM [HKC* 10)].
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8] Low-rank approach for parameter
dependent Hermitian eigenvalue
problem

This chapter is concerned with methods for approximating the smallest eigenvalue of A(u)
Amin (A(W), HED, 3.1

for many different values of € D, where A : D — C"*" is a matrix-valued function on a
compact subset D c R? such that A(y) is Hermitian for every p € D. For simplicity, we assume
that D is a hyperrectangle in R%. We consider a large-scale setting, where applying a standard
eigensolver, such as the Lanczos method [BDD*00], is computationally feasible only for a few
values of p but would become too expensive for many (e.g., thousand) parameter values.

As discussed in Section 2.1.4, if A depends analytically on p then the smallest eigenvalue
inherits analyticity if Amin(A(w)) remains simple [Kat95]. As shown in [AS12], this can be used
to approximate Amin (A(w)) very well by high-order Legendre polynomials (for d = 1) or sparse
tensor products of Legendre polynomials (for d > 1 if D is a hypercube). Requiring Amin (A(w))
to stay simple on the whole of D is, however, a rather strong condition. In general, there are
eigenvalue crossings at which Anin (A(w)) is Lipschitz continuous only. For larger d, keeping
track of eigenvalue crossings explicitly appears to be a rather daunting task and we therefore
aim at a method for solving (3.1) that benefits only implicitly from piecewise regularity.

One of the simplest approaches to address (3.1) is to use Gershgorin’s theorem [Joh89] for
estimating the smallest eigenvalue, but the accuracy of the resulting estimate is usually in-
sufficient and limits the scope of applications severely. Without any further assumptions on
the dependence of A(u) on p, it is usually not possible to improve on this simple approach,
since the smallest eigenvalue of A(u) is computationally intractable, especially when 4 is large.
However, several more sophisticated approaches are available if A(u) also admits an affine
linear decomposition with respect to u:

AW =01(WA +---+0o(WAg, VueD, (3.2)
with Q <« n? , Hermitian matrices Ay,...,Ag € €™, and functions 04,...,0¢ : D — R. For

example, eigenvalue perturbation analysis can be used to locally approximate the smallest
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eigenvalues [NVP05, VRP02]. Currently, the most commonly used approach is the Successive
Constraint Method (SCM; see [HRSP07]), probably due to its generality and relative simplicity.
Variants of SCM for computing smallest singular values can be found in [SVH" 06, HKC* 10],
while an extension of SCM to non-linear problems and alternative heuristic strategies have
been proposed in [MN15]. Various subspace approaches based on additional conditions on
the parameter dependencies have been proposed in [MMO™*00, PRV*02]. In the context of
eigenvalue optimization problems, subspace acceleration has been discussed in [DVM12,
KV14, MYK14].

We present a subspace-accelerated variant of SCM which can be summarized as follows. Given
M parameter samples s, iz, ..., iy, we consider the subspace 7 containing the eigenvectors
belonging to one or several smallest eigenvalues of A(u;) fori=1,..., M. The smallest Ritz
value of A(u) with respect to 7 immediately yields an upper bound for Anin (A(u)). A lower
bound is obtained by combining this upper bound with a perturbation argument, which
requires knowledge on the involved eigenvalue gap. We show that this gap can be estimated
by adapting the linear programming approach used in SCM for computing the lower bounds.
Having both the upper and the lower bounds for Amin (A(w)) enables the definition of an error
estimate that drives the greedy strategy for selecting the next parameter sample pp;+1. The
whole procedure is stopped once the error estimate is uniformly small on D or, rather, on a
surrogate of D. The considered numerical experiments indicate that our subspace approach
significantly accelerates convergence compared to SCM.

The rest of this chapter is largely based on [SK16] and is organized as follows. In Section 3.1,
we first give an overview of SCM. Additionally, we discuss its interpolation properties and
point out a limitation on the quality of the lower bounds that can possibly be attained when
solely using the information taken into account by SCM. In Section 3.2, we present our novel
subspace-accelerated approach for solving (3.1). Furthermore, we show that the new approach
has better interpolation properties than SCM and present a priori convergence estimates.
Motivated by the fast convergence of the upper bounds in the novel approach, in Section 3.3,
we also introduce residual-based lower bounds which are less reliable but sometimes converge
much faster. In Section 3.4, we present the full algorithm and discuss implementational
details, while in Section 3.5 we discuss various applications of the approach and present the
accompanying numerical experiments.

3.1 Successive constraint method

In the following, we recall the Successive Constraint Method (SCM) from [HRSP07] and derive
new theoretical properties. The basic idea of SCM is to exploit (3.2) in order to construct
reduced-order models for (3.1) that allow efficient evaluation of lower and upper bounds for
Amin (A(W)).
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3.1. Successive constraint method

3.1.1 Linear optimization problem for A, (A(u))

Assumption 3.2, together with the characterization of the smallest eigenvalue as the minimal
value of the Rayleigh quotient (2.1), allows us to obtain the following expression:

u* A(uwu ol u*Aqu
min (A1) fon - mgl ; a0 —
= minf(w R(w) =mind(w) 7y, (3.3)
uech yeW

u#0

where we have defined the vector-valued functions 6 : D — RQ, R: C"\ {0} — R? as

*A u*Aoul’
0w :=[01w), ..., Oow]", Rw:=|—=, . =2 (3.4)

u*u u*u

and set % :=im(R). It follows from (3.3) that the computation of A in (A(w)) is equivalent to
optimizing the linear functional 8 (u) over %. The constraint set % is called the joint numerical
range of matrices Aj,..., Ag, which is generally not convex; see [GJK04]. Thus, standard
optimization techniques cannot be used to reliably solve (3.3). To circumvent this, in SCM,
the set % is approximated from above and from below using convex polyhedra, which, in turn
allows for the use of standard linear programming (LP) techniques to yield lower and upper
bounds for Apin (A(W)).

3.1.2 Bounding box

As explained above, in order to compute a lower bound for Ay (A(u)), we need to construct
a convex polyhedron containing %'. More precisely, we need to find constraint matrices
C € R™*Q and b € R™ such that the following linear program is bounded for all 8 € © := {0 () :
ue D}

mincge 6 Ty

) 3.5
s.t. Cy = b (5:5)

and % is contained in its feasible set. The dual linear program of (3.5) has the following form

max;crm bTZ
s.t. clz = 6. (3.6)
z = 0

To ensure that (3.5) is bounded V6 € 0, it is sufficient to show that (3.6) is feasible for every
0 € 9, i.e. that for every p, the coefficient vector 6(u) can be represented as a non-negative
linear combination of the individual constraints (rows of the matrix C). The following lemma
will help us generate suitable constraints in (3.5).

Lemma3.l. Let €R?, A, ..., Aq € C'""" Hermitian matrices and let % be their joint numeri-
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Chapter 3. Low-rank approach for parameter dependent Hermitian eigenvalue problem

cal range. If Amin(01 A1 +--- + 00 Ag) = Ag, then
0Ty=29, Vyed. 3.7)

Moreover, there exists yg € % such that0” yg = Mg, i.e. the hyperplane{y:0"y = Ao} is tangential
Y.

Proof. Let y € % and let v € R” such that R(v) = y. Then, by the minimax characterization of
eigenvalues (2.3), we have

v* 6141 + "'+9QAQ)U

v*uy

Ao < =0"R(w) =0Ty,

which proves (3.7) since y was an arbitrary element of %. Furthermore, if we denote with vg
an eigenvector corresponding to 1y, then

_ U; (91A1 + '-'+9QAQ)U9

Ao =0T R(vp).

Uy Vo

Since R(vg) € %, this completes the proof. O

Using Lemma 3.1 2Q times, once for each of the signed canonical basis vectors tej,...,teg
as 0, yields 2Q linear constraints on %. We assemble these constraints into the constraint
matrix C and the vector b. Clearly, this choice of C ensures (3.6) to be feasible, as each vector
0(w) € RY can always be represented as a non-negative linear combination of canonical basis
vector tey,...,teq. As discussed above, this is equivalent to (3.5) being bounded, which is
exactly what we wanted to achieve.

Furthermore, it is clear that the constraints obtained using Lemma 3.1 are of the following

type:
Amin(Ag) < ¥4 < Amax(Ag), Vg =1,...,Q.
By putting them together, we obtain the bounding box 98 for %:
B := [Amin (A1), Amax(AD] % -+ x [ Amin(AQ), Amax(Ag)] € RC. (3.8)

Remark 3.2. Computing solution of 2Q original-sized eigenvalue problem in (3.8) is com-
putationally not cheap. Moreover, in practice the bounding box constraints in (3.5) usually
provide only a crude approximation to Amin(A(1)), since 0 (u) is not necessarily close to any of
the canonical basis vectors +e,. Therefore, it is worth considering possible alternatives to using
AB.

Suppose we are given a Q-dimensional hypercube & such that {0(u) : p€ D} € 9. As before,
using Lemma 3.1 22 times, once for each vertex of @ as 0, yields 29 linear constraints on % . By
definition, these constraints span all vectors 0 € 9. Assembling them into constraints matrices C
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3.1. Successive constraint method

and b clearly leads to a feasible dual linear program (3.6), making this a possible alternative to
using 9. In practice, given u € D, we can expect this set of constraints to provide a significantly
more accurate approximation to Amin (A(W)) than 98, as the vertices of & are generally closer to
the objective functions 0 () than any of the canonical basis vectors.

In general, such a hypercube 9 is usually not available, whereas constructing the alternative
set of constraints requires solving 29 original-sized eigenvalue problems, which is usually
computationally too expensive. However, when A(u) is affine in y, as in (2.28), 9 is directly
available as {1} x D. Furthermore, if Q is also small, say Q < 3, solving 29 eigenvalue problems
is not significantly more computationally expensive than solving 2Q, making this approach a
preferred alternative to using 98 due to improved approximation quality.

3.1.3 SCM bounds for Apin (A(w))

Given the sample set . containing M parameter values . = {y,..., up} < D, let us suppose
we have computed the corresponding eigenpairs (A1, v1),..., (Ap, var), thatis, A; is the smallest
eigenvalue of A(u;) with eigenvector v; € C". We now describe how SCM uses this information
to approximate the set % defined above.

Clearly,
Yyp(F) =R :i=1,..., M} (3.9)

is a subset of . Optimizing (3.4) over %yg (%) instead of % thus yields an upper bound for
Amin(A(w)). Note that this is equivalent to optimizing over the convex hull of %5 (.%), since a
solution of the LP can always be attained at a vertex of the convex polyhedron.

To get a lower bound, we use the bounding box 28 defined in (3.8). However, as previously
mentioned, 48 alone is often a too crude approximation to % and we further refine it using the
sampled eigenvalues. Each sampled eigenvalue 1; contributes to one additional constraint,
using Lemma 3.1, resulting in

Yp(F)={yeB:0u) y=Ni,i=1,...,M}.

The property % < %1 5(#) follows from the minimax characterization of eigenvalues (2.3):
every y = R(u,) € % satisfies 9(,u,~)Ty = u;‘,A(,ui)uy/u;‘,uy > min, u* A(u)u/u*u = A;. As
shown in Lemma 3.1, this implies that the convex polyhedron %1 5(%) is tangential to % at
R(v1),...,R(vym).

With the sets defined above, we let

/1 JB ,U,y = min 9 lJ, Y, 3.10
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Chapter 3. Low-rank approach for parameter dependent Hermitian eigenvalue problem

Since Yyp(F) € ¥ < Y g(F), it follows that
MB (L) < Amin(A(W) < Aus(; &)

for every p € D. While the evaluation of Ayg(y; %) is trivial, the evaluation of Aig(u;.%)
requires the solution of an LP; see Figure 3.1 for an illustration.

ALs(u; #)

Figure 3.1: Illustration of the LP defining the lower bound A;g(y;.%) for Q =2 and M = 2.

3.1.4 Error estimates and sampling strategy

Assessing the quality of the bounds (3.10)-(3.11) on the entire, usually continuous parameter
domain D is, in general, an infeasible task. A common strategy in SCM, we substitute D by a
training set = c D that contains finitely many (usually, a few thousand) parameter samples.
We then measure the quality of the bounds by estimating the largest relative difference:

A ;A=A 3 F
max uB () — A (p )_ (3.12)
peE [Aus ()

If (3.12) is not sufficiently small, SCM enlarges . by a parameter that attains the maximum
in (3.12) and recomputes the bounds Ayg(¢;.#) and A1 (y;#). The resulting greedy sampling
strategy is summarized in Algorithm 2.

3.1.5 Computational complexity

Let us briefly summarize the computations performed by SCM. The bounding box 2 for %
needs to be determined initially by computing the smallest and the largest eigenvalues of
Ay,...,Aq. Since each iteration requires the computation of the smallest eigenpair (1;, v;)
of A(u;), this amounts to solving 2Q + M eigenproblems of size n x n in total. Verifying the
accuracy of the current approximation on = and selecting the next parameter sample requires
computing Ayg(i;¥) and A (w; ) for all p € =. In total, this amounts to solving M|Z| LP
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3.1. Successive constraint method

Algorithm 2 Successive Constraint Method

Input: Training set Z, affine linear decomposition such that A(u) =01 (u) Ay +---+0o(u) Aq is
Hermitian for every u € Z. Relative error tolerance escu.
Output: Set. c = with corresponding eigenpairs (A;, v;), such that

A ; F)—A ; F —_
Ao () s 7). escMm for every p e =.

[Aus (15|
1: Compute Amin(Ag), Amax(Ag) for g =1,...,Q, defining % according to (3.8).
22 M=0,¥=¢
. . Aug (15F) = Ag (1)
3: while I}}Eazx e o G SL;)I >¢escm do

. Au (1) = A (15-F)
& K1 == argnlax [Aus (L)
UEE
F— LU MM+1

Recompute Ayg(i; ) and Arg(w; ). according to (3.10)—(3.11).
M—M+1
: end while

@ N 2w

problems with Q variables and at most 2Q + M constraints.

3.1.6 Interpolation results

In this section we study interpolation properties of the SCM bounds Ayg (¢; ) and Asr g (W; %),
which can be used to provide a priori convergence estimates in the vicinity of the sampled
points, similarly as in the case of eigenvalue optimization [KMMM15].

As also discussed in [HRSP07], it is immediate to see that the bounds produced by SCM
coincide with Apmin (A(w)) for all p € &. The following theorem shows that the upper bounds
also interpolate the derivatives of Ay (A(u)) on &.

Theorem 3.3. Let.¥ < D be finite and consider the upper bound Ayg (1; %) defined in (3.10).
Given u; € % in the interior of D, assume that 01, ...,0¢ : D — R are differentiable at u; and
that A; = Amin(A(i;)) is a simple eigenvalue of A(u;). Then

VAus(i; ) = VAmin (A(1:)),
with the gradient V with respect to L.
Proof. Let v; be an eigenvector associated with A; such that | v;|2 = 1 and set y; := R(v;) €
%4y (). By definition (3.10), the relation
Aus(;-#)= min 0w y=0w'y; 3.13
UB (K ) Jein_ (W y=0(W" yi (3.13)

holds for p = ;.

We will first prove that y; is the unique minimizer. Let us suppose the contrary, there exist
j€{l,...,M} such that R(vj) = y; # y; and 0(u;) " y; = 0(u) T y; = A;, which also gives that
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v; # vj. However, by the minimax characterization of eigenvalues (2.3), this implies that
both (A;, v;) and (A;, v;) are eigenpairs of A(u;) which contradicts the fact that A; is a simple
eigenvalue. Thus, y; is the unique element of %;5(.%) such that equality holds in (3.13) for

(= .

Furthermore, this implies that the following inequalities
0w’ (yi-y) <0, VyjeMyp(¥)suchthaty; # y;, (3.14)

hold for p = ;. Since |2y (¥)| < co and 6(u) is continuous at y;, there exists an open neigh-
borhood Q < D around p; on which (3.14) is fulfilled. Therefore, y; is the unique minimizer
of (3.10) for all p € Q, and (3.13) holds on Q. Consequently,

0
) AUB(IJDy) 9(#1) Vi,

o P
where p'P) denotes the p-th entry of ufor p=1,...,d.

On the other hand, the well-known expression for the derivative of a simple eigenvalue [Lan64]
gives

9 9 2 0
Sy Mmin (A = ] 5o A vi = v .(Z S0tk Ag)vi

ou

0
) H(IJ'I) Vi,

Q
= ; (/Jl)V Aqvl o )

which completes the proof. O

As the following example shows, the result of Theorem 3.3 does not extend to the lower bounds
produced by SCM.

Example 3.4. Forpe D:=10,7n], let

-1

0 +sin(u)
-1 i 0

1
A(p) = cos(u) Ay +sin(u) A2 = cos(w) [0

It can be shown that %, the joint numerical range of Ay and Ay, equals the unit circle around 0.
Consider the sample set & = {1, 2, i3} = {0, %, 7}, with

/lmin(A(Hl)) = Amin(A(,Uz)) = Amin(A(,UE’»)) =-1.

The resulting lower bound set %% 5(¥) is the half-infinite box shown in Figure 3.2. When
minimizing ()" y for y € Mp(F), the minimum is attained at the vertex (—1,-1) for u €
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(-1,0) 0,0) (1,0)
R(v1) | 0(uy) 0 (uz)| R(v3)
T 0 (u2)
R(1) (0,-1)

Figure 3.2: Joint numerical range % (red circle) and lower bound set %1 5 () (yellow area) for
the setting described in Example 3.4.

[7/4,7/2] and at the vertex (1,—1) for ue [n/2,31/4]. Hence,

—cospu—siny, forueln/4,m/2],

A -
ok {COSH—Sinﬂ, forpe[m/2,3m/4],

yielding the following one-sided derivatives at (1 = /2:

A ((r/2)7)
Ap((n/2)")

sin(/2) —cos(w/2) =1,

—sin(m/2) —cos(m/2)) = —1.

In contrast, the exact eigenvalue is differentiable at /2. Moreover, A;nin(A(n/ 2)) =0 is different

from both one-sided derivatives of A1g(1).

As will be discussed in more detail in Section 3.2.5, interpolation properties offer an indication
of the approximation quality in the vicinity of sampled points. Thus, considering Theorem 3.3
and Example 3.4, we can anticipate the lower bounds produced by SCM to be asymptotically
less accurate than the upper bounds, which has been confirmed by numerical experiments in
Section 3.5. This phenomenon has already been observed numerically in [HKC* 10], implying
a need to find more accurate lower bounds. However, the following theorem indicates that
such an improvement is not possible without taking additional information on A(y) into
account.

Theorem 3.5. Let . = {y,...,upm} S D and consider the lower bounds A g(u;#) defined
in (3.11) for a Hermitian matrix-valued function A(u) in affine linear decomposition (3.2). Let
fieD. If2Q + M < n then there exist matrices Ay, ..., Ag € C"*", defining A(u) = 01 (W) Ay + -+ +
BQ(,U)ZQ and % analogously as in (3.8), such that % = & and

Anin (A(W) = Ag (5 ), Amin (A1) = Amin (A1) (3.15)
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hold fori=1,..., M.

Proof. Let the columns of V € C"*M+2Q) and v, e ¢ *~M=2Q) form orthonormal bases of
V =span{vy,..., vy, w1,..., e, wt,..., w% and 71, respectively, where each v; denotes an
eigenvector associated with Ayin (A(i;)), while each w; and w' denote eigenvectors associated
with Amin(A;) and Amax(A;), respectively. Moreover, let y; € %1 5(¥) < RQ denote a minimizer
of (3.11) for fi, thatis, A (f;.%) = 0() " Vii- The rest of the proof consists of showing that the
matrices defined by

Ag:=VV*AVV +yugVIV),  geil,...,Q}
satisfy 2 = % and (3.15).

Given a vector u € C" of unit norm, we can write u = uy + u, with uy € ¥ and u; € ¥+. We
ha\f that u*un = u;uny +Yaqllus 12, Vg=1,...,Q,where yg 4 € [Amin(Ag), Amax(Ag)], and
uy Aquy € [l uy II* Amin(Ag), |ty [* Amax(Ag)]. Consequently,

Amin(Ag) < U™ Agu < Amax(Ag).
Since equality is attained for u = w4 and u = w9, we obtain % = R

To show (3.15) we first note that

_ Q
wWAWu=Y 0wy Aguy + yaqllull) = uy Awuy +0w " yallull (3.16)
q=1

for any € D. For u = u;, this yields
U AW U= Amin (A 1y 15 + Amin (A 1L 15 = Amin (A)) lull3,

where we have used that y; € #15(%) implies 9(,u,-)T Vi = Amin(A(g;)). Since equality is at-
tained for u = v;, this establishes the second equality in (3.15).

Concerning the first equality in (3.15), we first note that the definition of A; 5 ({;.%) implies
wy A(@uy =0 R(uy)luy 3 = Mg (@) luy 5.

Inserted into (3.16) for u = [, this yields
u' A u = s (s A uy 3 + A (@A) ul = Aus (5 A ull.

Since equality is attained by any u € 7+, this shows the first equality in (3.15) and thus com-
pletes the proof. U

By definition the lower bounds in (3.11) depend only on 6(u), the bounding box %8 and the
eigenvalues at y;. Hence, the lower bounds for A(u), the Hermitian matrix-valued function
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constructed in Theorem 3.5, are identical with those for A(u). For Z(p), the lower bound
A1 (1; &) coincides with the exact eigenvalue at an arbitrary fixed i € D. Hence, additional
knowledge, beyond the eigenvalues at y;, needs to be incorporated to improve the lower
bounds.

3.2 Subspace acceleration

In this section, our new subspace approach is presented that takes eigenvector information
across different parameter samples into account and offers the flexibility to incorporate
eigenvectors for larger eigenvalues as well. The basic idea of this approach is to construct
a low-dimensional subspace 7 < R” that approximates {vmin (1) : ¢t € D} well, where vmin (1)
denotes the smallest eigenvector of A(u).

Given & = {u1,...,up} € D, suppose that for each sample u; we have computed the ¢ > 1
smallest eigenvalues

A=AV <A <. <2

1

of A(u;) along with an orthonormal basis of associated eigenvectors vl(.l), vgz), ey vy) eC". To

simplify notation, we assume ¢ is constant for each py,..., ups, although this is not necessary.
The eigenvectors will be collected in the subspace

V(£ 0):= span{vﬁ”,..., vgé), vé”,..., vg),..., v]%),..., vg\?}. (3.17)
In the subsequent two sections, we discuss how the information in 7' (%, ¢) can be used to

compute tighter bounds for A (A(w)).

3.2.1 Subspace approach for upper bounds

Given the subspace 7 (%, ¢) from (3.17), we define an upper bound set analogously to (3.9):
Ysup(L,0) :={R(v): veV(Z,0)}.
The corresponding upper bound for ¢ € D is defined as

Asus(;:%,0):= min  0(w’y.
suBtH YEXsup(S,0) vy

Clearly, we have ?;5(%) € %%y (¥, ¥¢) €% and thus

Au(; ) = Asus (&, €) = Amin (A(W).

To evaluate Asyp(w; -, ¢), we first compute an orthonormal basis V € CcMC oty (#, ) and
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obtain

Asus(u; <, 0)

min 0w R(w) = min 8w R(Vw)
veV (&,0) wecM?
lwlp=1

_ . * * e * *
= 'g}can[ OL(Ww V'AIVw+---+0gww V' AgVw
lwlp=1

= Amin(O1(WV* AV +...00WV*AQV) = Amin(V* AW V). (3.18)

Thus, the computation of Asyp(u;-#, ¢) requires the solution of an eigenvalue problem of size
M? x M ¢, with M¢ usually much smaller than n.

3.2.2 Subspace approach for lower bounds

We will use a perturbation result to turn the upper bound (3.18) into a lower bound Ag; g (i; &, ¢)
for p € D. For this purpose, we consider for some small integer r < M¢ the r smallest eigenval-
ues

Asu(ps &, 0) = AP <A <. <A

of V* A() V, along with the corresponding eigenvectors wr, ..., w, € CM¢, Let
W (u) = spanfwy, ..., w;}

and let U € C"*" be an orthonormal basis of the subspace %/ (1) spanned by the Ritz vectors:
U = VW (w =spani{Vwy,..., Vw,}.

Moreover, let U, € C"*("~") be an orthonormal basis of % (1) and denote the eigenvalues of
Ul AU, by

M @ (n-r)
Agpr SAgp o= A "

The transformed matrix

U*AwU U*AwU,

UU]"A U,ul=
[ 11TAWI 1] UTAWU U AGUL

clearly has the same eigenvalues as A(u), while the perturbed matrix

U* AU 0
0 Ut AU,
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has the eigenvalues {/1;1), o A%,r)} u {Ag}l, o )Lg;r)}. Applying Theorem 2.11 to this situation

yields the error bound
2p?

§++/52+4p2

| Amin (A() —min (A57,20), )] <

with the residual norm
p:=IUTAWUl2 = AU - UWU* AwU) |2
and the absolute gap 6 := M;,D - )Lgll |. Rearranging terms thus gives the lower bound

2
f(/lg}lﬂ) < Amin(A(W), with f(n):=min(A{,n) - 2p . (3.19)

A =l +/IAP = l2 + 4p2

1
uL’

This lower bound is not practical so far, as it involves the quantity A’ , which would require

the solution of a large eigenvalue problem of size (n—r) x (n—r).

Lemma 3.6. The function f :R — R defined in (3.19) is continuous and monotonically increas-
ing.

Proof. As a composition of continuous functions, the function f is clearly continuous. To
prove monotonicity we distinguish two cases. First, letn = /15/1). Then

Fop = AP =202/ (n =A% +\ /(- A2 +4p2),

which clearly increases as 1 increases. Now, let < /lg/l). Then

Fay=n-2p(A ~n+\/ -2 +4p2)

and

2p?

(A(yl)_nJr\/(A(yl)_n)zﬂpz)\/mg/n_n)z+4p2-

flap=1-

Showing f'(n) = 0, and thus establishing monotonicity, is equivalent to

2

A = +4p* + A =/ A —m2 +4p2 = 2p
AP -my/ AP -m2+4p2 = 0=-A —np?-2p?,
which is trivially satisfied for )I,g/l) > 7. This completes the proof. O

Lemma 3.6 implies that f(n) remains a lower bound as long as n < Ag}lﬁ. To summarize, our
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subspace-accelerated lower bound is defined as

2 2
As (s, €) := min (A3, (w) - P (3.20)

AL — )+ /IAD — ) 2+ 4p2

@

for alower bound n(u) of A%L.

Determining a lower bound for )L(Qll) |

The lower bound for Ag}lﬁ = Amin (U] A(W)U1) needed in (3.20) will be determined by adapting
the ideas from Section 3.1.3. Let us recall that SCM determines a lower bound for Ayin (A(w))
by solving the LP

A F)= min 6 T, 3.21
LB (1 &) Jopin W'y (3.21)

with % g(¥):={ye A: 0(,u,-)Ty = A;,i=1,..., M} and the bounding box 28 defined in (3.8). To
simplify the discussion, we always assume in the following that %1 5(.%) is a simple polytope
with no degenerate facets. Then there exists an optimizer y, € R of (3.21) such that there are
Q, among 2Q + M, linearly independent active constraints [MGO07]. In other words, y,, satisfies
alinear system

where ® € R9*€ is invertible and each equation corresponds either to a constraint of the form
0(u;i) T Yu = A; or to a box constraint. In the following, we assume that at least one of the active
constraints is a non-box constraint.

Establishing a lower bound for /lgl)l is equivalent to determining 77 (u) such thatn(u) < uj A(uuy

holds for every u, € % l(p) with ||z |2 = 1. The restriction of 1, to a lower-dimensional sub-
space can be used to tighten the non-box constraints in (3.21) and the following lemmas
explain how to achieve that.

Lemma 3.7. Let D € C***, W € C'*%, such that D = diag(d;;) withd;; <0,Yi=1,...,s and W is
of full-rank. If s < t, then

Amin(WDW?™) = Amin(W* W D).

Proof. Let W, € C"*'~% denote an orthonormal basis of range(W)*, that is W*W, = 0 and

0

[WW,] is an invertible matrix. The matrix congruence between the matrices and
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WDW?* = [W WL] [W Wl] ' implies that Amin (WDW™*) <0, as well as:

D 0
0 0

Amin(WDW*) = Amin([W WL] ﬁ g [W WL]*)

e )

where in the second equality we have used the fact that A(AB) = A(B A) for square matrices A

W*WD 0
and B. The assertion of the lemma now follows from A( [ 0 0] ) = A(W*WD)u{0} and

D 0
0 0

W*WD 0
0 0

Amm([w Wl]* [W Wl]

the fact that Amin(WDW*) <0. O

Lemma3.8. LetA; = diag(/lg.l), .. .,/15.@) andV; = [vl(.l), o vl(.é)], with the notation as introduced
above. Ifn—r =1 then

uy Alpuy = A+ Bi(w),
where B; (1) is the smallest eigenvalue of the matrix

(Ai=AiIp) = Vi UU V(A = AV ).

Proof. Using the spectral decomposition of A(y;), the result follows from

min w} Ap)uy, = min @l VihViug + AV ul - viviuy (3.23)
u) eut(u w) et !
llug llp=1 lluy llp=1

= AV min wlvi(A - ATV L) ViU
uy eut ()
llug =1

= AV 4 Amin (U V(A =AYV L) VUL
= )LE(H) +/1min(vi* ULUEVi(Ai—/lg-“DIg))

- ]LE,/H) + Amin (e =V UU V) (A —YLE.[H)Ig))

= i+ Amin((A; = A L) = VS UU" V(A _/1§€+1)I[)),

where we used in the third equality that the negative eigenvalues of the matrix product
UV (A - /15.[“) Iy) VU, do not change under a cyclic permutation of its factors, as proven
in Lemma 3.7. O

Using the values of §; (i) defined in Lemma 3.8, we update the right-hand side y € R? in (3.22)
as follows: If the kth equation corresponds to a non-box constraint 0(u;)” y = 1;, we set
Wi =Y+ Bi(w) = A; + B;(u) and, otherwise, ¥ := y. Since O is invertible, the solution of
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the resulting LP

irylf 0w’y subjectto Oy=1
is trivially given by

Fui= @‘11% (3.24)
This finally yields the desired lower bound

N =0’ Ju <AL, = Anin(UT A@UL).

Remark 3.9. The choice of r, the dimension of the Ritz subspace %/ (1), requires some consider-
ation. Forr =0, %, (1) = R" yields no improvement: As g (; %, 0) = AMp(u; &, €). Intuitively,
choosing r = 1 will be most effective when the second smallest eigenvalue of A(u) is well sepa-
rated from the smallest eigenvalue. Otherwise, one may benefit from choosing slightly larger
values of r. In practice, we choose r adaptively by taking the maximal value of Asig(; &, ¥¢)
over a few small values of r =0,1,2,..., which also ensures that A g (i; &, 0) < Asig(1; %, 0).

3.2.3 Error estimates and sampling strategy

Similarly as in SCM, we substitute D by a finite training set Z < D. We use error estimates
similar to (3.12), with the SCM bounds replaced by the subspace bounds:

Asu(; &, 0) — Asip (1 S, €)

A &, 0) =
57,6 Asus (-, 0)]

(3.25)

We use the same greedy sampling strategy as in SCM. As long as the error estimates (3.25)
are not sufficiently small on whole =, we enrich . by the parameter value that attains the
maximum in (3.25).

3.2.4 Interpolation properties

In this section, we study interpolation properties of the proposed subspace bounds Asyg(1; %, €)
and Agip(y; #, ¢). As will be discussed in the following Section 3.2.5, the significance of these
properties is in their use for deriving a priori convergence estimates in the vicinity of sample
points, which offer an indication of the approximation quality.

By definition, we already know that the bounds from our subspace approach are never worse
than the bounds produced by SCM:

M) < Asie (WS, €) < Amin(A(W) < Asus(; S, ) < Ay (; %), (3.26)

with equality at u = u; € . Together with Theorem 3.3, these inequalities imply that our
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3.2. Subspace acceleration

upper bounds also interpolate the derivatives at y;. The result was independently obtained by
Kangal et al. in [KMMM15, Lemma 2.5].

Corollary 3.10. Forany ¢ =1 and any u; € & that satisfies the assumptions of Theorem 3.3, it
holds that

VAsus (i3, €) =V Amin (A(11)),

with Asys (ui; &%, ¢) defined as in (3.18).

Proof. By the assumptions, y; is an interior point of D and (3.26) implies that the inequality
Amin(A(W) < Asup(; &, €) < Aup(w;-¥) holds for all ¢ in a neighbourhood of p;. Combined
with Amin (A(p:)) = Asu (i; <, €) = Aus (pi; &), we get
0
au((ﬁ

0
Amin(A()) < ——Asus (ui; &, 0) < Aus(i; #),
ou@

forg=1,...,d. The result VApin (A1) = VAus(ii; ) of Theorem 3.3 now yields the desired
result. O

In contrast to SCM, it turns out that the subspace lower bounds also interpolate the derivative
of Amin (A(w)) at u € .#. To show this, we need the following lemma.

Lemma 3.11. Let u; € & satisfy the assumptions of Theorem 3.3. For any € > 0, there is a
neighbourhood Q) < D around pu; such that

A = AP ()]
AEZ) _ TI(IJ)

IA

€ (3.27)
€ (3.28)

IA

hold for all € Q, where /13/1) () andn(-) are defined as in Section 3.2.2.

Proof. Since vl(.n € V(<#,¢), we have /15/1) (1;) = A; and thus the continuity of the smallest
eigenvalue implies that (3.27) holds for all i in some neighbourhood Q; around g;. It remains
to prove (3.28).

In the LP (3.11) for determining A;g(u;;-¥), which is trivially given by A;, the constraint
O(u;)Ty = A; is active. Since we assumed that %5 (%) is a simple polytope with no degenerate
facets, the continuity of (y) implies that this constraint remains active in a neighbourhood
Qo: 0(u;) Ty,, = A; for all u € Qp, where y,, is a minimizer of (3.11) for determining Apg (i; ).
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By (3.23), the value of ;(u) defined in Lemma 3.8 satisfies

. % % 0+1)  * %
Biw) = min ufViAViug + AV ul (- ViV uy - A
uie%i(;t)
llu) llp=1
> min  w} VinViuy + A0 - Vv ug - A
u, espan{u(w)- !
llug lip=1

where u(u) € %/(u) denotes the Ritz vector corresponding to the smallest Ritz value )L;/l) ().

Let us now consider the eigenvector vgl) belonging to the eigenvalue A; = Apin(A(y;)). By
1) 1)
i i

and u(u) becomes arbitrarily small as ¢ approaches ;. Therefore, for any € > 0, there is a

definition, v; " is contained in %/ (u;). The simplicity of 1; implies that the angle between v

neighbourhood Q3 of p; such that

. & £
Bi(u) = min uiV,-A,-Vi*ul+/ly+l)uj(I—ViVl-*)ul—Ai—5 =A§2)—ﬂi—E,VH€Qg.
uJ_J_ui

lluy llp=1
In summary, the vector y, defined in (3.24) satisfies

& &
O Ju=Ai+Biw = A + AP - ;- 5= AP - 5 (3.29)

By the invertibility of ©, the vector j, remains bounded in the vicinity of u;. Together with the
continuity of 6(u), this implies that there is a neighbourhood Q4 of y; such that

. €
[CIMELIM R 5 VHEQ.
Combined with (3.29), this yields
nw=0w y, =1 —¢,
which establishes (3.28). Setting Q = Q; N Q> N Q3 N Q4 completes the proof. O
The following theorem establishes the Hermite interpolation property of the subspace lower

bounds.

Theorem 3.12. Let u; € ¥ satisfy the assumptions of Theorem 3.3 and, additionally, suppose
thatr < ¢ and A" > A\ Then

VAsie(ti;F,€) = VAmin (A))).

Proof. By Lemma 3.11 and the simplicity of Apin(A(y;)), there is 6y > 0 such that n(u) =
YL(VD (1) + 69 for u sufficiently close to u;. Hence, the subspace lower bound (3.20) is given by

2p2

o+ \/52+4p2’

Asts (57, €) = A () — (3.30)
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3.2. Subspace acceleration

with p = |UT A(u)U|l2 and 6 = |/1§/1)(p) —n(w)| = d. Since Asyp(ui; &, 0) = /1%,1) (ui), by Corol-
lary 3.10, we have

VAD (1) = VAsug (ti; &, 0) = VAmin (A(u)).

Since § is bounded from below, the result follows from (3.30) if the gradient of p? at u = y; is
zero. To show the latter, we first observe that the assumptions /lg.r s AE” and r < ¢ imply
that the invariant subspace belonging to the r smallest eigenvalues of A(u;) is simple and
contained in V. Let us recall that #(u) is the invariant subspace belonging to the r smallest
eigenvalue of V* A(u) V. By minimax characterization of eigenvalues 2.4, the gap between AE’ )
and Aﬁ.r *1 implies an equal or larger gap between r + 1-th and r-th eigenvalue of V* A(u;) V.
This, together with the Lipschitz continuity of V* A(u) V w.r.t. u, implies [DK70, Theorem 8.2]

sinO# (ui), # (W) = Ol —pill2).
Since % (u) = VW (w),Yu € D, we have
Isin® (2 (1), %2 (W)ll2 = O (| — pill2).

In other words, there is a basis U for %/ (u;) such that U = U; + O (|| — p;ll2). Thus,

UAWU = UAp)U;i+0(lp— pill2)
= UJUFUDH* +UUHAW)U; + 6l - pill2)
= O(lp—pil2).
Therefore, we have Vp? = 0 at u = y;, which completes the proof. O

If y; € & satisfies the assumptions of Theorem 3.3, we have that )Li.i) is simple, and thus, Theo-
rem 3.12 holds for the choice r = 1, since /151) < ]Li.z) and r = 1 < ¢. By the pinching theorem,
this implies that the lower bounds returned by the procedure explained in Remark 3.9 (that is,
adaptively choosing r to maximize Ags;g(y;.%, ¢)) also satisfy the assertion of Theorem 3.12.

3.2.5 A prioriconvergence estimates

Using the interpolation results from Corollary 3.10 and Theorem 3.12 we obtain the following
a priori convergence estimates for Asyp(;-%,¢) and Asig(y; &, €).

Theorem 3.13. Let u; € % be such that Amin(A(u;)) is simple and let h > 0 be such that
Amin(A(W), Asus(;F,€) and Asis(; ¥, €) are twice differentiable on B(u;, h). Then there
exist constants Cy, C, > 0 such that

IAsuB (W%, €) = Amin(A@)| < C1h?,
IAsLB (1%, 0) = Amin(A(W)| < Coh?,
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forallue B(u;, h).

Proof. Let u € B(u;, h). Expanding Amin (A(n)) and Asyg (y; %, ¢) around p; using a second-
order Taylor polynomial expansion and using (3.26) and the results of Corollary 3.10, we
obtain

(V2 AsuB (& 7, €) = V* Amin (A(D)) (1 — pi)?,

DN |~

AsuB (15 S, €) — Amin (A(W)) =
for @, i € [u;, 1]. The first inequality now holds for

Ci= max [|V*Asyp(iS, Ollz+ max |V dmin (A@) 2.
HEB(u;,h) HEB(u;,h)

The second inequality can be shown in the same way using (3.26) and Theorem 3.12. O

Remark 3.14. To ensure the differentiability conditions on Amin(A(W)) and Asyp(; &, €) needed
in the assumptions of Theorem 3.13, it is sufficient that the smallest eigenvalues Amin (A(1)) and
Asus (&, €) stay simple on B(u, h), see [KMMM15]. A simple criterion for differentiability of
Asie(W; #, €) is not available, since (3.20) involves (i), which depends on the solution of the
linear program (3.11) A g(u; ) and, thus, is not necessarily smooth around ;.

Since h = 6(MY/ d), the convergence estimates obtained in Theorem 3.13 are of practical
importance only for small values of d = 1,2,.... However, if A(y) is an analytic function in
1, we can expect much faster convergence than the one guaranteed by Theorem 3.13, as
explained in the following section and observed for the numerical experiments presented in
Section 3.5.

A priori convergence estimates for analytic A(u) in the one-parameter case

In the following, we analyse the convergence of our subspace bounds for a special case:
We assume that A(u) depends analytically on one parameter p € [-1,1] and, moreover, the
eigenvalue Apin (A(w)) is simple and separated by at least 6 > 0 from the rest of the spectrum
forall pe[-1,1].

Let Er denote the open elliptic disc in the complex plane with foci +1 and the sum of its half
axes equal to R. Under the above assumptions, there is Ry > 1 such that the (suitably normal-
ized) eigenvector v(u) belonging to Amin(A(u)) admits an analytic extension v : Eg, — C"; see,
e.g., [Kat95, RS78]. Note that v can be chosen to have norm 1 on [-1,1], see [RS78, Theorem

XI1.4], but this is not the case on Ep, in general. Let # = {u,..., up} contain the Chebyshev
2i-1
]
polynomial is given by

nodes u; = cos( m) and set v; := v(u;). The corresponding vector-valued interpolating

pu() =C1(Wvr+---+ (W v, (3.31)
with the Lagrange polynomials ¢4,...,¢p;: [-1,1] = R.
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3.2. Subspace acceleration

Let Tps(x) = cos(M arccos(x)) denote M-th Chebyshev polynomial on [-1,1]. The interpola-
tion error can be expressed in the following way [MHO03, Lemma 6.6]

_ _ Ty (Wv(2)
v = pa(h) = fE Th(2)(z— )

forany 1 < R < Ry, and bounded by

1o - pr(lz sf ITu 1@z

ldz|. (3.32)
Ex | Tm(2)||z— pl

We can further simplify (3.32) using [MHO03, Corollary 6.6A], which yields

100 = P2 < (R+RHC
max v — = y
peigy VW T PMUD2 = T T MLy Ry R - )

(3.33)

with C = sup [|[v(2)ll2. This result is utilized in the proof of the following theorem, which shows
z€ER

exponential convergence of our subspace bounds.
Theorem 3.15. Under the setting described above, the subspace lower and upper bounds for

¢ =r =1 satisfy

Asus (i, 1) = Amin (A(1)) CyR™M, (3.34)
Amin(A(W) — Asip(;.#,1) < CpR™M, (3.35)

I\

for every p e [-1,1], with constants Cy, Cy, independent of M and (1.

Proof. For ¢ =1, the subspace used in our bounds takes the form 7 = span{v,..., vy}. The
interpolating polynomial defined in (3.31) clearly satisfies pas(u) € 7, and hence (3.33) yields
the following bound on the angle between 7 and v(u):

min |7 - v, SR M. (3.36)
veV

By approximation results for Ritz values [Saa92, Theorem 4.6,Proposition 4.5] and (3.36), we
have

2
Y ~
IA() = Amin (A I1l2 (1 + —’;) (min |7 - v(w)l2)*
6# 4

IA

AsuB (<, 1) = Amin (A1)

2
Y _
< AW = Amin (A Il2(1 + 5—5‘)1% M
u

where v, = [VV*A(u)(I - VV™)|2 and 6, equals the distance between Amin (A(p)) and the
rest of the spectrum of A(u). Since A(u) is bounded for all p € [-1,1], and 6, > &y, this proves
inequality (3.34) with a constant Cyy independent of M and p.
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Chapter 3. Low-rank approach for parameter dependent Hermitian eigenvalue problem

To prove (3.35), we first note that the arguments from the proof of Theorem 3.12 can be utilized
to show that

2p?

5+1/8%+4p%

for sufficiently large M, where 6§ > % > 0. Since r = 1, the quantity p coincides with the
residual of the smallest Ritz vector of A(u) with respect to 7. Approximation results for Ritz
values [Par98, Theorem 11.7.1] and [Saa92, Theorem 4.6], together with (3.36), yield a bound
onp

Asi (5, 1) = Asyp(i; &, 1) —

2
Yo . o~
p < spread(A(u)) 1+—grpm||v—v(p)||2
\ 6# vey

v
g

R—M

< spread(A(p))\ 1+

with 6, and vy, as before, and spread(A(u)) = [Amax(A() — Amin (A(w))|. Using similar argu-
ments as for the subspace upper bounds, this proves the second inequality and completes the
proof. O

The maximal value of the exponent R in (3.34)—(3.35) depends on the analyticity radii on [-1, 1],
which are, as has been already discussed in Section 2.1.4, connected to the gaps between the
smallest and the second smallest eigenvalue, and the variation in A(u).

Theorem 3.15 covers only the situation when Anyin (A(p) stays simple on [—1, 1]. If this is not
the case, we can expect a subexponential convergence rate which detoriates with the number
of eigenvalue crossings on D, since Theorem 3.15 still applies to intervals in between the
eigenvalue crossings.

Remark 3.16. Theorem 3.15 can be extended to the multiparameter case by using tensorized
Chebyshev nodes, following the work in [AS12], which results in subexponential error decay
O(R"M") that deteriorates as the number of parameters grow. Algorithm 3, when applied to
Example 4.9 (with 6 = 0.1) from Section 3.5, exhibits similar convergence rate, as presented in
Figure 3.3.

Let W € R™I=! be the matrix assembled with the vectors v(u), defined as above, as columns for
each u € E, and let two error indicators, the maximum error estimate (3.25) and the maximum
angle, be defined as follows

Amax = maxA(yS,0), (3.37)
HEE
Omax = IEEa:xé(v(u),W(Y,ﬁ)). (3.38)
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values of W for d = 3.

Figure 3.3: Convergence of Algorithm 3 for Example 4.9 with 6 = 0.1.

First, we compute the smallest values of M such that each of o ;41 (W) < 1072, Appax < 1074,
max < 1072 is fulfilled and present the evolution of the obtained values for M w.r.t. d in
Figure 3.3b. We can see that the required number of iterations to attain fixed precision grows
exponentially with d, indicating that Algorithm 3 also has a convergence rate exp(—M"%).
Moreover, for d = 3, we show the singular value decay of the matrix W as well as the convergence
rate of Amax and amax in Figure 3.3a. The results indicate that the sampled subspaceV (%, ¢) is
close to optimal in approximating the dominant left singular vectors of W.

Relation to linear interpolation

Given a set of sampled functions values, a straightforward idea is to approximate the function
on the whole domain using the linear interpolation. In the following theorem we show that in
the special case when A(p) is an affine function in u = (u®@, ..., u(@) asin (2.28):

A(p) = A+ u® Ay + -+ 19 Ag,

the subspace lower bounds Ag;g(u;-#, ¢) are always at least as good approximation to Apmin (A())
as the linear interpolation of the sampled values.

Theorem 3.17. Suppose we are given ., defined as above, and |1 € conv(¥#). Let1 < i) <ip <
-+ <iQ = M such that p € conviy;,, ..., li,}. We define l(u) : RQ — R to be the linear function
interpolating Amin (A(W)) at yi,, ..., Hig- Then we have

I(w) = Mis(; %),

where A g(u; ) is defined in (3.11). Additionally, there exist1 < iy < ip <---<ig < M such that
pE convipl, ..., iy} and the corresponding function [ satisfies [(u) = Arp(1; ).
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Proof. The dual problem of the lower bound minimization in (3.11) is:

Mp(;#) = max bz
st. zIc = [L,u®,..., uQ)T, (3.39)
z = 0,

with C and b the corresponding constraint matrices. We can interpret (3.39) as an optimization
problem over all possible representations of i as a convex combination of the points in .%.
Barycentric coordinates of u on the simplex spanned by u;, i, ..., i, clearly provide an
admissible point of (3.39), immediately proving /(u) < A1 (y; &).

Moreover, there is an optimal point z for (3.39) such that z has only Q non-zero coordinates, as
each non-zero coordinate of z corresponds to one the active constraints in the optimal solution
of the primal problem. This immediately gives that there exist 1 <i; <i» <---<ig < M such
that I(u) = A1 (1; ). O

From (3.26), we have A15(u; %) < Asig(;-F, €) < Amin(A(1)). Combining this with the results
of Theorem 3.17, we get

() = Asip (%, €) < Amin (A(W)),

for all u € conv(#) and all functions ¢ obtained as linear interpolation of Ay (A(1)) on a
simplex in . containing p. This shows that the subspace upper bounds Agip(i;-#, €) are at
least as good approximation to Amin (A(w)) as the one obtained by linearly interpolating the
computed values of Amin (A(W)).

3.2.6 Geometric interpretation

In SCM, the joint numerical range % is approximated using the convex polyhedra %4y and % g,
as shown in Figure 3.1. As the minimum of the linear program (3.11) can always be attained at a
vertex of the polyhedron, in order to minimize the error in the SCM lower bounds, the vertices
(corners) of 213 need to be as close as possible to . In the following, we present numerical
evidence indicating that, given the same sample set ., we are able to "cut the corners" of
21 and obtain a better approximation of % by using the proposed subspace-accelerated
approach.

We consider p € [-1,1] and A(u) = Ay + Ay, with A;, A, random Hermitian matrices. Suppose
that ¢ =1and .¥ = {-1, 1}. Having computed the smallest eigenpairs in the sample points in .#,
we calculate the subspace bounds Asyg(i;{—1,1},1) and Asig(y;{—1,1},1) and compare them
with the SCM bounds Ayg(i;{—1,1}) and Ayg(u;{—1,1}), see Figure 3.4a. The corresponding
approximations to % are shown in Figure 3.4b, indicating that the subspace-accelerated
approach is indeed able to exploit information about the eigenvalue gaps to "cut the corners"
of 21 . Tighter bounds and a better approximation of 2 can be achieved by either increasing
¢, as shown in Figures 3.4c and 3.4d for the case ¢ = 2, or by enriching the sample set .%#,
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as presented in Figures 3.4e and 3.4f for the case .¥ = {—1,0,1}. Moreover, the numerical
examples presented in Figures 3.4a, 3.4c and 3.4e serve as a experimental evidence for the
theoretical results presented in Sections 3.1.6 and 3.2.4, showing that the SCM upper bound
and both subspace bounds interpolate the derivative of Ayin (A(w)) in the sampled points,
while the SCM lower bound does not.

3.3 Heuristic variants

As we will see later in the numerical experiments section, the existing approaches, such as SCM,
often do not provide satisfactory results, leading to proposals of various heuristic strategies for
approximating the smallest eigenvalues of A(u). Such approaches (see e.g. [MN15, MMO™00])
provide bounds which are usually very easy to compute and, although not rigorous, in practice
often very accurate.

In some of the numerical experiments (especially in Example 3.24), our subspace-accelerated
version of SCM (Algorithm 3) also exhibits slow convergence, where the subspace lower bounds
converge rather slowly in the initial phase of the algorithm, in contrast to the subspace upper
bounds. This slow convergence can be viewed as a price that needs to be paid in order to
maintain the reliability of the lower bounds. In the following, we propose an alternative that is
heuristic (i.e., its reliability is not guaranteed) and is observed to converge faster in the initial
phase.

The alternative consists of simply subtracting the residual norm from the upper bound:
Asu (&, ) — | AW u— Asus (1%, O ull2, (3.40)

where u with ||u|2 = 1 is a Ritz vector belonging to the smallest Ritz value Agyg(y; ¥, ¢) of
A(u) with respect to 7. A basic first-order perturbation result for Hermitian matrices [Par98,
Theorem 4.5.1] implies that (3.40) constitutes a lower bound for an eigenvalue of A(y), but
not necessarily the smallest one. There is a risk, especially in the very beginning, that (3.40)
is actually larger than the smallest eigenvalue, see Section 3.5 for examples. However, in all
numerical experiments we have observed that a small number of iterations suffices until (3.40)
becomes a lower bound for the smallest eigenvalue.

Remark 3.18. When using the residual-based lower bound (3.40), it makes sense to also adjust
the error measure (3.12) that drives the sampling strategy to

AW u—Asus(;F, O) ull2
max
LEE [Asus(; <, 0)]

’

and stop the iteration when this error estimate drops below €scm.

Remark 3.19. The subspace lower bounds formula (3.20) can also be used to motivate various
heuristic approaches. For example, instead of calculating n(u) rigorously like in Section 3.2.2,
we can use the computed smallest Ritz values as an estimate for the eigenvalue gaps and, thus,
also to approximate n(u). Similar reasoning has already been used in [MMO™" 00, FMPV15],
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3.4. Algorithm

where the proposed lower bounds for the smallest eigenvalues rely on the working assumption
that the second smallest computed Ritz value )L;/Z) is an accurate approximation to the second
smallest eigenvalue of A(1).

3.4 Algorithm

In this section, we present a summary, in form of Algorithm 3, of our subspace-accelerated
approach introduced in Section 3.2 and discuss its implementation and computational com-
plexity.

Algorithm 3 Subspace-accelerated SCM

Input: Trainingset Z c D, affine linear decomposition such that A(u) = 01 (1) Ay +---+00 (1) Ag
is Hermitian for every u € =. Relative error toleranpe ESCM.-
Output: Set.¥ c = with corresponding eigenvalues )LE.] ) and an orthonormal eigenvector basis

Asus (14:F,0)—AsiB (145 ,€)
Vof ¥V (&, ¥), such that eon (570

<éescm forevery pe =E.

1: Compute Amin(Ag), Amax(A4) for g =1,...,Q, defining 9 according to (3.8).
2 M=0,¥=¢
3: Set Umax to be a randomly chosen element of =.
4: while A(tumax; &, ¥¢) >éescm do
5. UM+1 — {Mmax}
6: Compute smallest eigenpairs (/lﬁl)ﬁ, v](\}l)ﬂ), e (/1561)“, 1/5\21) of A(upr+1).
7: S —SU MM+1
8 Update V*A,;Vand V*AzA,Vforallg,q'=1,...,Q.
9: forpe=Zdo
10: if CA(y; &, 0) < Apax then
11: Exit the for loop.
12: end if
13: Recompute Asyp (1; %, €) = Amin (V¥ A(W) V).
14: Recompute p = \//lmax(U*A(u)* A(uw)U — Ay?) according to (3.41).
15: Recompute y;, = argmin g, o) 0 (1) Ty and updated Ju according to (3.24).
16: Recompute n(u) — 6 (W) Tj/u.
17: Recompute Agrg(w; -, ¢) according to (3.20).
18: Recompute A(y; ., ¢) according to (3.25) and update Apax and fmax-

19: end for
200 M—M+1
21: end while

3.4.1 Computational details

The efficient implementation of our proposed approach for computing upper and lower
bounds for Anmin(A(w)) requires care in order to avoid unnecessary computations. Some
implementation details are discussed in the following.

Computation of A, (A(u)). For computing a few smallest eigenpairs of a large-scale Her-
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Chapter 3. Low-rank approach for parameter dependent Hermitian eigenvalue problem

mitian matrix, it is preferable to use an iterative solver, such as the Lanczos method,
presented in Section 2.1.3, or the LOBPCG [Kny01]. In our implementation we use
the the MATLAB built-in function eigs of the Lanczos method, which is based on
ARPACK [LSY98]. As discussed in Remark 2.5, if it is a priori known that A(u) posi-
tive definite, it is often advisable to use the inverse Lanczos method instead, together
with the sparse Cholesky factorization.

Computation of V* A(u)V and U* A(u)* A(u)U. By the affine linear decomposition (3.2),
VAWV =01 ()V* ALV +--+00()V* AgV.

A standard technique in RBM, we compute and store the M¢ x M¢ matrices V*A,V,
and update them as new columns are added to V. In turn, the computation of V* A(u) V,
which is needed to evaluate the upper bound for every u € =, becomes negligible as long
as M¢ < n. Similarly, the evaluation of U* A(u)* A() U needed for p becomes negligible
after the precomputation of V* Ay A4V forall g, q9=1,...,Q.

Computation of p. The quantity p = | A(W)U-UAyll» with Ay = U* A(u)U = diag(/lg/l), . )Lg/r))
can be computed by solving an r x r eigenvalue problem:

P = Amax(AWU - UAY)* (AU - UAy))
Amax(U* A(W)* A(w)U — Ag?). (3.41)

Note that U and Ay both depend on p.

Computing 11 5(A(¢)). Computationally the most expensive part of computing Asrp(A(w)) is
solving (3.11). For solving linear programs, in our implementation, we use the interior
point method, as it offers the best time complexity in the general case . However, when
the dimensionality of the problem is small, Q < 3, we use the simplex method instead.
It becomes a viable alternative, especially due to the fact that the linear program (3.11)
changes only slightly from one iteration to the other and the simplex method allows for
updating previously computed solutions. For example, if the newly added constraints
do not cut off the previously optimal vertex, it will stop immediately.

Computation of the next parameter sample pi/,;. The next parameter sample pps4 is com-
puted as the maximizer of the error estimate (3.25) on =. In every iteration, this re-
quires recomputing the bounds Asyp(y; -, ¢) and Agip(y; %, ¢) on the whole training
set =, which can become computationally quite expensive. Instead, as explained in
Remark 2.17, the search for pys4; (lines 9-19 in Algorithm 3) can be optimized using
the saturation assumption, which in the current setting takes the following form: there
exists Cgat > 0 such that

A(; F*,0) < Csat A3 F,0), VF* > F,YueD. (3.42)
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Using the saturation assumption in the context of parameter-dependent eigenvalue
problems has already been proposed in [CHMRO09]. As described in Remark 2.17, using
the error estimates from the previous iteration together with (3.42) often allows us to
skip recomputing A(y;.#, ¢) for a number of points in = when searching for the next
parameter sample ppr41. In Algorithm 3, we use the same notation as in Remark 2.17
for Amax and pmax, which are the current maximum error estimate and the pointin =
where it was attained, respectively.

It is important to note that the saturation assumption (3.42) can be easily proven with
Csat = 1 for all g € D such that Agig(y; <, ) and Asys (y; #, €) are of the same sign. For
example, if Asyp(u;-#,¢) >0 and As g (u; <, ¢) > 0, we have

Asie(p; S, €)

Ay, #£,0)=1—- —4mm<
H Asus ;) 0)

Since both eigenvalue bounds are monotonically improving throughout the iterations,
this immediately implies that the error estimates A(y;.%, ¢) are monotonically decreas-
ing, thus proving (3.42) with Cga¢ = 1. The discussion is similar for the case when both
bounds are negative. In the numerical examples considered in Section 3.5, we can see
that maxye= A(y; %, €) < 1 usually holds after only a few iterations, implying that the
bounds are of the same sign on the whole domain, and making the use of the saturation
assumption completely justified.

3.4.2 Parameter value selection

Choice of r. The subspace lower bounds Agip(y;.#,¢) clearly depend on the choice of r,
number of the smallest Ritz vectors used in the construction of the subspace U. As
explained in Remark 3.9, r is chosen adaptively for each p € = by taking the maximal
value of Ag15(u;#, ¢) among a few small values of r =0, 1,2,....

Choice of ¢. Clearly, a larger choice of ¢ can be expected to lead to better bounds. On the
other hand, a larger value of ¢ increases the computational cost. Intuitively, choosing ¢
larger than one appears to be most beneficial when the gap between the smallest and
second smallest eigenvalues is small or even vanishes. One could, for example, choose
¢ such that AE.“D - AE.D exceeds a certain threshold. However, in absence of a priori
information on eigenvalue gaps, it might be the wisest to simply choose ¢ = 1 for all
i, as shown in Figure 3.5, where we present the convergence rates of Algorithm 3 for
different choices of 2.

Choice of Z. Depending on d, the training set = is either chosen as a tensorized grid in R or
as a subset of R? containing few thousand randomly selected points. Using a tensorized
grid makes sense only if D is a hyperrectangle and is viable only for small values of
d, say d < 3, whereas in Section 3.5, we consider numerical examples with d up to 9.
Choosing = as a random subset of D is usually a more efficient option and as such,
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Chapter 3. Low-rank approach for parameter dependent Hermitian eigenvalue problem

is a standard practice in the reduced basis method, see [RHP08, HSZ14]. It is not a
priori clear how many points exactly to include in Z, as it depends on the problem,
in particular the dimensionality d. The results presented in Figure 3.6 indicate that
having |Z| =~ 103 is usually sufficient to provide reliable results, as further enrichment
of = does not influence the number of iterations of Algorithm 3, indicating that the
obtained reduced-order model already is good enough on the whole D.

maximum error estimate
maximum error estimate
maximum error estimate

1 2 3 4 5 6 7 8 9 [ 5 10 15 20 25 30 35 0 2 4 6 8 10 12 14
iteration subspace size time

(a) The maximum relative error (b) The maximum relative er- (c) The maximum relative error
w.r.t. iteration for Q = 2. ror w.r.t. size of 7 (<, ¢) for wur.t. time for Q = 2.
Q=2.

10
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35

maximum error estimate
3

maximum error estimate
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iteration subspace size time

(d) The maximum relative er- (e) The maximum relative error (f) The maximum relative error
ror w.r.t. iteration for Q = 2. w.r.t. size of 7' (¥, ¢) for Q =2. w.r.t. time for Q = 2.

Figure 3.5: Convergence of Algorithm 3 applied to Example 4.9 with 6 = 0.1 and Q = 2,4 for
different choices of 2.

3.4.3 Computational complexity

Algorithm 3 summarizes our proposed procedure for computing subspace lower and upper
bounds, taking into account implementational details from Section 3.4.1. Similarly as SCM,
the algorithm requires solution of 2Q + M eigenvalue problems of size n x n for determining
both the bounding box 28 at the start and the smallest ¢ + 1 eigenpairs in each iteration.
Clearly, the latter part will become more expensive than in SCM if ¢ = 1. However, we expect
that this increase can be mitigated significantly in practice by the use of block algorithms.
More specifically, when using a block eigenvalue solver such as LOBPCG [Kny01] and efficient
implementations of block matrix-vector products with the matrix A (and its preconditioner),
the computation of ¢ smallest eigenvalues will not be much more expensive as long as ¢
remains modest.

Computing Asys(1; #, ¢) and Agrg(; &, ¢) for all u € Z amounts to solving M|Z| eigenprob-
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Figure 3.6: The final sample size M in Algorithm 3 applied to Example 4.9 as a function of | =|.

lems of size M ¢ x M/¢, as well as M|Z| LP problems with Q variables and 2Q + M constraints.
As long as M¢ « n, these parts will be negligible, and the cost of Algorithms 2 and 3 will be
approximately equal. Moreover in practice, as explained in Section 3.4.1, by assuming the
saturation assumption, for a fixed u € Z, the bounds Asyg(1;#, ¢) and As g (u;-#, ¢) do not
have to be recomputed in every iteration, but rather only a few times throughout the execution.

Remark 3.20. As solving a dense k x k eigenvalue problem has complexity 6 (k3), computing
subspace upper bounds get significantly more expensive as M gets larger. It is not a priori clear
what is the critical value of M when the subspace-accelerated approach becomes more expensive
than SCM or a direct approach, where for each p € = the eigenvalue problem would be solved
exactly. This depends on a number of different factors such as:

* theratio between the computational times needed for computing Amin (A1) and solving
a small dense eigenvalue problem V* A(u)V for a single value of 1,

* size of the training set =,

* computational savings due to the saturation assumption (3.42).

This issue can be spotted in Section 4.4, in particular in Example 4.12, where the subspace-
accelerated approach is only slightly faster than the direct approach. Similar problems have
already been addressed in the reduced basis framework for linear systems using a domain
splitting technique, where the algorithm is run on each component of the parameter domain
independently, see [EPR10, HDO11]. If needed, such a domain splitting technique could easily
be integrated in Algorithm 3 as well. However, it is important to emphasize that the idea of
domain splitting is usually most effective when d is not too large and there is an easy way to
split D into a few connected components.
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Chapter 3. Low-rank approach for parameter dependent Hermitian eigenvalue problem

3.5 Applications and numerical examples

In this section, we report on the performance of our proposed approach for a number of
examples. Algorithms 2 and 3 have been implemented in MATLAB Version 7.14.0.739 (R2012a)
and all experiments have been performed on an Intel Xeon CPU E31225 with 4 cores, 3.1 GHz,
and 8 GB RAM.

We compare Algorithm 3 with Algorithm 2 by computing the maximum relative error ra-
tio (3.12). Additionally, we compare the convergence of the bounds from Sections 3.1 and 3.2
towards the exact smallest eigenvalues by measuring the absolute error

I}}eacx Ibound(p) = Amin (A(W)1, (3.43)
for the corresponding bound, both with respect to the number of iterations and with respect
to the execution time (in seconds).

When implementing and testing Algorithms 2 and 3, we have made the following choices. We
set the relative tolerance to egcy = 1074, the maximum number of iterations to Mpax = 200
and the surrogate set = to be a random subset of D containing 1000 elements. The smallest
eigenpairs of A(u;) have been computed using the MATLAB built-in function eigs, which is
based on ARPACK [LSY98], with the tolerance set to 10~'°. For solving the linear program (4.6),
we have used the MOSEK 7 Matlab toolbox [ApS15] implementation of the interior point
method and the simplex method with updating. In all experiments, we have used Algorithm 3
with the number of smallest eigenpairs included in 7 set to ¢ = 1, since this already provided
significant improvements over Algorithm 2. In the first five iterations of Algorithm 3 we have
worked with the saturation constant set to Cga; = +00 and Csy = 1 in the following iterations.
For choosing r from Section 3.2.2, we have tested all values r =0, 1,..., Q, see Remark 3.9.

3.5.1 Random matrices

We first consider an academic example, where a random dense Hermitian matrix A; € C"*" is
perturbed, to a certain extent, by random Hermitian matrices A,..., Ag € cnxn,

Alp) = Ay + 2 A+ + Q@ Ag,

where p = (uo,...,ug) €D = [0,619°1.

Example 3.21. We consider Q =4, n=1000, 6 = 0.2, with A, A, A3, A4 having real random
entries from the unit normal distribution. The performances of both algorithms is shown in
Figure 4.3. The convergence of Algorithm 2 flattens after around 25 iterations and does not reach
the desired tolerance, while the convergence of Algorithm 3 is much faster and reaches the desired
tolerance within 47 iterations. We have also considered an optimized version of Algorithm 2,
where where we incorporate the optimized strategy for selecting 11 based on the saturation
assumption, as described in Section 3.4.1. Results of this modification on the performance of
Algorithm 2 can be seen in Figure 3.7d. This modification speeds up Algorithm 2 significantly,
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without notably affecting the accuracy. However, Algorithm 3 still outperforms Algorithm 2 both
in terms of the computational time and the accuracy attained. Since Algorithm 3 converges
quickly, there is no need to even consider the residual-based lower bounds from Section 3.3, but
we still include the results in Figure 4.3 for the sake of completeness.
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Figure 3.7: Convergence plots for Algorithms 2 and 3 applied to Example 3.21.

3.5.2 Estimation of the coercivity constant

As explained in Section 2.3, a posteriori error estimation in model order reduction techniques
for parametrized PDEs, such as the reduced basis method, requires reliable estimates for the
coercivity constant [RHP08] defined as

a(u, u; )

(3.44)
2
lul

= jof

where a(-, -, 1) is a coercive symmetric bilinear form on X x X representing the weak formula-
tion of a PDE on a domain Qx and X is a suitable function space. As described in Section 2.3.2,
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a finite element discretization of (3.44) leads to the minimization problem

T

, 3.45
veR?  pT Xp (3.45)

where A(u) € R™*" is the matrix discretizing a(-,-, u) and X = A(u) + M € R™", where M €
R™ " is the mass matrix.

Minimizing (3.45) is clearly equivalent to computing the smallest eigenvalue of the generalized
eigenvalue problem

A(Wv=2AXv.

As in Remark 2.4, we can transform it into a standard eigenvalue problem of the form (3.1) by
computing the (sparse) Cholesky factorization X = LL”:

L'AwL Tw=2w.
Hence, the matrices A; appearing in Assumption 3.2 need to be replaced by
LAl T i=1,...,0.

Note that, as described in Remark 2.4, it is often preferable to keep matrices L™' A;L~7 in the
factorized form.

In the following, we consider three numerical examples of this type from the roMIT tool-
box [HNPR10]. We only include brief explanations of the examples; more details can be found
in [HNPR10] and [PRO7].

Example 3.22. This example concerns a linear elasticity model of a parametrized body (see
Figure 3.8a). The parameter u, determines the width of the hole in the body while the pa-
rameter [y determines its Poisson’s ratio. A discretization of the underlying PDE leads to the
matrix A(u) = Z?Zl 0;(WA;, with Q =16, u = (u1, u2) and functions 8;(u) that arise from the
parametrization of the geometry. We choose n = 2183 and D = [-0.1,0.1] x [0.2,0.3]. As can be
seen from Figure 3.8, The results are similar to those presented in Example 3.21, with Algorithm 3
converging in 31 iteration and Algorithm 2 not reaching the desired tolerance.

Example 3.23. This example concerns a stationary heat equation on a parametrized domain
(see Figure 3.9a). The parameter [, determines the coefficient in the Robin boundary conditions
while the parameter i, determines the length of the domain. A discretization of the underlying
PDE leads to the matrix A(u) = Zinl 0;(WA;, withQ =3, u= (u1, u2) and functions 0; (u) arising
from the parametrization of the geometry and boundary conditions. We choose n = 1311 and
D =1[0.02,0.5] x [2,8]. As can be seen from Figure 3.9, the results are similar to those observed in
Examples 3.21 and 3.22.

Example 3.24. This example concerns a stationary heat equation on a square domain divided
into blocks (see Figure 3.10a). In each of the subdomains, one of the parameters [, ..., Uy
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Figure 3.8: Convergence plots for Algorithms 2 and 3 applied to Example 3.22.

determines a coefficient of the PDE

div (

Adiscretization of the PDE leads to the matrix A(u) = ZiQ:1 0; (W) A;, whereQ =10, u = (U, ..., g)
and functions 0; (u) arising from the parametrization of the PDE coefficients. We choose n = 1056
and D = [0.1,0.5]°. As can be seen in Figure 3.10, the performance of both Algorithms 2 and 3 is
not satisfactory, as neither algorithm reaches the desired tolerance, due to the slow convergence
of the SCM and subspace lower bounds. However, Algorithm 3 is significantly faster than Algo-
rithm 2 due to the saturation assumption which reduces the number of bound evaluations per
iteration. Only the subspace upper bounds converges at a satisfactory rate. In this example, the
residual-based lower bounds clearly show their advantage. They become reliable after only 31
iterations.

L~
—ui 1

Vu) =0o0nQ;, i=1,...,9.
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Figure 3.9: Convergence plots for Algorithm 2 and 3 applied to Example 3.23.

3.5.3 Estimation of the inf-sup constant

In Section 3.5.2 we have seen that the computation of coercivity constants can be formulated

in terms of (3.1). As explained in Remark 2.18, for non-coercive parametrized PDE one may

have to resort to the inf-sup constant [HKC* 10] defined as
b(u, v; u)

B(w) = inf sup

) (3.46)
ueX pex lullxllviix

where b(:,-, 1) is the bilinear form in the weak formulation of the underlying PDE and X is
the accompanying function space with the norm | - || x induced by the scalar product (-,-) x. A
finite element discretization of (3.46) leads to the minimization problem

x'L"TB(u)L™ 'y
lxll20lyll2

T
B"(w) = inf sup u BGov

= inf sup (3.47)
ueR" yegn /yT XuvvT Xv  *€R” yerr
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Figure 3.10: Convergence plots for Algorithm 2 and 3 applied to Example 3.24.

where, once again, B(u) and X = LLT are the discretizations of b(-,-, i) and (-, -) x, respectively.
Minimizing (3.47) is equivalent to solving the singular value problem

Omin(L B L"),
which, in turn, is equivalent to computing
Amin LB X' B L™, (3.48)

since o min(B) = vV Amin(BTB). The expression (3.48) can be recast in terms of (3.1), with
Q(Q +1)/2 terms, and with the matrices A; j and functions 0;;(u) for 1 <i < j < Q defined as

Aij = LB/ X7'B;L7T+L7'B X' BiL7T

0ij(w) (1—?)9,'(#)9]'(#),
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where 6;; is the Kronecker delta function. The SCM algorithm has already been applied
to (3.48) but only with limited success, since having Q(Q +1)/2 terms in the affine decom-
position of A(u) further increases the computational cost by making the solution of the LP
problem (3.11) significantly harder. The faster convergence of the subspace-accelerated ap-
proach to (3.48) mitigates this cost to a certain extent.

An illustration of this idea can be seen in the following numerical example, where we apply
both Algorithm 2 and 3 to computation of the inf-sup constants of a convection-diffusion
operator and compare their respective performances.

Example 3.25. We consider an example from [HKC' 10] concerning a convection-diffusion
problem on the unit square Q = [0,1]? with homogeneous Dirichlet boundary conditions on 6Q,
with the parameter-dependent bilinear form b(u, v; u) defined as follows

ou

0
b(u,v;,u)z,ulfVle+,ugfx1—v—f xg—uv, Vu,veXEHé(Q) (3.49)
Q Q 0x Q 0x

and parameter [ = (U1, U2) inside the parameter domain D = [0.1,1] x [1,5].

Similarly as explained in Section 2.3 we consider a "natural-norm" on X induced by the scalar
product

(u,v)X:f Vqu+Tf uv,
Q Q

with

. JoVuVu
T=mimn——.
ueX fQ uu

We consider a finite element discretization of b(u, v; 1) on Q with n = 1009 degrees of freedom,
which yields

B(u) = 1By + 2B — Bz,

where By, B, Bs are the discretizations each of the corresponding integrals in (3.49). Using
the procedure explained above, we obtain A(u) = 23:1 04(w) Ag with Q = 6 such that A(u) =
B(H)TB(M) and Amin(A(u)) = amin(B(p))z. The performances of both algorithms applied to
computing Amin(A(u)) are shown in Figure 3.11, with Figure 3.11b showing the B(u) surface
plot on a 32 x 32 regular grid on D. Similarly as in the experiments presented in Section 3.5.2,
Algorithm 3 converges in only 10 iterations, while Algorithm 2 fails to attain the desired tolerance
in 200 iterations.
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Figure 3.11: Convergence plots for Algorithm 2 and 3 applied to Example 3.25.

3.6 Conclusion

We have a proposed a new subspace-accelerated approach, given in Algorithm 3, for solving
parameter-dependent Hermitian eigenvalue problem. It builds upon the most commonly
used existing approach, SCM, and improves on it by implicitly exploiting regularity in the
smallest eigenvectors.

We have shown that the subspace acceleration in Algorithm 3 leads to improved interpolation
properties in comparison to SCM, with both subspace bounds interpolating the derivatives of
Amin(A(w)), which has not been the case for the SCM bounds. Moreover, for A(u) analytic and
d =1, the presented results show that we can expect exponential convergence of Algorithm 3
on intervals where Apyin(A(u)) stays simple. In addition, we have demonstrated that the
subspace bounds can be efficiently computed at a per iteration computational cost which is
only slightly larger than in SCM.
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Furthermore, we have shown that the better theoretical properties of Algorithm 3 carry over
to numerical experiments. More specifically, when applied to estimation of the coercivity
constant, Algorithm 3 presents a significant improvement over SCM, both in terms of iterations
and the total computational time, on a number of numerical examples from the literature.
Moreover, the proposed approach can be extended to the solution of parameter-dependent
singular value problems, as demonstrated in Example 3.25, where it is applied to estimation of
the inf-sup constant.

We have observed that for problems with small gaps between the smallest eigenvalues and a
large variation in the parameter space, as in Example 3.24, the convergence of the subspace
lower bounds may still not be satisfactory. For such cases, we propose a heuristic approach
using residual-based lower bounds.
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Low-rank approach to pseudospectra
computation

Let A€ C™*" be a non-normal matrix and € > 0. Effects of perturbations on the spectrum of A
MA) ={zeC:l(z] = A7 |2 = oo}

can be studied by computing the so-called e-pseudospectra:
0e(A):={zeC: (2l - A 2>,

which can also be seen as sublevel sets of the function
8(2) = IzI = A7l = Omin (21 - A).

By evaluating g(z) on a domain of interest D c C we obtain o,(A) n D for all € > 0. In this
chapter, we consider a large-scale setting, where evaluating g(z) exactly using the standard
techniques is computationally feasible only for a few values of z € C. Thus, our goal is to com-
pute an approximation g(z) = g(z) on the whole domain D using only few exact computations
of o min(zI — A).

An example of how pseudospectral images look like can be seen in Figure 4.1. Using a coarse
grid, as in Figure 4.1a, usually does not capture the full variation of ||(z] — A7, making
the use of a finer grid, as in Figure 4.1b, necessary. However, as the exact computation of the
presented resolvent norms on this finer grid takes approximately 10 hours, there is a clear
need for a computationally more efficient way to compute e-pseudospectra.

Applications of pseudospectra and pseudospectral images include linearized stability analysis
in fluid mechanics [Sch07], the convergence analysis and design of iterative methods [BESO05,
TEO05], the asymptotic behavior of matrix functions [Hig08, TE05] and operator theory [BG05,
Dav07, DP04, Han08, Tre08]. By definition, pseudospectra can also be used to quantify the
effects of perturbations and uncertainties on computed eigenvalues and eigenvectors. A more
detailed overview of pseudospectra applications can be found in [TE05].

For pseudospectra computation of a large matrix A, the projection-based approach has been
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Figure 4.1: Resolvent norms log; | (zI— A) ||, for Example 4.11 with A € R%12*9°12 evaluated
on D =[-1.2,-0.2] + [-0.5,0.5]i using the grid-based approach on a rough grid (left) and on a
fine grid (right).

proposed, where given a subspace % c C" and its orthonormal basis U € R"**, we have the
following inclusion

0’5 (A) > ag(Uy AU))

with 0.(G,H) ={z€C:0nin(zG— H) <&}, for G,H € cnxk, Existing choices for the subspace
% include Krylov subspaces [TT96, WT01, SG98] or an invariant subspace containing eigen-
vectors belonging to a few eigenvalues in or close to the region of interest [RSH93, GS98]. As
we will see later, in Section 3.5, both approaches often suffer from slow convergence and lack
of means to quantify the obtained accuracy. However, the projection-based approaches have
been successfully applied to computation of pseudospectral quantities [KV14, MMMVB15],
providing a significant improvement over the previous work [BLO03, GO11].

In this chapter, we propose a new projection-based approach inspired by the subspace-
acceleration strategy used in Section 3.2. It is primarily designed to provide highly accurate
approximation to e-pseudospectra in isolated parts of spectrum, that is, regions in the complex
plane containing only a few eigenvalues of A. As described in the previous paragraph, given a
carefully chosen orthonormal matrix V € Rk k< n, Omin(zV — AV) can be used to recon-
struct g(z). As will be described in Section 4.1.1, after a preprocessing step, 0'min(zV — AV) can
be computed in © (k%) operations for any z € C. If v(z) € V, where v(z) is the right singular vec-
tor corresponding to o min(zI — A), then omin (2 — A) = Omin(z2V — AV) and the reconstruction
is exact. Clearly, one cannot expect that v(z) € span(V) for all z € D, but the goal is to find such
V which contains good approximations to v(z) for all z € D.

Recasting omin ((x+iy)I — A), with z = x + iy, into a parameter-dependent Hermitian eigen-
value problem, allows us to efficiently obtain such V using the subspace accelerated version
of SCM presented in Algorithm 3. Despite the dependence on just two real parameters x
and y, the problem remains very challenging due to the need for high absolute accuracy,
required in order to attain reasonably good relative accuracy in the vicinity of the eigenvalues.
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Moreover, the particular structure of the problem allows for additional improvements, such
as incorporating the invariant subspace approach for obtaining a good a priori basis and an
optimized computation procedure for the lower bounds.

The rest of this chapter is largely based on [Sir16] and is organized as follows. In Section 4.1, we
first give an brief overview of existing approaches for pseudospectra computation, in particular
the projection-based approaches and discuss the use of two-sided projections. We present our
new projection-based approach to pseudospectra computation in Section 4.2. Additionally, we
discuss the choice of error estimates, the sampling strategy and the interpolation properties.
In Section 4.3, we present the full algorithm together with the complexity analysis, and discuss
its efficient implementation, while in Section 4.4, we present a few numerical experiments
showing the performance of the proposed approach in comparison to some of the existing
methods.

4.1 Existing approaches

In this section, we present short overview of the existing approaches that are commonly used
for pseudospectra computation.

A straightforward way to compute pseudospectra and pseudospectral images is using a grid-
based approach, where g(z) is computed for a finitely many points z,..., z,,, typically ar-
ranged on a uniformly spaced rectangular grid, requiring o (mn3) operations. EigTool [Wri02],
the most commonly used software for pseudospectra computation, also uses a grid-based
approach. The approach can be made more efficient if a Schur decomposition A= QTQ* is
available, since

Omin(2] — A) = onmin(Q(zI — T)Q*) =0min(zl-T),

where computation of o in (21 — T) using the inverse Lanczos method requires solution of just
two triangular linear system per iteration, resulting in total complexity of @ (n® + mn?) opera-
tions [Lui97, Tre99]. However, as T is in general dense, this approach remains computationally
infeasible for large values of n due to memory requirements.

For large-scale sparse A, grid-based approach can be made more efficient by using a sparse
LU decomposition [BH96, Dav06] of zI — A together with the inverse Lanczos method, which
is often faster than computing the full singular value decomposition. Moreover, in case when
0¢(A) is computed only for fixed value of €, path following techniques may be used, typically
requiring fewer evaluations of g(z) than a grid-based approach [BGO01, Brii96, MP02]. In addi-
tion to the computation-oriented approaches, the asymptotic behavior of e-pseudospectra
has been studied in [GMM™*15], while a priori estimates for pseudospectra using first-order
approximations have been derived in [Han15].
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Chapter 4. Low-rank approach to pseudospectra computation

4.1.1 Projection-based approaches

As previously mentioned, for large matrices A, projection-based approaches have been pro-

RNX]C

posed. Given a subspace % < C", and its orthonormal basis U € , we have the following

inequality

Omin(zI —A) = min |(zI-Aulz < min |[(zI - A)ulz = Omin(zU — AU)
ueC” ueu

lull2=1 llull=1

and the inclusion
o:(U,AU) co:(A),

with 04 (G, H) = {z € C: 0min(2G — H) < €}, for G, He CN*¥_ For a good choice of %, 0. (U, AU)
may offer a surprisingly accurate approximation to o.(A), while being significantly cheaper to
compute. After a preprocessing step in which the QR decomposition of the matrix [U, AU] €
R"*2k ig computed, for any i € {1,...,m}, omin(z; U — AU) can be computed by solving the
following 2m x m small singular value problem:

Omin([U, AU1(z; I, ~ 111 T) = 0 min(QRIzi Iy, — 1] 1)

= Omin(RIziI, — I D),

Omin(z; U — AU)

where I; denotes the k x k identity matrix, resulting in total complexity of @ (nk? + mk>).

Existing choices for the subspace % include Krylov subspaces [TT96, WT01, SG98]
U = (A, b) = spanib, Ab, A°b, ..., AK"1 b},

with the starting vector b € R", which usually provides a good approximation in the outer parts
of the spectrum, and invariant subspaces of A containing eigenvectors belonging to a few
eigenvalues in or close to the region of interest [RSH93, GS98], which usually provides a good
approximation in isolated parts of the spectrum.

Let z € C and let us denote with v(z) the right singular vector corresponding to omin (21 — A).
Then the error of a projection-based approach can be bounded in the following way

Omin(z2l—A) = Umm(zU—AU)zmgllll(A—zI)V(Z)+(A—zI)(u—V(Z))Ilz
ue

IA

Omin(2] — A)+ 6121 - All,

where 6 := dist(v(z),%) = minyeq, ||v(2) — ull2. Unfortunately, §||zI — All, is not practically
useful as an error estimate, since it involves v(z), a quantity that is available only by solving
the full-size singular value problem, which is exactly what we are trying to avoid. In fact,
it is not a priori clear why 6 should (rapidly) decrease by increasing the size of either the
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Krylov or an invariant subspace. This lack of means to quantify the obtained accuracy and the
frequently observed slow convergence are two main disadvatages of existing projection-based
approaches, as we will see later in Section 4.4.

Two-sided projections

The projection-based approaches we have discussed above use one-sided projections on
the subspace %, which rely on accurately approximating the right singular vector v(z) of
Omin(zI — A) to provide reliable pseudospectra estimates. Analogous approaches can be
designed based on approximating the left singular vectors corresponding to o min(zI — A). A
question which naturally arises is whether it is possible to combine these approaches and
approximate omin (21 — A) using omin(V* (2 — A)U), where U and V are orthonormal bases
of the subspaces % and 7, respectively. Unfortunately, it turns out that this approach is not
stable as shown in Example 4.1, i.e. we do not necessarily reconstruct o mi, (A — zI) exactly
even when % and 7 contain the exact smallest singular vectors of zI — A.

Example 4.1. Let z = 1, A be the Landau matrix from Example 4.10 with n = 200, and u
and v the smallest right and left singular vector of I — A, respectively. We consider a uni-
formely spaced grid on [0.95,1.05] x [-0.05,0.05] with seven points in each direction: = =
{(x1, 1), (X2, ¥2), ..., (X25, ¥25) = (1,0),..., (X49, Ya9)}. Let vy and uy be the smallest left and right
singular vectors of (xi. +iyi) I — A, respectively. For each k = 1,...,49, we construct the subspaces
U k and 7/k N

U ={ur,...,ur}, Vi=Av1,..., i},

and their orthonormal bases Uy and Vy., respectively, and compute the following quantities:
Omin((I=AUR), omin(ViI=A), omn(VyI-AUL), omin(W(I-AUp)

where W = [Vi, Ex] € R *) with B € R™® random orthonormal matrix orthogonal to V.
As expected, 0 min((I — A)Uy) and (Imin(V,;k (I — A)) converge to omin(I — A), as the subspaces
Uy and Vi contain more accurate approximation of u and v, respectively. On the contrary,
cfmm(V,;k (I — A)Uy) does not necessarily converge to o min(I — A), as the error is non-zero (as
indicated by the spikes in Figure 4.2), even when u € % and v € Vy. This phenomenon can be
explained by looking at the variational characterization of the smallest singular values

Omin(I—A) = i sup LU =Aul
min T ueRNO) perngg, Nl
) . VI - AUgul lv* (I - A)ul
Omin(Vy I-A)Up) = inf  sup = 1n sup ——-———
ueBNO) yomiry Nl ue% 0} yeyroy Nullvl

where we see that by multiplying I — A with both Uy and Vi, we also restrict the majorization
domain, and, thus, crmin(V,;k (I - A)Uy) can end up being much smaller than o min(I — A) for
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Figure 4.2: Comparison of one-sided versus two-sided projection approach.

some values of k. In certain situations this issue can be resolved by enriching one of the subspaces
with a random subspace, as we see that Umin(W,: (I — A)Uy) converges to o min(I — A). However,
the use of this idea remains questionable as it is not a priori clear how big Ey. should be chosen
to guarantee convergence.

Remark 4.2. It can be shown that using two-sided projections for approximating the largest
singular value does not suffer from the same loss of stability demonstrated above for the smallest
singular value. The largest singular value o max(A) is the solution of the following maximization
problem:

lv* Aul

Omax(A) = max _
(w,ve@™\on2 |vll2llwll,

By restricting u and v to subspaces % andV , respectively, we obtain the following inequality:
Omax(V* AU) < Omax(A), 4.1)

where U and V are corresponding orthonormal bases of % andV . Clearly, equality in (4.1) is
attained if and only if the subspaces %% andV contain the dominant left and right singular
vectors of A, making this approach stable.

4.2 Subspace acceleration

In this section, we present our new projection-based approach for pseudospectra computation
on a domain of interest D c C. It is largely based upon the subspace-accelerated approach
for parameter-dependent Hermitian eigenvalue problems described in Chapter 3. Without
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loss of generality, we assume that D is a rectangle D = [a, b] + [c, d]i < C in the complex plane.
Similarly as with parameter-dependent eigenvalues in Chapter 3, assessing the resolvent
norms on the whole continuous domain D is computationally infeasible, we follow standard
practice in pseudospectra computation [TE05] and substitute D by a finite, but rather fine,
uniformly spaced grid Zc D.

For z=x+iy € C, the computation of g(z) can be viewed as a Hermitian eigenvalue problem
depending on the two real parameters x and y:

gx+iy? = Amin((x+y)I—A)* (x+yi)l - A))
Amin (A* A= x(A+ A%) = yi(A* = A) + (x* + YD)
Amin (ACx, ) + x* + 7, (4.2)

where A(x, y) = A*A— x(A+ A*) — yi(A* — A). Note that each of the matrices A* A, A+ A* and
i(A* — A) is Hermitian.

Since A(x, y) admits an affine linear decomposition w.r.t. (x, y), we can use Algorithm 3, and
by sampling ¢ smallest eigenpairs of A(x, y) for each (x, y) in the sample set %, compute both
an upper bound Agyp(x, y;#, ) and a lower bound Ag15(x, y;.%, ¢) for Amin(ﬁ(x, ),

Given Agyg(x, y;.%, ¢) and Agrp(x, y;.%, £), (4.2) allows us to bound o min (21 — A) in the follow-
ing way:

2
min

AsiB(x, y; %, €) +x? +y2 <oc . (z]—A) <Asus(x,y;F,¥) +x° +y2.

By taking the square root, the upper bound osyg(x, ¥; %, €) for o min (21— A) can now be defined
as

osus(x,y; S, 0) = \/Asus(x,y;y,€)+x2+y2, (4.3)

while the lower bound os15(x, y;. %, ¢) is defined by

oss(x, 3, 0) = \/ max(Asig(x, y;. S, €) + x* + 2,0), (4.4)
keeping in mind the non-negativity of the singular values.

Computation of the bounds Asys(x, y; ¥, ¢) and Asis(x, y;.%, £), and the choice of appropriate
error estimates for driving the sampling procedure is explained in more detail in the following
Sections 4.2.1 and 4.2.2, respectively.

4.2.1 Computation of Asyg(x, y;#,¢) and Ag1 (X, y; %, ¥)

In the following, we adapt the subspace-accelerated approach from Section 3.2 to the compu-
tation of pseudospectra bounds.
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Given a sample set . = {(x1, ¥1),.-., (xp, ym)} < D, suppose that we have computed the £ = 1
smallest eigenvalues for each sample (x;, y;) € &:

A=A0 < 1@ <. <0
i SAi =S

of A(x;, yi) along with an orthonormal basis of associated eigenvectors vgl), vl(.z), . yl(.l) eC".

By collecting these eigenvectors into a subspace
— 1) 0 M ) 1) (@]
V(&”,f).-span{v1 yee U] 5 U ey Uy gy Upgyenns Upr

allows us to use Algorithm 3, presented in Section 3.2, to compute the subspace upper bound
Asus(x, ¥;.%, £). By solving the following M ¢ x M ¢ eigenvalue problem

V*AX, YV w=Ayw,

where V denotes an orthonormal basis for 7 (.#, ¢), we obtain the smallest r < M ¢ eigenvalues

and the corresponding eigenvectors wy, ..., w, € CM¢. By the eigenvalue interlacing property
we have

Amin(A(x, y)) < ALY,
which allows us to define the subspace upper bound for )Lmin(ﬁ(x, ¥)) as:

AsuB(x, 33 S, 0):= A3

In terms of lower bounds for Ayin (A(x, ), by solving the linear program (3.11), we can easily
compute the SCM lower bound A;5(x, y; ). However, in practice, this lower bound is not
always a very accurate approximation to Amin(A(x, y)). By additionaly exploiting the struc-
ture in U and gaps among the sampled smallest eigenpairs of A(x, y) in ., as explained in
Section 3.2.2, we can calculate a lower bound 7(x, y) for Ritz values of A(x, y) on U,

N(x,¥) < Amin(U Alx, ))U L),

where U,U; € C"**" are orthonormal bases for {wy,..., w;} and its orthogonal complement,
respectively. As before, n(x, y) can be computed by simply solving a linear program similar
to (3.11) with updated right-hand side of the constraints, which, in this case, requires solving
just one 3x3 linear system. Following the procedure in Section 3.2, combining the Ritz values of
A(x,y) and 1(x, y), and using the quadratic residual perturbation bounds from Theorem 2.11,
allows us to define the subspace lower bound for Amin (A(x, y)):

202

AL~ Y1+ 1AL —n(x, YR +4p?

Asts(x, y; 5 0) :=min (A, n(x, y)) - , (4.5)
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with the residual norm p = || Ujﬁ(x, »Ul2 = I A(x, nu-uWw* A(x, D a.

Remark 4.3. First, it is worth noting that the smallest eigenvectors of A(x, y) coincide with
the right singular vectors corresponding to o min(zI — A). Secondly, our subspace-accelerated
approach for computing upper bounds osyg(x, y;%,¢) can be seen as a special case of the
general projection-based approach for the choice of U =V (<, ¢):

Omin((zI = A)V)

min |[(z] - A)ull,
uey (#£,0)

\/Amin(V* (zI-A)*(zI-A)V)

VAmin(V* A%, Y)V) + 52+ 12 = Tsup(x, 1 7, ),

with z = x+1iy. In fact, in the invariant subspace approach we construct the subspace by
sampling the right singular vector corresponding to o min(zI — A) for z € A(A) (they coincide
with the eigenvectors for the corresponding z € A(A)), while in our approach we generalize this
idea by allowing, both, sampling of the smallest singular vectors for z ¢ A(A) as well as sampling
of more than one smallest singular vector per sampling point.

Bounding box

As explained in Section 3.2.2, to compute of 17(x, y) we first need to solve (3.11) and compute
Arg(x, y;.#). In this specific setting, we would need to solve the following linear program

MB(x,y; ) = mingeps [l,x,y]Td
st.  Lxpylfd = A, i=1,...M (4.6)
de B,
where
B = [Amin(A*A), Amax(A" A)] X [Amin(A+ A™), Amax (A + A™)]
X [Amin (i (A" = A)), Amax (i (A" — A)]]. 4.7)

As explained in Section 3.1.2, the role of 28 in (4.6) is to ensure that the solution is finite.
However, for the examples considered in Section 4.4, matrices A*A, A+ Ax and i(A* — A)
often have very small relative gaps between the extremal eigenvalues and the rest of the
spectrum, making the eigenproblems in (4.7) very hard to solve. Moreover, for examples with

a mass matrix, such as Example 4.11, computation of the extremal eigenvalues of the matrix
M A+ ATMT
2
eigenvalue problem, which is often computationally infeasible.

requires inverting a large-scale matrix M, as well as solving a large-scale dense

Yet, in this specific application, since A(x, y) is affine in (x, y) and d is only 2, we can avoid
computation of 48. Instead, as explained in Remark 3.2, we can a priori insert vertices of D
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into .%#, which requires computation of the ¢ smallest eigenpairs for matrices
Aa, ), Ala,d), A(b, 0), A(b, d).

This modification both reduces the number of full-size eigenvalue problems that need to be
solved (28 does not need to be computed anymore) as well as improves the accuracy of the
computed SCM lower bounds Arg(x, y; %).

4.2.2 Error estimates and sampling

As described in the previous section, by sampling the smallest eigenpairs of A (A(x, y)) on a
set of samples .%, we can compute an upper and a lower bound for Amin (A(x, y)) on the whole
domain D. In our approach, we use a greedy sampling strategy, adding in each iteration to .%#
a point from = with the largest error estimate. Similarly as in Section 3.2, for z = x+ iy € D,
given Asys(x, y;%#,¢) and Agip(x, y;#, ), we define the error estimate A(x, y;#, ¢), for the
Hermitian eigenvalue problem Amin(ﬁ(x, V) + (x% + yZ)I ), in the following way:

Asus(x,y; S, 0) + x> + 2 = Asi (%, y; L, €) — x* — y?

Asus (X, ¥; &, 0) + x% + y?
AsuB(x, y; L, €) — Asip(x, y; &, 0)
Asup(x, y; L, 0) +x2+y2

Alx,y;4,0) =

(4.8)

In each iteration, we compute A(x, y;#,¢) for all (x,y) € Z, and select the one having the
largest error estimate as the next parameter sample point.

4.2.3 Interpolation properties

Using the interpolation results from Section 3.2.4 we obtain that the subspace eigenvalue
bounds Asyg(x, y; %, ¢) and As1g(x, y;#, €) interpolate the exact values of Amin (A(X, ¥):

Amin(A(X, 1)) = Asu (%, ;. %, 0) = Asg (%, ;. %, €)Y (x,y) € F. (4.9)

Additionally, if /lmin(ﬁ(x, y)) is a simple eigenvalue, the subspace bounds also capture the
derivatives

VAmin(A(x, ) = VAsup(x, y;.%,0) = VAsis (%, ;. %, 0)  V(x,y) €., (4.10)

with the gradient V with respect to (x, y). These interpolation results easily extend to the
singular value bounds osyg(x, y;#, ¢) and o5 (x, y;#, £) as can be seen from the following
theorem.

Theorem4.4. Forz = x+iy € ¥, thesingular value boundsosyg(x, y;.%,¥¢) andosis(x, y; %, ),
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defined in (4.3) and (4.4), respectively, satisfy
Omin(zI = A) = osyp(x, y; %, ) = os1B(xX, y; F, £).
Additionally, if omin(zI — A) is simple and positive, then

Vo min(zI — A) =Vosup(x, y;#,¢) =Vosis(x, y; %, 0).

Proof. The first equality follows directly from (4.9) by taking the square root. Since o nin (21 —
A) > 0, by differentiating (4.2) we get

2x

2yl

Simplicity of o min (21 — A) implies (4.10), which together with the first equality, gives the second
equality. O

1

Vomin(zl —A) = ——mM8M—
min ( ) 20 min(z] — A)

V}Lmin(g(-x’ J/)) +

Using Theorem 4.4 we can formulate an analogous theorem to Theorem 3.13 and obtain a
priori error estimates for osyg(x, y;#,¢) and osis(x, y;.%, ).

Theorem 4.5. Letz = X + iy such that o min(zo I — A) is simple and positive and let h > 0
such that o min(zI— A),osus(x, y; %, ¢) and os1(x, y;#, €) are twice differentiable on B(z., h).
Then there exist constants Cy,Cy > 0 such that

losuB(X, V3%, 0) — Omin(z] — A)| < C1h?
losip(X, 73S, 0) = Omin(zI = A)| < Coh?,

forallz=x+1iye B(zs, h).
Proof. Letz=x+1iye€ B(zy, h). Expanding o min(zI — A) and oyg(x, y; ¥, ¢) around z» using

a second-order Taylor polynomial expansion and using the results of Theorem 4.4, we obtain

(Z—Zy’)z (

ouB(%,y; &, €) = Omin(z] — A) = V20 min(211 — A) = VPayp(x2, y2;. %, 0)),

for z1,zp = xo +iy» € [z, z]. The first inequality now holds for

Cr=_max [Viomin@I-Alz+__ max  [Voup(E 7S, 0l
Z€B(zy,h) z=X+iyeB(z»,h)
The second inequality can be shown in the same way. O

Remark 4.6. As in Section 3.2.5, to ensure the differentiability conditions on onin(zI — A) and
osus(x, y;#, ) needed in the assumptions of Theorem 4.5, it is sufficient that the smallest singu-
lar values omin (21 — A) and osys(x, y; <, ) stay simple and positive on B(z, h), see [KMMM15].
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A simple criterion for differentiability of os15(x, y;.%,¢) is not available, since (4.5) involves
n(x,y), which depends on the solution of the linear program Arg(x, y; ), which is not necessar-
ily smooth around (x;, y;).

Remark 4.7. The requirement for positivity of 0 min in Theorems 4.4 and 4.5 is artificial and
can be fixed by using the "signed" singular values as in the case of the analytic SVD [BGBMNOI1].

In practice, since A(x, y) is an analytic function in x and y, as already discussed in Section 3.2.4,
we can expect much faster convergence than the one guaranteed by Theorem 4.5. Numerical
experiments shown in Section 4.4 support this.

Additionally, as A(x, y) is an affine linear function w.r.t x and y, we can apply Theorem 3.17 to
show that using the subspace lower bounds Ag; 5 (x, y;#, ¢) for approximating Amin (A(X, ¥)) is
always at least as good as linearly interpolating the computed values of Anin (A(x, ).

4.3 Algorithm

In this section we present a summary, in form of Algorithm 4, of our subspace-accelerated
approach for pseudospectra computation introduced in Section 4.2 and discuss its implemen-
tation and computational complexity.

4.3.1 Implementation details

The efficient implementation of Algorithm 4 requires care in order to avoid unnecessary
computations. Some implementation details are discussed in the following.

Initialization of the sample .. As explained in Section 4.2.1, we initialize . to contain the
vertices of the domain D:

& ={(a,c),(a,d),b,c),(bd)}.

For certain problems, it makes sense to a priori add additional points from D to .%.
To make the error estimates (4.8) sufficiently small, we require high absolute accuracy
in regions around the eigenvalues of A. In numerical experiments we observe that .
eventually always contains many points very close to the exact eigenvalues of A. We use
this observation, and combine our approach with the invariant subspace approach, to
"warm start” the algorithm by inserting eigenvalues of A inside D into the initial sample.
In practice, this is usually enough to ensure high absolute accuracy in the proximity
of the eigenvalues of A. Such eigenvalues of A can be efficiently computed by simply
computing the eigenvalues closest to the centre of D. However, in order not to make the
sample .# too large, we limit the number of the exact eigenvalues included in . to 20
closest to the center of D, unless stated otherwise.

Computation of A, (A(X, y)). As can be seen in (4.2), computing the smallest eigenpairs of
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4.3. Algorithm

Algorithm 4 Subspace acceleration for pseudospectra computation

Input: A e C'"*", uniformely spaced grid = on D = [a, bl+[c, d]i < C, £. Relative error tolerance

Etol-

Output: Sample set . c D with corresponding eigenvalues )LE.] ) and an eigenvector basis V

Asup (%,y57,0) = Asis (%, 37, €) -
of ¥V (&, ¢) such that P pov v < &) for EVery (x,y) € E.

1: Initialize the sample set ¥ = {(a, ¢), (a, d), (b, ¢), (b,d)} U (A(A) N D).
2: Compute the ¢ smallest eigenpairs of A(x, y), for all (x, y) € &.

w

© ® N g

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

: Compute an orthonormal basis V for 7 (#, ¢), matrices in the affine linear expansion of

V*A(x,y)V and R.

: Compute Asyp(x, y;#,¢) and Asi p(x, y; &, ¢) forall (x,y) € E.
t (Xmax, Ymax) — argmax, ,ye= A, y;.5, ).

while A(Xmax, Ymax; &, ) > €01 dO
S — L U{(Xmax Ymax)}- R
Compute the ¢ smallest eigenpairs of A(Xmax, Ymax)-
Update the orthonormal basis V for 7 (#, ¢), matrices in the affine linear expansion of
V*A(x,y)V and recompute R.
for (x,y)e=Zdo
if CA(x,y;#,€) < Amax then
Exit the for loop.
end if
Recompute Asyp (X, ¥;%, €) = Amin(V* A(x, ) V).
Recompute the residual norm p according to (4.11).
Recompute Aip(; - = argmingeq, (o) 0 (1) Ty and updated Ju according to (3.24).
Recompute y;, = argmin g, (o) 60 (1) Ty and updated Ju according to (3.24).
Recompute n(u) — 0 (W) Tj/u.
Recompute Agig(x, y;.%, £) according to (4.5).
Recompute A(x, y;.%, ¢) according to (4.8) and update Apax and (Xmax, Ymax)-
end for
end while
Compute osyg(x, y;.%,¢) and os1p(x, y;. %, ) for all (x, y) € =.
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Chapter 4. Low-rank approach to pseudospectra computation

A(x, y) is equivalent to computing the smallest singular values and associated singular
vectors of the matrix zI — A. However, numerically this is not equivalent. When comput-
ing Amin(ﬁ(x, y)) directly, we are working with a matrix of squared condition number. To
avoid that, we solve the singular value problem instead, by computing the smallest eigen-
0 zI-A
(zl - A)* 0
a dense matrix A, this can be made more efficient by first computing the Schur decompo-
sition of A= QTQT, see [Lui97, TE05], since o min (Q(z] — T)QT) = o0 min(zI — T). In this
case, each iteration of the inverse Lanczos method requires solving just two triangular

pairs of the extended matrix using the inverse Lanczos method. For

linear systems. For a large-scale sparse matrix A, the inverse Lanczos method can be
made more computationally efficient by first computing a sparse LU factorization of
zI — A. We assume this method to be accurate and efficient for all (x, y) € =.

Computation of the residual norm p. Efficient and accurate computation of the residual p
is very important for the accuracy of the lower bounds. The application of the technique
used in Algorithm 3 requires precomputation of matrices in the affine linear expansion
of V* A(x, n* Alx, )V, one of which is V*(A* A)* A* AV. We can expect V*(A*A)* A* AV
to be extremely ill-conditioned even for moderate x (A). To avoid this, we pay a slightly
higher price and compute in each iteration the QR decomposition of the following
n x 4 M¢ matrix

QR=[ATAV,(A+ A")V,i(A* - A)V,V].

For any (x, y) € D, this allows computation of p by solving the following small 4M¢ x r
singular value problem

p = IUTAX U= A, y)U-UWU" A, y)U)l,
= A, )VW - VWA,
= [A*AV,(A+ ANV, i(A* - AV, VIIW T, —xw T —ywT —Aaw T,
= |RIWT,—xwT —ywT —AwT]T|,, (4.11)

where W e RM*7 js such that U = VW and A = diag(/l(yl),/lgf),--- ,)1;,”).

Updating of A;3(A(x, y)). As explained in Section 3.4.1, computationally the most expensive
part of computing Asig(A(x, y)) is solving (4.6). In general, the interior point method is
proposed for solving (4.6). However, for this specific application, the simplex method
proves to be far superior, since the linear program (4.6) has just three variables. Addi-
tionally, as we incrementally build (4.6), the simplex method, unlike the interior-point
method, allows us to take advantage of previously computed solutions and just slightly
update them to compute the new ones. In practice, we observe that this modification
significantly reduces the computational time.

Stopping criterion. Given the prescribed tolerance &y, > 0, we stop the execution of Algo-
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rithm 4 when

/1 ’ ,5”,[ _A’ l} ;y,[
max A(x,y;.%,¢) = max sus(x, y ) — Asi(x, y )
(x,y)EE (x,y)eE AsuB(X, y;F, 0) + x% + y2

< Egol- 4.12)

However, for (x, y) € =2 close to an eigenvalue of A, fulfilling (4.12) requires the absolute
error Asyg(x, y;#,€) — Asis (%, y; &, €) to be very small which can not always be attained
due to inexact computation of Amin(A(x, ¥)). To circumvent this issue, we additionally
prescribe an absolute tolerance €, > 0 and for points (x, y) € = satisfying either

AsuB (X, y;. %, 0) — AsiB(X, 5%, ) < Eaps
or
AsuB(X, V3, 0) + X* + ¥ < Eqps.

In these cases, we set Agip(x,y;.%, %) to the value of Agyp(x,y;.%#,¥), assuming that
AsuB(x, y;.%, ¢) already is a very good approximation to omin ((x+iy)I — A).

Computation of Amin (A(x, y) for x+iye A(A).

As mentioned above, we "warm start" our approach by initializing . to contain the exact
eigenvalues of A inside D. However, for z = x + iy € A(A), the inverse Lanczos method can not
be directly applied since (zI — A) ! is not defined. Knowing that the smallest singular value
is 0, it is possible to extract the non-singular part of zI — A, by deflating the directions of the
smallest singular vectors, and compute the subsequent singular values and vectors.

Without loss of generality, we can assume that x = y = 0. Furthermore, we assume that zero is
a simple eigenvalue of A. Suppose v; and u; are the left and the right singular vectors of A
corresponding to the singular value zero:

viA=0, Au;=0. (4.13)

By Remark 2.2, we know that the Lanczos method will converge to the second largest eigenvec-
tor, if the starting vector is orthogonal to the dominant eigenvector. Thus, when computing
the subsequent left (right) singular vectors using the Lanczos method, we need to choose an
initial starting vector which is orthogonal to v; (u;). However, in order to successfully apply
the Lanczos method to this setting, we need to be able to efficiently solve the following linear

systems
foragiven v e «{vl}L find ue {3t st. Au=v, (4.14)
foragivenue {ul}L findve{n}t st A*'v=u, (4.15)

which are similar to the correction equation in Jacobi-Davidson SVD [Hoc01]. In the following
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Chapter 4. Low-rank approach to pseudospectra computation

Lemma 4.8, we describe the procedure for solving (4.14), while (4.15) can be addressed in a
similar way.

Lemma 4.8. Let A have a simple zero singular value with corresponding singular vectors
vy, Uy, and an LU decomposition PAQ = LU, where P,Q are permutation matrices, L has a
unit diagonal, and the last row of U is zero. Let v € C" be such that v*v, = 0 and let H =
I-2ww?/|w|?, we C" be the Householder reflector such that Hu, = e;. Then, there existy € C
and an invertible matrix U € C"*~"1 such that

UQTH = UQT-yuQTew! (4.16)
_ |0 U 4.17)
o ol '

Moreover, solving (4.14) is equivalent to solving the following linear system for u € {uy}*

0 U
0

Hu=1"'pv=|"], (4.18)

with 7€ C" 1, whose solution u is given as

(4.19)

Proof. From the fact that the last row of U is zero, we have e, = (0,...,0,1) € ker(U*), and thus
also

T
e, UQ" H=0. (4.20)
As PTLis invertible, 0 = Au; = PTLUQT uy implies that
UQTu, =UQ"He, =0. (4.21)

which, when combined with (4.20) and the simplicity of the zero singular value, yields (4.17).
Moreover, since the vector w in the definition of H is given as w = u; + sign((¢;1)1)e;, the
identity (4.21) also implies (4.16) with y = 2 2824

lwll?
Since H? = I and PT L is invertible, (4.14) can be equivalently written as
Hu=L"'Pu.

0 U 0 U
PTLUQTHHu=P"L 0 Hu:v<=>[0 X

Thus, to prove (4.18), it is sufficient to show that there exists 7 € C"*~! such that

L 'pv=

v (4.22)
ol .

86



4.3. Algorithm

Asvi A= vi‘PTLUQT =0, we have that (vi‘PTL)* € ker(U™) = span{e,}, or equivalently since
PT[ is invertible:

viPTL=ae)= v =aeiL'P
for some nonzero a € C. Since v; v =0, this implies
viv=ae,L 'Pv=0=e,L ' Pv=0, (4.23)

which immediately yields (4.22), and proves (4.18). Clearly, © as in (4.19) is a good candidate
for the solution of (4.18). In fact, it can be easily verified that this choice of u also satisfies the
orthogonality condition in (4.14):

0
~

v

0

Uty

* — * — * —
uju=u H =e =0,

which proves (4.19) and concludes the proof. O

As indicated in (4.16), multiplying U with QT H usually does not destroy the underlying sparsity
pattern, i.e. U has approximately equal number of nonzero elements as U. This was also
the case in all of the numerical examples considered in Section 4.4, and thus, in the actual
implementation, the computation of u was further accelerated by computing a sparse LU
decomposition of U. Full procedure for the solution of (4.14) is summarized in Algorithm 5.

Algorithm 5 Solving the deflated linear system (4.14).

Input: A vector v € {vl}l, LU decompositions A—zI = PTLUQT and U = ﬁTfﬁ@T, with U
defined as in (4.17), the singular vectors v; and u; corresponding to o min(zI — A) and a
Householder reflector H such that Hu; = e;.

Output: Vector u e {u;}t such that (A—zDu = v.

1: Compute D = L™! Pv by solving a triangular linear system.
2: Extract the first n — 1 components of ¥ into 7.
3: Compute i = QU™'L' P by solving two tringular linear systems.

'

0
: Compute u=H [ﬁ]

4.3.2 Parameter value selection

Choice of =. As previously discussed in Sections 3.4.2 and 4.2, for d = 2, it is reasonable to
choose = c C as a finite uniform grid on D. The complexity and the quantity of features
in the underlying pseudospectral image dictate the required resolution and thus also the
number of grid points needed in each of the directions. In practice, for the numerical
examples considered in Section 4.4, we have used Z to be a 100 x 100 uniform grid on D.

Choice of /. Usinga larger value of £, number of the smallest eigenvectors included in 7 (#, ¢)
per sample point, leads to better bounds, but on the other hand, it increases the compu-
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tational cost. As explained in Section 3.4.2, given eigenvalue gaps between few smallest
eigenvalues, ¢ should be chosen to maximize the eigenvalue gap /15.”1) - /15.[). In the ab-
sence of a prioriinformation on eigenvalue gaps, the experiments in Chapter 3 indicated
the choice of ¢ = 1 to be optimal. However, in the examples presented in Section 4.4
we observe the gap between the first few smallest eigenvalues to be very small and the
performance of Algorithm 4 improved significantly by using a slightly larger value for ¢.
In our implementation, we have used ¢ = 6 for all (x, y) € D, as this usually ensured the
eigenvalue gap )LE.[“) - )LE.D to be sufficiently large for our approach to provide satisfying
convergence.

4.3.3 Algorithm and computational complexity.

Algorithm 4 summarizes our proposed approach explained in the previous sections, taking
into account implementational details from Section 4.3.1. The algorithm requires solution
of M singular value problems of size n x n for computing the exact smallest singular values
and vectors of zI — A, one for each z € . Computing Asygp(i;-%, ¢) and Asip(y;-#, ¢) for all
(x,y) € E in every iteration amounts to solving at most M|Z| eigenproblems of size at most
M¢ x M?, as well as at most M|Z| LP problems with 3 variables and up to M constraints. As
long as M? < n, these parts will be negligible, and the computational cost of Algorithm 4
will be dominated by the cost of computing the exact singular values and vectors. Moreover,
as explained in Section 3.4.1, by the saturation assumption, we do not have to recompute
the bounds Agyp (1;.%, ¢) and Agip(w; ., ¢) for all (x, y) € E in every iteration. In practice, the
bounds for specific (x, y) € E are recomputed only a few times throughout the execution.

4.4 Numerical experiments

In this section, we report on the performance of our proposed approach for a number of large-
scale examples available in the literature and compare it with some of the existing approaches
discussed in Section 4.1. Algorithm 4 has been implemented and tested in the same computing
environment already described in Section 3.5.

When implementing and testing Algorithm 4, we have made the following choices. Unless
stated otherwise, we set the error tolerance ¢, to 0.1, the absolute tolerance e, to 1078,
the maximum number of sampled points to Mpyax = 100 and = to be 100 x 100 uniformely
spaced grid on D. The smallest singular values and the corresponding singular vectors of
zI — A have been computed, as explained in Section 4.3.1, using the MATLAB built-in function
eigs, which is based on ARPACK [LSY98], with the tolerance set to 1071°. For solving the
linear program (4.6), we have used MOSEK 7 Matlab toolbox [ApS15] implementation of the
simplex method with updating. In all experiments, we have used Algorithm 4 with the number
of smallest eigenpairs included in 7 (#, ¢) set to £ = 6. In the first three iterations we have
worked with the saturation constant set to Cga¢ = +00 and Cgy¢ = 1 in the following iterations.
For choosing r from Section 3.2, we have tested all values r = 0,1,...,3¢, as explained in
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Section 4.3.1.

4.4.1 Comparison with other approaches

As can be seen in Examples 4.9 — 4.14, in terms of computational time, Algorithm 4 is signifi-
cantly faster than the grid-based approach, while providing satisfying accuracy. However, in
some examples, especially Example 4.12, the speedup is not great, even though Algorithm 4
solves the full-size singular value problem only a couple of times. As the subspace 7 (%, ¢) gets
larger, the amount of time spent in computing the subspace upper bounds Asyp(x, y;.%, ¢) is
no more negligible in comparison to exact computation of oy (zI — A). As already discussed
in Remark (3.20), this issue can be adressed by splitting the parameter domain and solving a
few smaller problems. However, how exactly to incorporate this idea into Algorithm 4 remains
an open question and may be interesting for future research.

Additionally, we compare the performance of Algorithm 4 against two other projection-based
approaches presented in Section 4.1, namely the Krylov subspace approach and the invariant
subspace approach. On a smaller 30 x 30 uniformely spaced grid Z, we compute the exact
smallest singular values o min (21— A), as well as the approximations oy (x, y; k) and oiny(x, y; k)
for few values of k € N, where

k ki
Ukry(xy k) = Umin(ZUkry _ AUkry)
Oinv (X, ¥ k) = o-min(ZUlich _ AU’icnv),

with U™ and U,icnV the k-dimensional Krylov subspace of matrix A and the k-dimensional
invariant subspace spanned by the eigenvectors corresponding to eigenvalues closest to D,
respectively. In Figures 4.3c — 4.8c, we present the convergence rates towards the exact values
of omin((x+1y)I— A):

Okry(X, V3 K)? = Omin (x + iy) I — A)*

max . 5 , and (4.24)
(x,y)€E Omin(x+iy)I-A)
T C A k) ~ Omin((x + iJ;)I— A)? (4.25)
(x,y)€E Omin((x+iy)I—A)

w.r.t. the subspace size k and compare them to the corresponding convergence rates for the
computed subspace bounds Asyg(x, y; %, ¢) and As (X, y;, €):

Asus (%, y; S, €) = Omin (x + iy) ] — A)?

max - 5 (4.26)
(x,y)€E Onmin((x+iy)I—-A)

max Asip(x, y; %, 0) - a@n((x + zz VI - A)? 427
(x,y)€E Omin(x+iy)I—A)
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w.r.t. the dimesionality of the subspace 7' (., ¢). We can observe that the convergences of
Okry(X, ;5 k)? and iy (x, v k)2 usually flatten after first few iterations, while the subspace upper
bounds Asyp(x, y;%, ¢) provide a very accurate approximation to o min((x+iy)I — A)? after
only a few iterations. The corresponding relative error 4.26 is often very small already at the
beginning due to the "warm start" strategy and this very fast convergence to the exact values
could be used as a motivation for deriving a heuristic version of our approach. Eventually, when
Algorithm 4 finishes, we usually observe that even the subspace lower bounds Ag15(x, y;%, €)
provide a more accurate approximation than the other two approches.

4.4.2 Dense matrices

We first consider two moderately sized dense matrices A (n < 5000), such that it is still possible
to compute their Schur decomposition A = QTQ*. We compute approximate pseudospec-
tra 0.(T), and compare the results obtained using Algorithm 4 and other approaches for
pseudospectra computation. For more details, see Examples 4.9 and 4.10.

Example 4.9. We consider the example random_demo .m from EigTool [Wri02], where A € R"*"
is a random matrix whose entries are drawn from the normal distribution with mean 0 and
variance 1/ N. As N — oo, spectral abcissa of A converges to 1. We choose N = 2000 and set D =
[0.95,1.05] +[—0.05,0.05]i to be a region in the complex plane around the right-most part of the
spectrum. The observed matrix A has four eigenvalues inside D. The spectrum of A (blue dots)
in the region around D (red square) is shown in Figure 4.3a, whereas in Figure 4.3b we can see
the convergence of the maximum error estimate in Algorithm 4 w.r.t. iteration. The Algorithm 4
reaches the desired tolerance in 26 iterations with the computational time of 1613 seconds,
while the exact computation using a grid-based approach would take around 22000 seconds.
In Figure 4.3e we see the computed e -pseudospectra for € = 1071,1072, while in Figure 4.3d
the surface plot of osys (x, y; %, ¢) is presented. We see that with prescribed tolerance €, the
upper and the lower bounds for €-pseudospectra almost completely overlap. The convergence
of the maximum relative error for Asug(x, y; &, €), Asg (X, y; &, €), Oy (X, Y3 k)2, oiny (x, y; k)2
w.r.t. the subspace size is shown in Figure 4.3c.

Example 4.10. We consider the example landau_demo .m from EigTool [Wri02], with matrix
A representing an integral equation from laser theory [Lan78]. We choose N = 4000 and D =
[0.8,1.2]+[-0.2,0.2]i, a region in the complex plane around the right-most part of the spectrum.
There are five eigenvalues of A inside D which we initially include in . The spectrum of A
(blue dots) in the region around D (red square) is shown in Figure 4.4a, whereas in Figure 4.4b
we can see the convergence of the maximum error estimate in Algorithm 4 w.r.t. to iteration.
The Algorithm 4 reaches the desired tolerance in only 4 iterations with the computational time
0f 637 seconds, while the exact computation using a grid-based approach would take around
80000 seconds. In Figure 4.4e, we see the computed ¢ -pseudospectra for e = 10,1072, while in
Figure 4.4d the surface plot of osys(x, y;.%, ¥) is presented. The convergence of the maximum
relative error for Asus (X, y; &, €), AsLB (X, y; &, €), Oy (X, ; k)2, oiny (X, Vs k)? w.rt. the subspace
size is shown in Figure 4.4c.
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Convergence of subspace SCM
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Maximum relative error
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(a) The domain D (red) and the (b) Maximum relative error es- (c) Convergence of maximum
eigenvalues of A (blue). timate (4.8) w.r.t. iteration. relative errors w.r.t. to the sub-
space size (4.24)- (4.27).

Subspace approach pseudospectra
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x
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(d) Surface plot of computed upper bounds (e) {1071, 10’2}-pseudospectra computed us-
osup(x,y;%,¢) (4.3) on D. ing Algorithm 4.

Figure 4.3: Application of Algorithm 4 to Example 4.9.

4.4.3 Sparse matrices

For a large-scale sparse matrix A, computing the Schur decomposition of A is rarely possible
and almost never justified. We consider four large sparse matrices A and compute approxi-
mate pseudospectra o, (A), and compare the results obtained using Algorithm 4 with other
approaches for pseudospectra computation. As explained in Section 4.3.1, we use the sparse
LU decomposition of A to speed up the computation of Ain (A(x, y)). For more details, see
Examples 4.11 —4.14.

Example 4.11. This example arises in fluid dynamics, as a model of a flow over obstacle, with
the Reynolds number equal to 100, linearized around steady state, using Q2-Q1 mixed finite
elements using IFISS [ERS07]. We are given matrices A and M of size N = 9512 representing
finite elements discretizations of the operator and the mass matrix, respectively. We compute
pseudospectra of the matrix M 'AinD=[-1.2,-0.2]+[-0.5,0.5]i, a region in the complex
plane around the right-most part of the spectrum. There are three eigenvalues of A inside
D which we initially include in #. The spectrum of A (blue dots) in the region around D
(red square) is shown in Figure 4.5a, whereas in Figure 4.5b we can see the convergence of
the maximum error estimate in Algorithm 4 w.r.t. to iteration. The Algorithm 4 reaches the
desired tolerance in 36 iterations with the computational time of 2355 seconds, while the exact
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Convergence of subspace SCM
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(a) The domain D (red) and the (b) Maximum relative error es- (c) Convergence of maximum
eigenvalues of A (blue). timate (4.8) w.r.t. iteration. relative errors w.r.t. to the sub-
space size (4.24)— (4.27).
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(d) Surface plot of computed upper bounds (e) {10~!,1072}-pseudospectra computed us-
osus(x,y;#,¢) (4.3) on D. ing Algorithm 4.

Figure 4.4: Application of Algorithm 4 to Example 4.10.

computation using a grid-based approach would take around 11000 seconds. In Figure 4.5e,
we see the computed e -pseudospectra for e = 1071,1072,1073,107*. while in Figure 4.5d the
surface plot of osys(x, y;.%, ¥) is presented. The convergence of the maximum relative error for
Asus (%, y; &, 0), AsLB (%, y; &, €), Oy (X, Y3 k)2, 0iny(x, ¥ k)2 w.rt. the subspace size is shown in
Figure 4.5c.

Example 4.12. We consider the MATPDE example from the Matrix Market [MMaO07] collec-
tion of non-Hermitian eigenvalue problems, where the matrix A is a five-point central finite
difference discretization of the two-dimensional variable-coefficient linear elliptic equation.
Size of the matrix A is N = 2961 and we choose D = [0,0.1] + [0,0.1]i, region in the complex
plane around the left-most part of the spectrum. In this region there are six eigenvalues of
A which we initially include in . The spectrum of A (blue dots) in the region around D
(red square) is shown in Figure 4.6a, whereas in Figure 4.6b we can see the convergence of
the maximum error estimate in Algorithm 4 w.r.t. to iteration. The Algorithm 4 reaches the
desired tolerance in 14 iterations with the computational time of 686 seconds, while the exact
computation using a grid-based approach would take around 877 seconds. In Figure 4.6e,
we see the computed & -pseudospectra for e = 1072,1073,107*. while in Figure 4.6d the sur-
face plot of osus(x, y; %, ¢) is presented. The convergence of the maximum relative error for
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Convergence of subspace SCM . "
Domain of interest and o(A) 108 0 Maximum relative error

1. — maximum error estimate 107 =

Yt 0 e i e

™

2 15 -1 05 0 05 0 10 20 30 40 0 50 100

. ) 150 200 250 300
X iteration subspace size

(a) The domain D (red) and the (b) Maximum relative error es- (c) Convergence of maximum
eigenvalues of A (blue). timate (4.8) w.r.t. iteration. relative errors w.r.t. to the sub-
space size (4.24)- (4.27).

Subspace approach pseudospectra
0.5 T T T T T

Smallest singular values

0—0.5 -1 -0.8 -0.6 -0.4

y X -05

—111 —1‘ —019 —018 —017 —016 —015 —014 —013 -0.2
(d) Surface plot of computed upper bounds (e) {1071,1072,1073, 10’4}-pseudospectra
osup(x,y;%,¢) (4.3) on D. computed using Algorithm 4.

Figure 4.5: Application of Algorithm 4 to Example 4.11.

AsuB(x, y; %, 0), As1B (X, y; %, ), Okry(X, Y5 k)2, Oiny (X, ¥ k)% w.r.t. the subspace size is shown in
Figure 4.6c.

Example 4.13. We consider the BRUSSEL example from the Matrix Market [MMaO07] collection
of non-Hermitian eigenvalue problems, where the matrix A arises in chemical engineering
as a discretization of a 2D reaction-diffusion model. Size of the matrix A is N = 3200 and we
choose D = [-0.5,0.5] + [1.5,2.5]i, region in the complex plane around the right-most part of
the spectrum. In this region there are three eigenvalues of A which we initially include in & . In
this example, we observe that the subspace containing the sampled smallest singular vectors
V (&, ¥€) can be well approximated by a subspace containing lot less than M? vectors. Instead of
simply using the QR decomposition like in other examples, here we compute the orthonormal
basis V using the truncated singular value decomposition with the tolerance set to 100, The
spectrum of A (blue dots) in the region around D (red square) is shown in Figure 4.7a, whereas
in Figure 4.7b we can see the convergence of the maximum error estimate in Algorithm 4
w.r.t. to iteration. The Algorithm 4 reaches the desired tolerance in 35 iterations with the
computational time of 365 seconds, while the exact computation using a grid-based approach
would take around 1580 seconds. In Figure 4.7e, we see the computed € -pseudospectra for € =
10~1,1072. while in Figure 4.7d the surface plot of osys(x, y;-%, £) is presented. The convergence
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osuys(x,y; <, ) (4.3) on D. puted using Algorithm 4.

Figure 4.6: Application of Algorithm 4 to Example 4.12.

of the maximum relative error for Asyp(x, y; &%, ¢), Asis (%, y; %, ), Okry(X, ¥ ©)2, 0iny (X, ¥ k)?
w.r.t. the subspace size is shown in Figure 4.7c.

Example 4.14. We consider the H2plus example from the Matrix Market [MMaO07] collec-
tion of non-Hermitian eigenvalue problems, where the matrix A arises in quantum chem-
istry as a discretization of a model for H; in an electromagnetic field. Size of the matrix A
is N = 2534 and we choose D = [2.5,3.5] + [-0.5,0.5]i, region in the complex plane around
the right-most part of the spectrum. In this region there are six eigenvalues of A which we
initially include in . The spectrum of A (blue dots) in the region around D (red square) is
shown in Figure 4.8a, whereas in Figure 4.8b we can see the convergence of the maximum
error estimate in Algorithm 4 w.r.t. to iteration. The Algorithm 4 reaches the desired tolerance
in only 5 iterations with the computational time of 191 seconds, while the exact computa-
tion using a grid-based approach would take around 8000 seconds. In Figure 4.8e, we see the
computed e-pseudospectra for e =3-1071,1071,3-1072,1072. while in Figure 4.8d the sur-
face plot of osup(x, y; %, ¢) is presented. The convergence of the maximum relative error for
Asus(x, ¥; %, 0), Asi(X, y; %, 0), Okry(X, Y5 k)2, 0iny(x, ¥ k)% w.r.t. the subspace size is shown in
Figure 4.8c. The relative error for oiny(x, y; k)? increases for larger values of k due to the fact that
not all eigenvectors included in the invariant subspace have converged.

94



4.5. Conclusion

Convergence of subspace SCM
Domain D and 6(A) 10° o

35 — maximum error estimate o

Maximum relative error

25 P [

x
> ' A PODPP—

- 10 T el Y

||~ * ~amoldi
- « -invariant
—=—suB

R,

1 ——"s18

e ra— ~05 0 0.5 1 15 0 5 10 15 20 25 30 35 0 50 100 150 200 250
X iteration subspace size

(a) The domain D (red) and the (b) Maximum relative error es- (c) Convergence of maximum
eigenvalues of A (blue). timate (4.8) w.r.t. iteration. relative errors w.r.t. to the sub-
space size (4.24)- (4.27).

Subspace approach pseudospectra
25 T
Smallest singular values W %sus
241 RESEATY
X oA) ||

231

0.5

0.5

(d) Surface plot of computed upper bounds (e) {10~!,107?}-pseudospectra computed us-
osus(x,y;#,¢) (4.3) on D. ing Algorithm 4.

Figure 4.7: Application of Algorithm 4 to Example 4.13.

4.5 Conclusion

We have proposed a novel projection-based approach inspired by the greedy sampling strate-
gies, given in Algorithm 4. It is primarily designed to provide highly accurate approximations
of e-pseudospectra in isolated parts of the spectrum, containing only few eigenvalues of A.

We have shown that the singular value problem o nin (2! — A) can be recasted into a Hermitian
eigenvalue problem linearly depending on two real parameters. The presented approach uses
this characterization, and builds upon the subspace-accelerated approach for approximating
the smallest eigenvalues of a parameter-dependent Hermitian matrix presented in Algorithm 3
and discussed in Chapter 3. Taking into account the particular problem structure and demands
for high absolute accuracy, we have modified Algorithm 3 in order to make our approach
computationally efficient and competitive. In particular, we have made the approach more
numerically stable, accelerated the computation of the lower bounds, as well as introduced a
"warm start" strategy. Additionally, we have extended the interpolation results from Chapter 3
to the proposed singular value bounds, allowing us to provide a priori error estimates.

Moreover, we have compared the performance of our approach to few other existing ap-
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proaches on a number of examples discussed in the literature. For larger values of n, our
approach is significantly faster than the grid-based approach, while providing satisfactory
accuracy. In comparison to the other projection-based approaches, our approach provides
higher relative accuracy w.r.t. to the subspace size, especially in the proposed upper bounds
osus(x,y;#,¥¢), as well as the rigorous error estimates. Moreover, to our knowledge it is the
first approach which provides certified upper bounds for e-pseudospectra, enabling localiza-
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Figure 4.8: Application of Algorithm 4 to Example 4.14.

tion of eigenvalues.
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5] Greedy low-rank approach to linear
matrix equations

We consider the numerical solution of large-scale linear matrix equations of the form
Q
Z AgXBj = (5.1)

for given coefficient matrices Ay, ..., Ag € R"*™, By,...,Bg € R"*", C € R"*". Equation can
also be seen as a linear system

Q
)" (Bg ® Ag) vec(X) =: o vec(X) = vec(C). (5.2)
q=1
The matrix equation (5.1) is uniquely solvable if and only if o € R™"**™" is invertible, which
will be assumed throughout this chapter.

For Q = 2, the matrix equation (5.1) reduces to the so called generalized Sylvester equation,
within which particularly important special cases are the standard Sylvester equation A; X +
X BT C and the Lyapunov equation A} X+ X AT = —C, with C symmetric positive definite. The
efficient numerical solution of Lyapunov and Sylvester equations has been studied intensively
during the last decades, and significant progress has been made; we refer to [BS13, Sim13] for
recent surveys. In particular, a number of approaches have been developed for Q = 2 that avoid
the explicit computation and storage of the m x n matrix X. Such methods attempt to compute
a low-rank approximation to X and store only the low-rank factors. As already discussed in
Section 2.2.2 for the case of Lyapunov equations, one popular approach which implements
this idea is the ADI method, which has also been extended to solving the Sylvester equation
in [BLT09]. Of course, this requires that X can be well approximated by a low-rank matrix at
the first place, that is, that the singular values of X have a strong decay. As already discussed in
Section 2.2.1, such a decay has been shown for Lyapunov equations with a low-rank right-hand
side C.

However, none of the established methods for Lyapunov and Sylvester equations generalizes
to the case Q > 2. In fact, the recent survey paper by Simoncini [Sim13] states: The efficient
numerical solution to ... [reference to equation (5.1)] thus represents the next frontier for linear
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matrix equations ... Among the existing work addressing Q > 2, particular attention has been
paid to the generalized Lyapunov equation

Q
T T_ T
AX+XA"+ Zl NyXN, =-DD". (5.3)
q:
In fact, this appears to be the most frequently encountered instance of (5.1) for Q > 2 and
typically arises in connection with bilinear dynamical systems. By extending results for the
Lyapunov case, singular value decay bounds for X have been established in [BB13, Mer12],
under various conditions on A and Nj.

As already discussed in Remark 2.13, iterative methods for solving Lyapunov equations can
be successfully preconditioned with, for example, few steps of the ADI method. In a similar
fashion, the ADI preconditioning has been used in the fixed point iteration proposed by
Damm [Dam08] for solving (5.3). The iteration is based on the splitting £ (X)+.4(X) = —DD”
of (5.3) with the Lyapunov operator £ : X — AX + XA”. This iteration converges if Z is the
dominant part of (5.3), that is, the spectral radius of & ~1_# is smaller than 1.

Arather different approach by Benner and Breiten [BB13] treats (5.3) as an n? x n? linear system
in the entries of X. Based on ideas from [EB10, KT11], a standard iterative solver, such as CG
or BiCGstab, is combined with low-rank truncation of the iterates. This approach requires the
availability of a preconditioner to ensure fast convergence. There is evidence [KT11] that fast
convergence is crucial to avoid an excessive growth of the numerical ranks during intermediate
iterations. Natural candidates for preconditioners are £ or approximations thereof, such as
one iteration of the ADI method, especially if £ is the dominant part. Numerical experiments
reported in [BB13] demonstrate that this approach performs remarkably well.

In this chapter, we develop a framework of low-rank methods for addressing the general
linear matrix equation (5.1). Our approach is very much inspired by a class of methods
proposed in [AMCKO06, Noul0] for solving Fokker-Planck equations and stochastic partial
differential equations, see [CAC10] for a survey of recent developments. The basic idea is to
subsequently refine the current approximation to the solution X by adding a rank-1 correction.
This correction is chosen to minimize a certain target functional, which renders the approach
a greedy algorithm. As we will see, this basic approach may require further improvement to
perform well for a larger range of applications. We will discuss two techniques for improving
convergence: adding information from the preconditioned residual, similar to the techniques
considered in [DS14], and performing Galerkin projection.

The rest of this chapter is largely based on [KS15] and is organized as follows. In Section 5.1,
we explain the basic algorithm using greedy rank-1 updates. For the special case of stable
symmetric Lyapunov equations, this algorithm is shown to preserve symmetry of the solution.
As shown in Section 5.2, the performance of this basic algorithm is improved by using Galerkin
projections. In Section 5.3, we discuss the incorporation of preconditioners into the method.
Finally, a variety of numerical experiments is presented in Section 5.4.

98



5.1. Greedy rank-1 approach

5.1 Greedy rank-1 approach

In this section, we describe the basic greedy rank-1 strategy for approximating the solution X
of (5.1). Starting from the zero initial guess Xy = 0, a sequence of approximations Xi, X», X3,...
with rank(X;) < j is constructed as follows. Given the current approximation Xj, the next
approximation takes the form

Xjo1=Xj+uj1v],, (5.4)
where the rank-1 correction u; 41 y].T+1 is chosen to minimize the approximation error. If the
system matrix o/ defined in (5.2) is symmetric positive definite, we may use the energy norm
induced by «f to measure the error. Otherwise, we will use the residual norm. In the following,
we will discuss details for these two choices. For notational convenience, we will identify the
matrix representation «f € R”"**"" with the corresponding linear operator

Q
. X X . T
o R RN af.XHZlAqXBq.
q:

5.1.1 Symmetric positive definite case

Let us assume that ¢ is symmetric positive definite. Then the linear operator <« induces the
scalar product (Y, Z) 4 = tr(YT o/ (Z2)) on R™*" along with the corresponding norm || Y|,y =
V(Y,Y)y. We choose the correction w4 va+l in (5.4) such that the approximation error
measured in this norm is as small as possible. This yields the minimization problem

. T.2 . T T
min || X - X; —uv = min{X-X;—uv , X-X;—uv
v ” ] ”.Qf u,v< J ’ ] >.sz¢

1X = Xj1Z, +min(uv”, uv”) , -2t (vu' o (X - X))

I1X - X2, +nul’i1}1(uvT, uv') -2t (vu’ Cy),

where we set C; := o/ (X — X;) = C — «/(X;) and X is the solution (5.1). Ignoring the constant
term, we thus obtain u;; v].T+1 from the minimization of the functional

J(u, v) :=(uvT,uvT>d—2tr(vuTCj). (5.5)

Note that J is convex in each of the two vectors u, v but it is not jointly convex. This setting is
well suited for the alternating linear scheme (ALS), see [OR00]. Note that a minor complication
arises from the non-uniqueness in the representation of uv” by the factors u, v: J(u,v) =
J(Au,A~'v) for any A # 0. In ALS, this can be easily addressed by normalizing the factor that is
currently not optimized.
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In the first half-iteration of ALS, we consider v with ||v|» = 1 to be fixed and optimize for u:

ii = argminJ(u,v) =argmin(uvT,uvT>d—2tr(vuTCj)
u u
Q
= argmin ) tr(vu’ Aquv’B)) -2tr(vu’ C))
u q:l
Q
= argmin ) (u’ Agu)(v" Byv) —2u’ Cjv. (5.6)
u q:l
The matrix
N Q
A=Y B A, (5.7)
q=1

amounts to (v! ® ).« (v ® I) and thus inherits the positive definiteness from <. Therefore,
the solution of the unconstrained linear-quadratic optimization problem (5.6) is given by the
solution of the linear system Al = C iv.

In the second half-iteration of ALS, we fix the normalized u — /|| ||, and optimize for v. By
the same arguments, the minimizer 7 is given by the solution of the linear system B? = CjT u,
with

Q
B:=Y (u"Aqu)By,. (5.8)
q=1

The described procedure is summarized in Algorithm 6.

Algorithm 6 ALS for minimizing (5.5).

Choose random vectors u, v such that || v|, = 1.

while not converged do
Solve linear system Azl = C v with Adefined in (5.7).
Normalize u — @/ | .
Solve linear system B? = CT uwith B defined in (5.8).
Normalize v — U/| Vl|,.

end while

We refer to [OR00] concerning the convergence of Algorithm 6 to a local minimum of (5.5),
which is not necessarily the global minimum. Let us emphasize, however, that in our setting
there is no need to let Algorithm 6 converge to high accuracy and we stop it after a few
iterations.

Remark 5.1. The system matrices A and B in (5.7)—(5.8) are linear combinations of the coeffi-
cient matrices Ay, ..., Aq and By, ..., Bg, respectively. They therefore inherit the sparsity of these
matrices, which allows to use a sparse direct solver [Dav06] for solving the linear systems in
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Algorithm 6. In the special case of a Lyapunov equation AX + XAT = C, we have
A=A+wTAn)I, B=A+@w'Awl

Remark 5.2. Similar to the discussion in [Nou08], the procedure above can be extended to work
with rank-r corrections UV, where U € R™ " and V € R"*", instead of rank-1 corrections. As
before, if X; is the current approximate solution and Cj = C — &/ (X;), the rank-r correction
Uji1 ij;l is computed by minimizing the following functional on R™" x R"**";

Ju,vy=wvhuvh,-2uwvu’c). (5.9)

The first half-step of ALS for (5.9) then consists of fixing V (normalized to have orthonormal
columns) and optimizing for U. The resulting linear system takes the form of a linear operator
equation .sz/f\(lA]) =C;V with

oy oy Q
A R SR o 1Y ZlAqY(VTBqV)T. (5.10)
q:

For the special case of a Lyapunov equation, we havest : Y — AY +Y (VT AV)T. After computing
a Schur decomposition of the r x r matrix V! AV, the linear operator equation A (0) = C;v
decouples into r linear systems, see, e.g., [Sim13, Sec. 4.3].

For Q > 2, such a decoupling is usually impossible and one therefore has to solve an mr x mr
linear system for the matrix representation o = Zgzl VTB,, V ® Ay. The unfavorable sparsity

pattern and the size of < make the application of a sparse direct solver to this linear system
expensive, see [BB12] for a related discussion.

Combining Algorithm 6 with the basic iteration (5.4) for rank-1 updates leads to Algorithm 7.

Algorithm 7 Greedy rank-1 updates.

Input: Matrices Ay, ..., Ag,B1,..., Bg, C defining a symmetric positive definite linear matrix
equation (5.1), number of updates R.
Output: Rank-R approximation Xy to the solution of (5.1).

Xo=0
Co=C
forj=0,1,...,R-1do
Apply Algorithm 6 with right-hand side C; to determine rank-1 correction ;1 va+ 1
Xjer = Xj+ujavi,
Q T pT
Cjs1 = Cj =X o1 Aqujn1vj,, By

end for

Assuming that a fixed number alsit of inner iterations in Algorithm 6 is used, Algorithm 7
requires the solution of 2R x alsit linear systems of size m x m or n x n. According to Remark 5.1,
these linear systems inherit the sparsity from the coefficient matrices. Note that Xy is not
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stored explicitly, but in terms of its low-rank factors [u,..., ug] € R™R [py,..., vg] € R™E,
Similarly, the updated right-hand side C; is stored implicitly, as a sum of the matrix C and j
rank-Q correction terms. Note that we only need to perform matrix-vector multiplications
with C; and C].T. To perform this efficiently, it is sufficient that C is sparse or has moderate rank.
For example, if C has rank R¢ < min{m, n} and is given in factorized form, a matrix-vector
multiplication with C; can be performed in O((m+ n)r) operations with r = Rc + QR. However,
in contrast to many algorithms for large-scale matrix equations [Sim13], it is not necessary
that C is of (very) low rank, see Section 5.4.2 for an example.

5.1.2 Symmetric indefinite and nonsymmetric cases

In the case when «f is not symmetric positive definite, we use the residual norm to measure the
error. Applying the derivation of Section 5.1.1 to the normal equation leads to the minimization
of the functional

Jw,v):={uv’ uv’y ;. —2tr(vu’ 7 (C))) (5.11)

for determining the best rank-1 correction. The symmetric positive definite linear operator
T of has the form

Q
T 4. x x T 4. T T
A RS RTN, of d.X-—»q;_lAqlquXquBql.
LYy2=

As before, we use ALS to address the minimization of (5.11). The first half-iteration takes the
form

# = argmin/(u,v)=(uv’, uv’y -2t (vu’ 2" (C))
u
& e T T TpT S
= argmin ) ) (u Ay Ag,u)(v' By, Bgv)=2 ) (u Ay CjBg,v). (5.12)
U q=1g.=1 =1
The matrix

Q Q

A TpT T

A=) Y (v By, By, ) Ay Ay,
G1=1g2=1

amounts to (v ® It T o (v ® I) and thus inherits the positive definiteness from of T of. There-
fore, the solution of the unconstrained linear-quadratic optimization problem (5.12) is given
by the solution of the linear system Aii = 23: 1 A;C iBgv.

In the second half-iteration of ALS, we fix the normalized u — /|| %], and optimize for v.
By the same arguments, the minimizer 7 is given by the solution of the linear system B7 =
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T2 (AFCiBp) u, with

Q Q

n._ T AT T

B:=) ) (u Ay, Aq By Bg,.
h=1q,=1

Using the described procedure instead of Algorithm 6 in Algorithm 7 then yields the basic
greedy rank-1 algorithm for indefinite and nonsymmetric <.

5.1.3 Numerical example

The approach described in Section 5.1.2 considers «# T o instead of <. This squares the condi-
tion number, which is well known to slow down convergence of classical iterative methods for
solving linear systems. Our greedy low-rank methods are no exception.

To illustrate this point, we consider a generalized Lyapunov equation
AX + XA + Ny XN] = -DD" (5.13)

from the discretization of a 2D heat equation with bilinear boundary control, see Example 5.10
below for more details. We have used 50 discretization points in each direction, resulting in
matrices of size n = 2500. The corresponding n? x n? system matrix </ is symmetric, but not
positive definite; it has one negative eigenvalue.

The bottom curves in the plots of Figure 5.1 show the singular values of the exact solution X
for (5.13). Since the (j+1) th singular value is the 2-norm error of the best rank- j approximation
to X, the singular values represent a lower bound for the error of the iterates obtained from any
greedy rank-1 algorithm. As can be seen in Figure 5.1a, Algorithm 7 based on the residual norm
converges quite slowly or may even stagnate. We now modify (5.13), by dividing the matrices
N; by 2. In turn, the matrix «/ becomes definite. As seen in Figure 5.1b, the convergence of
Algorithm 7 based on the residual norm does not benefit from this modification. However,
the positive definiteness allows us to use the energy norm, which significantly speeds up
convergence, see Figure 5.1c. Although the error curve is still not close to the best possible
convergence predicted by the singular values, this clearly shows that it is preferable to use
the energy norm formulation whenever possible. However, in the indefinite case, further
improvements are needed to attain satisfactory convergence.

5.1.4 Symmetry in the solution

In most of the conducted numerical experiments, we observed that ALS, Algorithm 6, con-
verges to a symmetric solution for symmetric right-hand sides. In the following we show this
property for the special case of symmetric Lyapunov equations.

In order to prove the symmetry in the solution, we first need to address the fact that the
low-rank representation of the iterates in the rank-r ALS is not unique, since for any invertible
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-4
10— sv of exact solution —sv of exact solution —sv of exact solution
error ||X. - X|| error ||X-X|| error ||X.-X]||
6| ! 2 10] ! 2 10 ! 2

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

(a) Indefinite case: greedy low- (b) Definite case: greedy low- (c) Definite case: greedy low-
rank based on residual norm rank based on residual norm rank based on energy norm

Figure 5.1: Convergence of basic greedy rank-1 algorithm for the generalized Lyapunov equa-
tion (5.13) arising from the discretization of 2D heat equation with bilinear boundary control.

R eR™7" we have
vl =wWwRrRWRrR HT, vUVeR™. (5.14)

In the following Lemma 5.3 and Theorem 5.4 we show that UV is symmetric positive semidef-
inite if and only if U and V can be chosen so that U = V, i.e. there exists invertible R € R"*"
such that UR=VR™T.

Lemma 5.3. Suppose we are given U,V € R**" such that rank(U) = rank(V) = r. There exists
an invertible matrix R € R"*" such that the matrices U := UR,V := VR~ T e R"*k satisfy uro =
viy.

Proof. The proof follows the idea used in the balanced truncation algorithm [ASZ02] for
balancing the Gramians. Let CLT,CU and C$ Cy be the Cholesky decompositions of the matrices
UTU and VTV, respectively. By computing the singular value decomposition of the matrix
CUC‘; we obtain

CyCl=UszVy.

By setting R := C;;' UsX'/? we obtain the following expressions for U and V:

U = UR=UC,'UsZ'?,
7 -T Trr—T<s-1/2
Vv = VR T=vclu;T=12
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We can now easily verify that U and V satisfy the statement of the lemma

u'o = =V?ulc,'u'ucylusz!'?

= »?2ylc;cleycyluszt? =3,
viv = zVygteyvlvelug T2

= > "2yjleyclevcius T2

= »V2ufluszvy vesuUf U TE 2 = 5

O
Theorem 5.4. Let U,V € R, both of full column rank, such that ufu=vTy. IfUv* is

symmetric positive semidefinite, then U = V.

Proof. Let U = QuRy and V = Qy Ry be the QR decompositions of the matrices U and V,
respectively. By construction, we have

RLRy=U"U=VTV=R[Ry.

Since both Ry and Ry are upper triangular and the Cholesky decomposition of U” U is unique,
we have that Ry = Ry. Given the eigenvalue decomposition of RURg =UsZ UZT , we obtain the
SVD decomposition of UV T:

UV" =QuRyR}Qy, = (QuUs)Z(QvUs)". (5.15)
Since UV is symmetric positive semidefinite, (5.15) is also an eigenvalue decomposition,

which immediately gives Qy = Qv and proves the theorem. O

We can now prove that every local minimum of (5.9) for the Lyapunov equation with symmet-
ric positive definite A and positive semidefinite right-hand side C is necessarily symmetric
positive semidefinite.

Lemma5.5. Let us consider the Lyapunov equation AX+ X A = C, where A is symmetric positive
definite and C is symmetric positive semidefinite. Let (U, V.), where Uy, V, € R™" both have
full column rank, be a local minimum of the corresponding rank-r functional J(U,V) :=
(uvT,uvT) ,—2tc(VUTC). Then, the matrix U.(V,)T is symmetric positive semidefinite.

Proof. Let (U, Vi) be alocal minimum of J(U, V). As seen in (5.14),
Ju,vy=tu(viavuTu+uTauv'v)-2a(U’cv)

is invariant under rescaling: J(U,V) = J(UR, VR~T) for every invertible R € R"*". Hence, by
Lemma 5.3, we may assume w.l.o.g. that U U, = V] V,. Under these restrictions, Theorem 5.4
proves that U, V. T is symmetric positive semidefinite if and only if U, = V.
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In contradiction to the statement of the lemma, let us suppose that U, # V.. Since fy, (V) :=
J(U,, V) is strictly convex and its unique minimum is given by V.. In particular, this implies
J(U,, Vi) < J(Uy, Uy). Analogously, J(Us, V) < J(Vy, Vi). Adding these two inequalities, one
gets

2tr (Ul U VI AV, + VI V,UT AUL) -4t (U] CVL)
<2w(Ulu.ul au. +vIvovlav,) -2 (Ul cu.) -2u(vIcv,).

Since we have U] U, = VI V,, this is equivalent to

2w (Ulcv.) < -w(Ulcu,)-u(vIcv,)
2SS 0 < —-tr(U.-VICW.-W),

which leads to a contradiction , since C is positive semidefinite. O

Remark 5.6. The assumption in Lemma 5.5 that both U, and V., have full column rank is not
restrictive. For U, V. of rank-¢, with ¢ < r, we can always find U,, V, € R"*¢ of full rank, such
that U, V] = U, VI which will again be a local minimum of a reduced rank-¢ ALS functional.

We can use Lemma 5.5 to prove the following theorem, which establishefffffffftffffs that in this
special case, Algorithm 7 converges monotonically from below to the exact solution, providing
always symmetric positive semidefinite approximate solutions. This is important, since in
some applications positive definiteness of the solution is further exploited.

Theorem 5.7. Let us consider the Lyapunov equation
AX+XA=C (5.16)

where A is symmetric positive definite and C is symmetric positive semidefinite. Assuming that
Algorithm 6 always converges to a local minimum, the application of Algorithm 7 to (5.16) results
in a monotonically increasing (in the Lowner ordering; see [Sio68]) sequence of approximations

0=Xo<X; < <Xp<--<X. (5.17)

Proof. We will prove (5.17) by induction. Initially, we have that X, = 0 and Cy = C are both
symmetric positive semidefinite. Suppose that after j iterations of Algorithm (7) the approxi-
mate solution X; and the corresponding updated right-hand side C; = C— AX; — X A are both
symmetric positive semidefinite. The next greedy rank-1 update Uj; V]L is a local minimizer
of (5.9) for the updated equation A(X — X;) + (X — X;) A= C;. Lemma 5.5 yields Uj1 = Vj;;
due to the positive (semi)definiteness of both A and C;. In turn, the new approximate solu-
tion X1 = Xj+Uj U ].T+1 > X is also symmetric positive semidefinite, while the updated
right-hand side now has the form

Cj+1=Cj— AU U],

fa-UinUj, A,

Jj+1
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This also implies that in an ALS half-iteration with V = U}, fixed, U}, is the solution of (5.10),
providing the following equivalent expressions it satisfies

Ujn U} AUj + AU W = CjUjn
b
(CjUjs1 =Ujn U} AU )W = AU, (5.18)
with W = U].T+1 Uj1. This also implies
Ul AU W+ WU AU = U CiUjn
0
Ul AUaW WUl AU = wood, Cupw ™, (5.19)

The positive semidefiniteness of Cj,1 now follows from

ViCiy = y1Ciy=y"(CiUjn = U U AU )W Uy

AUj+1)TJ’
yTij—yTCjUj+1W_1UjT+1y—yTUj_,.lW_lUﬁ_ley

+ylu ol auiaow™ ol y+y'uaw ol Avu; UL
y Jr1¥in Jj+l ]+1y y Jj+1 Jj+1 Jj+1 ]+1y
YCiy=y'CiUuaw U],y -y U WU Cly

+y UmW U], CiUaW U,y

= -UinW U, Ciy-UmW U], 1y 20,

~y Ui W (CiUjn — U Uj,

where we have used (5.18) in the first equality and (5.19) in the third equality. This proves the
induction step and finishes the proof. O

Theorem 5.7 itself is of limited practical relevance, as it requires the availability of exact
local minima. In practice, we stop Algorithm 6 (very) early and only obtain approximate
local minima. The result of Theorem 5.7 may then still be used as a theoretical justification
for choosing the subspaces U and V equal, resulting in computational savings in our main
algorithm, Algorithm 9 below.

5.2 Galerkin projection

In this section, we combine greedy rank-1 updates with Galerkin projection, similarly to the
techniques presented in Section 2.2.2.
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Chapter 5. Greedy low-rank approach to linear matrix equations

After R iterations of Algorithm 7 the approximate solution takes the form
. T
XR = ]Zl ujv B

Following the idea for accelerating the ADI method using Galerkin projection in Section 2.2.2,
we consider the column space % = span({uy, ..., ug}) and the row space ¥ = span({vy,..., Vr})
of Xg (Xg € % ® ¥V by construction), and hope to obtain an improved approximation to X by
choosing the best approximation from 7 ® %. For this purpose, let the columns of U, V € R"*R
form orthonormal bases of % and 7, respectively. Then every element in 7 ® % takes the form
UY VT for some R x R matrix Y.

If o/ is symmetric positive definite, we arrive at the minimization problem

: _ 2
A5y VX~ 2
_ . T _ T
= Zgl/lél%tr(X C)+(z,Z), -2t (Z" C),
= min o(X'C)(UuYVvi,uyv’)  —2u(vy'u'c)
YeR™

= min tr(XTC)+vec()T (Ve U)ot (V& U)vec(Y) —2vec(Y)" (Ve U)" vec(C).
cRR*R

This minimization problem is strictly convex and has the unique solution Yy given by the
solution of the linear system

Q
(VT eU")(By® Ay (V@ U)vec(Yg) = (V! & UT)vec(C). (5.20)
q=1
This can be viewed as a Galerkin projection of the original equation (5.1) onto the subspace
Veu.

If of is not symmetric positive definite, minimizing the residual yields Y as the solution of the
linear system

Q Q Q
Yo > (vTeU) By ©A.)  (Bg,®Ag)(VeU)vec(Yr)= Y. (VIeU”) (B, ®Ag) vec(O).
71=1q2=1 qm=1

(5.21)

Combining greedy rank-1 updates, Algorithm 7, with Galerkin projection yields Algorithm 8.

Remark 5.8. Both, (5.20) and (5.21), amount to solving a dense linear system of size R* x R?.
This is performed by an LU decomposition, which requires © (R®) operations and thus limits R
to moderate values, say R < 100. A notable exception occurs for (5.20) when Q = 2. Then (5.20)
is a generalized Sylvester equation and can be solved with G (R3) operations [GLAM92]. For the
general case, one may be able to exploit the Kronecker structure (5.20) and (5.21) by using the
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Algorithm 8 Greedy rank-1 updates with Galerkin projection.

Input: Matrices Aj,..., Ag,Bi,...,Bg, C defining a linear matrix equation (5.1), number of
updates R.
Output: Rank-R approximation X to the solution of (5.1).
Xp=0
Cy=C
for j=0,1,...,R—1do
Apply Algorithm 6 with right-hand side C; to determine rank-1 correction w1 vaH.
Orthonormalize u;,; w.r.t. U and append to U.
Orthonormalize v;,; w.r.t. V and append to V.
Yj+1 < solution of the Galerkin equation (5.20) or (5.21)
Xj+1 - UYj+1VT
Ciot = C-T2, A, Xj1B]
end for

preconditioned conjugate gradient method. This, however, requires the availability of a good
preconditioner.

5.2.1 Numerical example

We reconsider the example from Section 5.1.3, with n = 400 (20 discretization points in each
direction) and n = 2500 (50 discretization points in each direction). In both cases, the corre-
sponding operator « is indefinite, and therefore the residual based formulation needs to be
used. Figure 5.2 shows the convergence improvement obtained from the use of Galerkin pro-
jection. Clearly, a significant improvement sets in much earlier for n = 400 than for n = 2500.

10* 10*
10° |
;
| %
< 10 o
g g
& &
& &
10-8 || — sv of exact solution 10-6 —— sv of exact solution
—— Error for Galerkin —— Error for Galerkin
—— Error for greedy rank-1 —— Error for greedy rank-1
0 10 20 30 40 50 0 10 20 30 40 50
J J
(a) Indefinite case: n =400 (b) Indefinite case: n =2500

Figure 5.2: Convergence of error || X; — X||» for Algorithm 8 vs. the basic greedy rank-1 algorithm
applied to the generalized Lyapunov equation (5.13).
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5.3 Preconditioning

The example from Section 5.2.1 shows that the use of greedy low-rank techniques and Galerkin
projection is not sufficient to attain quick convergence for ill-conditioned problems. It is
sometimes possible to construct an efficient preconditioner &2 for a general linear matrix
equation </ (X) = C. For example, suitable preconditioners for the generalized Lyapunov
equation (5.3) can often be obtained from preconditioners for the Lyapunov operator X —
AX + XAT . The usual way of using preconditioners when solving linear systems consists of
replacing <f (X) = C by the preconditioned equation P (ot (X)) = 271(C). This, however,
bears a major disadvantage: Assuming that 22~! can be represented by a sum of L Kronecker
products, the composition 227! o o« is a sum of Q- L (instead of Q) Kronecker products. This
significantly increases the cost of Algorithms 7 and 8.

In this section, we therefore suggest a different way of incorporating preconditioners, inspired
by the Alternating minimal energy method (AMEn) from [DS14]. In AMEn, a low-rank ap-
proximation of the residual is used to enrich the subspaces in the Galerkin projection. Our
approach follows the same idea, but uses a preconditioned residual instead of the residual. In
turn, information from 1 step of the preconditioned Richardson iteration is injected into the
subspaces.

The preconditioned residual in step j + 1 of Algorithm 8 is given by 2271 (C i), with C; =
C- 23:1 AgX; B; . Of course, this matrix is not computed explicitly but represented in terms
of its low-rank factors, exploiting the fact that C; itself is given in terms of low-rank factors
and 2! is a short sum of Kronecker products. Still, the rank of 2271 (C ) is usually quite high
and needs to be truncated further. As we will discuss in Remark 5.9 below, from a theoretical
point of view it would be desirable to truncate 22~ (C ) within a (small) prescribed accuracy.
However, this may require a large rank and, thus, quickly lead to impractically large dimensions
of the subspaces U and V. Following [DS14], we therefore truncate 22~ (C ) to fixed rank,
say rank 5. The matrices containing the corresponding dominant left and right singular
vectors are denoted by U,es and Vi, respectively. These vectors are added to U and V before
performing the Galerkin projection. In effect, the dimension of the subspaces spanned by U
and V grows more quickly compared to Algorithm 8. In particular, the solution of the linear
systems (5.20) or (5.21) becomes rapidly expensive, see Remark 5.8. To diminish this effect,
we perform another low-rank truncation after every Galerkin projection. This requires the
computation of an SVD of the (small) matrix Y;,;. If possible, the tolerance for performing
this truncation should be kept small, say tol = 10719, as it ultimately determines the accuracy
of the approximate solution.

Remark 5.9. Assuming that the truncation of the preconditioned residual 2~ (C ;) is performed
within a prescribed accuracy, the optimality properties of the Galerkin projection imply that
Algorithm 9 converges at least as fast as the inexact steepest descent method applied to the
preconditioned linear system 22~ (o4 (X)) = 22~ 1(C). As explained in more detail in [DS14, Sec
4.2], this implies linear convergence with a rate determined by the condition number of 2" o o
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5.3. Preconditioning

Algorithm 9 Greedy rank-1 updates with Galerkin projection and preconditioned residuals.

Input: Matrices Aj,..., Ag,Bi,...,Bg, C defining a linear matrix equation (5.1), number of
updates R.
Output: Low-rank approximation Xp to the solution of (5.1).
Xo=0
Co=C
for j=0,1,...,R—1do
Apply Algorithm 6 with right-hand side C; to determine rank-1 correction w1 vaH.
Compute approximate left/right dominant singular vectors Uyes, Vies Of 7o i)
Orthonormalize [u+1, Uyes] w.r.t. U and append to U.
Orthonormalize [v 1, Vies] w.r.t. V and append to V.
Yj41 < solution of the Galerkin equation (5.20) or (5.21).
Truncate Y to lower rank.
Xj+1 - UYj+1VT
Cior = C-£, A, X;uB]
end for

and the truncation level.

5.3.1 Preconditioners

It remains to discuss examples of effective preconditioners for which 227! is represented as a
short sum of Kronecker products. As mentioned above, we can use a preconditioners for the
Lyapunov operator X — AX + XA” in the case of a generalized Lyapunov equation (5.3). As
discussed in [KPT14], such preconditioners can be derived from iterative methods for solving
Lyapunov equations. For our setting we consider the following two, which are presented in
more detail in Remark 2.13:

1. One step of the ADI method with a single shift p
-1 _ -1 -1
P =(A=pD)~ e (A-pD) .

Suitable choices for p are discussed in, e.g., [BS13]. For the case of a symmetric A, the
optimal p equals \/Amax(A) Amin (A).

2. One step of the sign function iteration for Lyapunov equations gives rise to the precon-

ditioner
-1 1 2 -1 -1
Pgn = 5O 1+ AT ® AT, (5.22)
with the scaling factor ¢ = ”kﬂﬁz .

The application of Q@A‘él and Q@S‘igln to a matrix of rank ¢ requires the solution of 2¢ linear

systems with the (shifted) matrix A. To optimize this step, the LU factors are computed only
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Chapter 5. Greedy low-rank approach to linear matrix equations

once and reused in every iteration.

5.3.2 Numerical example

Figure 5.3 shows the convergence of Algorithm 9 for the example from Sections 5.1.3 and 5.2.1
for n = 2500. We used the preconditioner Qs‘igln from (5.22). The convergence, compared
to Algorithm 5.2, clearly improves, to the extent that the method becomes practical for this
example. This comes at the expense of a faster increase of the rank, which makes the Galerkin
projection more expensive. To limit this increase, we apply a more aggressive truncation
strategy and cap the rank at 50. This procedure is explained in more detail in Section 5.4 below.

10 50 150
10° | 140 140
2
10° | o 130 130
5 o £ 5 =
5] ) o 3 [
107 -~ 120 120
o
" ¢
o A
107 o* 110 107, 10
Error for Galerkin Error for Algorithm 9
_s|L~ ® ~ Ranks for Galerkin _s|L=® ~ Ranks for Algorithm 9
10 : ; ; 6) 10 : ! ; : 6)
0 10 20 30 5 0 10 20 30 40 5
iteration iteration
(a) Algorithm 8 (b) Algorithm 9

Figure 5.3: Convergence of error || X; — X|2 and ranks of X; for Algorithms 8 and 9 applied to
the generalized Lyapunov equation (5.13).

5.4 Numerical experiments

In this section, we first report on the performance of Algorithm 9 for a number of large-scale
examples available in the literature and then we perform a more detailed study of the impact of
the individual parts of our algorithm on its performance. Algorithm 9 has been implemented
and tested in the same computing environment already described in Section 3.5.

Unless stated otherwise, we have made the following choices in the implementation of Algo-

rithm 9:

ALS iterations. The number of ALS iterations (see Algorithm 6) in the greedy rank-1 procedure
is fixed to 5.

Preconditioner. The sign function based preconditioner (@S_igln from (5.22) is used.

Truncation of residual. The preconditioned residual 2~1(C ) is replaced by its best rank-5
approximation. This truncation is performed by combining QR decompositions with an
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5.4. Numerical experiments

SVD, exploiting the fact that the rank of [ (o) i) is not full but given by the product of
rank(C;) with the Kronecker rank of =1 (which is 2 for 271).

sign
Truncation of iterates. As explained in Section 5.3, we truncate Y to lower rank such that
all singular values below the relative tolerance tol = 10~ !° are neglected and the maximal
rank maxrank is never exceeded. This strategy bears the risk that little new information
can be added once maxrank is reached. To avoid this, we have implemented a restart
strategy when this happens: Every 10 iterations the current approximation is truncated
more aggressively to rank 0.6 x maxrank.

In all experiments below, we measure the convergence of Algorithm 9 by computing the
relative residual norm

I1C =< (XPIE/NCl .

5.4.1 Generalized Lyapunov equations

Generalized Lyapunov equations typically arise from bilinear control problems of the form

Q
x(0) = Ax(D)+ Y Ngx(D)ug(t) + Du(r),  x(0) = xo, (5.23)
q=1

with the state vector x(¢) € R” and the control u(t) € R. The controllability Gramian [BD11]
for (5.23) plays an important role in model reduction of bilinear systems and is given by the
solution of the generalized Lyapunov equation (5.3).

In the following, we consider two examples of bilinear control systems, a bilinear boundary
control problem and the Carleman bilinearization of an RC circuit.

Example 5.10. Following [BB13, Dam08], we consider the heat equation on the unit square
with bilinear boundary control: where I'1,T'», '3, 'y are the boundaries of 10, 1 [2. After a stan-

©0,1) > 1,1
a . 2
—z=Az in]0,1[%,
ot I I's
n-Vz=05-u-(z-1) onlj,
z=0 onl’s, I'3, Iy,
Zred 0,0) T, (1,0)

dard finite difference discretization, the controllability Gramian is obtained as the solution of
the generalized Lyapunov equation

AX + XA+ NyXN] = -DDT, (5.24)

where A € R™ " is the discretization of the 2D Laplace operator. The matrices Ny, D arise
from the Neumann boundary control on I'; and therefore have O(y/n) nonzero columns. The
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corresponding n? x n? system matrix o = [ ® A+ A® I + N] ® N turns out to be symmetric,
but indefinite; most of its eigenvalues are negative and only a few are positive.

The convergence of Algorithm 9 for n = 10000 and the maximal rank maxrank = 90 is shown
in Figure 5.5. The execution time spent per iteration significantly increases as the size of
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! J: :: ,,' f.
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- e -rank
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iteration execution time (s)

Figure 5.5: Convergence of relative residual norm for Algorithm 9 applied to Example 5.10
(indefinite case).

the subspaces % and 7 grows, mainly due to the increased cost of constructing and solving
the Galerkin system (5.21) and partly due to the orthogonalization that has to be performed.
When increasing n further, we would need to work with even larger values of maxrank to attain
reasonable convergence.

Inspired by the experiments in [BB13], we consider a slight modification of this example,
dividing the matrices N; by 2. In turn, the matrix «/ becomes definite and Algorithm 9
can be based on the energy norm. Also, the singular value decay of X appears to improve.
Figure 5.6 shows the obtained results for n = 250000. Even though 7 is larger than in Figure 5.5,
Algorithm 9 converges significantly faster and attains a higher accuracy with the same maximal
rank.

For both examples, the convergence of Algorithm 9 is clearly sublinear. This appears to be
typical for algorithms based on greedy low-rank strategies, see, e.g., [CEL11].

Compared to the results for n = 562500 reported in [BB13] for the preconditioned CG with
low-rank truncation, our algorithm seems to perform slightly worse in terms of attainable
accuracy vs. the rank of the approximate solution. o

Example 5.11. This example is taken from [BS06] and concerns a scalable RC ladder with n
resistors described by

v = f(v)+bu(1), (5.25)
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Figure 5.6: Convergence of relative residual norm for Algorithm 9 applied to Example 5.10
(definite case).

where

—g(v)—glvy — 1)

g1 —v2) — g(v2 —v3)
fw)= . ,  g(w)=exp@0v)+v-1.

g(VnO—l - Vno)

Using Carleman bilinearization, the nonlinear control problem (5.25) can be approximated
by a bilinear control problem of the form (5.23). In turn, we obtain a generalized Lyapunov

equation
AX+XAT+ NXNT =-pDT

with X € RV (10+7) g

Ao A

A=
0 I®Ap+Ap®I

)

and Ay is a tridiagonal matrix and A; arises from the coupling of first and second order terms.

According to our experiments, it is beneficial for this example to skip the greedy rank-1
procedure entirely and only include information from the preconditioned residual in U and
V. The resulting convergence for ny = 500, that is 7 = 250500, and maxrank = 70 is displayed
in Figure 5.7. The algorithm converges quickly to an accuracy below 1073, after which the
convergence slows down due to imposed limit on the subspace size.

For reference, we also include the results for a modification discussed in [BB13], where the
matrix N is divided by 2. Figure 5.8 shows nearly the same convergence behavior. Compared
to the results reported in [BB13], the convergence of our algorithm is significantly faster until
the imposed limit on the subspace size is reached. 3
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Figure 5.7: Convergence of relative residual norm for Algorithm 9 (without greedy rank-1)

applied to Example 5.11.
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Figure 5.8: Convergence of relative residual norm for Algorithm 9 (without greedy rank-1)
applied to Example 5.11 with N replaced by N/2.

116



5.4. Numerical experiments

10 =~ 10 10 — 10
.- \\ .- - S
L. s, e e
1072 /,’ \\\*8 1072 e .. 18
B ! T T ]
210 /! 6 210 : 6
© )/ £ h <
o S o ©
> . = —
£10° / 4 F10°p S 4
’ II
’
10°7° . 2 10° 4 2
relative residual relative residual
_1o|L= @ —rank i/t~ @ -rank
10 T T L L 0 10 T L L O
0 1 2 3 4 5 0 0.1 0.2 0.3
iteration execution time (s)

Figure 5.9: Convergence of relative residual norm for Algorithm 9 applied to Example 5.12.

The following example is concerned with a stochastic control problem.

Example 5.12. This example is taken from [BB13] and arises from the control of a dragged
Brownian particle, whose motion is described by the Fokker-Planck equation. We refer
to [HSBTZ13] for a detailed explanation of this example. After discretization, the resulting
generalized Lyapunov equation has size n = 10000 and is of the form (5.24). The matrix NV is
sparse and has full rank 10000, while the right-hand side has rank 1.

As can be seen in Figure 5.9, Algorithm 9 converges quickly for this example and requires
less than 0.5 seconds to attain an accuracy below 1078, According to [BB13, Table 1], the
preconditioned BiCG with low-rank truncation requires around 10 seconds for the same
example in a computing environment that is comparable to ours. o

5.4.2 Lyapunov equation with right-hand sides having a singular value decay

As mentioned in the introduction, one of the most important special cases of (5.1) is the
Lyapunov equation

AX+XAT =c, (5.26)

where A,C € R™*". There are numerous numerical methods that specifically target (5.26),
see [BS13, Sim13]. For large-scale equations, most existing strategies crucially depend on a
low-rank right-hand side, that is

C=-DDT, with DeR™!, r¢«n.

In particular this is the case for methods that make use of Krylov subspaces based on A and D.
The dimension of these subspaces grows proportionally with ¢, rendering these techniques
impractical for larger values of ¢.

In contrast, Algorithm 8 does not require such a low-rank assumption on the right-hand side
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to perform efficiently; we only need to be able to perform fast matrix-vector multiplications
with C. Of course, Algorithm 8 can only attain reasonable convergence if the solution X has a
strong singular value decay. For this purpose, it is not necessary that C has low rank. As the
following example demonstrates, it sometimes suffices that C has a (possibly weaker) singular
value decay.

Example 5.13. Consider the 2D Poisson equation on the unit square:

Au(é) = (&), éeQ=]1-1,1°
ué) =0 <&eoq.

The standard finite difference discretization with n grid points in each coordinate yields an

n? x n? linear system of the form

(Le I+ 1®L)vec(X) =vec(F),

where L is the discretization of the 1D Laplace operator and F contains the values of f at the
grid points. This is equivalent to the Lyapunov equation

LX+XLT=F

In our experiments, we have used f(¢1,&2) = eXp((ff + Ef)%) with p =10 and n =40000. This
results in a matrix F with a relatively slow singular value decay. There are several established
techniques to multiply with such a matrix F implicitly and efficiently. For simplicity, we have
used ACA (Adaptive Cross Approximation [BR03]) to replace F with a matrix of rank ¢ = 92,
which corresponds to an error indicator of 9.7 x 107 in ACA. The resulting convergence of
Algorithm 8 (with 3 ALS iterations in Algorithm 6) is shown in Figure 5.10. The observed
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Figure 5.10: Convergence behavior for the Lyapunov equation arising from 2D Poisson equa-
tion with non-low-rank righthand side.

execution times are very small compared to majority of other examples, due to the fact that
each iteration only requires the solution of n x n tridiagonal linear systems and a small-scale
Sylvester equation. o
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5.4.3 Detailed numerical study of components of Algorithm 9

The purpose of the following numerical experiments is to consider the different parts of
Algorithm 9 separately and assess their impact on its performance.

Greedy rank-1 updates vs. preconditioned residuals

In Algorithm 9, the bases U and V are enriched by adding information from the greedy rank-1
update and the preconditioned residual. The purpose of the following three experiments is to
assess the impact of these two enrichment steps separately. Except for the third experiment, we
always truncate the preconditioned residuals to rank 1, so that only 1 vector is added to each
basis, equilibrating with the enrichment gained from the greedy rank-1 update. Truncating to
rank 1 instead of a higher rank also has the advantage that it enables us to essentially turn off
low-rank truncation (we only truncate singular values below 10714,

Example 5.14. We first consider a synthetic, well-conditioned example of (5.1) for Q =3 and
n =3000. The coefficient matrices are given by

Ri+R!I' n Si+S n_ .
Aj=——+—1, B;= +=I,, i=1,...,3
2 8 2 8

andC=¢; elT , where the matrices R; and S; are random matrices generated with the Matlab
function randn. No preconditioner is used; &2 = I. From the numerical results shown in
Figure 5.11, it can be concluded, for this particular example, that the enrichment gained from
greedy rank-1 updates is much more significant compared to the residuals. However, the
approach using just the residuals is significantly faster due to the fact that the residual does
not require the solution of (dense) linear systems unlike for the greedy rank-1 updates. 3

relative residual
relative residual
relative residual

-8 -8 =
10 | —greedy rank-1 >~ 10 | —greedy rank-1 10 [| — greedy rank-1
—residual —residual — residual
—— greedy+residual —— greedy+residual —— greedy+residual

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 100 200 300 400
iteration rank execution time (s)

Figure 5.11: Convergence of Algorithm 9 with different enrichement strategies for Exam-
ple 5.14.

Example 5.15. We consider the generalized Lyapunov equation from Example 5.10 for a
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Chapter 5. Greedy low-rank approach to linear matrix equations

modest size, n = 2500, and use the standard sign-function based preconditioner. As can
be seen in Figure 5.12, greedy rank-1 updates are still more important than preconditioned
residuals but, in contrast to Example 5.14, combining both approaches yields a significant

convergence 1mpr0vement. <&
10° 10° 10°
107"
107 107"
— -— - -2
g g 510
° ° °
5 10 510 5 10
z Z H
S © k]
® © e 10"
10° 10°
——greedy rank-1 eedy rank-1 10°%} —greedy rank-1
—residual residual —residual
10 —— greedy+residual 10 greedy+residual 10° —— greedy+residual
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30
iteration rank execution time (s)

Figure 5.12: Convergence of Algorithm 9 with different enrichement strategies for Exam-
ple 5.15.

Example 5.16. We consider the generalized Lyapunov equation from Example 5.11 with n =
2550, and the standard preconditioner. In contrast to the previous example, we have observed
that truncating the preconditioned residuals to rank 2 instead of rank 1 has a non-negligible
impact on the convergence. To illustrate this effect, we have used rank-2 truncation when only
the preconditioned residuals are included in the enrichment (red curves in Figure 5.13). It turns
out that this yields better convergence and requires less time compared to combining greedy
rank-1 updates and rank-1 truncated preconditioned residuals (green curves in Figure 5.13),

let alone using only greedy rank-1 updates (blue curves in Figure 5.13). o
10° 10° 10
107 107 107
10° 10° 107

relative residual
>
relative residual
5
relative residual
5
b

107°}| —greedy rank-1 10~ °H — greedy rank-1 107°} —greedy rank-1
——residual residual — residual
_|L——greedy-+residual _[L——greedy+residual

—— greedy+residual

10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50
iteration rank execution time (s)

Figure 5.13: Convergence of Algorithm 9 with different enrichement strategies for Exam-
ple 5.16.

From the three experiments above, no clear conclusion can be drawn. For some examples the
greedy rank-1 updates constitute the most important parts of the subspaces, while for others
the preconditioned residuals become more important.
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5.5. Conclusion

Low-rank truncation

As explained in the beginning of this section, the size of the bases U and V is kept under control
by a low-rank truncation of the current approximation. All singular values below the relative
tolerance tol = 107!° are neglected and the rank is limited to the maximal rank maxrank.
The purpose of the following experiment is to assess the impact of the latter truncation
criterion on the overall performance. To limit the overall rank growth, we always truncate the
preconditioned residuals to rank 1. Two vectors are added to each basis in each iteration, one
from the greedy rank-1 update and one from the (preconditioned) residual. We compare the
implementation of Algorithm 9 with maxrank = co (we only truncate singular values below
10~'2) and with maxrank = 45, combined with restarting every 16 iterations.

Example 5.17. We consider the generalized Lyapunov equation from Example 5.10 with
n = 1600, and the standard preconditioner. From the numerical results shown in Figure 5.14,
we observe the expected effect that truncation slows down convergence. On the other hand, it
can be clearly seen from Figure 5.14c that the implementation with truncation produces good
results in significantly smaller amounts of time. o

10 100 10

107 80 107

o,
L

relative residual
ranks
relative residual

10 40

10 {{—— maxrank = 45 20— maxrank = 45 107 {[—— maxrank = 45
—— maxrank = oo —— maxrank = oo —— maxrank = oo
10| % truncations ¥ truncations ¥ truncations

0

0 20 40 60 80 0 20 40 60 80 0 100 200 300
iteration iteration time

(a) accuracy w.r.t. iterations (b) rank w.r.t. iterations (c) accuracy w.r.t. time

Figure 5.14: Convergence of Algorithm 9 with truncation based on maxrank = 45 vs. maxrank =
oo for Example 5.17.

5.5 Conclusion

We have developed a novel low-rank approach for addressing large-scale linear matrix equa-
tions, based on greedy low-rank updates, Galerkin projection and residual preconditioning.

In principle, greedy low-rank methods are applicable to any linear matrix equation whose
solution can be well approximated with a low-rank matrix. However, in practice, these methods
need to be combined with Galerkin projection and preconditioning strategies in order to
ensure satisfactory convergence speed for a wider range of applications. We have further
improved the performance of our approach by incorporating low-rank truncation and a
restarting strategy.

The resulting solver, Algorithm 9, is demonstrated to perform quite well for problems that
have been discussed earlier in the literature, especially those for which the imposed limit on
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Chapter 5. Greedy low-rank approach to linear matrix equations

the subspace size is not reached. For more challenging problems that feature larger ranks, the
need for constructing and solving the Galerkin systems (5.20)-(5.21) may become a bottleneck.
One way to overcome this is to stop our method when a certain rank is reached, and use the
approximate result as an initial guess for the iterative methods discussed in [BB13].

122



Low-rank approach to parameter

dependent symmetric Lyapunov equa-

tions

Suppose we are given a large-scale control system, similar to the one considered in Sec-
tion 2.2.3, where the system matrices E, Ae R"*", Be R"* and C € RIxn additionally depend
on a parameter e D c R

E(wx(t) = Awx(®) +B(wu(t),

1
y(@®) = C(ux(D). (6.1)

Such systems frequently arise from the spatial discretization of partial differential equations
(PDEs), in which the parameters are used to model the variation of geometries and material
properties to be optimized. As discussed in Section 2.2.3, simulation of (6.1), for a fixed u € D,
can be accelerated by computing a reduced-order model. However, in a parameterized setting,
itis often essential to enable fast simulations for many different parameter values in D, and
computing a reduced-order model for each of them separately is usually computationally too
costly.

In the last two decades, several model reduction approaches have been developed for param-
eterized systems. These include multivariate moment matching based on (rational) Krylov
subspaces, interpolation-based techniques, and the reduced basis method. None of these
methods can be considered as optimal. In this chapter, we develop a model reduction ap-
proach based on the balanced truncation, presented in more detail in Section 2.2.3. As
previously discussed, computation of the reduced-order model for a fixed p € D using the
balanced truncation, requires computation of Gramians P(u) and Q(u), which are defined as
the unique symmetric positive semidefinite solutions of the Lyapunov equations

-B(wBWw?, (6.2)
—Cc(wTc), (6.3)

AWPWEW " +EWPW A"
AT QWEW+Ew T Q(u) A(w)

respectively, provided that E(u) is nonsingular and all eigenvalues of the matrix pencil A(u) —
AE(u) have negative real part. Thus, in order to determine the reduced-order models for many
parameter values, we need to compute (approximate) solutions of the Lyapunov equations
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Chapter 6. Low-rank approach to parameter dependent symmetric Lyapunov equations

(6.2) and (6.3) for all these parameters. In this chapter, we present a low-rank reduced basis
method for approximating solutions to parameter-dependent Lyapunov equations on the
whole parameter domain.

The rest of this chapter is largely based on [KSSS14] and is organized as follows. In Section 6.1,
we first give a short overview of parametric model reduction. In Section 6.2, we discuss using
the reduced basis method for solving Lyapunov equations and present our low-rank reduced
basis approach for solving (6.2). In particular, we discuss the choice of the solution subspace
and the a posteriori error estimates. In Section 6.3, we present the full algorithm and discuss
implementational details, while in Section 6.4 we present the performance of the approach on
a few numerical experiments.

6.1 Parametric model reduction

In this section, we present a short overview, largely based on the recent survey paper [BGW15],
of the most important challenges arising in the parametric model reduction, along with some
of the approaches to overcome them.

As explained in Section 2.2.3, for a fixed value of y € D, a common approach to calculating a
reduced model for (6.1) is to compute low-dimensional subspaces 7 (1), # (i) and their bases
V(w), W(p) € R”*" using a model reduction technique, such as the balanced truncation, and
project the system matrices onto V() and W (). However, computation of V(u) and W (u)
using the balanced truncation involves solving Lyapunov equations of the form (6.2) and (6.3),
which is for large values of n computationally feasible only for a few different parameter values
HeD.

Suppose that we have computed the reduced-order models and their projection bases V (u;) €
R and W (u;) € R™™" for a few parameter samples y,..., y. Given this information, a
question which naturally arises is, whether it is possible to approximate reduced-order models
all over the parameter domain D, and if yes, how to do it efficiently. Some of the approaches
that have already been discussed in the literature include:

Global bases. Large computational cost of computing different projection subspaces for each
e D can be avoided by instead constructing global bases V and W out of sampled local
bases

W =span{W(u1),..., W(um}, V =span{V(uy),..., V(um}.

Global bases W and V can be efficiently constructed, for example, using the (truncated)
singular value decomposition (SVD). For each p € D, this allows computation of reduced-
order models by simply projecting the system matrices onto V and W. Examples where
global bases have been used include moment matching techniques, see e.g. [BF14], as
well as the interpolation-based techniques, see e.g. [BBBG11].

Interpolation of local bases. Depending on the problem, the global bases may become im-
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6.1. Parametric model reduction

practically large, resulting in reduced-order models which are not much smaller than the
original. Instead, as explained in [AF08], good approximate local bases V() and W (u)
for any given u € D can be computed by interpolating the sampled local bases U(u;) and
V(u),i=1,...,M on a tangent space to a Grassmanian manifold of all r-dimensional
subspaces in R”. Implementing this approach first requires mapping of the sampled
local bases to the tangent space at a reference point, which consists of computing O(M)
SVDs of n x r matrices. Now, computing approximate local bases V (u) and W (u) for any
given u € D consists of interpolating at the tangent space, and mapping the result back to
the space of all r-dimensional subspaces in R”, which requires a thin SVD computation.
Finally, having computed local bases V(i) and W (u), reduced-order models are again
obtained by simply projecting the system matrices onto V(u) and W (u).

Interpolation of reduced models. Computation of reduced-order models from approximate
local bases still requires projecting system matrices onto them. As discussed in [AF11,
PMEL10], this can be avoided by interpolating the exactly computed reduced-order
models at yy,..., up. Implementing this approach first requires congruence transfor-
mation of the sampled local bases so that the computed reduced-order models are
expressed in the same generalized coordinate system, which can be achieved by solving
O(M) Procrustes problems. After this transformation, for any given p € D, the reduced
system matrices can either be interpolated directly [PMEL10], or on a manifold [AF11],
similarly to the interpolation of local bases above.

For a more detailed discussion on these and other approaches, we refer to [BGW15].

It is important to note that in case of general parametric dependence in system matrices,
using either global or locally interpolated bases is not computationally viable. As evaluat-
ing the reduced models first requires explicit computation of A(u) and then, subsequently,
multiplication with V and W, the computational cost of these approaches heavily depends
on the dimension 7 of the original problem. However, it is possible to overcome this issue
in certain special cases, such as when A(u) (and other system matrices) admits affine linear
decomposition w.r.t. y:

AW =0, (W Ay +---+ 00 (W Ag, (6.4)

with 01,...,0¢ : D — R and Ay,..., Ag € R"*"". As discussed in Section 2.3.4, if Q < n®, pre-
computing the matrices W' A,;V,q = 1,...,Q enables constructing of A, (u) in the following
way

AW =0 (WA V +--+0owWT AV, VueD,

with a computational cost that is independent of n. Moreover, as discussed in Remark 2.15,
even if the system matrices do not explicitly satisfy (6.4), methods such as MDEIM can some-
times be used to find accurate approximations of system matrices which admit affine linear
decomposition.
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Chapter 6. Low-rank approach to parameter dependent symmetric Lyapunov equations

6.2 Reduced basis method for Lyapunov equations

In this section, we will sketch how the reduced basis (RB) method, described in more details
in Section 2.3, can be used to derive a global bases approach for solving Lyapunov equations.
From now on, we consider Lyapunov equations of the form

~AWXWE - EX(wAw) = BB, 6.5)

where we assume that

1. neither E nor B depend on the parameters;
2. Eis symmetric, positive definite and A(u) is symmetric, negative definite for all u € D;

3. A(w) admits affine linear decomposition w.r.t. i (6.4).

The purpose of the first assumption is mainly to simplify the discussion. Our algorithms can
be trivially extended to parameter-dependent E and B. On the other hand, as explained in
Section 2.3, the last two assumptions are essential for the RB method. The second assumption
is central to the error estimators we are using since it ensures that the system (6.5) is positive
definite, and as discussed in Remark 2.18, dropping it would require the use of different
estimators. The third assumption enables efficient construction of the compressed linear
systems as well as the residual computation. As already discussed in Remark 2.15, the third
assumption is commonly found in the literature; in many problems it either arises naturally or
can be attained by techniques such as Empirical Interpolation method [BMNPO04].

As explained in Section 2.2, the Lyapunov equation (6.5) can be equivalently written as the

n? x n? linear system

o (Wx(w) = b, (6.6)

with &/ (u) = —E® A(u) — AW ®E, b= vec(BBT) and x(u) = vec(X(u)). When applying the
plain reduced basis (RB) method directly to the n? x n? linear system (6.6), without exploiting
the particular structure of </ (u), the high dimensionality n? of the solution space leads to
inefficiencies. For example, after M iterations of the offline phase, the complexity for orthonor-
malizing and storing V is O(n> M?) and O(n? M), respectively. This puts a limitation on the
size n that can be handled; n can be at most a few thousand. Another major disadvantage
is that the approximate solution X (i) obtained in the online phase is not guaranteed to be
positive semidefinite, a property that is highly desirable in model reduction applications.

In the following, we show how the RB method can be modified and accelerated for the Lya-
punov equation (6.5) by exploiting the structure in </ (1) and by making use of low-rank
properties of X (u).
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6.2. Reduced basis method for Lyapunov equations

6.2.1 Low-rank structure in the offline phase

As already discussed in Section 2.2.1, when m < n, it is known that the singular values of the
solution X (u) to (6.5) decay very quickly. Hence, X (u) can be well approximated by a low-rank
matrix of the form L(u)L(u) T where the low-rank Cholesky factor L(u) has m;, < n columns.

The offline phase proceeds as described in Section 2.3.3, with the notable difference that for
each sample py,..., 1t instead of the n x n (or n? x 1 when vectorized) solutions X (uj) we
collect the low-rank Cholesky factors L(u;) € R"*"/ in a subspace

9y = range(Ly;) < R”,

where Ly, = [L(u1), L(42), ..., L(upg)] € RWUMt+mum) In the absence of approximation error,
we have ¥y c % ® %)\, where 7y is the subspace containing vectorized snapshots, as in the
plain RB method. For an orthonormal basis U of %), this means that any vector v € 73; can
be represented as

v=(U®U)vec(Y) =Vec(UYUT), (6.7)
for some (small) matrix Y. The dimension of %, is given by
N=my+---+my,

which can be — depending on m - significantly larger than M, the dimension of 7). Similarly
to the discussion in Section 6.1 on the applicability of global bases as they increase in size, it is
imperative to keep the dimensionality of %), under control. To attain a smaller value for N,
while building the basis U, we repeatedly apply column compressions to matrix Ly; using the
truncated singular value decomposition (SVD) with relative truncation tolerance tolcompr-

The offline phase is stopped either after the maximum number of iterations Mp,ax or when a
satisfactory level of accuracy has been attained:

Ap () <é€rgre, VM ED,

where Ajs(u) are the error estimates to be defined in Section 6.2.3 and €1 ggp is the prescribed
absolute tolerance on the values of error estimates.

6.2.2 Low-rank structure in the online phase

The online phase proceeds as described in Section 2.3.4, with the subspace 7), replaced by
N ® % . In view of (2.35) and (6.7), this means that we have to solve the compressed linear
system

(U)o (wUeU)yw=UeU)Th,
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which is equivalent to solving the compressed Lyapunov equation
~AWwYWE-EY (WA =BB", (6.8)

with A(u) = UT A(u)U, E=UTEU and B = U B for the unknown Y (1) € RV*N. As indicated
in Section 2.2.2, (6.8) can be efficiently solved in O(N3) operations using the Bartels-Stewart
algorithm [BS72]. The approximate solution of (6.5) is then obtained as

Xw=0Ywu'T. (6.9)

The compressed matrices A(u) and E inherit the negative/positive definiteness from A(y) and
E, respectively. Hence, both Y () and X (i) are guaranteed to stay positive semidefinite, in
contrast to the approximate solutions obtained using the plain RB method.

To setup the Lyapunov equation (6.8) efficiently, we use the affine linear decomposition of
A(u) to obtain:

AW =UTAWU=0,(wUT A U +...+0o(wU" AqU.

Again, the precomputation of UTAqU forg=1,...,Q, aswell as UTEU and UT B, allows us
to reduce the complexity to O(QNZ) for constructing the coefficient matrices and O(N?3) for
solving (6.8).

6.2.3 Low-rank structure in the error estimator

The computation of the error estimates proceeds as described in Section 2.3.5, with the
approximate solution X(u) = Vy(u) replaced by X(u) = (U U)vec(Y (1)) which can be reshaped
as X (1) in (6.9). For a fixed parameter sample p € D, the Frobenius norm of the residual

R(u) = BBT + A X(WE +EX (1) A()
can be computed as

IR@)I2 = (b~ (WFwW)" (b- o (W)
=bTh-2b" o () (U ® U)vec(Y ()
+vec(Y(w) (U e U)ot () of (1) (U ® U)vec(Y ().
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Again, by taking the affine linear decomposition of A(u) into account we obtain

IR =tr((B"B)(B'B))

Q
+4 Y 0,wt(B"EDY (WU A4B))
q=1

Q
+2 Y 0, (W0g,Wir(Y (WU Ag, A, DY (u)(UTEED))
q1,q2=1

(6.10)

Q
+2 Y 04, (WO, Wtr(Y(W(UTAg EU)Y (W (UTAgEU)),
q1,q2=1

where tr(-) denotes the trace of the corresponding matrix.

Having precomputed B'EU, UTA4B, UT AyEU, UTEEU and UT A, Ag, U for q,q1,q2=1,...,Q
then allows us to attain a complexity of O(Q?N*) for computing || R(w)] .

The difference to the true solution X (u) of the Lyapunov equation (6.5) in the Frobenius norm
can be estimated as

IR@WIE _ IRWIE _

Xw-Xwlrs B
IX G =XU0llr = 3= = A

A(W), peD, (6.11)

where A5 () is a positive lower bound for Anin (7 (). Here, using the Frobenius norm is
suitable because it allows efficient computation of such lower bounds A1 g (). The eigenvalue
properties of the Kronecker product and the minimax characterization of eigenvalues yield
the following lower bound on A, (of (1)):

vI(~A(w) @ E-E® A(w)v
n
veR™ vl
v (—~A(uw) ® E)v . vI(-E® A(w)v
—_—+mn--—-—7-
veRn? vy veRn? vy
= 2Amin(E) Amin(—A(W)) = 2Amin(E)ALg (—A(W)) =: AL (W), (6.12)

Amin (& (1))

v

where A1 5(—A(u)) denotes a positive lower bound for the smallest eigenvalue of the symmetric
positive definite n x n matrix —A(u), which can be efficiently computed either using SCM
(Algorithm 2) or the subspace-accelerated SCM (Algorithm 3).

6.3 Algorithm

In this section, we present a summary, in form of Algorithm 10, of our low-rank reduced basis
approach for Lyapunov equations introduced in Section 6.2 and discuss its implementation
and computational complexity.
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Algorithm 10 Offline phase of the Low-rank Reduced Basis method for Lyapunov equations

Input: Trainingset = c D, E € R™" B € R"*" affine linear decomposition such that A(u) =
O1() Ay +---+0g(u) Ag € R"*" is symmetric negative definite for every u € Z. Error toler-
ance €1RRB-

Output: Reduced model for computation Ay p(u) produced by Algorithm 3 and a low-rank
basis U for Cholesky factors such that A(u) < errgp for every p e =.

1: Compute Apin (E).
: Use Algorithm 3 to compute Ain (—A(p)) for all u € =, as well as a reduced model for
evaluating Apyin (—A(w)) on D.

: Compute Arg(u) according to (6.12) forall e =.

: Set M = 0 and pmax to be a randomly chosen element of =.

: while A M(/Jmax) > £1RRB do

MM+1 = Hmax

Compute L(ups+1) by solving (6.6) for p = pps41.

Set %1 = % +range(L(1a+1)) and update the truncated orthonormal basis U.

Set M — M+ 1.

10:  Update the projected matrices UTA,U,UTEU,U"B,B"EU, UTA,B, UT A,EU, UTEEU

and UTAg,Aq U for q,q1,42=1,...,Q.

11: forpueZdo

N

@ XN DAk

12: if CsatApr (1) < Amax then

13: Exit the for loop.

14: end if

15: Recompute Y (u) according to (6.8).

16: Recompute || R(u) || r according to (6.10).
17: Recompute Ay (u) according to (6.11).
18: Update Apax and pimax-

19: end for
20: end while
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6.3.1 Computational details

In the following we discuss some details of an efficient implementation of Algorithm 10.

Computation of 11 5(u). Computation of a lower bound for Ay (< (1)) requires estimating
Amin(—A(w)) on D. As previously mentioned, we can use Algorithm 2 or Algorithm 3 to
compute non-negative lower bounds on the whole parameter domain. In our imple-
mentation, we use Algorithm 3 with the same training set =, and the number of sampled
eigenpairs ¢ set to 1. In contrast to Section 3.5, we set the prescribed tolerance escum
to 0.1, since computing more accurate estimates to Ay (—A(u)) will not significantly
affect the values of the error estimates (6.11). The rest of the settings is as described in
Section 3.5.

Updating U. Suppose that we are given the truncated SVD of Ly; = UXV from the previous
iteration, where X = diag(oy,...,0 ). Given the new low-rank Cholesky factor L(gps41) €
R»*My+1 [0 can be written in the following form

> vT

Lt = WEVT L)) = [U L) |

[mMH ] .

The SVD of Ly+1 can now be efficiently computed by first computing the QR decom-

ImMH

position of [U, Ly+1] = Qu Ry, followed by computing the SVD decomposition of the

z
matrix Ry I , and computing the updated matrices U and V in the end. The
Mp+1

QR decomposition and the updated matrices U and V can be computed in O(nN?),
while computing SVD requires O(N®) operations, resulting in the total computational
cost of O(nN? + N3). Finally, the obtained singular value decomposition is compressed
by truncating the singular values o; such that o;/0 <tolcompr.

Updating the projected matrices. Before computing the projected matrices in line 10 of Algo-
rithm 10, it is preferable to first form the products AU, ..., AqU, EU, which can be done
in O(n?N) operations. This allows computation of the projected matrices in O(Q> N?n)
operations, resulting in the total computational cost of O(Qn?N + Q> N?n).

Computation of the next parameter sample (/.. The next parameter sample pps41 is com-
puted as the maximizer of the error estimate (6.11) on =. In every iteration, this requires
recomputing the approximate solution Y (u) and the residual norm ||R(u)|lr on the
whole training set =, which can become computationally quite expensive. As described
in Remark 2.17, the search for pps41 (lines 11-19 in Algorithm 10) can be optimized using
the saturation assumption (2.38), which combined with the error estimates from the
previous iteration often allows us to skip recomputations for a number of points in =.
Moreover, as in Remark 2.17, we denote with Apax and pmax the current maximum error
estimate and the point in = where it was attained, respectively. In the implementation,
we have worked with Cgat = +00 in the first five iterations of Algorithm 10, and with
Csat = 1 in the following iterations.
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Computation of L(u). For computing the low-rank Cholesky factor L(y), it is preferable to
use a method which computes the low-rank factor of the solution directly and is also
able to exploit sparsity in A(u) and E. One of such approaches is Algorithm 9 in Chap-
ter 5 which seems to be very competitive for solving Lyapunov equations with low-rank
right-hand side (see Example 5.13). As previously discussed in Section 2.2.2, the al-
ternatives include the approaches based on the ADI method [Pen00] or the extended
Arnoldi method [Sim07], which often compute an accurate approximation in only a few
iterations, where each iteration consists of solving a linear system with shifted matrices
A(w) — 7E. In our implementation, we have used the implementation by Stykel of the
Generalized low-rank ADI method, which was already discussed in Remark 2.14.

6.3.2 Computational complexity

In addition to the computational cost of Algorithm 3 which is discussed in Section 3.4.3, the
computational cost of performing M iterations of Algorithm 10 is

O(Mkiyapmers + MQNnR?+ M(N® + Q*N?n) + M| Z||(N* + Q*N?)),
where N is the number of columns in U, and || Z|| is the number of elements in =.

The first term O(M kiyap mcLs) corresponds to the computational cost of solving M Lyapunov
equations for the sampled parameters values, where kyyap is the number of iterations in the
Lyapunov solver, and cis is the computational cost of solving one linear system with a shifted
matrix A(u) —7E. For example, if A(u) and E are sparse with bandwidth p, ¢ s can be estimated
at a cost of O(np?), which corresponds to the computational cost of computing sparse LU
factorization for A(u) — TE. The second term O(MQNn?) corresponds to the computational
cost of computing products A;U and EU in each iteration, while the third term O(M?3 +
MQ?N?n) corresponds to the computational cost of computing U and the projected matrices
in line 10 of Algorithm 10. The fourth term O( M| Z||N®) corresponds to the computational cost
of computing the approximate solutions Y (1), while the fifth term O(M||Z[Q* N?) corresponds
to the computational cost of computing the error estimates (the residual norms ||R(u)| r)
throughout the iterations.

It is important to note that the contributions to the obtained computational cost of n and
IZ] are independent, so both can be chosen large if necessary. Moreover in practice, as
explained in Section 6.3.1, by assuming the saturation assumption, we can expect reduced
contributions of the fourth and the fifth term to the overall complexity, since, for a fixed p € E,
the approximate solution Y (1) and || R(w) | r do not have to be recomputed in every iteration,
but rather only a few times throughout the execution.

In the online phase, the computational cost for calculating the approximate solution of the
Lyapunov equation and the accompanying error estimator is O(QN? + N3) and O(Q*N?3),
respectively, and thus independent of 7.
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Defining the lower bound A;p(p) as in (6.12) is very important, since using Algorithm 3 to
estimate the smallest eigenvalues of A(y) is significantly cheaper than to estimate the smallest
eigenvalues of o/ (1), as the most computationally demanding part of Algorithm 3 is usually
the computation of exact eigenpairs, which depends on the matrix size.

Remark 6.1. The attained level of accuracy in Algorithm 10 clearly depends on the truncation
tolerance tolcompr used in the truncated SVD. Therefore, tolcompr needs to be chosen in accor-
dance with 1 rrg. However, choosing a very small value for tolcompr may result in large values
of N and, thus, lead to high computational costs.

6.4 Numerical examples

In this section, we present several numerical experiments to illustrate the properties of the
low-rank RB method, given in Algorithm 10 and described in Section 6.2. Algorithms 3 and 10
have been implemented and tested in the same computing environment already described in
Section 3.5.

We present convergence of the maximum error estimate (6.11) and evolution of the ranks of
U, both with respect to the number of iterations and with respect to the execution time (in
seconds). Additionally, we simulate the online phase of RB method, where we compute the
error estimates and the exact error for the computed approximate solutions of the Lyapunov
equation (6.5) at 100 randomly selected parameter values that do not belong to =.

When implementing and testing Algorithm 10, we have made the following choices. We set
the error tolerance to ergpg = 1074, the maximum number of iterations to Mpax = 25 and the
surrogate set = to be a random subset of D containing 1000 elements. The exact Cholesky
factors L(u;) have been computed with the tolerance set to 10710, For running Algorithm 3,
we have used the same training set =.

Example 6.2. We consider the parameter-dependent Lyapunov equation associated with an
example from [KT11, Section 4]. The matrices E, A(u) € R™*™ arise as the stiffness and the mass
matrix, respectively, from the finite element discretization of a stationary heat equation on a
square domain Q containing d disjoint discs, as shown in Figure 6.1. The heat conductivity
coefficient in each of these discs is governed by a parameter u'?; thus A(u) depends on d
parameters and can be written as

d
A=A+ Y pPAz, VYueD,
q=1

with Ay, ..., Ag+1 the discretizations of the Laplace operator on each of the subdomains. Each
of the parameters ' is assumed to be in the interval [0.1,10], resulting in D = [0.1,10]%. The
training set Z is chosen as a random subset of D consisting 0of 1000 parameter samples. We have
set the truncation tolerance for the truncated SVD 1o tolcompr = 1078,

Figure 6.2 shows the performance of Algorithm 10 for the case d = 1. For this example, only
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one iteration of Algorithm 3 is sufficient to provide reliable lower bounds for the smallest
eigenvalue of A(1). The ranks of the exact Cholesky factors L(u) are approximately equal to 20
for all sampled u;, giving m; = 20, while after M = 4 iterations, the dimension of the resulting
subspace (after truncation) %y is N = 53. The error estimates and the exact error for the
computed approximate solutions of the Lyapunov equation (6.5) at 100 randomly selected
parameter values that do not belong to Z can be seen in Figure 6.2c.

We have also considered a more challenging version of the problem with d = 4, where n = 1580,
and presented the results in Figure 6.3. For this example, Algorithm 3 converges in 10 iterations,
the rank of Cholesky factors is approximately 25, which, after the maximum M = 25 iterations,
results in U of dimension 198. Even though the desired tolerance of 10~* in Algorithm 10 has
not been reached, the true errors evaluated for 100 randomly selected parameter samples in
D are all below the prescribed tolerance, as can be seen in Figure 6.3c. In order to attain the
prescribed tolerance in the error estimates, it is necessary either to increase the allowed number
of iterations, or to reduce the truncation tolerance tolcompr = 10~8. However, based on the fact
that the ranks of U are starting to stagnate after around 20 iterations, increasing the number
of iterations would probably not help, which indicates the need for a smaller value of tolcompr
than 1078,

Motivated by the increasing computational cost of Algorithm 10 asrank(U) = N gets larger, in
the following, we additionally consider a slightly modified version of Algorithm 10. Instead of
constructing a single basis U for %y with tolcompr = 1078, we construct two bases, U and U,
with tolcompr = 10~ and tolcompr = 1078, respectively. The basis U is used as before, for the error
estimation in the offline phase (Algorithm 10), while U is used later for computing approximate
solutions in the online phase. This approach can be considered as heuristic, since there is no
guarantee that U ® U is a notably better solution space than U ® U. In practice, as we can see
from the results presented in Figure 6.4, this modification leads to a decrease in ranks of U,
resulting in a significant reduction in the execution time, while the accuracy in the online phase
appears to be unaffected. Basis U has approximately equal rank, and provides roughly the same
accuracy level as does U which was constructed with tolcompr = 1078 and shown in Figure 6.3c.
Further investigation of this or a similar idea may be interesting for future research.

6.5 Conclusion

We have developed a low-rank version of the reduced basis method for solving parameter-
dependent symmetric Lyapunov equations.

We have modified the reduced basis method in a way that the low-rank Cholesky factors are
sampled instead of sampling the vectorized solutions of size n? x 1. Consequently, the solution
subspace %), is constructed as the range of the concatenated sampled low-rank Cholesky
factors. This modification leads to computation of an approximate solution X () inside the
tensorized product % ; ® %, which not only improves accuracy, but also guarantees that
X () is positive semidefinite for all 4 € D. Moreover, we have shown that, by computing a
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Figure 6.1: Finite element mesh used in Example 6.2.
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Figure 6.2: The performance of Algorithm 10 for Example 6.2 with d = 1.

posteriori error estimates in the Frobenius norm, estimation of the smallest eigenvalue of
a n? x n® matrix «f (1) can be avoided. Instead, it is sufficient to compute a positive lower
bound for the smallest eigenvalues of A(u) € R"*”. Furthermore, by incorporating low-rank
truncation, we have mitigated the growth in dim(%,).

The resulting solver, Algorithm 10, is demonstrated to perform well for a problem that has
been discussed earlier in the literature. However, for more challenging problems which require
even larger values of dim (%), repeated computation of approximate solutions (2.35) might
become a bottleneck. For such cases, we propose a heuristic approach where the sampling

is driven by error estimates based on a coarser approximation to %/, whereas a finer one is

used to compute approximate solutions in the online phase.
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rd Conclusion

In this thesis, we have discussed the development of efficient algorithms for two numerical
linear algebra problems arising in model reduction, estimation of the smallest eigenvalues of a
parameter-dependent matrix, and solving linear matrix equations. The following contributions
have been made.

In Chapter 3, we have presented new theoretical results about the existing state-of-the-art
approach for estimating the smallest eigenvalues of a parameter-dependent Hermitian matrix
A(uw), the Successive Constraint Method (SCM), which indicate its limitations and explain the
slow convergence often observed in practice. We have demonstrated that these issues can
be overcome by additionally incorporating subspace acceleration techniques, which implic-
itly exploit regularity in the smallest eigenvectors, resulting in a per iteration computational
cost which is only slightly larger than in SCM. We have shown that our proposed subspace-
accelerated approach (Algorithm 3) has better interpolation properties than SCM, with both
subspace bounds interpolating the partial derivatives of Amin(A(w)). Furthermore, if A(u) is an-
alytic and d = 1, we present results which indicate that we can expect exponential convergence
of Algorithm 3 on intervals where Amin (A(w)) stays simple. These improved theoretical proper-
ties of Algorithm 3 are reflected in the numerical experiments, where Algorithm 3 presents a
significant improvement over SCM, both in terms of iterations and the total computational
time, on a number of numerical examples from the literature. We have successfully applied
our approach to the estimation of coercivity and inf-sup constants. We have observed that
for problems with small gaps between the smallest eigenvalues and a large variation in the
parameter space the convergence of the subspace lower bounds may still not be satisfactory
and for such cases we propose a heuristic approach using residual-based lower bounds.

In Chapter 4, we have shown that the singular value problem o i, (zI — A) can be recasted into
a Hermitian eigenvalue problem linearly depending on two real parameters. As parameter-
dependent Hermitian eigenvalue problems can be successfully addressed using Algorithm 3,
this motivates the development of a novel projection-based approach (Algorithm 4) for compu-
tation of € pseudospectra, which builds upon Algorithm 3 by additionally taking into account
the specific problem structure and demands for high absolute accuracy. This requires several
modifications in order to make Algorithm 4 computationally efficient and competitive to
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other existing approaches, such as making the residual computation more numerically stable,
accelerating the computation of the lower bounds, and introducing a "warm start" strategy.
The new approach is particularly suited for computation of e-pseudospectra in isolated parts
of the spectrum, containing only few eigenvalues of A. Additionally, we have shown that the
interpolation results from Chapter 3 naturally extend to the proposed singular value bounds,
allowing us to provide a priori error estimates. We have compared the performance of Algo-
rithm 4 to other existing approaches on a number of examples discussed in the literature. For
larger values of n, the approximation of pseudospectra using Algorithm 4 is significantly faster
than by using the straightforward grid-based evaluation, while providing satisfactory accuracy.
In comparison to other projection-based approaches, Algorithm 4 provides higher relative ac-
curacy w.r.t. to the subspace size, especially in the proposed upper bounds osyg(x, y;.%, ¢), as
well as the rigorous error estimates. Moreover, to our knowledge, it is the first approach which
provides certified upper bounds for e-pseudospectra, enabling localization of eigenvalues.

In Chapter 5, we have developed a novel low-rank approach (Algorithm 9) based on greedy
low-rank updates for addressing large-scale linear matrix equations whose solution can be
well approximated with a low-rank matrix. Furthermore, the greedy low-rank updates in
Algorithm 9 are combined with Galerkin projection and preconditioning strategies in order to
ensure satisfactory convergence speed. The performance of our approach is further optimized
by incorporating low-rank truncation and a restarting strategy. We have demonstrated that
our solver, Algorithm 9, performs quite well for problems that have been discussed earlier in
the literature, especially those for which the imposed limit on the subspace size is not reached.
For more challenging problems that feature larger ranks, the need for constructing and solving
the Galerkin systems may become a bottleneck.

In Chapter 6, we have developed a low-rank version of the reduced basis method for solving
parameter-dependent symmetric Lyapunov equations (Algorithm 10). Instead of sampling the
vectorized solutions of size n? x 1 as in the standard reduced basis method, in Algorithm 10
the low-rank Cholesky factors are sampled, and consequently, the solution subspace %,
is constructed as the range of the concatenated sampled low-rank Cholesky factors. The
approximate solutions X (i) are computed inside the tensorized product %y; ® %y;, which
not only improves accuracy, but also guarantees that X (u) is symmetric positive semidefinite
for all p € D. Moreover, we have shown that, by computing a posteriori error estimates in
the Frobenius norm, the estimation of the smallest eigenvalue of the n® x n® operator matrix
can be avoided. Instead, it is sufficient to compute a positive lower bound for the smallest
eigenvalues of A(u) € R”*", which can be done efficiently using Algorithm 3. Furthermore, by
incorporating low-rank truncation, we have mitigated the growth in dim(%},). The resulting
solver, Algorithm 10, is demonstrated to perform well for a problem that has been discussed
earlier in the literature.
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