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Abstract
Statistical speech recognition has been cast as a natural re-

alization of the compressive sensing and sparse recovery. The
compressed acoustic observations are sub-word posterior prob-
abilities obtained from a deep neural network (DNN). Dic-
tionary learning and sparse recovery are exploited for infer-
ence of the high-dimensional sparse word posterior probabili-
ties. This formulation amounts to realization of a sparse hidden
Markov model where each state is characterized by a dictionary
learned from training exemplars and the emission probabilities
are obtained from sparse representations of test exemplars. This
new dictionary-based speech processing paradigm alleviates the
need for a huge collection of exemplars as required in the con-
ventional exemplar-based methods. We study the performance
of the proposed approach for continuous speech recognition us-
ing Phonebook and Numbers’95 database.
Index Terms: Speech recognition, Deep neural network poste-
rior features, Compressive sensing, Dictionary learning, Sparse
modeling, Hidden Markov models.

1. Introduction
Exemplar-based (template-based) methods and stochastic ap-
proaches relying on hidden Markov model (HMM) are of-
ten considered as two distinct approaches to automatic speech
recognition (ASR). While later enjoys many years of extensive
development, exemplar-based methods have recently regained
more serious attention [1, 2, 3, 4]. In theory, having an “in-
finite” amount of exemplars, and the “right” distance measure,
“optimal” recognizers could be sought [5]. In practice however,
development of an “optimal” exemplar-based system indicates
massive memory and computational requirements.

A typical exemplar-based system uses spectral representa-
tion of speech signal and a collection of such training exemplars
for ASR [2, 3, 6, 7, 8]. It has also been shown that constructing
a dictionary of clean exemplars from the training data enables
robust ASR if the noisy test exemplars are reconstructed as a
sparse linear combination of the training exemplars. Enforcing
the sparsity structure has shown to discriminate the subspaces
of noise and clean speech leading to some de-noising or sepa-
ration effect [3, 9]. The exemplar-based sparse representation
is also exploited to provide new features to a HMM-based ASR
system [2]. In this paper, we focus on exemplar-based sparse
representation with two main distinctions: (1) Unlike the previ-
ous spectral exemplars, we use sub-word posterior probabilities
estimated by a deep neural network (DNN) as exemplars. (2)
Instead of taking the collection of training data for sparse rep-
resentation, we exploit a principled way of dictionary learning
for sparse representation.

The core assumption of this approach is that any possi-
ble realization of a linguistic unit (eg. a word) lies on a low-
dimensional surface (a non-linear manifold) modeled by union
of subspaces spanned by exemplars already seen in the train-
ing set. As a result, the representation of a word in a high-
dimensional word posterior space is sparser than the dense sub-
word posterior probability space. Using the posterior exem-
plars, we demonstrate that the statistical speech recognition can
be cast as a compressive sensing problem where posterior ex-
emplars are the compressed acoustic observations and higher
level word inference requires a high-dimensional sparse recov-
ery. This linguistic compressive mechanism has to be learned
from the training exemplars.

Furthermore, the sequential sparse recovery enables us to
process the temporal evolution of the word (traversing a path
through the non-linear word manifold). We discuss rigorously
that this approach develops naturally into a sparse-HMM con-
figuration (as in [10]) for ASR where each hidden state is asso-
ciated with a dictionary. The state models a point on the word
manifold using sparse linear combinations of dictionary atoms
and the emission likelihoods of the data point are obtained from
the weights in the sparse representations.

This paper is organized as follow: Section 2 explains the
view on ASR using the CS principles relying on dictionary
learning and sparse recovery. We explain how this approach
amounts to realization of a sparse modeling HMM in Section 3.
The experimental analysis is presented in Section 4.3 and the
conclusions are drawn in Section 5.

2. Compressive Sensing Perspective
Each speech utterance is composed of a few words. If we con-
sider the vector representation of an utterance in a linguistic
space where each component corresponds to a unique word,
this representation is high-dimensional whereas the informative
components are highly sparse. The key idea is to exploit the
fact that the input features of the ASR system are compressed
observations of this naturally high-dimensional representation
problem.

In this paper, the compressed acoustic observations are sub-
word conditional posterior probabilities obtained from a deep
neural network (DNN). Let {qk}Kk=1 denote the sub-word (e.g.
phonetic) classes. Given an input feature vector xt at time t, the
posterior probability vector

zt = [p(q1|xt)p(q2|xt) . . . p(qK |xt)]>

where .> denotes the transpose operator, is estimated using
DNN. According to the marginalization rule of probabilities,



the following relation holds, assuming p(q|w, x) = p(q|w) [8]:


p(q1|xt)
p(q2|xt)

...
p(qK |xt)


︸ ︷︷ ︸

zt

=


p(q1|w1) · · · p(q1|wL)
p(q2|w1) · · · p(q2|wL)

...
...

p(qK |w1) · · · p(qK |wL)


︸ ︷︷ ︸

Dictionary: D=[d1...dl...dL]



p(w1|xt)
...

p(wl|xt)
...

p(wL|xt)


︸ ︷︷ ︸

αt

(1)

To model the space of phonetic representation for each word, we
assume that the posterior exemplars lie on a low-dimensional
(non-linear) manifold which can be characterized as a union of
subspaces (UoS). Hence, we model each column (atom) dl of
the dictionary as


p(q1|wl)
p(q2|wl)

...
p(qK |wl)


︸ ︷︷ ︸

dl

=


p(q1|swwl

1 ) ... p(q1|swwl
Swl

)

p(q2|swwl
1 ) ... p(q2|swwl

Swl
)

...
p(qK |swwl

1 ) ... p(qK |swwl
Swl

)


︸ ︷︷ ︸

Word manifold dictionary:Dwl



p(sw
wl
1 |wl)
...

p(sw
wl
s |wl)
...

p(sw
wl
Swl

|wl)


︸ ︷︷ ︸

awl

(2)

where swwl
s denotes the sth subspace underlying the word wl,

Swl represents the total number of (over-complete) “bases” to
model the sub-space of word wl and

αt = [a>w1
p(w1|xt) a>w2

p(w2|xt) . . . a>wL
p(wL|xt)]>

Equations (1) and (2) lead us to a very intuitive and natural rep-
resentation for continuous speech in terms of posterior features
and word-to-subword hierarchical dictionaries obtained as

D = [Dw1 · · ·Dwl · · ·DwL ]

The dictionary D, has an internal partitioning defined by the
boundaries of individual sub-dictionaries Dwl . In addition, a
sequence of posterior features Z = [z1, ...zt], extracted from
an utterance of wordwl, will have a hierarchical group structure
underlying the individual sparse representation αt where all the
coefficients tend to collaborate to activate a higher level group
corresponding to wl. The sparse representation of Z yields a
matrix A = [α1, .., αt] where the support of the sparse coeffi-
cients hold a blocks structure as depicted in Figure 1.

Based on the above formulation, ASR problem is an in-
stance of a compressive sensing problem with the two key com-
ponents:

1. Dictionary learning for sparse representation of the pos-
terior exemplars.

2. Structured sparse recovery for high-dimensional infer-
ence of word probabilities.

In Section 3, we explain how this formulation meets the
hidden Markov model framework.

3. Sparse Modeling HMM
The sparse modeling of posterior exemplars can be expressed
through formulation of a novel sparse HMM configuration

Figure 1: Given a sequence of acoustic features in Z, the sparse
representation matrix A will have a block structure associated
to the word-specific dictionaries where the inner block coef-
ficients are sparse. Such a collaborative hierarchical sparsity
structure can be exploited using C-HiLasso algorithm [11] for
the sparse recovery.

Figure 2: Graphical model for (a) the conventional HMM
and (b) sparse modeling HMM. Each state of the conventional
HMM is now replaced by a sparse modeling dictionary with an
exponentially large number of sub-states. The activation of the
sparse sub-states is controlled by the sparse representation vec-
tor a.

where the hidden states are characterized with the sparse rep-
resentation dictionaries; Figure 2 depicts a graphical model of
this idea. We explain the details of this new modeling paradigm
in this section.

For brevity and simplicity, we assume that each hidden state
models the manifold for exactly one word from the vocabulary.
The hidden state corresponding to word wl is thus modeled by
the word manifold dictionary Dwl . The goal is to infer the most
probable sequence of hidden states for a given sequence of ob-
servations. The observation zt associated to the state st = wl
is modeled as zt = Dwlawl where Dwl ∈ RK×Swl is an over-
complete dictionary (K < Swl ). Sparse representation of the
observation zt using Dwl gives the sparse sub-word posterior
probability vector awl = [p(sw

wl
s |wl) . . . p(swwl

Swl
|wl)]>.

The dictionary Dwl characterizes the (non-linear) mani-
fold associated to the state wl. Sparse recovery of awl using
this dictionary indicates that the observation zt lies on a low-
dimensional subspace that can be characterized as a linear com-
bination of the subspaces defined by the dictionary atoms. The
dictionary defines an exponentially large number of subspaces
where the observation zt can live. Sparse recovery of awl using
this dictionary leads to the selection of independent subspaces
to characterize the low-dimensional subspace of the observation
zt. We refer to this new HMM configuration as sparse modeling
HMM.

We assume the model mismatch (noise) for the dictionary-
based modeling, i.e. zt = Dwlawl to be an independent Gaus-



Algorithm 1 EM Algorithm - Sparse HMM

Require: : Z, λ (regularization parameter), D0 (initialization)
1: for i = 1 to max-iter do
2: for t = 1 to T do
3: Sparse Coding of zt to determine αt:

αt = arg min
α

{
1

2
‖zt −D(i−1)α‖

2

2 + λ‖α‖1

}
(4)

4: end for
5: Updating D(i) with D(i−1) as warm restart:

D(i) = arg min
D

{
t∑
j=1

(
1

2
‖zj −Dαj‖22 + ‖αj‖1)

}
(5)

6: end for
7: return Dmax-iter

sian noise distributed as N (0, σ2
wl
I). Thus, the distribution of

observation zt is given byN (Dwlawl , σ
2
wl
I). To have a sparse

latent variable awl , a probability distribution which generates
sparse vectors can be used as a prior. For simplicity, we choose
a Laplace distribution with parameter λwl > 01. The estimation
of the emission likelihoods would be

p(zt|st = wl) =∫
awl

p(zt|awl , st = wl)p(awl |st = wl) dawl

(3)

To describe the sparse modeling HMM, two sets of parame-
ters must be learned: (1) state-distribution parameters Θs =
(Dwl , σwl , λwl) and (2) state-transition probabilities. The tran-
sition probabilities can be directly computed from the frequency
of word transitions. Then, our goal is to learn the state-
distribution parameters given some training data for each in-
dividual word2. Since p(zt|st) depends on the hidden variable
awl , we use EM algorithm to maximize the log-likelihood of
the observations corresponding to each state st = wl, LΘs =∑
t log pΘs(zt|st = wl) w.r.t. the parameters Θs. Due to the

carefully chosen distributions for model-mismatch and awl , the
estimation and maximization of log-likelihood log pΘs reduces
to standard l1-norm minimization and dictionary learning prob-
lems of compressive sensing [10]. We summarize the EM pro-
cedure as derived in [10] in Algorithm 1.

Algorithm 1 is analogous to the method of optimal direc-
tions (MOD) in sparse dictionary learning [15]. It enables us
to leverage any combination of dictionary learning algorithm
and sparse solver that fulfills the optimization equations 4 and 5
and updates αt and D jointly. We refer to the MOD approach to
learning the sparse HMM parameters as MOD-HMM. In partic-
ular, we use the fast variant of this idea developed as the online
dictionary learning by [16]. Furthermore, we study alterna-
tive approaches to dictionary learning relying on KSVD [17]
as well as sparse NMF [18]. We refer to these two variants of
sparse HMM implementation as KSVD-HMM and NMF-HMM
accordingly.

1Although sampling from a Laplace does not generate sparse vec-
tors [12], we choose this prior as it leads to LASSO sparse recovery
during EM parameter learning [13, 14].

2Recall that we refer to each state as words. The algorithms are
general and applicable to any linguistic unit

It may be noted that the sparse HMM framework is funda-
mentally different than hybrid exemplar-based/HMM proposed
in [3] in the following ways:

1. Exemplars in the proposed framework are posterior
probabilities, so the probabilistic relation in (1) can
amount to direct estimation of word posterior probabili-
ties.

2. EM derivation of the HMM state parameters requires
dictionary learning. This key step has been ignored in
all previous exemplar-based methods, to the extent of
our knowledge. Learning dictionary essentially finds an
over-complete basis set from the training data and allevi-
ates the need of storing a huge collection of exemplars.

3. The earlier proposed exemplar-based sparse representa-
tion approach (in [3]) for ASR is hybridised with HMM
and exploits the (state) label matrix for each exemplar
obtained from a conventional HMM system for decod-
ing. In contrast, we decode obtained sparse recovery
based likelihoods directly.

4. Experiments and Analysis
The experiments are designed to evaluate the performance of
the proposed approach for continuous speech recognition. In
addition, we conduct some intial tests on isolated word recog-
nition to compare different algortihmic approaches for imple-
mentation of the sparse HMM.

4.1. Database and Setup

The isolated word recognition experiments are performed on
Phonebook speech corpus [19] recorded on single microphone
channel at 16KHz. The performance is averaged over 8 dif-
ferent sets of 75 words vocabulary each on Phonebook data.
Each word has around 11 utterances, out of which we use 4
for learning dictionaries and the rest for testing. This setup is
similar to the experiments in [20]. To capture contextual in-
formation in the data, c adjacent posterior frames from both
sides of a frame are concatenated to form a long context ap-
pended frame. A context-size of 20 frames was found to per-
form best for Phonebook. For continuous speech recognition,
Numbers’95 corpus [21] is used which is recorded over tele-
phone channel at 8KHz for connected digits tasks. A subset
(only utterances that involve the 10 digits (zero to nine) and oh)
of Numbers’95 corpus are used for the experiments. Context
size of 8 frames and 1 frame are used for word-based and state-
based experiments respectively in case of Numbers’95 corpus.

Posterior features are obtained from a deep neural network
with 3 hidden layers. Features (MFCC+∆ + ∆∆) with a con-
text of 4 frames are used at the input layer. The 27 dimensional
phone posteriors and 83 dimensional state posteriors are com-
puted for word based and state based experiments respectively.

4.2. Algorithmic Approaches for Sparse HMM

We learn a dictionary for each of the words using Algorithm 1.
We have already seen in (2) that the columns of this dictionary
represent the subspaces of the word manifold. Sparse recovery
of a test exemplar using this dictionary yields a sparse vector
that essentially denotes the low-dimensional UoS of the word
manifold in which the given test exemplar lies. When a se-
quence of such test exemplars are decoded using a word mani-
fold dictionary, the resulting sparse representation traverses on
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Figure 3: Sparse representation of the word “Accumulation”
under sparse recovery with dictionary that corresponds to (a)
DAccumulation and (b) DAlleviatory. The sequencing pattern under-
lying the sparse representation is exhibited when the correct dic-
tionary is used.

the word manifold through different unions of subspaces. Fig-
ure 3 shows this phenomenon when a word is decoded using the
correct word manifold dictionary versus when a wrong dictio-
nary is used.

Based on Algorithm 1, we employ different dictionary
learning algorithms to develop different versions of sparse
HMM. The EM derivation of the sparse HMM parameters is
analogous to the method of optimal directions in dictionary
learning and sparse recovery. We use a fast implementation of
this idea referred to as the online dictionary learning [16]. Fur-
thermore, we use the K-SVD [17] and NMF [18] algorithms
for dictionary learning. Unlike the online dictionary learn-
ing, the KSVD and NMF approaches update the dictionary and
sparse coefficients jointly. To estimate the sparse representation
using NMF algorithmic updates, we use the solver presented
in [3] which optimizes the generalized kullback-divergence as
opposed to the Euclidean reconstruction error.

In each case, a given test utterance is decoded using all
word manifold dictionaries. The sparse recovery with minimum
reconstruction error is used as the decision criteria for labeling
the test utterance. Results are compared in Table 1 for differ-
ent dictionary learning approaches. MOD-HMM based on on-
line dictionary learning [16] was found to perform best both
in terms of performance and computational speed. The HMM-
MLP recognition accuracy reported for this task is 98.8% as
reported in [20].

System Accuracy(in %)
MOD-HMM 97.8
KSVD-HMM 88.9
NMF-HMM 89.0

Table 1: A comparison of different dictionary learning algo-
rithms for sparse HMM implementation evaluated for isolated
word recognition on Phonebook 75 words task.

Furthermore, we compare the performance of word-based
dictionary learning against conventional approach of using col-
lection of exemplars for sparse representation in Table 2. Al-
though, dimension of the dictionary (number of learned atoms)
is only a small fraction of the size of collection of exemplars
(25% for Phonebook and ∼3% for Numbers), dictionaries give
much better recognition performance.

4.3. Continuous Speech Recognition Results

The performance of sparse HMM is evaluated for connected
digit recognition task using Numbers’95 corpus. The word error
rate of the HMM-MLP system is 7.2% [22].

We implement a system similar to one used in [6], however

Task Dictionary Collection of Exemplars
Phonebook 97.2 97
Numbers 85.4 78.6

Table 2: Comparing the speech recognition accuracy (%) using
dictionary learning versus collection of exemplars.

the collection of exemplars is replaced by dictionary learning.
Using the dictionaries, we estimate the posterior-based sparse
representation and use them to decode the most likely sequence
of digits relying on Viterbi dynamic programming. We only use
MOD based dictionary learning in these experiments. Dictio-
naries can be learned at word or state-level as in [6]. We use
word and state alignments on training data for learning word or
state-specific dictionaries. A dictionary for pause class is also
learned from exemplars of pauses in the training data. In case of
continuous speech, we can decode an utterance 1) either using
manifold dictionary (Dwl in eq.2) and compare reconstruction
errors given by each dictionary Dwl or 2) using the complete
dictionary (D in eq.1) and rely on group lasso or C-HiLasso
[11] for efficient sparse recovery as these variants of Lasso are
tailor-made to handle structured sparsity exhibited in figure 1.
A comparison of results is shown in Table 3 in terms of word
error rate % (WER).

System Dwl+Lasso D+C-HiLasso
Word Dictionary 14.6 18.5
State Dictionary 14.0 15.9

Table 3: Connected digit recognition word error rate (%) on
Numbers’95 database.

We can see that state dictionaries with word based decoding
performs the best, whereas a collection of (posterior) exemplars
approach has the 21.4% WER for this task. As discussed in
section 3, this is the first result on decoding the sparse recovered
posteriors directly to word utterances, and unlike the previous
work [3] the exemplar-based sparse representation scores are
not hybridized with HMM for decoding.

5. Conclusions
We have proposed and evaluated a novel compressive sensing
approach for speech recognition. Posterior exemplars are cen-
tral players in development of this new statistical ASR frame-
work that builds on dictionary learning to model a non-linear
manifold of word posterior representations and sparse recovery
for high-dimensional inference of the sparse word probabilities.
Learning a dictionary alleviates the need of huge collection of
exemplars needed in previous sparse representation approaches.
We found this formulation analogous to realization of a hidden
Markov model where the state distributions are characterized by
a sparse coding dictionary. Further studies in this direction may
lead to development of a novel ASR paradigm based on hierar-
chical sparse modeling of DNN posterior probabilities that can
advance the conventional DNN-HMM framework.
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