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Abstract— In this work, we present a novel approach to
human-aware navigation by probabilistically modelling the
uncertainty of perception for a social robotic system and inves-
tigating its effect on the overall social navigation performance.
The model of the social costmap around a person has been
extended to consider this new uncertainty factor, which has
been widely neglected despite playing an important role in
situations with noisy perception. A social path planner based on
the fast marching method has been augmented to account for
the uncertainty in the positions of people. The effectiveness of
the proposed approach has been tested in extensive experiments
carried out with real robots and in simulation. Real experiments
have been conducted, given noisy perception, in the presence of
single/multiple, static/dynamic humans. Results show how this
approach has been able to achieve trajectories that are able to
keep a more appropriate social distance to the people, compared
to those of the basic navigation approach, and the human-aware
navigation approach which relies solely on perfect perception,
when the complexity of the environment increases. Accounting
for uncertainty of perception is shown to result in smoother
trajectories with lower jerk that are more natural from the
point of view of humans.

I. INTRODUCTION

Navigation is one of the main required functionalities for
enabling robots to be actively used in real social environments.
Robots have to navigate in environments shared with humans
and the quality of their movement strongly influences how
their intelligence is perceived [1]. It is necessary for such
robots to be aware of the people and their social interactions
in a given environment. Conventionally, comfort, naturalness
and scalability, have been the main focus of human-aware
navigation techniques [2]. However, when the robots are
deployed in real complex environments, a key assumption of
many of these methods, which is having perfect information
about the position of the people, is too simplistic and not
robust to non-negligible perception uncertainty.

One important concept used in numerous studies [3]–[5]
in this area, is the virtual space around a person that is
mutually respected by other humans, called proxemics [6].
Based on this concept, depending on the relationship and the
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interaction that exists among humans, people choose different
social distances relating to intimate, personal, social or public
contexts. Social costmaps are a common way to model this
principle which have been used in various studies in the field.
Many factors can be considered for shaping a social costmap,
such as age and gender [7], velocity of the motion [8], etc.
However, the proxemics distance has been the main factor
when accounting for comfort in the literature.

Navigation exhibits human-awareness by modifying the
plans given to the robot as the result of adopting socially-
aware path planners. Such a planner should take into con-
sideration individual people and possible social interactions
taking place among them, when computing the optimal path.
This information is provided through perceptual data and
is translated to social costs using models such as social
costmaps. However, state-of-the-art perception methods are
not perfect and are affected by various elements such as
the robot movement, people’s movement, complexity of the
environment in terms of occlusions, etc.

Due to the approximate nature of the models and the less
than perfect human detectors available, we often can only
provide estimates of the locations of the people with an
associated uncertainty. Thus, any planning algorithm relying
on real perception data, must be able to cope with this
inherent problem. Despite this fact, the assumption of having
perfect information about the position of people at all times
is common in the state-of-the-art research in this area and
the main focus is on the planning itself. However, deploying
human-aware navigation algorithms in real applications poses
serious challenges in terms of noisy perception information
and high uncertainties, that need to be addressed and modelled
in a human-aware approach.

In this work, we propose a model that explicitly accounts
for perception uncertainty by incorporating the uncertainty
of position estimates of people into the social costmap. We
aim to study the effect of this factor on social costs and how
taking this uncertainty into account in the extended model,
can result in trajectories that are improved in terms of social
acceptability. The proposed human-aware navigation system
uses uncertainty-based social costs along with a Fast Marching
Method (FMM) [9] path planner for achieving socially-aware
plans. It should be emphasized that our approach is planner-
independent as long as the planner takes costmaps as input;
for instance, it could be used in combination with ROS’s
navigation stack [10].

The proposed approach is implemented in reality and tested
in a stochastic environment with varying perception uncer-
tainty, in an extensive set of experiments. Five quantitative
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evaluation metrics have been introduced and the results of
applying them to the proposed methods have been reported.
Real robot experiments show how accounting for uncertainty
of perception improved the robot trajectories in terms of social
distance maintenance and naturalness, as the complexity of
the environment grows.

II. BACKGROUND

Human-aware navigation focuses on the interaction dy-
namics among humans and robots that occur as a result of
navigation [2]. In the literature, we can find several strategies
for comfort including appropriate approaching strategy [11],
maintaining appropriate distance [4], control strategies to
avoid noisiness [12], and use of planning for avoiding
interference [13]. In this work, we focus on the principle
of proxemics which is the most common in the literature
of human-aware navigation, with social costs encoded as
costmaps similar to [14] along with an FMM path planner.

FMM has been proven to be successful in real domestic
spaces with high complexity [15]. There have previously
been a number of research papers addressing social path
planning [14], [16] using FMM. In [16], a theoretical
framework for a number of introduced sub-problems of
social path planning is presented and an extended model
for engaging groups of people is proposed by using a special
version of the Fast Marching Square planning method [17].
Nonetheless, the information about humans are considered
to be given and noiseless, while only simulations have been
used to show the effectiveness of the method for static people.
The same problem needs to be investigated in real-world
scenarios with the challenges that exist therein. Particularly,
in the case of moving people while the perception is subject
to uncertainty.

Uncertainty of perception in social robotics is an important
topic that to our knowledge, has not been the subject of many
notable studies. There is a dedicated chapter in [18] on local
planning with uncertainty however, this is not considered
in a social context. The sources of uncertainty in [18] are
the position of the robot and the obstacles and the partially
known motion of moving obstacles that are considered to be
people. However, perception of people, and the associated
uncertainty detection and tracking, has not been investigated.

III. PERCEPTION MODEL

Presence of humans in an environment should be properly
perceived by a robot. A socially-aware path planner needs to
take into consideration individual humans and possible social
interactions taking place. This information can be obtained
by an external source such as an overhead camera or can
be attained using on-board sensors of the robot. Different
perception sources for person detection and tracking, have
different levels of uncertainty and accuracy in their detections,
and are affected by components such as the movement of the
robot, movement of the person, complexity of the environment
in terms of occlusions, etc. By taking the uncertainty of
perception into account in a human-aware path planner, the
same planning method could easily be reused even when the

source of perception changes, for instance using RGB data
[19].

In the proposed framework, a probabilistic approach has
been chosen to account for uncertainty in the tracking rather
than deterministically reporting positions and dealing with the
perception uncertainty inside the tracker module only. We are
interested in the underlying state of the environment which is
the position of the people. The detectors used to estimate these
state variables have associated noise due to various factors
such as occlusion, lighting conditions, different postures of
people, motion of the robot and the people, etc. Coupled with
this, there is also stochasticity in the state transitions, which
makes it hard to compute an exact estimate of the location of
the people. A principled approach to solve this problem, is to
compute a belief (posterior distribution) over the states using
recursive Bayesian estimation. We first describe the state
representation of the system and then explain the tracking
model formally.

A. Detector

The background-based detector proposed in [20] is a very
effective probabilistic method, which allows the automatic
evaluation of the number of people in the scene and detection
of their locations. This method has the following three
main advantages. Firstly, it can incorporate prior knowledge,
including which areas in the scene can contain people and
how probable it is for people to be in those locations, a
probability distribution over the number of people in the
scene, a probabilistic model of how close together people tend
to walk. Secondly, the complexity of the algorithm depends
linearly on the number of people in the scene. Thirdly, the
method is robust to changes in illumination, shadows and
occlusions; in particular, it adjusts to a non-static background
automatically.

B. State Representation

An occupancy grid-based approach is used for tracking the
people in the environment. The environment is discretized
into G cells. Each cell has a size of 25 cm by 25 cm. The size
of cells have been chosen in such a way that each cell can be
occupied at most by one person at any time. The occupancy
of each cell is denoted by Xi where i ∈G. The occupancy of
all the cells at time t is the state of the world Xt . At every
time instance t, the observations from the detector for each
cell i is given by Oi. The set of observations for the whole
state is denoted by Ot .

C. Tracking Model

Let Xt be the state of the environment at time t. We are
interested in computing the current belief over the states Xt
given the observations O1:t , that is, P(Xt |O1:t). Formally this
can be represented by a Bayes filter [21] as,

P(Xt |O1:t) ∝ P(Ot |Xt) ∑
Xt−1

P(Xt |Xt−1)P(Xt−1|O1:t−1) (1)

where, P(Ot |Xt) is the likelihood of the state given all our
observations (detector outputs). Computation of this likelihood



is best performed by using a learned model of how the
detectors perform in different states.

P(Xt |Xt−1) is the transition model which models the
evolution of the state variables. For a real multi person
environment, an exact analytical model is intractable. In our
system, we use a simple uniform distribution for the transition
model. We assume that people move randomly and that there
is an equal probability of motion in any direction.

P(Xt−1|O1:t−1) is the belief computed at the previous time
step.

In a multi person environment, the state space is extremely
complex for computing the exact probability distribution over
the states. We use an MCMC-based sampling algorithm to
approximately compute the belief. In the next section the
implementation details of our probabilistic model for person
detection and tracking are explained.

Although the detector is modelled probabilistically, it is
still needed to learn the distribution P(O|X) for the detector
from data. Given the labeled location of the people in a data
set, the uncertainty in the observations is learned for all the
locations and configurations of the state space. Since the state
space has high dimensionality, we learn the likelihood model
over a parameterized state space [22].

D. MCMC Sampling

Markov Chain Monte Carlo is a widely used sampling algo-
rithm for estimation of complex posterior distribution. It has
been gaining popularity in multi-target tracking applications
[21]. Compared to traditional particle filters, MCMC-based
sampling leads to far less sample impoverishment and thus a
much better estimate of the state over time. The core idea
of MCMC is to generate samples from a Markov chain.
The samples are then evaluated using a proposal distribution
and accepted or rejected based on an acceptance ratio. The
proposal distribution should be proportional to the posterior
distribution that we are trying to approximate. The MCMC
sampler creates hypotheses of people’s locations in the grids.
Each sample is an estimate of the occupancy of all the cells
taken collectively.

In this work, the occupancy of the grids are used as
hypothesis. Each cell can either be occupied or not, initially
starting from a random distribution of occupancy and then
generating samples using the following moves.

1. Birth-Death proposals: A cell is randomly selected, and
the sample state of the cell is flipped. If the cell was occupied,
a proposal which makes the cell unoccupied is generated and
vice-versa.

2. Move proposals: In this case, an occupied cell is selected
and the occupancy is randomly moved to one of the 8
connecting neighbors.

Once the proposal sample is generated, we evaluate the
original sample and the proposed sample with reference to a
proposal distribution. In our case, we use a learned observation
model of the detector output as the proposal distribution. We
fold in the detector output Ot while evaluating the proposals
using the proposal distribution. Every proposal is a hypotheses
of the state Xt . Evaluating the proposals will give us an

Fig. 1. System components diagram.

acceptance ratio. If the acceptance ratio is greater than 1 the
sample is accepted unconditionally. Otherwise, we randomly
sample from a uniform distribution and then accept or reject
the sample if the acceptance ratio is greater than the sampled
value of uniform distribution. Formally, The acceptance ratio
is computed as:

Acc(x|x′) = min
{( P(Ot |x) ∑

xt−1

P(x|xt−1)

P(Ot |x′) ∑
xt−1

P(x′ |xt−1)

)
,1
}

(2)

Where x is the proposed sample of state Xt , and x
′

is the
initial sample. xt−1 is a sample of the state Xt−1.

If the sample is accepted, the currently proposed sample
will be used as the initial sample for the next step of the
MCMC sampling. If rejected, the sample is still added to the
set of hypothesis, but we start sampling again from the old
sample.

Sampling is successively repeated until Ns samples are
accepted. The threshold for the number of accepted samples
are set to be 100 in our experiments. Once Ns samples are
accepted, they are collectively represented as the approximate
representation of the multi-modal posterior distribution.

For the purpose of social navigation, these samples are
converted to a set of particles. Even though the set of samples
are fixed, the set of particles can vary, since each sample is
a joint sample which represents the whole occupancy grid.
When there are multiple people in the environment, each one
of the samples can be decomposed into a set of particles,
proportional to the number of people in the environment.

IV. HUMAN-AWARE NAVIGATION MODEL

In this section we will explain the navigation component of
the system and describe the social cost computations methods
that provide the information required for our socially-aware
FMM path planner. Fig. 1 shows the system components and
their connections.

A. Navigation Framework

The robot navigation is based on the navigation system
used in the MOnarCH project [23], detailed in [15]. As input,
it uses the pose estimates provided by a standard AMCL
self-localization system [24], given odometry, laser range
finder readings, and a static map. The navigation system is
based on FMM for motion planning, together with a Dy-
namic Window Approach (DWA) algorithm for guidance and
obstacle avoidance [25]. DWA is essentially a maximization
(over a discrete set of feasible velocity candidate commands)



of an evaluation function translating three guidance goals:
(1) progress towards the goal, (2) clearance from obstacles,
and (3) absolute speed.

The potential field output by FMM is minima free and
yields an optimal path from a given initial to a final goal
point. It is optimal in the sense that the integral of a costmap
over the path is minimal, given the initial and final points as
boundary conditions. However, we do not explicitly compute
a path. Instead, we compute the progress towards the goal
directly from the gradient of the potential field. FMM has been
used in MOnarCH before, considering solely an increased
cost near static map obstacles in its costmap. This keeps the
resulting paths away from the obstacles. In this paper a social
component is added to this costmap as well.

FMM and DWA run asynchronously. FMM is activated
when either a new goal position is given, or when the costmap
changes, and DWA is running in a closed loop with a fixed
rate, using the last updated potential field from the FMM.

B. Social Costs

The personal space around a human can be defined as the
mixture of two pseudo-Gaussian functions, one for the front
and another one for the rear part of the area surrounding the
person. The orientation and heading of the person will cause
a corresponding rotation in these functions in such a way that
the person is always in the center and the absolute orientation
of the person matches that of the Gaussian functions. A
Gaussian function φ , centered on p with covariance matrix
Σ, is defined as follows:

φ(q) = exp
{
− 1

2 (q− p)T Σ−1(q− p)
}

(3)

q indicates the position of a point and Σ is:

Σ =

(
σ2

x 0
0 σ2

y

)
(4)

σx and σy are used to modulate the shape of the Gaussian
and are traditionally chosen in a way to respect the personal
space of a person as indicated by the proxemics principle.
Various factors can influence the size of this area, however
σx and σy are commonly considered to be constant. Getting
closer to a person, will cause an increase in the value of this
function, and hence the social cost associated to that position
will increase.

If the center of the costmap, which indicates the position
of the person is not deterministically known, the costmap
can not correctly model the social costs and hence the social
path planning could fail in finding an appropriate socially
compliant path. This problem becomes much more critical
in real applications where robustness is vital for succeeding
under different conditions. We believe probabilistic social
costs can be a remedy to this problem.

In the following, we will go into the details of computing
social costs with the particles obtained from the MCMC-
based tracker. Using the concept of layered costmaps similar
to [10], an FMM planner uses this information for performing
the replanning.

1) Uncertainty-based social costs: The MCMC-based
tracker provides samples of the union of the probability
distributions for having a person in a given environment.
More specifically, a predefined number of joint samples are
reported at each time step, containing a set of particles for
each person that the tracker detects. In the following, we
propose two types of methods for using the particles given
by these samples to create social costmaps.

Convolution: The core idea we propose for incorporating
uncertainty in the costmap is to compute an expectation-
based costmap. Consider a person at (xp,yp), the deterministic
costmap at (x,y) is:

C(x,y;xp,yp) = K(x− xp,y− yp) (5)

K is the 2D Gaussian, modeling the standard social costmaps,

i.e., φ of Eq. (3) when q =

[
x
y

]
and p =

[
xp
yp

]
. The proba-

bilistic costmap is given by the expected value of the cost C,
given the person probability distribution p(xp,yp):

EC(x,y) = Ep(xp,yp)[C(x,y;xp,yp)] = (6)∫ ∫
K(x− xp,y− yp)p(xp,yp)dxpdyp (7)

This is a convolution. We approximate this expectation using
a grid of probabilities P, obtained from the tracker particles:

EC(i, j)'∑
k

∑
l

K(i− k, j− l)P(k, l) (8)

By convolving all the particles from the MCMC tracker
with the social costmap, we compute an expected costmap
incorporating all the uncertainty in the environment. This is
a principled approach to solve the problem since we are not
abstracting away any information provided by the perception
system, and hence, in theory this approach should provide
us with a costmap model that would be most informative for
uncertainty-based human-aware navigation.

By taking this approach, the conventional 2D Gaussian
shape of the social costmap is no longer mandatory, thus
this costmap model is more flexible. Additionally, there is
no need to know the number of people ahead of time as the
particles given by tracker are reflecting this (refer to section
III-D).

Clustering: Another approach we propose is to abstract
the uncertainty information in the samples by clustering the
particles and then computing the uncertainty based on the
features of the cluster. Upon receiving the position particles
from the tracker we compute the center of the social costmaps,
and the σ values for all the people present in the environment.
By clustering the particles and finding the centroids of the
clusters, along with an uncertainty measure based on the
spatial cluster scatter, we can adaptively compute the social
costmaps at each time step. We will briefly describe the two
clustering methods selected for our work in the following.

a) K-means clustering: a K-means clustering method
can be adopted for computing the costmap centers and Σ.
However, one requirement for using this method is to know
a priori the number of clusters K, in our case corresponding



Fig. 2. Experimental setup schematics and the MBot robotic platform.

to the number of people. This is not a realistic assumption
for dynamic environments with multiple people. Nonetheless,
we will test this method as a baseline for comparing the
performances of other human-aware navigation methods.

b) Mean shift clustering: to overcome the limitations
of the K-means clustering method, we considered as well
the mean shift clustering algorithm [27], a method able
to determine the number of clusters given the particle set
automatically. We used the median of all pairwise distances
to estimate the bandwidth of the mean shift method.

2) Deterministic social costs: For the purpose of creating
a baseline to compare our proposed model, we have also
designed a deterministic model for the social costmap. Here,
we use a deterministic output from the tracker, without
considering the particles, by just using the mode of the
distribution as deterministic location of the people, along
with the conventional costmap model.

This is the standard approach that is being used for
social path planning in human-aware navigation, where it is
assumed that the position and orientation of the person is
deterministically known at every time step, with no model of
uncertainty. Once this information is known, the Gaussian-
shaped costmap can be used to obtain the social costs. This
costmap can be tuned according to the desired parameters.
In this paper, we have taken an approach similar to [14]
with σx = σy = 0.255 m, for deterministic costmaps. Since
we are studying the uncertainty of position information only,
we did not take into account the orientation of people when
constructing the social costmaps. This will be a future step
requiring further studies.

V. EXPERIMENTS

In this section we will briefly explain our robotic platform,
experimental setup, and the set of experiments, along with
the corresponding metrics, which have been conducted to
evaluate the performance of our system.

A. Robotic Platform

The robotic platform used in this work is shown in Fig.
2. This robot is called MBot [28] and has been developed
within the FP7 European project MOnarCH1. It is an omni-
directional drive robot with an approximately round footprint

1http://monarch-fp7.eu/

of 0.65 m in diameter and a height of 0.98 m. It is endowed
with two laser range finders, on both the front and the back
for providing 360◦ coverage.

Two batteries give it an autonomy of approximately five
hours, depending on the usage. The robot has two PCs inside
its shell: one manages the sensors, navigation and actuators,
while the second one supports other functions such as human-
robot interaction functionalities.The two on-board PCs, run
Ubuntu desktop 12.04 and ROS Hydro.

B. Experimental Setup

We have used an extensive suite of experiments both in
simulation and reality, for performance evaluation. The high-
fidelity robotic simulator Webots [29], with realistic models
of the MBot and the testing environment has been used
for evaluations in the initial step. The trackers have been
emulated initially, but real recorded data bags of perception
were used in the next steps for more faithful simulation. This
was done to simplify the debugging process and speeding up
the robotic experiments. Finally, we tested our methods in
reality in three different scenarios, in a laboratory environment
of 5 m × 7 m where the tracker was operational.

We used a networked omnidirectional overhead camera
with a field of view of 180◦, to track the positions of the
people in the environment. This type of camera was chosen
because: (1) it is less obtrusive, and can be left in the envi-
ronment with less risk of making people feel uncomfortable
about being watched; (2) it provides a global view of the area,
with lower risk of occlusion than elevated side-view cameras
and with more flexibility as to its positioning; (3) the number
of cameras needed in the environment can be reduced, which
has benefits in terms of equipment cost, installation cost, and
computational load of the perception algorithms.

The tracker outputs results at the rate of 3 Hz. The ground
truth position of the robot is given by the on-board AMCL
with 5-10 cm accuracy, and the person stands and walks on
physically marked tracks to get the exact precise ground truth
for the purpose of performance evaluation. The control rate
of navigation is 20 Hz while the social costmap generation
has a rate of approximately 3 Hz. This is to account for the
low output frequency of the tracker.

C. Scenarios

We have investigated three different scenarios, each having
been tested five times. We started with 1) a single static person
and incrementally increased the complexity to 2) one moving
person and finally, 3) two static people in the arena. It should
be emphasized that perception uncertainty is affecting the
tracking performance and is not evident or quantifiable from
just looking at the environment. This means, the person is not
aware of what is happening on the tracker side, however, the
information given by the tracker greatly affects the behavior
of the robot, and therefore the social acceptability.

Since we aim to study the effect of perception uncertainty
in human-aware navigation, we chose a task of point-to-point
navigation for the robot in the vicinity of humans, which is
the most general and basic navigation task.



In each experiment, the robot starts from a predefined
starting point and is sent to one predefined goal. The robot
then has to behave appropriately when it encounters people
in the arena. For the static case, there is always a person
standing between the robot and the straight line to the
goal, and for the dynamic case the person moves along this
line in the opposite direction, as the robot starts navigating
towards the goal, causing a direct encounter with the robot.
The following section will explain the metrics used for
performance assessment.

D. Metrics

Five different metrics have been defined for performance
evaluation. A subset of these metrics is chosen for each
experiment based on the scenario of interest.
• m1: Measures the minimum distance that the robot has kept

during the experiment to a human.
• m2: Evaluates how long the robot has been moving in

areas associated with social costs, i.e., a position with
corresponding non-zero value in the costmap.

• m3: Quantifies the accumulated social cost, this is to
differentiate between being in different positions of the
social costmap, which is not reflected in m2. So if the
robot is closer to a person, the social cost will be higher
and this metric will increase. For more information on
m1−m3 refer to [30].

• m4: Evaluates the smoothness of the robot trajectory. This
is important from the human observer’s point of view when
perceiving the robot motion. Humans are known to prefer
motion with minimum jerk [31], therefore we took the root
Mean Squared Error (RMSE) of the trajectory jerk in m4:

rt =

[
xt
yt

]
, m4 =

√
1
N

N

∑
t=1

∣∣∣∣d3rt

dt3

∣∣∣∣2 (9)

rt indicates the position of the robot at time t, and N
indicates the total time of the experiment. It should be
emphasized that we did not actively try to modify the robot
control to get smoother trajectories, we are just interested
to see which method results in a more natural and smooth
path.

• m5: Is the total time steps required to finish the navigation.

VI. RESULTS AND DISCUSSION

For each of the scenarios described in Section V-C, we
have compared the results obtained from the Basic Navigation
(BN), Deterministic (DHA), K-means clustering (KHA), mean
Shift clustering (SHA), and social cost Convolution (CHA)
Human-Aware (HA) navigation. We will only report the
trajectories and metrics obtained from the results of our real
experiments for the sake of conciseness. Larger values for
m1, and smaller values for m2-m5 are preferable.

A. Results

Figure 3 shows sample costmaps of the different methods
mentioned earlier. It can be seen that the clustering methods
can end up with wrong number of clusters or saturated costs
when the uncertainty is high due to large σ values. The

Fig. 3. Sample costmap shapes. Top left: convolution method, top right:
standard 2D Gaussian, bottom left: K-means, and bottom right: mean shift.
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Fig. 4. Sample robot trajectories for different methods. Color coding: green
for BN, red for DHA, black for KHA, pink for SHA and blue for CHA.
Scenarios: (a) Single static person. (b) Single dynamic person. The trajectory
of the person is indicated by the dark green dashed line. (c) Two static
people. Each circle represents a static person.

convolution costmap has a much more flexible shape and is
not limited whereas other costmaps all have a cut off distance.

Sample trajectories of the robot are depicted in Fig. 4. It
is clear from the plots that HA methods result in trajectories
that preserve larger distances to the people. Additionally, they
are smoother and therefore more natural from the point of
view of a person, this is supported by Fig. 5d, 6a, and 7d.
However, this may not be evident from the trajectory plots.
This is due to the abrupt movement of non-HA navigation
upon encountering a person which considerably affects the
smoothness.

Clustering methods can cause the robot to modify its plan
largely by enforcing a certain cluster shape upon finding
cluster centroids: if the new probabilistic data leads to a new
centroid that is not very close to the previous one, the costmap
could change significantly and thus the planned path. This
is more severe for mean shift clustering due to adaptively
modifying the number of clusters as well. This is to be
expected given the probabilistic nature of the perception data,
however the plan can be modified more smoothly using the
convolution method. This method which outperforms all other
methods in terms of smoothness in all of our tests, is shown
to be a remedy to this problem based on our experimental
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Fig. 5. Performance metrics obtained in the single static person scenario. HA stands for Human-Aware in the plot labels.
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Fig. 6. Performance metrics obtained in the dynamic person scenario.

results. Hence, for the second and third scenario, we only
compare the results of BN, DHA, and CHA methods.

When comparing the results of DHA with CHA we can
see that the former is a more conservative method in terms of
keeping distance to the people when receiving accurate data.
If DHA receives a perfect estimate of the person’s position it
can lead to the desired path; however, this is seldom the case.
Particularly, in the case of a moving person, the detector could
not always keep up with the speed of the person, i.e., the
position estimates were reported with delay or the person was
lost in some cases, and the robot was faced with the human
while considering him an obstacle. This led to abrupt changes
and getting too close to the person, see Fig. 4b. However, by
associating larger uncertainty to the estimates in this case,
CHA could lead to better plans in terms of proximity and
smoothness. Unfortunately, due to our inaccurate ground truth
of the moving person, we only rely on m4 and m5 for scenario
2, but we observed the delayed perception and lost person
problem during our experiments.

Figures 5, 6 and 7 show the performance metrics for the
three scenarios. We will discuss the results of each metric
in the following. m1 has increased for HA methods which
shows the effectiveness of our FMM planner in social path
planning. However, DHA is more conservative in this regard
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Fig. 7. Performance metrics obtained in the two static people scenario.

in the presence of good perception data. m2 has increased
for uncertainty-based methods in the simple scenario as the
deterministic tracker is giving already good position estimates,
but this is no longer the case when the complexity is increased
as seen in Fig. 7b. m3 is also reduced for HA methods and
more so for uncertainty-based HA methods considering all
trials, as the complexity of the problem increases, see Fig.7c.

m4 is showing a very interesting result, we can see how
uncertainty-based HA methods have managed to introduce



smoothness into the trajectories by reducing jerk without
deliberately accounting for it. CHA is dominating other
methods across all scenarios in this case. Lastly, m5 which
shows the total navigation time is always lower for BN due
to optimizing the path length only. The largest values belong
to KHA and SHA due to constant modifications of the path,
thus taking longer routes. For DHA this metric is lower than
CHA for the static person case and comparable to CHA in the
moving person scenario, but it increases as the complexity of
the environment grows further in the case of multiple people.

VII. CONCLUSION AND FUTURE WORK

In this work we have proposed a novel approach for
extending the model of social costmaps to include uncertainty
of perception. Experiments show how this extended model
can lead to more natural robot trajectories that preserve a
social distance from people. By combining the output of
a probabilistic MCMC-based tracker with an expectation
costmap computation method based on convolution, we
introduce a principled approach to solve the social path
planning problem in real environments with multiple people
while explicitly dealing with perception uncertainty.

The idea presented in this paper can be extended to
other types of perception sources. By providing probabilistic
perception outputs, the proposed model can fulfill this
task without loss of performance, since the probabilistic
language provides a common ground to quantitatively express
uncertainty regardless of the type of the sensor.

Further improvements can be made to the accuracy of robot
self-localization and the ground truth of people positions, as
they have direct influence on performance evaluations. More-
over, quantifying the uncertainty of perception (investigating
the impact of different levels of perception uncertainty on
the behavior and performance of each part of our system)
can be useful in analyzing the behavior of expectation-based
social costmap computation methods for further in-depth
studies. As a future step for this research, we plan to test
our approach with multiple perception sources with different
uncertainties, particularly on-board perception which allows
for much more flexibility in terms of applications and fewer
physical limitations.
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