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ABSTRACT
While social data is being widely used in various applications
such as sentiment analysis and trend prediction, its sheer
size also presents great challenges for storing, sharing and
processing such data. These challenges can be addressed by
data summarization which transforms the original dataset
into a smaller, yet still useful, subset. Existing methods find
such subsets with objective functions based on data proper-
ties such as representativeness or informativeness but do not
exploit social contexts, which are distinct characteristics of
social data. Further, till date very little work has focused on
topic preserving data summarization, despite the abundant
work on topic modeling. This is a challenging task for two
reasons. First, since topic model is based on latent variables,
existing methods are not well-suited to capture latent topics.
Second, it is difficult to find such social contexts that provide
valuable information for building effective topic-preserving
summarization model. To tackle these challenges, in this
paper, we focus on exploiting social contexts to summarize
social data while preserving topics in the original dataset.
We take Twitter data as a case study. Through analyzing
Twitter data, we discover two social contexts which are im-
portant for topic generation and dissemination, namely (i)
CrowdExp topic score that captures the influence of both the
crowd and the expert users in Twitter and (ii) Retweet topic
score that captures the influence of Twitter users’ actions.
We conduct extensive experiments on two real-world Twit-
ter datasets using two applications. The experimental re-
sults show that, by leveraging social contexts, our proposed
solution can enhance topic-preserving data summarization
and improve application performance by up to 18%.
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1. INTRODUCTION
Enormous amounts of social data that are generated on

sites such as Twitter, Facebook, Yelp, hold great value for
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both researchers and practitioners in understanding social
behaviors. For instance, social data has been applied on
various applications such as social event detection and sen-
timent analysis. Though social media data provides great
opportunities, it also brings about many challenges due to
its sheer size. Firstly, it is very expensive to store, share and
process data of such large scale [38]. Secondly, it is computa-
tionally expensive to build analytical models to power social
services and applications. Thirdly, more data does not nec-
essarily mean more useful data [34]. Sometimes additional
training data could result in worse performance [37], and it
is challenging to identify those data that are truly useful.

Data summarization [18, 26, 30] has shown its effective-
ness in preparing large-scale data for data analytics. Differ-
ent from data compression (that reduces cost of storage and
communication by compressing dataset into smaller size) or
data sampling (that reduces the cost of training analytical
models by randomly selecting a subset of data samples),
data summarization aims to maintain (or improve) the per-
formance of applications by selecting a subset of data that
is considered to be useful. Generally, data summarization
is done by transforming the problem into selecting a subset
of data instances, with an objective function that quanti-
fies properties of the selected subset. These properties could
be representativeness [26, 30], diversity [28], informativeness
[22], etc., which are defined in the context of different ap-
plications. However, existing methods design the objectives
of data summarization purely based on attribute-value con-
tents, ignoring social contexts which could provide valuable
information. We take Twitter as a case study. Social con-
texts can refer to demographical information about users
(e.g., age, gender, location), social status (e.g., number of
followers) and their actions (e.g., reply, retweet, favorite,
block). Intuitively, it can be conjectured that incorporat-
ing those tweets which are posted by influential users, or
those that are retweeted by more users, into the summa-
rized dataset, could be more beneficial to a learning task.
Thus, we are motivated to investigate how social contexts
could be utilized for social data summarization.

In addition, topical information plays an essential role in
many text mining tasks. Despite many work on summariz-
ing social data in different aspects such as sentiments [6] or
events [9, 29], very little work has yet focused on topic pre-
serving data summarization. Therefore, our aim is to sum-
marize social media data into a small subset while preserv-
ing topics in the original dataset. To this end, we analyze
statistical topic models [7] and present three challenges in
topic-preserving summarization for social media data. The



first challenge is that a topic is a latent concept that needs
to be learned from the dataset. Most of the existing work
[26, 28, 30] in data summarization have explicit objectives
with known parameters while, because of latent topics, our
work needs to estimate unknown parameters based on the
dataset. The second challenge is that even if we fix parame-
ters in the objective function, we would still have to search
over an exponential number of possible subsets to find the
optimal subset. The last challenge is that the subset ob-
tained from data summarization should maintain (or even
improve) the performance of applications. Put bluntly, the
performance of a trending topic application should not be
much worse when it works on a summarized dataset as com-
pared to its performance on the original dataset.

To address these challenges, we explore the use of so-
cial contexts in social media data to help topic-preserving
summarization. Specifically, we study this problem using
two real-world Twitter datasets based on two different ap-
plications, namely Topic Discovery and Tweet Classifica-
tion. In doing so, we are confronted with the following
questions: how to design an objective function for preserv-
ing latent topics in Twitter dataset? Is the social context
in Twitter datasets helpful for topic-preserving summariza-
tion? Does the performance of applications on summarized
subsets degrade as compared to their performance on the
original datasets ? In addressing the above questions, this
paper makes the following contributions:

• Through analyzing statistical topic models, we present
an objective function for preserving topics in Twitter
data. We also present two challenges related to pa-
rameter estimation and the size of the search space for
this function. To solve these two challenges, we first
design a submodular model, called E-model, based on
information entropy. Apart from solving the parame-
ter estimation challenge, E-model also provides a lower
bound for searching the optimal subset with a greedy
algorithm (Section 2).

• Based on the E-model, we further devise our novel
model, S-model, which incorporates two important so-
cial contexts that influence topic generation and dis-
semination, namely CrowdExp and Retweet topic
score. The former considers the influence of both the
experts and the crowd (the majority of the users) while
the latter captures the influence of Twitter users’ ac-
tions (i.e., retweet in our case) (Section 3).

• We conduct experiments on real-world Twitter datasets
using two different applications, Topic Discovery and
Tweet Classification. The experimental results demon-
strate that, by leveraging social contexts, S-model can
help topic-preserving data summarization and further
improve application performance by up to 18% (Sec-
tion 4).

2. DATA SUMMARIZATION FOR TWITTER
TOPICS

In this paper, we use Twitter data, as an example of social
data, to explore topic-preserving data summarization. Thus,
in this section, we begin by formally defining our Twitter
data model. Then, we discuss statistical topic models in a
case of Twitter. Finally, we will introduce our data summa-
rization framework for Twitter topics.

2.1 Twitter Data
Here we first give a data model for tweets and then we de-

fine topics in the Twitter dataset. Generally, a tweet is rep-
resented as a textual feature vector, where each dimension
can be constructed using different models, e.g., N-grams,
tf-idf scheme, Part of Speech. In this paper, given we are
targeting to preserve topics, we employ the “bag-of-words”
model, following common simplification in most work in in-
formation retrieval and topic modeling [7, 23], to construct
the feature space using term frequency as the feature weight.
Formally, we define a tweet as:

Definition 1. (Tweet): a text tweet t in a Twitter dataset
T is a sequence of words w1, w2, . . . w|t|, where wi is a word
from a fixed vocabulary W. We represent a tweet with a
bag of words, i.e., t = {w1, w2, . . . , w|t|}.

Based on the definition 1, we can define a Twitter dataset
(i.e., a collection of tweets) as a Tweet-word matrix:

Definition 2. (Tweet-word matrix): Given a fixed Twit-
ter dataset T with a collection of N tweets, we can easily
build a Tweet-word matrix R|T |×|W|, in which each entry
rw,t = n(w, t) represents the frequency of word w in tweet
t. We use n(w, t) to denote the frequency of word w in t.

A topic in the Twitter dataset is modeled as a distribution
over words. Formally,

Definition 3. (Topic): a semantic topic τ in a Twitter
dataset T with a fixed vocabulary W is represented by a
topic model θ, which is a probabilistic distribution of words
{p(w|θ)}w∈W . Clearly, we have

∑
w∈W p(w|θ) = 1 and we

assume there are altogether K topics in T .

In the following, we will further discuss statistical topic
models in detail.

2.2 Statistical Topic Models
Compared to tweet-word matrix in Definition 2 that can

be derived directly from a Twitter dataset, topics in Defini-
tion 3 are latent variables that need to be learned from the
dataset. For topic models such as the Probabilistic Latent
Semantic Indexing (pLSI) and the Latent Dirichlet Alloca-
tion (LDA), the assumptions are that each document is a
distribution over topics and each topic is a distribution over
words [7, 8]. Specifically, the generative process of a tweet
is represented as :

p(w, t) = p(t)p(w|t) = p(t)
∑
θ∈Θ

p(w|θ)p(θ|t) (1)

where p(w, t) denotes the probability of observing a word
w in a tweet t and can be further interpreted as the pro-
duction of p(t), the probability distribution of tweets, and
p(w|t), the probability distribution of words given a tweet.
For topic modeling, the assumption is that there is a la-
tent topic θ for each word w. Thus, p(w|t) can be further
modeled as the multiplication of p(w|θ), the probability dis-
tribution of words given a topic, and p(θ|t), the probability
distribution of topics given a tweet. Given there are a total
of K = |Θ| topics, we sum the multiplication over a set of
all independent topics. In this way, we can see that the set
of topics Θ is an additional (latent) layer between tweets
and words, whose parameters needs to be estimated from
the dataset.



Given Eq. 1, we can infer p(w|θ) and p(θ|t) by maximiz-
ing the log-likelihood function of the observed tweet-word
matrix

L(T ) = log(
∏
t∈T

∏
w∈W

p(w, t)n(w,t)) (2)

=
∑
t∈T

∑
w∈W

n(w, t)logp(w, t) (3)

=
∑
t∈T

∑
w∈W

n(w, t)log(
∑
θ∈Θ

p(w|θ)p(θ|t)) (4)

The goal of a topic model is to estimate the parame-
ters p(w|θ) and p(θ|t) which measure the correlation be-
tween a word w and a topic θ and that between a topic
θ and a tweet t, respectively. For example, if we have
p(wfootball|θsports) > p(wfootball|θentertainment), it means
that the word football is more likely to occur in the topic
sports than in the topic entertainment. The parameter space
depends on the complexity of different topic models. For
pLSI, the parameter space is O(Kn + Kd), where n is the
size of Twitter dataset, d is the size of vocabulary and K is
the number of latent topics. We can see that the number
of parameters shows linear growth in the number of tweets
n, which suggests that the model is prone to overfitting [7].
To overcome the overfitting problem, LDA treats the topic
weights as a K-parameter hidden random variable (i.e., fol-
lows Dirilecht distribution) rather than a large set of indi-
vidual parameters that are linked to each dataset. In this
way, the parameter space of LDA model is O(K+Kd) which
does not increase linearly in the size of dataset. Therefore,
LDA does not suffer from the overfitting problem like pLSI.

2.3 Topic-preserving Data Summarization
Given a Twitter dataset T , we aim to select a subset S ⊆
T of bounded size |S| = k, which maximizes the objective

function F : 2|T | → R.

S∗ = arg max
S⊆T ,|S|=k

F (S) (5)

where we define S∗ as the summarized subset of the original
dataset T . If we know the utility function F , the problem as
shown in Eq. 5 is the classical knapsack problem which can
be solved via greedy approximation algorithm illustrated in
Algorithm 1. In our case, our target is to select a subset that
preserves the topics in the original dataset. Thus, based on
Eq. 4 of topic modeling, we formulate the objective function
of topic-preserving data summarization as:

F (S) = L(S) =
∑
t∈S

∑
w∈W

n(w, t)log(
∑
θ∈Θ

p(w|θ)p(θ|t)) (6)

where the parameters p(w|θ) and p(θ|t) need to be esti-
mated based on the Twitter dataset as discussed before.
Thus, from Eq. 6, we discover that there are mainly two
challenges to preserve latent topics in the Twitter dataset:
C1-parameter challenge: topic-related parameters ( i.e.,
p(w|θ), p(θ|t)) in the objective function are unknown, which
need to be estimated based on each subset; C2-combination
challenge: the search space of the number of possible sub-
sets is exponential and even with the cardinality constraint
of size k, we would still need to search over

(
n
k

)
= n!

k!(n−k)!

to determine S∗.
The first challenge C1 is caused by the complexity of topic

models. Recall that for Eq. 3, we can see that the objective

Algorithm 1 Greedy algorithm for E-model

Input: T : original dataset, k: cardinality constraint
Output: S: summarized subset
1: S ← ∅
2: while |S| ≤ k do
3: L = {t ∈ T \ S}
4: t = argmaxt∈L F (S ∪ {t})− F (S)
5: S = S ∪ {t}
6: end while
7: return S

is to maximize total log-likelihood logp(w, t) of picking the
cell n(w, t) from the tweet-word matrix. Eq. 4 incorporates
the topic modeling of pLSI in Eq. 1. As is discussed earlier,
the parameter space of pLSI is O(Kn + Kd) while that of
LDA is O(K + Kd). The immediate idea to overcome the
parameter challenge is that we can employ a simple topic
model, which has fewer parameters. In [7], LDA and pLSI
are compared with other simpler models, i.e., unigram and
mixture of unigrams. Inspired by this, we first consider ex-
ploiting the unigram model for data summarization to pre-
serve the topics in Twitter datasets. The unigram model
assumes that the words of every tweet are drawn indepen-
dently from a single multinomial distribution:

p(w, t) =
∏
w∈t

p(w) (7)

where p(w) =
∑

t∈T n(w,t)∑
t∈T

∑
w∈W n(w,t)

. Here, we can see that the

parameter space of the unigram model is O(d) where d is the
size of vocabulary. By incorporating the unigram model of
Eq. 7 into Eq. 3, we have unigram-weighted summarization
model

F (S) =
∑
t∈S

∑
w∈W

n(w, t)logp(w) (8)

Compared to pLSI formulation in Eq. 6, Eq. 8 reduces the
parameter space from O(Kn+Kd) to O(d) i.e., only bounds
to the size of vocabulary. However, we notice that unigram-
weighted summarization model prefers to select the tweets
with high-frequency words. This leads to summarization
bias, as only those topics which correspond to high frequency
words will be preserved. Motived by information theory, we
argue that topics are evenly distributed across tweets (i.e.,
high entropy) rather than concentrated in a few tweets (i.e.,
low entropy). Thus, we design an objective function based
on information entropy to evaluate the information that is
contained in each selected tweet and we formulate this data
summarization model as:

F (S) =
∑
t∈S

∑
w∈W

n(w, t)p(w)log
1

p(w)
(E-model)

With this formulation, E-model is more likely to select a
subset with high entropy. It can be interpreted as the higher
the entropy of a subset, the more information or topics it
contains. Meantime, entropy is also a measure of uncertainty
or diversity, which can reduce summarization bias compared
to unigram-weighted model in Eq. 8. We can solve E-model
by greedy algorithm as shown in Algorithm 1. In addition,
the E-model presents three nice properties that help us solve
the combination challenge C2.

The first property of E-model is monotonicity. That is,
addition of more tweets to an existing subset will increase
the utility of the overall selection.



Proposition 1. (Monotonicity). Let T be a collection of
tweets, S∗ =< t1, · · · , tn >, ti ∈ T , 1 < i < n a selection,
and t′ ∈ (T \ S∗) is from a set of non-selected tweets. Then
it holds that: F (S∗ ∪ {t′}) ≥ F (S∗)

Proof. We denote all the words that occurs in t′ but not
in current selection S∗ as the set of words {t′\S∗}. Then, we

have F (S∗∪{t′})−F (S∗) =
∑

w∈{t′\S∗}

n(w, t′)p(w)log
1

p(w)
>

0. If all the words in the t′ have already occurred in the cur-
rent selection T ∗, i.e., {t′ \ S∗} = ∅, the utility will not
increase.

Second, E-model shows submodularity which refers to the
property that marginal gains start to diminish due to satu-
ration of objective. That is, adding a tweet to a smaller set
helps more than adding it to a larger set, w.r.t. the size of
summarized subset.

Proposition 2. (Submodularity). Let T be a collection
of tweets, S∗ =< t1, · · · , tn > ti ∈ T , 1 < i < n a selection,
and t, t′ ∈ (T \S∗) a set of non-selected tweets. Then it holds
that: F (S∗∪{t})−F (S∗) ≥ F (S∗∪{t′}∪{t})−F (S∗∪{t′}).

Proof. since we have {t \ S∗} = {t \ (t∩S∗)} ⊇ {t \ (t∩
(S∗ ∪ t′))} = {t \ (S∗ ∪ {t′})}, then we can derive

F (S∗ ∪ {t})− F (S∗) =
∑

w∈{t\S∗}

n(w, t)p(w)log
1

p(w)
>

∑
w∈{t\(S∗∪{t′})}

n(w, t)p(w)log
1

p(w)
= F (S∗ ∪ {t′} ∪ {t}) −

F (S∗ ∪{t′}). Here we can see that the equality holds if and
only if {t ∩ t′} = ∅.

Thus, based on Proposition 1 and 2, Algorithm 1 provides
the performance guarantee for searching the optimal subset
with E-model.

Proposition 3. (Near-Optimality). Algorithm 1 is a (1-
1/e)-approximation to the optimal value for E −model.

Proof. For any monotone, submodular function F with
F (∅) = 0, it is known that a greedy algorithm that selecting
the element t with the maximal value of F (S ∪{t})−F (S∗)
with T as the elements selected so far has a performance
guarantee of (1− 1/e) ≈ 0.63 [12]. This result is applicable
to Algorithm 1, since the objective function of E-model is
monotonic ( Proposition 1 ) and submodular ( Proposition
2 ) with F (∅) = 0.

In the next section, we will further discuss that how we use
these properties to solve the combination challenge C2.

3. OPTIMIZATION
Under the previous E-model, we design objective func-

tions with only considering the correlation between words
and topics. However, Twitter data not only has rich text
information but also the contextual information about users
(e.g., number of followers, location) and their actions (e.g.,
reply, retweet, favorite, block). Summarizing Twitter data
with E-model neglects the correlation between topics and
the users who generate and disseminate topics. In the follow-
ing, we will firstly enhance E-model with leveraging social
contexts. Then we improve Algorithm 1 via lazy evaluation
to improve search efficiency over an exponentially space.

3.1 An Enhanced Model with Social Contexts
Our task is to summarize Twitter dataset with a small

subset while preserving the topics in the original dataset.
The task is challenging since a topic is a latent concept. In
the previous E-model, we measure the correlation between
words and topics with unigram weights and entropy. How-
ever, we did not consider that a social topic is generated
from tweets that are written and retweeted by users in a
social network. Thus, the generative process of a topic is
highly correlated to users and their actions such as retweet,
like and replyto. In the following, we firstly discuss two
straightforward social contexts in the Twitter, namely: user
influence and tweet influence. Then based on understanding
of these two simple social contexts, we present our design of
two topic scores.

Figure 1: Cumulative distribution of the number of followers
and the number of retweets in log scale (base 10)

User influence can be measured in various ways includ-
ing PageRank, Granger Causality, Node’s Indegree, etc [10]
while tweet influence can be measured by the number of
retweets or replies, etc. In this paper, we model user influ-
ence in terms of the number of followers while tweet influence
in terms of the number of retweets. To better understand
user and tweet influence, we plot the cumulative distribu-
tions of both the number of retweets of a tweet message
and the number of followers of a user based on two Twitter
datasets (detailed in Section 4.1). It clearly shows that only
about 10% of users have more than 3000 followers (with the
highest having about 3.5 million followers) while the ma-
jority of users (about 80%) have less than 1200 followers.
As for the number of retweets, we observe that only about
5% of tweets are retweeted more than 3000 times while the
majority of tweets (about 60%) are retweeted less than 10
times. From Figure 1, it can be also seen that there are two
extremes in the number of followers, while the majority of
the users lies in the middle (70% of them have followers in
the range [50,1200]). Thus, we can deduce that topics are
largely generated by a crowd of users who have about 50-1200
followers and their tweets are normally retweeted less than
10 times. In other words, we should assign more weights
to the crowd (the majority of the users) for their effects on
the topic generation and dissemination, not just giving more
weights to those users with a high number of followers and
those tweets with a high number of retweets.

Base on these observations from Figure 1, we further de-
sign two topic scores to capture the impact of the crowd,
the experts and their retweet actions on topic generation
and dissemination, namely:

(1) CrowdExp topic score: We use CrowdExp topic
score to measure the contribution of a user on generating the



latent topics. Intuitively, the higher the influence of a user,
the more contribution she makes. In other words, we would
like to preserve those tweets that are posted by topic experts
who have the maximum number of followers. Meanwhile, ac-
cording to [33], a group of diverse crowd can outperform a
group of experts due to the effect of collective wisdom. Also,
based on our discussion before, we know that most of the
topics in Twitter are generated by the majority of the users.
Thus, we seek to devise a topic score that considers the in-
fluence of both topic experts and the majority of the users,
on topic generation and dissemination. We name our topic
score, CrowdExp. As the name suggests, CrowdExp, is a
combination of the influence that the crowd of users has on
topics in a dataset, and the experts, those that have a high
number of followers. The influence of users in social network
can be evaluated by various algorithms such as PageRank
and Granger Causality. However, these algorithms are too
expensive to compute. In this paper, we simply model user
influence as the number of followers x, i.e., in-degree of a
node in a user relation graph. There are two steps to com-
pute the CrowdExp topic score: distribution estimation of
user influence and topic score computation.

Step 1: Distribution estimation of user influence.
Figure 1 shows that the number of followers of Twitter users
x follows a power-law distribution, the probability density
function of which is defined by

fu(x) = (α− 1)(1 + x)−α (9)

where α is the exponent parameter and can be derived by
maximum likelihood estimators (MLEs)

α = 1 + |X|[(
∑
x∈X

ln(1 + x))]−1 (10)

in which X is the set of observed values, i.e., the number
of followers for users that write tweets. Furthermore, we
compute user influence based on the cumulative distribution
function over fu(x)

Fu(x) =

∫ x

0

fu(z)dz = 1− (1 + x)(1−α) (11)

In this way, the user influence is mapping to the interval
[0, 1] in which a topic expert has the value of influence ap-
proaching to 1.

Step 2: CrowdExp topic score computation. In
this step, we aim to design a score function that models
the influence of both the majority crowd and the experts.
We apply the following piecewise function which takes user
influence as the input to compute CrowdExp topic score:

ut =

{
−Fu(x)logFu(x), x ≤ F−1

u (η)

log(Fu(x) + φ), x > F−1
u (η)

(12)

where η is the cut-point of experts and non-experts and φ
is a location parameter. For example, if η = 0.9, it means
that the experts are those top 10% of users who have a high
number of followers. In practice, we tune this parameter
from 0.85 to 0.95 in order to find the suitable value that has
the best performance in terms of application metrics. With
this function, we can give more weights for the crowd who
are majority and the experts who are important.

(2) Retweet topic score: Similar to user influence, we
can also evaluate the importance of a tweet by the number
of retweets. ‘Retweet’ happens when a user is interested in

some topics that are contained in a tweet and thus decides
to further disseminate it. In other words, retweet reflects
approval or recommendation that a tweet has in a commu-
nity, which is an important social context [4]. We infer that
there are two correlations that between topics and retweet
actions: 1) most topics are generated from the majority of
tweets (from Figure 1 it can be seen that the majority of
tweets is retweeted that less than 10 times); 2) the higher
the number of retweets, the more likely a tweet can become
a topic. We apply similar process to compute the tweet im-
portance based on the number of retweets y. Firstly, we
estimate the scale parameter β for probability density func-
tion:

fr(y) = (β − 1)(1 + y)−β (13)

Then, we compute tweet importance based on the cumula-
tive distribution function over fr(y)

Fr(y) =

∫ y

0

fr(z)dz = 1− (1 + y)(1−β) (14)

Finally, we design retweet score function as an absolute log
function to capture two correlations that discussed above.

ret = |log(Fr(y) + γ)| (15)

where γ is a location parameter and is determined by cut-
point of majority and non-majority. From this function, we
can observe that more weights are given to the tweets which
are important and those which are the majority.

(3)Put All Together. Finally, we incorporate the Crowd-
Exp and retweet topic scores, given by Equations 12 and 15,
into E-model based on the product rule. Then, we have
an enhanced model with exploiting social contexts S-model
that

F (S) =
∑
t∈S

∑
w∈W

n(w, t) ·
[
ut · ret · p(w) · log

1

p(w)

]
(S-model)

Thus, we can see that S-model considers the impact of both
experts and majority users, and their retweet actions on
topic generation and dissemination, as well as the content di-
versity based on entropy measures for topic-preserving data
summarization.

Also, it is easy to discover that S-model preserves all the
properties of E-model and thus we can also solve S-model
by Algorithm 1. However, for a large dataset with the huge
number of items, the time complexity of Algorithm 1 is high.
Next, we will discuss how we optimize Algorithm 1 by ap-
plying lazy evaluation.

3.2 Lazy Greedy
Given a tweet dataset T , Algorithm 1 needs O(|T | ∗ k)

times evaluation on function F (·) in order to find an opti-
mal summarized subset of size k. However, when the size
of T increases greatly, the standard greedy algorithm be-
comes more expensive. Fortunately, Minoux [24] et.al de-
veloped lazy greedy algorithm, which exploits submodular-
ity to prune the search space and accelerate the searching.
Since our objective function is submodular, we can apply
this technique and Algorithm 2 shows our implementation
of lazy greedy. Instead of computing F (S∗∪{t})−F (S∗) for
each tweet t ∈ T , the lazy greedy algorithm keeps an upper
bound ρ(t) on the marginal gain sorted in decreasing order
(i.e., store in a priority queue in Algorithm 2). In each itera-
tion, the lazy greedy evaluates the element on top of the list



Algorithm 2 Lazy greedy algorithm

Input: T : original dataset, k: cardinality constraint
Output: S: summarized subset
1: S ← ∅
2: PriorityQueue < Node > queue //store marginal gains
3: for t ∈ T do
4: marginalGain = F (S ∪ {t})− F (S)
5: queue.add(t, marginalGain) //initial ρ(t)
6: end for
7: while |S| ≤ k do
8: t = queue.poll() // get the top tweet
9: marginalGainCurrent = F (S ∪ {t})− F (S)

10: if marginalGainCurrent > ρ(t) then
11: S = S ∪ {t}
12: else
13: queue.add(t, marginalGainCurrent)
14: end if
15: end while
16: return S

(line 8-9), say t, and updates its upper bound (line 10-14).
If after the update ρ(t) ≥ ρ(t′) for all t′ 6= t, submodularity
guarantees that t is the element with the largest marginal
gain. Even though the exact cost (i.e., number of function
evaluations) of lazy greedy is unknown, this algorithm leads
to orders of magnitude speedups in practice [25].

4. EXPERIMENTS
In this section, we empirically evaluate the S-model in

terms of both computational cost and performance using
two real-world Twitter datasets. Through extensive experi-
ments, we aim to answer the following questions:

• How effective is the proposed S-model, compared to
other existing solutions which do not consider social
contexts, in preserving topics in the Twitter dataset?

• How is the performance of different applications based
on topic models influenced by different summarization
models?

• What are the tradeoffs between cost and performance
entailed in data summarization?

In the following, we first introduce the datasets and then
present our experimental settings and results.

4.1 Datasets
We use two datasets crawled from Twitter based on two

different public APIs: Sample streaming API and Search
REST API [2]. The former focuses on completeness while
the later on relevance [3]. The first dataset, which we denote
as PublicDS, is collected using the public Sample stream-
ing API which returns a small random sample (about 1%)
of all public real-time tweets. We select 1 million Tweets
which are written in English. The second dataset, which we
denote as ElectionDS, is about the US 2012 Presidential
Election, collected using the public Search API. The Search
API allows users to specify one or more search terms to
obtain historical tweets and only those tweets that match

PublicDS ElectionDS
#Users 716,958 634,814

#Tweets 1 million 1 million
#Max in-degree 61,803,119 20,143,264
#Max retweets 3,330,699 76,096

Table 1: Statistics of two Twitter datasets

the specified terms are returned. For example, for the 2012
presidential election, we can use political keywords such as
“Barack Obama”, “Mitt Romney” or “Joe Biden”, etc. Elec-
tionDS also contains 1 million tweets. Table 1 summarizes
the statistics of two datasets.

4.2 Experimental Setup
Evaluated techniques: We compare S-model with ex-

isting solutions that do not exploit social contexts:

• E-model : It considers the information entropy as also
shown in Section 2.3.

• Random: It is common used sampling methodology
that selects items randomly from original big datasets,
as it preserves certain important statistical properties
of the entire dataset. It is also used in Twitter’s public
stream API which returns about 1% random sample of
all tweets.

• ClusterSum: In this technique, the objective function
of K-medoids clustering is used, which defines rep-
resentativeness of an item (i.e., how well a selected
item represents the other items in the dataset) based
on distance measures. For example, the loss function
L(S) = 1

|V |
∑
v∈V mins∈S d(v, s) is to find a subset

S ⊂ V of medoids that has a minimum average dis-
tance (e.g., cosine distance in our evaluation) to each
element in the original dataset V . For details, please
refer to [5].

• KLSum: KLSum generates a summary S given a tweet
collectionD via objective function S = min

s∈D
KL(PD||PS)

where KL is Kullback-Lieber (KL) divergence [14].
This method greedily selects tweets to a summary set
so long as it decreases the KL divergence.

• SvdSum: This method represents tweet collection D
as a matrix and applies singular value decomposition
( i.e., D = UΣV T ) to text summarization [32]. This
method selects the most informative tweets according
to the matrix V T .

• LexSum: LexSum assesses the eigenvector centrality
of each tweet and extracts the most important ones to
include in the summary [11].

Metrics: we evaluate data summarization models in terms
of both computational cost and performance. From the cost
perspective, we focus on time cost and break it down into
two phases: 1) Summarization Time to complete data sum-
marization and 2) Training Time to finish training topic
models based on summarized subsets. Both summarization
and training time costs depend on the size of summarized
subsets. Besides the time cost, we still need to consider the
performance of different data summarization models, where
performance is defined by different applications. A good
data summarization model shall not only spend less time on
summarizing the dataset but also provide good performance
for applications based on summarized subsets.

From the performance perspective, we analyze two rep-
resentative applications based on topic models. The first
application is Topic Discovery. In this application, the base-
line performance is represented by the topics generated from
the original dataset. The performance of different summa-
rized subsets (based on different summarization techniques)



is evaluated by comparing their divergence from the baseline.
Since a topic is a probability distribution over words, we use
Jensen-Shannon divergence (JSD) to measure the distance
between two topics i.e, divergence between two probability
distributions. Specially, we compute JSD as

JSD(τ1||τ2) =
1

2
[KL(τ1||M) +KL(τ2||M)] (16)

where M = 1
2
(τ1 + τ2), τ1 and τ2 are two topics, and KL

represents the Kullback-Leibler divergence. A low value of
JSD means that two topics (probability distributions) are
highly similar, i.e., topics are well preserved.

The second application is Tweet Classification. The goal
of this application is to classify tweets with the same topics
together. We use hashtags and search terms as the ground
truth for classification and further compute the classification
accuracy. The higher the classification accuracy, the better
the summarized subset.

4.3 Evaluation
In the following, we will detail our evaluation from the

perspective of both computational cost and performance.
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Figure 2: (a) Time cost on data summarization with S-model
and topic model training with LDA; (b) Time cost without
lazy evaluation of S-model
4.3.1 Computational Cost

The time cost largely depends on the size of summarized
subsets. We define summarization ratio as the size of sum-
marized subset S to that of the (entire) original dataset T ,
i.e. summarization ratio= |S|/|T |. We vary summarization
ratio from 0.005 to 0.04 with S-model and Figure 2 shows
the results based on the PublicDS. We can see that with the
increase in the size of summarized subset, the summariza-
tion time increases slowly. Let’s consider the case in Figure
2 (a) where the summarization ratio varies from 0.01 to 0.04.
We can see that the summarization time only increases by
1 second, from about 9.1 seconds to 10.1 seconds while the
size of summarized subset increases three times from about
1 percent to 4 percent of the original dataset. On the other
hand, we observe the training time cost increases linearly in
the size of summarized subsets from 24 seconds at 0.01 to
about 97 seconds at 0.04. If we train the topic models based
on the entire original dataset, the training time is about
3820 seconds (not shown in Figure 2). In addition, Figure
2 (b) also shows that if we do not apply lazy evaluation,
the time cost of data summarization is highly expensive. As
we can observe, it takes almost 3000 seconds to select 4000
tweets from a total of 1 million tweets (i.e., summarization
ratio=0.004). Thus, our results confirm that lazy evaluation
brings about orders of magnitude improvement in the sum-
marization time cost. Thus, based on our observations, we
discover that sum of the time cost on data summarization
and training times on the summarized subsets of our pro-
posed S-model is negligible compared to the high training

cost without data summarization. Also, we notice that the
time cost on training models based on summarized subsets
increases proportionally to the summarization ratio.

Meanwhile, we note that the time costs of E-model is
highly similar to that of S-model. The overhead of S-model
to compute CrowdExp and Reteet topic score is negligible
(less than 1 second on both datasets). In addition, the
results of time cost of S-model based on ElectionDS show
a similar trend, which we omit for saving space. Finally,
we discover that the summarization time cost of all other
baselines (except Random) are an order of magnitude more
computationally intensive, due to lack of optimizations for
summarizing large-scale datasets.

4.3.2 Performance
In the above experiments, we demonstrated that data

summarization can reduce the time cost on training mod-
els. Next, we will evaluate the performance of different
summarization models for two applications, namely Topic
Discovery and Tweet Classification. For performance evalu-
ation of Topic Discovery, we compute the difference between
topics generated on the basis of summarized subsets, and
those that are generated based on the original dataset. For
Tweet classification, we evaluate how different data sum-
marization methods influence application’s performance in
terms of classification accuracy.

Topic Discovery: LDA is a widely used topic model to
discover the topics in the Twitter dataset [15, 35, 36]. It
takes three parameters as its input: the number of topics
K, a hyperparameter for the Dirichlet prior topic distribu-
tion α and a hyperparameter for the Dirichlet prior word
distribution β. Choosing optimal parameters is a very chal-
lenging problem, and it is not the focus of our work. In this
paper, we set K = 100 and use priors of α = 50/K, and
β = 0.01 as suggested by [7, 27]. We use Mallet software
library [1] to discover the topics in the dataset. We firstly
discover the topics based on the entire original dataset and
we denote this set of topics as Γfull = {τfull1 , · · · , τfull100 }.
Then based on different summarization models, we discover
the topics respectively and we denote this set as Γsum =
{τsum1 , · · · , τsum100 }.

Since there is no implicit orderings of LDA’s topics, we
first match them based on the similarity of the words in the
distribution. To match the topics, we construct a weighted
bipartite graph between the topics from Γfull and Γsum.
Since each topic is a bag of words, we can apply the Jaccard
similarity between the words in two topics from different
topic sets as the weight of the edges in the graph.

d(τi, τj) =
|τi ∩ τj |
|τi ∪ τj |

, τi ∈ Γfull, τj ∈ Γsum

After constructing the graph, we use maximum weight match-
ing algorithm proposed in [13] to find the best matches
between topics from Γfull and Γsum. After matching, we
can compute Jensen-Shannon divergence using Eq. 16 be-
tween topics since each topic is a probability distribution
over words.

Before we evaluate the performance of different models,
we firstly evaluate the effect of summarization ratio by vary-
ing its value from 0.01 to 0.04 only with S-model. Then, we
compute the JSD between topics that are generated based on
the original dataset and those generated from summarized
subsets of different summarization ratios. Figure 5 shows
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Figure 5: JSD with varying summarization ratio of S-model

the results. It is clear that with more data in the sum-
marized subsets, the topic distribution generated by sum-
marization is closer to that generated based on the origi-
nal dataset. However, we can also observe that more data
provides diminishing benefits since the summarized subsets
with ratio = 0.03 and ratio = 0.04 show very similar results.

For the following set of experiments, we fix the summa-
rization ratio to 0.02 to compare the performance of different
models. For each model, we compared the topics generated
from the subset (with ratio 0.02) to the topics generated
from the original dataset. Figure 3 and Figure 4 show the
histograms of JSD of different models based on PublicDS
and ElectionDS, respectively. We observe clearly that both
E-model and S-model outperform other models. In detail,
we can see that E-model has the lowest average JSD (i.e.,
µ = 0.0666 for PublicDS and µ = 0.0684 for ElectionDS)
while S-model has the lowest standard deviation of JSD (i.e.,
σ = 0.035 second lowest for PublicDS and σ = 0.0384 for
ElectionDS). In addition, we observe that only all JSD of S-
model in Figure 3 (a) and Figure 4 (a) are less than 0.2 while
there always exist some topics (i.e., with JSD > 0.2) that
are far from the topics generated based on Γall for all other
models. We infer the reason is that compared to other mod-
els like E-model which only consider the correlation between
words and topics, the performance of S-model is further reg-
ularized by social contexts that are exploited in S-model.
That is also why other models have higher probability to
choose some outliers, which can be observed in Figure 3 (b)-
(g) and 4 (b)-(g) with some JSDs larger than 0.2. Another
interesting observation is that the performance of LexSum
and ClusterSum are even worse than Random model. We
conjecture this is because the topics are evenly distributed
in the dataset rather than being clustered around some rep-
resentative tweets (in terms of similarity or centrality mea-
sures). In such a scenario, it can be expected that Random
model would do better than LexSum and ClusterSum.

From above results, we can safely reach two conclusions:
1) S-model shows very similar performance to the E-model

with the added benefit that it is less likely to select the out-
liers from the original dataset; 2) Representativeness-based
approaches which are based on similarity (used in Cluster-
Sum) or centrality (used in LexSum) measures show poor
performance in preserving topics in the dataset.

Tweet Classification: Based on an already trained topic
model, we can estimate the topic probability for a new tweet
and further classify tweets within the same topic together.
For PublicDS, we select a set of 100 hashtags, each of which
is a label for a unique category. Further, we select 500 new
tweets for each hashtag (i.e., tweets labeled with particular
hashtags). Then, given a new tweet, we infer its topic distri-
bution and assign it to a topic that has a maximum probabil-
ity distribution. We thus have tweets which have originally
been labeled by particular hashtags, and subsequently, have
topics assigned to them. Finally, for each hashtag, we count
the number of tweets belonging to that hashtag, which have
been assigned to the same topic. Ideally, if all the tweets
with the same hashtag are assigned to the same topic, the
accuracy is 100%. In practice, for tweets belonging to each
hashtag, we consider the top 5 topics with the highest proba-
bility distribution (as opposed to only one maximum). Then
we count the number of tweets that have been assigned to
any of these top 5 topics. After this we can define classifica-
tion accuracy as the number of tweets in the top 5 topics to
the total number of tweets (with the same hashtag). As for
ElectionDS, instead of using hashtags, we use search terms
as category labels. For example, we regard the set of tweets
that are retrieved with the same search term as in the same
category.

We firstly evaluate the performance of different models
by fixing summarization ratio as 0.02 and Table 2 shows the
accuracy of tweet classification. It is clear that the S-model
outperforms other data summarization methods for both
datasets. In addition, we compare the results of different
models with the results based on the entire original dataset
(i.e., AllData in the Table 2). We compute p-value using
Student’s t-test for statistical significance analysis (with 5%
significance level). From the Table 2, we can observe that (i)
both results of S-model are significantly better than the re-
sults from the entire original dataset for both datasets (with
both p-values less than 0.05); (ii) both the results of Clus-
terSum are significantly worse than that of AllData (with
p-values < 0.05) while those of other baselines are not signif-
icantly different from the results of AllData (with p-values >
0.05). Based on above observations, we can safely conclude
that our model that exploits social contexts can effectively
preserve topics in the original dataset and also outperforms
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Figure 3: Histograms for JSD based on PublicDS
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Figure 4: Histograms for JSD based on ElectionDS



PublicDS ElectionDS
accuracy p-value accuracy p-value

AllData 0.6660 – 0.4648 –
S-model 0.7133 <0.0001 0.5295 <0.0001
E-model 0.6605 0.5685 0.4702 0.0724
Random 0.6545 0.2166 0.4496 0.0730

ClusterSum 0.6514 0.0193 0.4311 <0.0001
KLSum 0.6553 0.7758 0.4533 0.6437
SvdSum 0.6546 0.6841 0.4532 0.6017
LexSum 0.6511 0.7519 0.4362 0.3138

Table 2: Classification accuracy that are based on differ-
ent summarization models and significance analysis with p-
values of t-test (α = 0.05)

the other existing summarization methods (those using sim-
ilarity or centrality measures) for our target applications.

Furthermore, we vary the summarization ratio from 0.005
to 0.04 and Figure 6 shows the results (we omit ClusterSum
and LexSum since their performance are worse than Ran-
dom model). It is clear that the performance of S-model
always outperforms other models at any summarization ra-
tio. With the summarization ratio increasing from 0.005 to
0.02, the overall performance of each model increases slightly
for both datasets. However, we still observe that the per-
formance of different models fluctuate as the summarization
ratio increases from 0.02 to 0.04, which confirms that more
data does not always improve the application’s performance.
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Figure 6: Classification accuracy of different models
with varying summarization ratios for (a) PublicDS and
(b)ElectionDS

4.4 Summary
Based on extensive experiments, we can answer the three

questions raised in the beginning of this section. From the
first application of Topic Discovery, we confirm that our pro-
posed S-model which leverages social contexts is effective in
preserving topics in the Twitter dataset and is less likely
to select outliers than other models which do not consider
social contexts. For the second application of Tweet Clas-
sification, we observe that the S-model outperforms other
models. In particular, we observe that the performance of
Tweet Classification based on summarized subsets via S-
model is significantly better than that based on the entire
dataset. It means that our S-model can effectively select the
data that is truly useful for the application as well as being
effective in removing noise.

There are two reasons why our proposed S-model outper-
forms other existing methods for preserving topics. First,
our model exploits social contexts, i.e., CrowdExp and Retweet
topic scores, which model the impact of both centrality and
majority in users and their retweet actions, on topic gen-

eration and dissemination. This is different from the ex-
isting methods which separately utilize the user centrality
(LexSum), or similarity-based representativeness (Cluster-
Sum) for data summarizations. Second, S-model is enhanced
based on E-model, which is more likely to generate a subset
of highly diverse content. In other words, our proposed S-
model is novel since it integrates both experts and majority
users, their retweet actions, and content diversity based on
entropy measures, for social data summarization.

However, as for making sound tradeoff decisions between
cost and performance, it largely depends on the performance
requirements of different applications. For instance, if the
application designer considers 66% accuracy for PublicDS
to be good enough for Tweet Classification, then Random
would be the best solution since the cost of random sampling
is almost zero. For our S-model, the cost of data summariza-
tion is about 10 seconds as shown in Figure 2 but the perfor-
mance of Tweet Classification can be improved by about 9%
for PublicDS and 18% for ElectionDS compared to Random
method. Thus, our proposed S-model will be preferred by
applications that have high performance requirements.

5. RELATED WORK
Topic model. Topic model [7] is a popular statistical

model for discovering topics in text corpora. Previous work
[15, 35, 36] discovered the topics with considering both geo-
graphic location and time. In addition, based on trained
topic models, many applications were developed such as
tweet classification [16] and collaborative filtering [7]. In this
paper, we do not focus on new topic models and applications.
Instead, we focus on topic-preserving data summarization
and we further validate the effectiveness of our approach
using two applications that are based on topic models.

Text and Data Summarization. There is a lot of re-
lated work on text summarization, which focuses on con-
structing summaries for a natural language text such as
documents [18] and news articles [30]. Unlike text sum-
marization, data summarization aims to identify a truly
useful subset of structured data from the original dataset.
The ‘usefulness’ is defined based on data properties such
as representativeness [26, 30], diversity [28], informative-
ness [22] and coverage [18]. However, these work do not
exploit social contexts. As for text summarization, many re-
lated work focus on different dimensions such as user’s sen-
timents [6], events[9, 29] and contextual information [10].
Specifically, Chang et.al [10] proposed a supervised learn-
ing framework to summarize contextual information using
different user influence models. Unlike their work on text
summarization to generate contextual information, we focus
on data summarization to generate a subset of the original
dataset while preserving topics. In addition, we consider
cost-performance tradeoffs in data summarization, which
avoids using compute-intensive learning models.

Exploiting social contexts. Social contexts are widely
exploited in recommender systems [17, 19, 21] and predic-
tion models [20]. Both [19] and [21] added social regular-
ization into matrix factorization recommendation model to
constrain the taste difference while Lu [20] incorporated so-
cial contexts to a linear regression model for review quality
predictions. However, it was not clear if social contexts can
help data summarization and our work is the first work that
incorporates social contexts into data summarization model
for preserving topics in the original dataset.



Submodular Optimization. Submodularity [31] is a
property of set functions which models natural diminishing
returns property. This property states that adding an el-
ement to a smaller set has more value than adding it to
a larger set. In data summarization, many previous studies
[18, 26, 30, 34] designed their objective functions as submod-
ular functions in order to achieve the performance guarantee
(i.e., 1− 1/e approximation guarantee to the optimum solu-
tion) for their greedy algorithms. In addition, many variants
such as lazy greedy [24] and stochastic greedy [25] exploited
submodularity to implement accelerated versions of classical
greedy algorithm. In this work, we also design our objective
function as a submodular function and apply the lazy greedy
algorithm to accelerate the search performance.

6. CONCLUSION AND FUTURE WORK
Summarizing social data gives us the opportunity to ex-

ploit social contexts for data summarization. In this paper,
we select Twitter as an example social data site, and focus
on summarizing Twitter datasets while preserving topics.
We firstly design a simple summarization model, namely E-
model, that preserves topics without leveraging social con-
texts. Then, we propose our S-model which exploits two so-
cial contexts that are important for topic generation and dis-
semination. Finally, our experimental results demonstrate
the effectiveness of our S-model for two different applications
that are based on topic models.

This work suggests some interesting future directions. One
direction is that we can extend our models by incorporating
other social contexts. For example, we can explore friend-
ships in the social network to help data summarization. An-
other direction is that we can explore other applications that
are based on different analytical models other than topic
model (which is what we focus on in this paper). Also, it is
an interesting question whether there exists a general model
that can summarize data for different types of applications.
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