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Abstract

This paper considers the problem of source localization on graphs. We as-
sume that a diffusion process on a graph is partially observed, i.e., that only
the time at which some of the vertices are reached by the diffusion is known,
and we want to identify the vertex that initiated the diffusion. In particular,
we address the problem of choosing a fixed number of sensor vertices based
on whose diffusion time one can optimally estimate the source.

Building on the definition of Double Resolving Set of a graph, we intro-
duce a notion of vertex resolvability that turns out to be the key to study
the optimality of a sensor set. For the case of trees we give polynomial time
algorithms for both allocating a fixed budget k of sensors such that they max-
imize the probability of correct detection of the source, and for identifying
the k sensors that minimize the expected distance between the real source
and the estimated one.
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1. Introduction

We consider the general setting in which a diffusion (e.g., an infection
process, a rumor propagation) spreads on a known graph topology. Source
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localization is the problem of finding the vertices that initiate the diffusion
based on a partial knowledge of the diffusion process itself. The applications
of source localization cover many different problems, from estimating the first
individual or community infected by a virulent disease to the identification
of malicious users in social networks. In this paper we study the problem
of optimally choosing a limited number of vertices, called sensors, whose
infection times we want to use to locate the source of any possible diffusion
spreading on the graph.

1.1. Model

We consider a graph G(V,E) with weighted edges that models a contact
network. A diffusion process on G is started by a single unknown vertex s∗,
the source, at an unknown time t∗. We say that a vertex gets infected when
it is reached by a diffusion process on the graph; the moment at which this
happens is called the infection time. If a vertex v becomes infected at time
tv, each non-infected neighbor u of v gets infected at time tu = tv + wu,v

where wu,v ∈ R+ is the weight of edge (u, v).
We assume that for every vertex s in the sensor set S the infection time ts

is known. We estimate the position of the source based only on the infection
times {ts, s ∈ S}. Knowing these infection times, we can identify a set of
candidate source vertices, i.e., of source locations that are compatible with
the known infection times.

Given a budget k ∈ N, we are interested in finding S ⊆ V of size k
such that the infection times of the vertices of S maximize the precision in
identifying the candidate source vertices.

1.2. Error Metrics

Depending on the context in which we want to locate the source of a
diffusion, we could be more interested in maximizing the chances of an exact
identification of the source or in minimizing, in average, the distance between
the real source s∗ and the estimated source ŝ. Hence, assuming that s∗ can
randomly appear in V , we consider two metrics:

1. the error probability, i.e., Pe = P(ŝ 6= s∗);

2. the expected distance between the real source s∗ and the estimated source
ŝ, i.e., E[d(s∗, ŝ)], where d is the weighted distance between two vertices
in the graph. It is easy to see that the two metrics may require different
sets of sensors (see the beginning of Section 3).
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1.3. Our contribution

It is easy to show that, if the sensors set S is a Double Resolving Set
(DRS) for the graph, a perfect detection of the source is guaranteed [8].
However, finding the minimum-size DRS of a graph is a NP-hard problem
[8]. Via a reduction to the DRS problem, one can show that the minimization
of the error probability or of the expected error distance given a finite budget
on the number of sensors is also NP-hard.2

In this paper we focus on trees. Building on the definition of DRS, in
Section 2 we introduce a concept of vertex resolvability. First, we show that
the performance of a set of sensor vertices with respect to the error probability
is directly linked to the number of unresolved vertices. Section 3 contains our
main results. For the case of a tree T of size n with a uniform prior on the
position of the source, we design an O(nk2) dynamic-programming algorithm
to find k sensor vertices that minimize the number of unresolved vertices and
hence the error probability. Minimizing the expected error distance, was, to
the best of our knowledge, never considered before. Also for this metric, we
show that if G is a tree with bounded vertex degree, an optimal set S can
be found with a polynomial-time algorithm. In Section 4 we generalize our
results to (i) the case in which sensors have a non-unit cost and the budget
limits the maximum cost of the sensor set and (ii) the case of general priors
on the position of the source.

1.4. Related work

Source localization has received considerable attention in the last years,
as documented in a recent survey by Jiang et al. [1].

Many approaches, starting with the seminal work by Shah and Zaman
[2], rely on knowing the state of the entire graph at a given instant t in time.
Generalizations to settings in which only the state of a fraction of vertices
at a given time t is known have also been proposed (see e.g., [3, 4]). Pinto
et al. [5] introduced a fundamentally different model that instead, estimates
the source based on the infection times of a sparse set of sensor vertices that
are a priori chosen in the graph. Such a setting is very interesting from
an application point of view because it models all the problems in which

2If this was not the case one could find the minimum k such that one of the two metrics
is minimized and solve DRS in polynomial time. In fact, for both metrics, it holds that if
they are equal to 0 for a sensor set S, then S is a DRS.
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knowing the state of the vertices might have a nontrivial cost and one may
want to allocate a limited budget, i.e., choose once and for all some vertices
to observe. Another model for source estimation uses only the information
about a set of sensor vertices being or not being infected [6]. However, in
both these works, the sensors are chosen according to heuristic centrality
measures such as Degree-, Distance- or Betweenness-Centrality. Zhang et
al. [7] recently proposed a new heuristic called coverage rate, linked to the
total number of vertices neighboring observers. Importantly, none of this
heuristics is directly linked to the source localization problem. In this work
instead we consider the problem of selecting which vertices to observe in
order to optimize the performance of source localization when a budget on the
number (or cost) of allowed sensors is given. An approximation algorithm for
minimising the cardinality of the sensor set that perfectly detects the source
was given by Chen et al. [8] using the connection to the Doubly Resolving Set
(DRS) of a graph [11]. The latter result was recently extended to the case of
multiple sources by Zhang et al. [9]. When the starting time of the diffusion
is known, a question similar to that of Chen at al. [8] was considered by [10].
In all these works budget constraints are not considered.

2. Preliminaries

Throughout this work, we assume that the time at which the diffusion
starts is unknown, hence a single observed infection time does not give any
information about the position of the source.

We denote with S the set of vertices for which the infection time is known,
i.e., the sensors. We choose one sensor, say s1 ∈ S as reference point and
define a vector of relative observed times as follows.

Definition 1 (observation vector). Let G be a graph, S ⊆ V , |S| = k ≥ 2 a
set of sensors and {ts, s ∈ S} the infection times observed during a diffusion
process. Then τ ∈ Rk−1, where τi = tsi+1

− ts1, i ∈ [k− 1], is the observation
vector associated to the diffusion process.

Given S ⊆ V , each vertex is associated to a distance vector.

Definition 2 (distance vector). Let G be a graph, S ⊆ V , |S| = k ≥ 2 a
set of sensors. For each candidate source s we define its distance vector as
ds where ds,i = d(si+1, s)− d(s1, s), i ∈ [k − 1], and d is the weighted graph
distance.
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Building on the previous definition, we can introduce a notion of resolved
/ unresolved vertices.

Definition 3 (resolved / unresolved vertex). A vertex u is resolved by a set
S if du 6= dv for all v ∈ V , v 6= u, and unresolved otherwise.

Note that u ∼ v if and only if du = dv is an equivalence relation and we
call [u]S the class of vertices equivalent to u. A set S such that [u]S = {u}
for each u ∈ V , i.e., such that each vertex is resolved, is a Double Resolving
Set, as clarified by the definition and lemma below.

Definition 4 (Double Resolvability). Given a graph G, S ⊆ V , |S| ≥ 2
is said to doubly resolve G if for any x, y ∈ V there exist u, v ∈ S s.t.
d(x, u) − d(x, v) 6= d(y, u) − d(y, v). Such a subset S is a Double Resolving
Set for G (DRS).

Lemma 1 (Lemma 3.1 in [8]). Let S ⊆ V , |S| ≥ 2 and fix s ∈ S. Then for
every vertices x, y ∈ V doubly resolved by S there exists w ∈ S\{s} such that
d(x, s)− d(x,w) 6= d(y, s)− d(y, w).

Proof. Since x, y are doubly resolved by S, there exist u, v ∈ S s.t. d(x, u)−
d(x, v) 6= d(y, u)− d(y, v). This is equivalent to d(x, u)− d(y, u) 6= d(x, v)−
d(y, v). Either d(x, s) − d(y, s) 6= d(x, u) − d(y, u) or d(x, s) − d(y, s) 6=
d(x, v) − d(y, v). Then by taking w = u or w = v, x, y are doubly resolved
by (s, w).

As a consequence of Lemma 1, the definition of resolved and unresolved
vertices (Definition 4) does not depend on the choice of reference point s1 ∈
S [8].

In the following lemma we make some key observations necessary for
sensor placement on trees (see Figure 1 for an illustration).

Lemma 2. Let T be a tree with n vertices, S ⊆ V , |S| ≥ 2. We denote by
P(u, v) the unique shortest path between u and v in T .

(i) Let u ∈ S a non-leaf vertex or u ∈ V \S. If there do not exist s1, s2 ∈ S,
s1, s2 6= u, s.t. u ∈ P(s1, s2), then u is not resolved by S;

(ii) let u ∈ V a non-leaf vertex and root T at u. u is resolved if and only if
every subtree Tc rooted at a child c of u contains at least one vertex of
S;
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(iii) a leaf-vertex ` is resolved if and only if ` ∈ S.

Proof. (i) Suppose first that u ∈ V \S. If there do not exist s1, s2 ∈ S, s.t.
u ∈ P(s1, s2) it means that all vertices in S are in a subtree rooted at
a neighbor of u, say c, and not containing u itself. Hence it is easy to
see that u is equivalent to c and is not resolved. Next, suppose that
u ∈ S is a non-leaf vertex. If there do not exist s1, s2 ∈ S, s1, s2 6= u,
s.t. u ∈ P(s1, s2), it means that there is at least a neighbor of u, say
c, such that no vertex of S is contained in the subtree rooted at c and
not containing u. Hence u is not resolved because it is equivalent to c;

(ii) let u be a resolved non-leaf vertex. By contradiction, let u have a
neighbor c such that the subtree rooted at c and not containing u has
empty intersection with S. Then, as in (i), c is equivalent to u, giving
a contradiction with the fact that u is resolved. For the backward
direction take a non-leaf vertex u and a vertex v in a subtree Tc rooted
at a neighbor c of u. Since u is not a leaf, it has at least one other
neighbor h 6= c. To resolve the pair (u, v) it is then enough to take a
sensor in Tc and one in Th;

(iii) let ` ∈ S be a leaf-vertex. Since |S| > 1 there exists t ∈ S, t 6= `.
Remember that T is a tree: for every x ∈ V , x 6= `, t, there exists a
vertex y such that y ∈ P(`, t)∩P(x, `)∩P(x, t), with possibly y = x or
y = t. Then, d(`, t)−d(`, `) = d(`, t) > d(y, t)−d(y, `) = d(x, t)−d(x, `),
implying that ` is resolved by S. Suppose next that ` /∈ S. Then ` is
equivalent to its only neighbor and is not resolved by S.

Recall that if a vertex v gets infected at time tv, it infects each of its non-
infected neighbor u at time tu = tv + wu,v where wu,v ∈ R+ is the weight
of edge (u, v). Then it is clear that based on the observation vector τ one
can identify a set of vertices that are candidate sources. If the source of the
diffusion is s∗ and the observation vector is τ , then all vertices in [s∗] are
candidate source vertices because their distance vectors are equal to τ . Given
a prior distribution π on V for the position of s∗, we select an approximated
source ŝ by sampling the conditional distribution π|[s∗].

Remark 1. On trees, this model and estimator tolerate a uniformly bounded
amount of noise in the transmission delays: in fact, the estimation of the
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Figure 1: Illustration of Lemma 2. Black vertices represent sensors. On the left, illustration
for statement (i): v does not lie on the path between the two sensors and is not resolved;
s2 is also not resolved: in fact it is equivalent to its two leaf neighbors. On the right,
illustration for statements (ii) and (iii): the tree rooted at u contains a sensor in each
subtree, hence u is resolved; leaves s1 and s3 are resolved, the other leaves are not.

source would have the same accuracy if for a vertex u infected by its neighbor
v, tu = tv + wu,v + Xu,v where Xu,v ∈ [−ε, ε] is a random variable and
ε < min(u,v)∈E[wu,v/diameter(T )].

3. Main Results

Our main results are polynomial time algorithms to find the optimal sen-
sor placements that minimize the error probability and the expected error
distance in source localization. We start with a comparison of the two met-
rics. We emphasize that: (i) each of the two metrics may be preferred over
the other depending on the application considered; (ii) the sensor sets that
optimize the two metrics for a given budget of sensors are a priori not equal.

(i) Depending on the context in which we study source localization, we
could be more interested in maximizing the chances of an exact identification
of the source (i.e., in minimizing the error probability) or in minimizing the
expected distance between the real and the estimated source. Typically, if
we want to identify the culprit of a malicious diffusion we want to maximize
the probability of estimating the identity of the source correctly, while for the
diffusion of a contaminant in a physical network we give more importance to
having an estimation close enough to the actual source, so that containment
measures can be put into place.

(ii) The sensor choice which minimizes the error probability may be dif-
ferent from the one that minimizes E[d(s∗, ŝ)]. In particular for trees, given
the same budget of sensors, the choice of the leaves in the sensor set depends
on the metric that we want to minimize. Figure 2 shows: (a) an example in
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which adding a sensor in one of two possible vertices has a different impact
on the two metrics and (b,c) a tree on which the optimal placement of k = 2
sensors is different for the two metrics.

(a) (b) (c)

Figure 2: (a): Tree with 2 sensor vertices (black). Adding a sensor in one of the two gray
vertices has the same effect on Pe but not on E[d(s∗, ŝ)]. (b): Placement that minimizes Pe

for k = 2 sensors: Pe ≈ 0.74, E[d(s∗, ŝ)] ≈ 2.46 (c): Placement that minimizes E[d(s∗, ŝ)]
for k = 2 sensors: Pe ≈ 0.76, E[d(s∗, ŝ)] ≈ 2.41.

3.1. Error Probability Minimization

We first consider the minimization of the error probability. We start by
deriving an expression of this metric on a general graph. Subsequently we
explain how it can minimized in O(nk2) on trees of n vertices when a budget
of k sensors is available.

Proposition 1. Let G be a graph of size n, S ⊆ V , |S| ≥ 2, and uniform
prior π. The probability of error Pe(S) is given by Pe(S) = 1

n

∑
[u]S⊆V (|[u]S|−

1).

Proof. We have that Pe(S) =
∑

[u]S⊆V P(ŝ 6= s∗|s∗ ∈ [u]S)P(s∗ ∈ [u]S).

Hence Pe(S) =
∑

[u]S⊆V
|[u]S |−1
|[u]S |

· |[u]S |
n

=
∑

[u]S⊆V
|[u]S |−1

n
.

If q is the number of equivalence classes we have Pe = 1− q/n and it is clear
that the error probability is minimized if the number of equivalence classes
is maximized. Hence it is clear that an error in source estimation can occur
only if the source s∗ is not resolved by S.
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Looking back to Lemma 2, if the graph is a tree T , Pe is 0 if a sensor
is placed on each leaf.3 In fact, the minimum k required for Pe = 0 is the
number of leaves `. Moreover, as a consequence of Lemma 2 it is also clear
that, if k < `, the vertices that minimize Pe are a subset of the leaves of T .
This suggests that, given a tree and a sensor set, if we root the tree at an
arbitrary vertex it is possible to compute Pe as the sum of the probabilities
of error of the different subtrees. Building on this observation we prove that,
for any n-vertex tree T and budget k ∈ N, a set Sk

opt that minimizes Pe can
be found with a recursive algorithm of total runtime O(nk2).

Theorem 1. Let T be a tree with n vertices and ` leaves and let the prior π be
uniform. If k ≥ `, the leaf set is an optimal sensor set. If k ∈ {2, . . . , `− 1},
there exists an algorithm that finds Sk

opt ∈ argmin|S|=kPe(S) in time O(nk2).

Correctness. The statement is trivial for k ≥ ` as the set of leaves resolves all
the vertices. If 2 ≤ k < `, call Tr the tree obtained rooting T at an arbitrary
non-leaf vertex r. We claim that Sk

opt is obtained through the main function
of Algorithm 1, i.e., by computing OptErr(Tr, k). We prove the statement
by strong induction on the height of the tree.

Fix a budget k′ and let p(Tx, k′) be the contribution to the error prob-
ability from Tx assuming k′ sensors are placed optimally in Tx. The base
case is a subtree Tx of height 0, i.e., a leaf: if k′ ≥ 1 then we can place
a sensor directly on the leaf. If k′ = 0 then we cannot resolve x and
p(Tx, 0) = 1/n. Now consider the general case of a rooted tree Tx of height
h > 0, and assume we can find p(Ti, k′i) for all trees Ti of height less than
h. If k′ = 0, then p(Tx, 0) = |Tx|/n since we have no way to distinguish
between any vertices in Tx. Otherwise, we recurse over all possible parti-
tions of k′ between the subtrees rooted at the children of x (see the func-
tion OptErrChildren in Algorithm 1). In particular, if g is the number
of children of x and Tx,i, for i ∈ [g], denotes the subtree rooted at the
ith child of x, any configuration of k′ sensors in Tx has 0 ≤ k′i ≤ k′ sen-
sors in subtree Tx,i with

∑g
i=1 k

′
i = k′. If k′i 6= k for every i (in particu-

lar if k′ < k), p(Tx, k′) =
∑

k′i=0(|Tx,i|/n) +
∑

k′i 6=0 p(Tx,i, k′i). In fact, x is

equivalent to all vertices in the subtrees Tx,i (if any) for which k′i = 0 and
|[x]|−1 =

∑
k′i=0 |Tx,i|. Instead, if there exists j in [g] such that k′j = k (all sen-

sors are placed in the subtree Tx,j), p(Tx, k) =
∑

i 6=j(|Tx,i|/n)+p(Tx,j, k)+1/n,

3See also [8] for a different proof.
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because the jth child of x is equivalent to x and to all vertices in the subtrees
Tx,i with i 6= j. Since the height of each Tx,i is less than h, by the induction
hypothesis we can compute the optimal p(Tx,i, k′i), and hence p(Tx, k′).

Runtime Bound. A call to OptErrChildren is determined by the root x
of the subtree, the subset c of its children considered and the budget k′ ≤ k.
There are n−1 possible values for the pair (x, c) (n−1 is the number of edges
T ). In fact, we can assume that the children are ordered and the possible
partitions are of the form (c, children at the right of c)4 so the number
of pairs (x, c) is bounded by n − 1. Hence, there are O(nk) possible calls
of OptErrChildren. Combining this with the minimization on m ≤ k
sensors sent to the leftmost sub-tree, the runtime is O(nk2).

Algorithm 1. Minimizes Pe with budget k on a tree of size n rooted at r

OptErr(Tx, k′)
if k′ = 0 return |Tx|/n
if |Tx| = 1, e← 0 else e← OptErrChildren(Tx, k′, children(x))
if x 6= r and k′ = k return e + 1/n, else return e

OptErrChildren(Tx, k′, C)
if |C| = 0 return 0, else if k′ = 0 return

∑
c∈C |subtree(c)|/n

f ← first child, oc← other children, results ← {}
for m from 0 to k′

results← results ∪ {OptErr(Tf ,m)+ OptErrChildren(Tx, k′ −m, oc)}
return min{results}

3.2. Expected Distance Minimization

We now turn to the minimization of the expected error distance. After
deriving an expression for this metric on a general graph, we explain why
the minimization of this second metric is more challenging. We propose an
algorithm that finds the optimal placement of k sensors on a tree of n vertices
in time O(2Dnk2), D being the maximum vertex degree.

4We consider the children of any vertex to be ordered, e.g. according to the order
induced by any embedding of T in the plane.
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Proposition 2. If G is a graph of size n with weighted distance d, S the set
of sensors, |S| = k ≥ 2, and the prior π is uniform, the expected distance
between the real source s∗ and the estimated source ŝ is

E[d(s∗, ŝ)] =
1

n

∑
[u]S⊆V

( ∑
s,t∈[u]S

d(s, t)

|[u]|S

)
. (1)

Proof. We have that

E[d(s∗, ŝ)] =
∑

[u]S⊆V

E[d(s∗, ŝ)|s∗ ∈ [u]S]P(s∗ ∈ [u]S)

=
∑

[u]S⊆V

|[u]S|
n

( ∑
s,t∈[u]S

d(s, t)

|[u]|2S

)
=

1

n

∑
[u]S⊆V

( ∑
s,t∈[u]S

d(s, t)

|[u]|S

)
.

(2)

In the error probability case, the contribution of each equivalence class was
a function only of the number of its elements (see Prop. 1). Here instead,
the contribution of each unresolved vertex to (1) depends on the sum of
distances between the vertices in an equivalence class in addition to the size
of the class; this makes the problem more challenging.

Clearly, if T is with ` leaves, the leaf set minimizes ES[d(s∗, ŝ)] when
k ≥ `. Again, if k ∈ {2, .., `}, we observe that Sk

opt is contained in the leaves
set: in fact, if it was not the case, there would be a sensor s equivalent to a
leaf ` /∈ S and by substituting the sensor in s with a sensor in ` we would
break [s] in two or more smaller equivalence classes and the expected error
distance would decrease.5

Theorem 2. Let T be a tree of maximum degree D with n vertices and `
leaves and let the prior π be uniform. If k ≥ `, the leaf set is an optimal
sensor set. If k ∈ {2, .., `}, there exists an algorithm that finds the set Sk

opt ∈
argmin|S|=kES[d(s∗, ŝ)] in time O(2Dnk2).

5When adding a sensor in `, the expected error distance can only decrease and the
original sensor s becomes redundant and can be removed.
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Correctness. Consider T as rooted at an arbitrary non-leaf vertex r. We
claim that the main function of Algorithm 2, i.e., OptDist(Tr, k), finds the
set Sk

opt. The structure of Algorithm 2 is very similar to that of Algorithm
1 as is the proof of correctness for the algorithm, so we limit ourselves to
highlighting the differences. When computing the expected distance of a tree
rooted at x we need to keep track of all the subtrees rooted at the children
of x where there is not any sensor (see the variable unsensored-neighbors in
the pseudo-code). With the notation of the proof of Theorem 1, if k′i 6= k
for every subtree Tx,i, the expected distance e(Tx, k

′) of the classes entirely
contained in Tx is computed as

e(Tx, k′) =
∑
k′i 6=0

e(Tx,i, k′i) + E[d(ŝ, s∗)|s∗ ∈ {x, V (Tx,i) : k′i = 0}].

Instead, if there exist a child xj of x such that k′j = k (all sensors are in
Tx,j), e(Tx,j, k) is computed taking into account that the subtree Sxj

rooted
at xj and containing the root vertex r is entirely contained in the class
[xj]. The case k′ = 0 never arises in the calls to OptDist since, when no
sensor is assigned to a given subtree, it is enough to add its root to the
list of unsensored-neighbors in the next calls of OptDistChildren so that
the entire subtree will contribute to the final computation of the expected
distance.

Finally we look at the pre-computation of the contributions to the ex-
pected distance. For every subtree Tx and subset N = {x1, .., xm} of children
of x for which the subtree Txi

does not contain sensors, the expected distance
(denoted by ExpDist(x,N) in the pseudo-code) is recursively pre-computed
as follows. The base case is a subtree of only one element, i.e. a leaf, for
which the expected distance is 0. For a non-leaf vertex x, the contribution to
the expected distance of the subtree rooted at x can be computed based on
the contributions of the subtrees rooted at the children of x. We note that
if i, j ∈ {1, ..,m}, i 6= j,∑

u∈Txi ,v∈Txj

d(u, v) =
∑

u∈Txi ,v∈Txj

d(u, x) + d(x, v)

= |Txj
|
∑
u∈Txi

d(u, x) + |Txi
|
∑
v∈Txj

d(v, x).
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Then, if there is at least a sensor in T \Tx, i.e., if [x] ⊆ Tx, we have

E[d(ŝ, s∗)|s∗ ∈ [x]] =
m∑
j=1

|Txj
|

|Tx|
E[d(ŝ, s∗)|s∗ ∈ Txj

]

+
2

|Tx|

m∑
j=1

(
|Tx\Txj

|
∑
u∈Txj

d(u, x)
)

+
2

|Tx|

m∑
j=1

( ∑
u∈Txj

d(u, x)
)
,

where the first term accounts for the cases in which s∗ and ŝ are in the same
subtree, the second term for the cases in which s∗ and ŝ are in two different
subtrees and the last term accounts for the cases in which either s∗ or ŝ are
in x itself. The sums of distances from x to the vertices in a given subtree
that appear in the latter expression can again be recursively pre-computed.
If all the available sensors are in Tx, i.e., if [x] 6⊆ Tx, also the contribution
to the expected distance coming from the subtree rooted at the father of x
and not containing x should be added. Once more, this contribution can be
recursively pre-computed with similar techniques.

Runtime bound. With respect to Theorem 1 the call to OptDistChildren
has an additional argument which corresponds to the list of neighboring
subtrees that have already been considered and to which no sensor has been
assigned. Since the number of neighbors of x is less than the maximum degree
D, the number of possible calls to the algorithm for a given x and a sensor
budget k is upper-bounded by 2D and the total number of calls is O(2Dnk2).
Finally, the expected distance for every x and all subsets of neighboring
subtrees can be pre-computed with a runtime O(2Dn). In conclusion the
total running time for the algorithm is O(2Dnk2).

In the pseudo-code below, when |Tx| = 1 and k′ > 1 we return∞: in this
way the cases in which the budget is not completely allocated are directly
excluded.

Algorithm 2. Minimizes the expected distance for initial budget k on a tree
of size n

OptDist(Tx, k′)
if |Tx| = 1
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if k′ = 1 return 0
else return ∞

if x 6= r and k′ = k
non-sensored-neighbors ← [parent(x)]

else non-sensored-neighbors ← [ ]
return OptDistChildren(Tx, k, children(x),non-sensored-neighbors)

OptDistChildren(Tx, k′, C, N)
if |C|=0 and k′ > 0 return ∞
if k = 0

N ← N ∪ C
return ExpDist(x,N)

if x 6= r and k′ = k
for c in C

results ← {OptDist(Tc, k)}
f ← first child, oc← other children
results ← {OptDistChildren(Tx, k′, oc, N ∪ {f})}
h← min(k′, k − 1)
for m from 1 to h

err1 ← OptDist(Tf , m)
err2 ← OptDistChildren(Tx, k′ −m, oc, N)
results← err1 + err2 ∪ results

return min{results}

4. Extensions

This section presents the extension of our results to weighted vertices and
to general priors on the position of the source.

4.1. Extension to weighted vertices

Theorem 1 and Theorem 2 can be extended to the more challenging case
where vertices have different integer costs and k ∈ N represents the total
budget allowed. The additional difficulty comes from the fact that, if each
vertex u has a cost c(u) ∈ N, the optimal observer placement Sopt will not
necessarily be contained in the leaf set, especially if the leaves have high cost
compared to other vertices of the graph.

We give a few remarks on how the structure of Algorithm 1 (respectively,
Algorithm 2) can be adapted to this case without increasing the total runtime
bound of the algorithm. At each call of the function OptErr (respectively,
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OptDist) on a subtree Tx with budget k′ > c(x) two possible cases need
to be considered: 1) vertex x itself is chosen as a sensor and the remaining
budget k′ − c(x) is distributed in the subtrees rooted at the children of x;
2) vertex x is not chosen as a sensor and we distribute the entire budget k′

among the children of x. At an algorithm level this translates in an additional
call to the function OptErrChildren (respectively, OptDistChildren)
for every vertex x. Hence the runtime bound of the algorithms is not affected.

4.2. Extension to non-uniform prior π

We now consider the case of a non-uniform prior probability π on the
position of the source s∗.

Proposition 3. If G is a graph of size n with weighted distance d, S the set
of sensors, |S| = k ≥ 2, and π a general prior on the position of the source,
the error probability and the expected distance between the real source s∗ and
the estimated source ŝ are given by the following equations:

1. Error probability

P(s∗ 6= ŝ) =
∑

[u]S⊆V

( ∑
s,t∈[u]S ,s 6=t

π(s)π(t)

π([u]S)

)
=
∑

[u]S⊆V

( ∑
s∈[u]S

π(s)(π([u]S)− π(s))

π([u]S)

)
.

(3)

2. Expected distance between the real source s∗ and the estimated source ŝ

E[d(s∗, ŝ)] =
∑

[u]S⊆V

( ∑
s,t∈[u]S

d(s, t)π(s)π(t)

π([u]S)

)
. (4)

In both Equation (3) and Equation (4) the contribution to each equiva-
lence class depends on the prior probability of each element in the class and,
in the case of Equation (4), on the distances between elements in a same
class. If we now think of the recursive computation of the two metrics in a
tree, in both cases, the contribution of a vertex u depends on which of the
subtrees rooted at the children of u contain or do not contain sensors and
not only on their cardinality. Hence, in view of Theorem 2 and Algorithm 2,
it is clear that for both metrics, on a tree T with n vertices, it is possible to
find an optimal set Sk

opt in time O(2Dnk2). The proof of the result, follows
that of Theorem 2.
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5. Conclusions and Future Work

In this paper we presented optimal algorithms to place a limited budget
of sensors for the problem of source localization. Our algorithms build on the
notion of vertex resolvability, which we showed to be the key to study optimal
sensor placement for the source localization problem. We considered two
metrics of practical relevance, error probability and expected error distance,
and gave a polynomial time solution for optimizing them on trees. We showed
that our approach is quite general, comprising interesting extensions such as
to vertices having different costs and to general priors on the position of the
source.

There are many possible directions for future work. An important open
problem is extending our results to general graphs. Other interesting direc-
tions include optimizing worst case metrics rather than average case metrics;
e.g., minimizing the maximum distance between a real and estimated source
could be of interest. In many practical cases there may be uncertainty about
the infection delays or the infection delays may be subject to randomness.
Moreover one may want to incorporate in the model the fact that some ver-
tices may fail to infect some of their neighbors. Hence a key extension would
study the optimal sensor placement when infection delays are noisy and there
may be transmission failures.
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