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Abstract— This paper focuses on a real system implemen-
tation, analysis, and evaluation of a cooperative sensor fusion
algorithm based on a Gaussian Mixture Probability Hypothesis
Density (GM-PHD) filter, using simulated and real vehicles
endowed with automotive-grade sensors. We have extended our
previously presented cooperative sensor fusion algorithm with
a fusion weight optimization method and implemented it on
a vehicle that we denote as the ego vehicle. The algorithm
fuses information obtained from one or more vehicles located
within a certain range (that we call cooperative), which are
running a multi-object tracking PHD filter, and which are
sharing their object estimates. The algorithm is evaluated
on two Citroën C-ZERO prototype vehicles equipped with
Mobileye cameras for object tracking and lidar sensors from
which the ground truth positions of the tracked objects are
extracted. Moreover, the algorithm is evaluated in simulation
using simulated C-ZERO vehicles and simulated Mobileye
cameras. The ground truth positions of tracked objects are in
this case provided by the simulator. Multiple experimental runs
are conducted in both simulated and real-world conditions in
which a few legacy vehicles were tracked. Results show that the
cooperative fusion algorithm allows for extending the sensing
field of view, while keeping the tracking accuracy and errors
similar to the case in which the vehicles act alone.

I. INTRODUCTION

The ability to accurately perceive the environment is
an important factor contributing to the safety on roads.
Situations with limited visibility are common, and it is
therefore important to develop methods that can assist the
driver by tackling limited sensing range and Field Of View
(FOV), sensing reliability, and occlusion problems. One such
example of limited visibility is an overtaking scenario, in
which the vehicle to be overtaken occludes part of the
visibility of the vehicle performing the overtaking maneuver.
Accidents while overtaking accounted for 1% of all single-
and two-vehicle crashes in the United States in 2013, whereas
they were the cause of 1.8% of accidents with fatal conse-
quences [1].

In these situations, information coming from other vehicles
or the road infrastructure can substantially improve the
decision-making process of the intelligent vehicle. Informa-
tion sharing is usually achieved using wireless communi-
cation links. Communication can be considered as a type of
virtual sensor, as suggested in [2]. For example, it can enable
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vehicles to see behind corners, as the wireless communi-
cation does not have the same line-of-sight constraints as
most conventional sensors do. Cooperative fusion considers
sharing of tracks or perception data (raw or processed)
among two or more vehicles. Two major problems related
to cooperative fusion are temporal and spatial alignment [3].
Temporal alignment deals with variable delays of wireless
communication links. Ideally, vehicle sending observations
should help to predict the evolution of the objects’ state
between the original measurement time and that of reception.
Moreover, spatial alignment considers differences in the
coordinate systems of the sending and receiving vehicles.
The difficulty here arises from the uncertainty of sending
and receiving vehicle locations.

Before a vehicle can share its tracks, it needs a filter
capable of tracking multiple objects. One possible solution
for multi-object tracking is based on Random Finite Set
(RFS) models, in which a set of objects of variable car-
dinality is modeled as a random finite set. Filters based
on this theory, such as Probability Hypothesis Density
(PHD) filters and Cardinalized PHD (CPHD) filters, deal
with the measurement-to-track association implicitly [4].
They can provide higher robustness and accuracy in sce-
narios where the number of objects is variable and/or not
known in advance. Many different implementations of the
PHD filter have been developed and used for multi-object
tracking; the most common ones are the Gaussian Mixture
PHD (GM-PHD) [5] and the Sequential Monte Carlo PHD
(SMC-PHD) filter [6]. Given that in cooperative fusion, in-
formation needs to be exchanged between vehicles, and that
the GM implementation requires less memory for storing the
location hypotheses and thus less communication bandwidth
than its SMC counterpart, we find approaches based solely
on GM better suited for the problem at hand.

When using a PHD filter for tracking, communicating
tracks is reduced to communicating the PHD intensities. A
method for fusing PHD intensity functions is given in [7].
A distributed fusion of SMC-CPHD filters via exponential
mixture densities (EMD) has been presented by Uney et al.
in [8]. Battistelli et al. used EMD for distributed fusion of
GM-CPHD densities [9]. Common for all three works is the
assumption that all PHD filters work in the same domain,
i.e., that all agents have entirely overlapping FOV in which
objects are sensed. This is a very limiting assumption for
the application of the aforementioned methods in the field of
(moving) vehicles. In our previous work [10], we proposed
a Cooperative GM-PHD (C-GM-PHD) filter, which relaxes
this assumption. We validated our cooperative filter in a
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high-fidelity simulation environment using lidar sensors.
In the core example of the present work we consider two

intelligent vehicles, each having a forward-looking vision
sensor. The first vehicle runs a tracking algorithm based
on the GM-PHD filter, and communicates its PHD intensity
to the second vehicle (the ego vehicle). With the help of
the C-GM-PHD filter, the second vehicle fuses the received
intensity with the results of tracking based on its own sensor.

The main contribution of the paper is the real system
implementation and validation of our cooperative sensor
fusion algorithm in real-world settings and in simulation
using automotive-grade sensors. We extend our cooperative
algorithm with a fusion weight optimization method, which
allows for a more robust algorithm performance. Moreover,
instead of lidars, as proposed in our previous work lever-
aging exclusively high-fidelity simulations, in this paper
we use a Mobileye camera as a tracking sensor. It is an
automotive-grade monocular vision sensor with embedded
image processing and object detection algorithm, which
successfully detects vehicles, pedestrians, traffic signs, etc.
Instead of with an image, a user is directly provided with
the description of detected objects. The Mobileye camera is
not very well studied in the literature. One notable exception
is the work of Obst et al. [11], who used the Mobileye
camera in their sensor fusion algorithm but they came up
with different camera parameters and used a measurement
model that resembled to a radar sensor, a choice that better
suited their fusion framework.

The rest of the paper is organized as follows: Sec. II
summarizes the multi-object tracking and cooperative fusion
algorithms; Sec. III provides details of applying the method-
ology to our specific problem; Sec. IV presents and discusses
the results, while Sec. V gives concluding remarks and an
outlook.

II. METHOD

The cooperative sensor fusion algorithm for tracking of
multiple objects contains two main components. The first
component is in charge of multi-object tracking. It models
object hypotheses set as a GM. The second component
enables fusion of two object sets together. The fused set is
further used by the tracking component. The two components
together form the C-GM-PHD filter [10].

In the remainder of this section, both components are
explained in greater details. It is worth noting that the whole
algorithm is independent of any specific sensor or state
model. In Sec. III we provide details how we apply the
algorithm to our specific problem.

A. Multiple object tracking

In this work, for multi-object tracking we use the
GM-PHD filter [5]. We summarize the algorithm here for
completeness.

In the GM-PHD filter, the multiple-object posterior density
is approximated using its first-order statistical moment called
PHD or intensity, which is modeled as a Gaussian Mixture.
At time k−1 the intensity containing Jk−1 components with

weights wk−1, means mk−1 and covariances Pk−1, where
the weight of a Gaussian component represents the number
of objects that are represented using that component, has the
form:
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The filter contains the predict and the update step, in
which we use a Kalman Filter (KF). To obtain the predicted
intensity, the prior is multiplied by the probability of survival
pS , which is a function of the hypothesis state, and the birth
intensity γk is added. It is given by:
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The birth intensity γk(x) is also a Gaussian Mixture, and
represents locations in state space where new objects are
likely to appear.

The update step utilizes the set of measurements Zk and
yields a posterior intensity as follows:
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The parameters used in the update step are the clutter level
κk(z), the probability of detection pD,k(m

(j)
k|k−1) dependent

on the mean of the Gaussian component j and computed
by the occlusion model (as an object can be occluded
or leave the sensor FOV), the observation model Hk and
the observation noise covariance Rk. The first sum in (3)
represents missed objects, and the second updated objects.

After the update step, the number of Gaussian components
increases quadratically. Therefore, all components with a
weight less than some threshold Tp are removed. Moreover,
components that are close to each other (within Mahalanobis
distance U ) are merged together and approximated by a
single component. Finally, multi-object state estimates are
extracted from the intensity by selecting the means of the
Gaussians that have weights greater than some threshold Te.



B. Cooperative fusion

The fusion algorithm is explained in greater details in
our previous work [10]. Vehicles located within the com-
munication range of the ego vehicle can share their PHD
intensities, i.e., their estimates about objects in their FOV,
which have the GM form. In the next paragraph, we explain
how the ego vehicle can fuse received PHD intensities with
its own intensity, hence increasing its FOV beyond the one
of its sensors, and decreasing uncertainty in the areas of
overlapping FOVs.

Before fusion, we need to translate the received intensities
(states and associated covariances of the object hypotheses)
from the frame of the cooperative vehicle, through the global
frame, to the coordinate frame of the ego vehicle, and run
the prediction model to compensate for the communication
delay. In this transformation, the state uncertainties of the
coordinate frames of the two cars are integrated in the
tracks’ covariances. To avoid data incest problems, we use
a General Covariance Intersection (GCI) algorithm, which
offers a conservative way of fusing two Gaussian Mixtures
[12]. The GCI yields a fused intensity vW (x) by weighting
initial intensities using a fusion weight W :

vW (x) =
vW
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2 (x)∫
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It is shown in [9] that GCI can be approximated by applying
Covariance Intersection (CI) pairwise to components from
the two intensities. But this approach does not work if the
vehicle FOVs do not overlap entirely, because an object
seen by only one vehicle does not have its corresponding
component in the set of another vehicle, so it likely gets
discarded. To address this problem, we apply covariance
intersection only to components whose Mahalanobis distance
from each other is less than UF . Take Gaussian components
i and j from the intensities v1 and v2 respectively; the fused
component has the following mean m(12)
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We keep track of components that have been fused, and we
copy the non-fused components to the result set (e.g., objects
which are located in FOV of only one vehicle).

As an extension to the fusion algorithm we presented in
[10] (where we fixed W = 0.5), in this paper we perform
optimization of the fusion weight. Let f1(x) and f2(x) be the

Gaussian mixtures containing selected Gaussian components
from v1 and v2 which participate in fusion, and fW the
Gaussian mixture that is created by fusing f1 and f2 . Further
suppose that J(W ) is a cost function. Then the goal is to
choose W ∗ such that

W ∗ = arg min
W ∈[0,1]

J(W ) (14)

The cost function can be defined as

J(W ) = (D(fW ||fi)−D(fW ||fj))2 (15)

The Kullback-Leibler and Renyi divergence have been used
as distance metrics in the literature [8], [13]. However, there
exists no closed-form solution for these metrics applied to
Gaussian mixtures. We therefore use the L2 distance [14]:

D(f ||g) = d(f, g) =

∫
(f(x)− g(x))2 dx (16)

for which the closed-form solution is easily derived by
applying the following equation:∫
N (x|µ1, σ1)N (x|µ2, σ2)dx = N (0|µ1 − µ2, σ1 + σ2) (17)

We solve (14) by performing an exhaustive search for
different values of W equidistantly spaced by 0.1.

III. IMPLEMENTATION

The framework presented in the previous section is general
enough to be applied to any sensor and any state model. In
our previous work [10], we have demonstrated its application
to car tracking using lidars. The approach has been exper-
imentally validated in simulation, and simulated data were
processed in Matlab.

In this work we use two scenarios, the first containing
real-world and the second containing simulated data. We use
a different sensing modality for tracking, namely Mobileye
cameras instead of lidar sensors. Moreover, in the real-world
scenario, we extract ground truth information from lidars as
they represent an independent and more accurate source of
information than Mobileye cameras. This section describes
our experimental setup and models we use to apply the
cooperative filter in the real-world and in the simulated
scenario. The presented method is demonstrated using one
ego and one cooperative vehicle.

A. Real-world experimental setup

Our experimental platform consists of two electric Citroën
C-ZERO vehicles, that are parked behind each other in
one lane, at the relative distance of approximately 15 m.
This resembles a scenario in which two cars are driving
behind each other at the same speed. The rear vehicle,
which we call the ego vehicle (E), is equipped with a
forward looking Mobileye camera, and two forward- and two
backward-looking Ibeo lidar sensors (that we use for ground
truth only and not for tracking). The front vehicle, which
we refer to as the cooperative vehicle (C), is endowed as
well with a forward-looking Mobileye camera (see Fig. 1).
Both vehicles have on-board computers for real-time sensor
processing and logging, as well as wireless communication



Fig. 1. Prototype Citroën C-ZERO vehicles.

Fig. 2. Experimental setup. Left: ego vehicle (yellow), cooperative vehicle
(white), and lidar point cloud of the surrounding of the ego vehicle (legacy
vehicles are easily identifiable). Right: View from the web camera installed
behind the windshield of the ego vehicle.

equipment. Our scenario includes two more legacy oncoming
vehicles (O1 and O2) of different type and size, which do
not carry neither sensory nor computational equipment. The
experimental setup is visualized in Fig. 2.

The entire software pipeline is implemented on in-vehicle
computers in the ROS framework [15] using C++. Sensor
driver nodes publish data from the sensors to the ROS
network. Tracking filter nodes subscribe to sensor data and
publish tracks in the form of PHD intensities. A cooperative
fusion and tracking node (only present in the ego vehicle)
additionally subscribes to the tracks and publishes a fused
PHD intensity. Our software architecture is illustrated in
Fig. 3. All nodes can be run online (in real-time) during
experiments. However, as the emphasis of our work is not
on the wireless communication technology, we can afford to
log all data using rosbag and play it back for processing
offline. To avoid time misalignment of vehicle logs, the
computer times are synchronized among themselves using
a network time synchronization tool before and throughout
the experiments.

B. Simulation setup

Our simulated setup is implemented in Webots, a
high-fidelity calibrated sub-microscopic simulator for mo-
bile robots and intelligent vehicles [16]. Similar to the
real-world setup, we have placed two Citroën C-ZERO
vehicles equipped with sensors driving behind each other
on a straight road, as well as two legacy vehicles driving in
the opposite direction (see Fig. 4).

As a model of the Mobileye camera was not readily
available in Webots, we have created it. We analyzed real
data in order to achieve results faithful to reality. In addition
to the emulated Mobileye, we use simulated GPS and IMU
sensors for accurate localization of the sensing cars. A

Fig. 3. Software architecture in the ROS framework deployed on the two
experimental vehicles’ computers.

Fig. 4. Setup in the Webots simulator. The ego car (yellow) drives on a
straight road behind the cooperative car (white), while two non-cooperative
cars drive in the opposite direction.

supervisor controller is in charge of providing ground truth
data.

A software architecture very similar to the one shown in
Fig. 3 is used. Webots publishes data from sensors as ROS
topics. These topics correspond in type to the ones published
by real sensors. Therefore exactly the same implementation
of the cooperative tracking and fusion algorithm can be
used. One notable difference is that the whole software
(deployed in reality on two cars) runs in simulation on
a single computer, which simplifies time synchronization
between the two cooperating vehicles.

C. State and motion model

We model a car as a rectangle with constant width and
length (most cars are relatively similar in size and this model
fits them well). The state model suitable for car tracking uses
car’s position (x, y), velocity (vx, vy), orientation θ and turn
rate ω:

x = [x, y, vx, vy, θ, ω]
> (18)

The motion model predicts the evolution of the state
through time. The model of our choice is the constant
velocity and constant turn-rate, in which the input noise
exists on linear and rotational acceleration a and α.

D. Camera model

For this paper, we use Mobileye cameras. They are monoc-
ular systems with integrated algorithms for image processing
and object recognition. Limited details about the camera
system can be found in [17]. After processing each frame
using the software embedded in its chip, the camera sends
the data describing objects over the CAN bus in multiple
consecutive binary encoded messages. We synchronize all



messages related to a single image frame and decode them
to create a set Z of measurements z that relate to separate
objects present in that frame:

Z = ∪izi (19)

where
z = [x, y, θ]> (20)

is a measurement of a single object, and describes its center
point and orientation. The Mobileye camera can only detect
objects for which it was trained (such as, among others, cars,
trucks, and pedestrians). Other classes of objects or the raw
camera image are not available. It is important to mention
that our version of Mobileye camera only detects cars from
the front or from the back (cars facing sideways or under a
large angle are not detected). This greatly limits the choice
of a scenario. Missed detections and clutter are unavoidable,
and they are handled by the tracking algorithm.

In the absence of detailed camera specifications, the im-
portant tracking-related camera parameters have been deter-
mined experimentally. We compared the output of the camera
to a point cloud obtained by a lidar, and determined the useful
camera range to be 50 m. Objects beyond 50 m are only
sporadically detectable. We also found out that the accuracy
of estimated object distance decreases with increasing range,
and it is relatively reliable within 50 m from the camera. As
we will report below, the choice of the camera range was
further motivated by the available ground truth data. The
minimum distance at which the camera detects objects is
around 15 m. The camera FOV is stated to be 47 deg in [17].
After initial tests, however, we decided to use a symmetrical
FOV of 45 deg (from −22.5 to 22.5 deg).

During our experiments we noticed a significant bias
between the camera measurements and the ground truth.
Although the two cameras we used are identical, they were
initially calibrated on vehicles using the automatic calibra-
tion procedures, thus their calibration parameters could be
slightly different. We have therefore re-calibrated the output
of the two cameras for our scenario with respect to the lidar
ground truth data. We have determined that a second-order
polynomial function provides sufficiently good fit for the
longitudinal distance, while for the lateral distance and the
orientation only an offset is applied. In order to calibrate the
camera on the C-ZERO which has no lidars, its pose relative
to the other C-ZERO had to be calibrated first.

Observations collected during camera calibration are used
for emulating the sensor in Webots. We noticed that the noise
on longitudinal distance is not normally distributed. Instead,
for a stationary object, the camera return is typically constant,
but it includes a bias. The bias is nevertheless different for
different runs, which makes its complete removal through
calibration impossible. For our emulated camera we use a
linear noise model dependent on the longitudinal distance,
the slope of which changes for every simulated camera in
every run: the maximal bias emax is sampled at random from
a normal distribution with µ = 0 and σ = 1, and the added
noise is in the range ±emax from the ground truth value. As

a simplification for our filter, however, we assume that the
noise is Gaussian, which allows us to use a KF for the state
update. A normally distributed noise is added to the y and
θ camera returns, with σy = 0.1 m and σθ = 0.01 rad.

E. Localization

Although localization is not the focus of this paper, it is of
great importance for the functioning of the cooperative fusion
algorithm to have an accurate relative pose of the cooperative
vehicles with respect to the ego vehicle. In the absence of the
centimeter-level GNSS devices installed on both experimen-
tal vehicles, we tune the pose manually, by using the lidar
sensors mounted at the front of our ego vehicle, and matching
its point cloud to the CAD model of the Citroën C-ZERO.
For this reason, we are forced to keep the two sensing cars
stationary in our real-world experiments. In other words, we
consider the accurate localization to be a separate problem
and assume that it is available. The pose of the center of
vehicle C in the local frame of vehicle E is determined to be
(x, y, θ) = (15.45 m,−0.25 m,−0.0175 rad).

In our simulated setup we have accurate position and
orientation sensors. Thus we can afford to move the sensing
cars.

F. Ground truth for the real-world setup

In our real-world experimental setup, we do not have
accurate localization equipment which could provide ground
truth for the tracked vehicles in our scenario. Therefore, we
use lidar data to extract the ground truth, taking profit from
the fact that a lidar point is accurate to 0.1 m (one σ) and
that the experimentally determined accuracy of the Mobileye
camera is worse than that.

We extract the ground truth positions of the legacy vehicles
from the lidar point cloud. For each experimental run, we
determine the contours of the legacy vehicles by visualizing
the point cloud in the ROS tool rviz. Each ground truth set
contains at least 10 manually extracted sample points, and
vehicle positions in-between these sample points are linearly
interpolated.

The maximal distance of a detectable object in our setting
is around 70 m (objects at larger distances were occluded).
This is another reason to limit the range of the Mobileye
camera to 50 m, as the maximum range of the cooperative
system amounts to around 65 m (given the distance between
vehicles E and C).

G. Parameters

The tracking parameters were the same in all runs. The
maximum number of Gaussian components per filter Jmax
is limited to 100. The birth model for the GM-PHD filter
consists of only one Gaussian component. Its position is in
the center of the Mobileye camera’s FOV, the heading is
set to π rad, whereas the birth velocity and the turn rate
are set to zero. The Standard Deviation (SD) of the birth
component is 25 m (half of the sensor range) for its position,
π rad for the heading, 10 m/s for the speed, and 0.2 rad/s
for the turn rate. The rationale behind these values is that



a new object entering the sensing FOV is very likely to be
contained within one SD from the birth component mean.

The SD for the noise in the motion model is set to
1 m/s2 for the linear acceleration and 0.1 rad/s2 for the
rotational acceleration. The measurement noise is determined
empirically and is modeled as a Gaussian with SD σx =
0.5 m, σy = 0.3 m, and σθ = π

16 rad. The clutter model
uses a Poisson distribution with an expected cardinality
of 1 measurement per sensor return per surveillance area.
The E and C coordinate frames’ uncertainty (1σ) is set to
[0.5 m, 0.3 m, 0.1 m/s, 0.1 m/s, 0.0174 rad, 0.0174 rad/s]>.

The GM-PHD merging parameter is set to U = 10, and
a Gaussian component is pruned if its weight is less than
Tp = 10−5. The extraction threshold Te is set to 0.5. The
fusion distance parameter UF is empirically set to 30. The
probability of survival in the joint FOV is set to 0.99. The
maximal probability of detection is pmaxD = 0.9. The shape
of the object (tracked vehicles) is assumed to be rectangular,
with length of 3.5 m and width of 1.5 m.

IV. EXPERIMENTAL RESULTS

The experimental evaluation of the cooperative fusion
and tracking algorithm is performed on a real-world dataset
consisting of 15 distinctive runs. In each of the runs, cars
E and C were positioned at the same spot, while cars O1

and O2 were driven manually in the opposite direction at
the speed of approximately 20 km/h. In addition, a similar
scenario is designed in simulation, which demonstrates the
performance of the cooperative fusion when the cars E and
C move at 30 and 27 km/h, respectively. The two legacy cars
in simulation move at respective speeds of 21 and 26 km/h.
For the sake of comparison, for each run both C-GM-PHD
(includes cooperative fusion) and regular GM-PHD filter
(does not include cooperative fusion) were run on the ego
vehicle1.

Fig. 5 shows a trajectory of the car O1 obtained during
the first run. When O1 is only observed by the car C, the es-
timation uncertainty is large as the uncertainty of the relative
localization between cars E and C needs to be integrated into
the track estimation uncertainty. Once the O1 enters the FOV
of the car E , the uncertainty reduces progressively. Around
x = 30 m we observe that, as expected, the track estimate
gets closer to the E measurements, since its uncertainty
is significantly smaller than the uncertainty of the track
received from the car C (it does not contain the localization
uncertainty). In the case when no cooperative fusion is used
(Fig. 5 bottom), the track uncertainty only depends on the
motion and sensor uncertainty, as the tracking is performed
in the local frame of the car E .

The rest of the results use the Optimal Sub-Pattern As-
signment (OSPA) metric [18] for performance evaluation.
OSPA is commonly used for evaluation of multi-object
tracking performance. It consists of two components: the
first component reflects the average error in position across

1A video showing the experiments can be viewed at
http://disal.epfl.ch/research/NetworkedIV

t [s]
0 5 10 15 20 25

O
SP

A

0

2

4

6

C-GM-PHD
GM-PHD

O1 enters FOV

O2 enters FOV

O1 leaves FOV

O2 leaves FOV

Fig. 6. OSPA over time for a single run using real-world data. Performance
of the cooperative filter is compared against ground truth in the union of
FOVs of the cars E and C, while for non-cooperative filter only ground truth
objects in the FOV of the car E are considered.

all tracked objects, whereas the second component reflects a
cardinality error (mismatch between the number of objects
in the ground truth and in the estimated object set). We set
the position sensitivity parameter p = 1, i.e., we compute
the position error using the Euclidean distance between the
center of the estimated and the ground truth object). The
cut-off parameter for cardinality error penalties is set to
c = 10.

The OSPA performance for the first run is shown in Fig. 6.
For the cooperative version of the filter, the ground truth
objects are considered in the union of the two vehicles’
FOVs. On the other hand, to enable a fair comparison, for the
non-cooperative filter only ground truth objects in the FOV
of the ego car are taken into account. At the beginning, only
vehicle C is tracked, until the car O1 enters the FOV. Spikes
indicate cardinality penalties. Wrong cardinality estimates
can be due to delay in object birth or death, loosing track
of objects for short periods of time or counting twice
the same object for short amounts of time. In Fig. 6, all
spikes represent birth/death delays. This leaves us with an
impression that the performed fusion weight optimization
allows for a more robust algorithm performance compared to
[10], in a sense that the algorithm loses track of the objects
less frequently.

Statistics of tracking error aggregated over 15 runs are
shown using the box plot in Fig. 7. We can see that a
median error of the cooperative filter is slightly lower than its
non-cooperative counterpart. However, their performance is
very similar. The absence of statistically significant improve-
ment of the cooperative filter in the intersecting FOV can be
attributed to the conservative nature of the GCI method. It
is important to note that here comparison is performed only
in the FOV of the car E , as the non-cooperative filter cannot
track objects outside of this FOV. Moreover, the localization
uncertainty plays an important role in the accuracy of the
cooperative tracking algorithm, as the uncertainty of E and
C coordinate frames gets integrated in the track estimation
uncertainty. In Fig. 5 we can see that it takes a significant
amount of time for the uncertainty to be reduced when
the cooperative fusion is employed. Consequently, it is not
unexpected that the cooperative filter tracks objects outside
of the ego car’s FOV with less accuracy than the objects in
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Fig. 5. Trajectory of the car O1 during the first run of the real-world experimental produced by the C-GM-PHD filter (top) and the GM-PHD filter
(bottom). O1 starts from far away (70 m) and approaches the tracing vehicles. Black crosses indicate the estimated track positions. Vehicle rectangle
including its orientation is showed every 10 filter update cycles (rectangles have been scaled down for clarity). Ellipses in black indicate one standard
deviation for (x, y) uncertainty. Ground truth trajectory sample points are shown using green asterisks, and interpolated trajectory is shown in green dots.
Ground truth does not contain orientation information. Blue and red arrows represent Mobileye measurements (position and orientation). Every second
measurement is shown to avoid the image being very cluttered. Note the difference between x and y spatial scales.
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Fig. 7. Comparison of OSPA performance accumulated during 15 experi-
ment runs between the cooperative and non-cooperative filter.

the ego FOV, thus comparing the accuracy of the two filters
over the union of the FOVs would be unfair. We believe
that cooperative localization techniques, such as map reg-
istration, can be beneficial, as they can significantly reduce
the coordinate frame uncertainty. With smaller uncertainty of
the received intensity, the error and uncertainty of the fused
intensity should decrease.

So far, all results refer to the real-world experiments, in
which the two sensing cars are static. Fig. 8 shows the OSPA
metric for a simulated experiment. We remind the reader that,
in this scenario, the sensing cars move at different speeds. We
observe the similarity in tracking performance between the
simulated and the real-world experiments. The OSPA error
is slightly larger in the simulated experiment. The reason for
this could lie in the uncertainty introduced by the motion of
the sensing cars, or in the noise of the emulated Mobileye
camera.
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Fig. 8. OSPA over time for one run of the C-GM-PHD filter in the Webots
simulator.

V. CONCLUSION AND OUTLOOK

In this paper, we presented a real system implementa-
tion of our Cooperative GM-PHD filter [10], which we
extended with a fusion weight optimization routine. We
evaluated it using real vehicles and automotive-grade sensors
in real-world settings. The scenario included two stationary
sensing vehicles (Citroën C-ZERO) called the cooperative
and the ego vehicle, as well as two non-cooperative legacy
vehicles. The cooperative vehicle ran the GM-PHD filter and
it used the Mobileye camera for tracking. The ego vehicle
also had a Mobileye camera, but it additionally fused the
PHD intensity it received from the cooperative vehicle with
its own PHD intensity (using the C-GM-PHD filter). Results
were as well generated for the cases when the ego vehicle did
not fuse the remote information. We compared the estimated
trajectory of one legacy vehicle in absence and presence of



cooperation between the sensing vehicles. Results showed a
clear added value of cooperation resulting in an increased
range and FOV. We have further compared the performance
obtained during 15 experimental runs to the ground truth
data obtained from the accurate lidar sensor. The cooperative
fusion algorithm was validated by comparing its performance
with the non-cooperative tracking algorithm.

We reproduced the aforementioned scenario in simulation,
with the difference that the two sensing vehicles were
no longer stationary. Our algorithm showed similar perfor-
mance, provided that the sensing vehicles are endowed with
accurate localization systems.

As noted already, one of the biggest assumptions of this
work is that accurate relative localization exists between
the ego and the cooperative vehicle. In the absence of the
centimeter-level localization equipment on both real vehicles,
in this paper we had to solve the localization manually
using the lidar point cloud. To overcome this problem,
we plan to look into methods that can provide accurate
relative positioning, such as feature-based localization and
map matching. This would in turn allow us to carry out
experiments in real-world scenarios where all vehicles move.

Moreover, in this paper a physical communication link
between vehicles was only used to synchronize the time of
in-vehicle computers. To make this aspect realistic, we intend
to establish real-time sharing of PHD intensities between
vehicles, execute the cooperative fusion algorithm online,
and assess the tracking performance in scenarios where the
communication lag varies with the distance between vehicles
and amount of data communicated per unit of time.
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