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ABSTRACT
Enterprise databases use storage tiering to lower capital and oper-
ational expenses. In such a setting, data waterfalls from an SSD-
based high-performance tier when it is “hot” (frequently accessed)
to a disk-based capacity tier and finally to a tape-based archival
tier when “cold” (rarely accessed). To address the unprecedented
growth in the amount of cold data, hardware vendors introduced
new devices named Cold Storage Devices (CSD) explicitly targeted
at cold data workloads. With access latencies in tens of seconds and
cost/GB as low as $0.01/GB/month, CSD provide a middle ground
between the low-latency (ms), high-cost, HDD-based capacity tier,
and high-latency (min to h), low-cost, tape-based, archival tier.

Driven by the price/performance aspect of CSD, this paper makes
a case for using CSD as a replacement for both capacity and arch-
ival tiers of enterprise databases. Although CSD offer major cost
savings, we show that current database systems can suffer from se-
vere performance drop when CSD are used as a replacement for
HDD due to the mismatch between design assumptions made by
the query execution engine and actual storage characteristics of
the CSD. We then build a CSD-driven query execution framework,
called Skipper, that modifies both the database execution engine
and CSD scheduling algorithms to be aware of each other. Us-
ing results from our implementation of the architecture based on
PostgreSQL and OpenStack Swift, we show that Skipper is capable
of completely masking the high latency overhead of CSD, thereby
opening up CSD for wider adoption as a storage tier for cheap data
analytics over cold data.

1. INTRODUCTION
Driven by the desire to extract insights out of data, businesses

have started aggregating vast amounts of data from diverse data
sources. Emerging application domains, like Internet-of-Things,
are expected to exacerbate this trend further [18]. As data stored
in analytical databases continues to grow in size, it is inevitable
that a significant fraction of this data will be infrequently accessed.
Recent analyst reports claim that only 10-20% of data stored is
actively accessed with the remaining 80% being cold. In addition,
cold data has been identified as the fastest growing storage segment,
with a 60% cumulative annual growth rate [17, 19, 42].

As the amount of cold data increases, enterprise customers are
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increasingly looking for more cost-efficient ways to store data. A
recent report from IDC emphasized the need for such low-cost stor-
age by stating that only 0.5% of potential Big Data is being an-
alyzed, and in order to benefit from unrealized value extraction,
infrastructure support is needed to store large volumes of data, over
long time duration, at extremely low cost [17].

To reduce capital and operational expenses when storing large
amounts of data, enterprise databases have for decades used stor-
age tiering techniques. A typical three-tier storage hierarchy uses
SSD/DRAM to build a low-latency performance tier, SATA HDD
to build a high-density capacity tier, and tape libraries to build a
low-cost archival tier [42].

Considering the cold data proliferation, an obvious approach for
saving cost is to store it in the archival tier. Despite the cost sav-
ings, this is unfeasible due to the fact that the tape-based archival
tier is several orders of magnitude slower than even the HDD-based
capacity tier. As enterprises need to be able to run batch analytics
over cold data to derive insights [18], the minute-long access la-
tency of tape libraries makes the archival tier unsuitable as a storage
medium for housing cold data.

In the light of limitations faced by the archival tier, storage hard-
ware vendors and researchers have started explicitly designing and
developing storage devices targeted at cold data workloads [36,40,
41]. These devices, also referred as Cold Storage Devices (CSD),
pack thousands of cheap, archival-grade, high-density HDD in a
single storage rack to achieve very high capacities (5-10PB per
rack). The disks are organized in a Massive-Array-of-Idle-Disks
(MAID) configuration that keeps only a fraction of HDD powered
up at any given time [7].

CSD form a perfect middle ground between the HDD-based ca-
pacity tier and tape-based archival tier. Due to the use of cheap,
commodity HDD and power-reduction provided by the MAID tech-
nology, they are touted to offer cost/GB comparable to the tradi-
tional tape-based archival tier. For instance, Spectra’s ArticBlue
CSD is reported to reduce storage cost to $0.1/GB [41], while Sto-
riant claims a total cost of ownership (TCO) as low as $0.01/GB per
month [29]. Due to the use of HDD instead of tape, they reduce the
worst-case access latency from minutes to mere seconds–the spin
up time of disk drives. Thus, performance-wise, CSD are closer to
the HDD-based capacity tier than the archival tier.

Motivated by the price aspects of CSD, in this paper we examine
how CSD should be integrated into the database tiering hierarchy.
In answering this question, we first make the case for modifying the
traditional storage hierarchy by adding an entirely new tier referred
to as the Cold Storage Tier (CST). We show that enterprises can
save hundreds to millions of dollars by using CST to replace both
HDD-based capacity and tape-based archival tiers.

We then present an investigation of the performance implications
of using CSD as a replacement for the traditional capacity tier of
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enterprise databases. We first show that current database systems
can suffer from severe performance hit when CSD are used as a
replacement for the capacity tier due to the mismatch between de-
sign assumptions made by the query execution engine and actual
storage characteristics of the CSD.

Then, we introduce Skipper – a new CSD-targeted, query exe-
cution framework that modifies both the database execution engine
and CSD scheduling algorithm to be aware of each other and op-
erate towards achieving a common goal–masking the high access
latency of CSD. In particular, Skipper employs an adaptive, CSD-
driven query execution model based on multi-way joins which are
tailored for out-of-order data arrival. A detailed evaluation shows
that this execution model coupled with efficient cache management
and CSD I/O scheduling policies can mask the high latency over-
head of CSD and provide substantially better performance and scal-
ability compared to the traditional database architecture.

Our contributions are as follows:

• A cost and performance analysis which demonstrates that the
CSD-based cold storage tier can be a substitute for both the
capacity and archival tier in enterprise databases.

• A CSD-targeted, cache-controlled, multijoin algorithm and
associated cache eviction policy that enables adaptive, push-
based query execution under out-of-order data arrival at low
cache capacities.

• A query-aware, ranking-based I/O scheduling algorithm for
CSD that maximizes efficiency and maintains fairness.

• Full system implementation and evaluation of the Skipper
framework based on PostgreSQL and OpenStack Swift that
shows that Skipper on CSD approximates the performance
of a classical query engine when running on the HDD-based
capacity tier within 20% on average.

2. BACKGROUND
In this work, we frame our problem in the context of a modern,

multitenant, virtualized enterprise data center. In such a scenario,
tenants deploy databases in virtual machines (VM) which run on
virtualized compute servers. Each VM is backed by a virtual hard
disk (VHD) that provides storage for both the guest OS image and
database files. The VHD itself is stored as a file or a logical volume
on a shared storage service that runs on a cluster of storage servers.
For instance, enterprise data centers use OpenStack’s Nova service
to deploy VM and Cinder, a scale-out block storage service, for
storing their virtual hard disks. Similarly, Amazon hosts database
(RDS) VM in EC2 and provides block storage for these VM using
Elastic Block Store (EBS).

2.1 Database storage tiering
Most modern enterprise data centers today use a four-tier storage

hierarchy (performance, capacity, archival, backup) implemented
using three storage types (online, nearline, and offline) as shown
in Figure 1. The latency-critical performance tier, typically imple-
mented using DRAM, SSD, or high-performance 15k-RPM SCSI
HDD, and the high-density capacity tier, implemented using SATA
HDD, are managed by block storage services like Amazon EBS.

In contrast, the archival tier, based on robotic tape libraries (VTL)
or optical jukeboxes, and backup tier, based on offline tape car-
tridges or optical drives, are never used for storing randomly ac-
cessed, queryable data. Thus, these devices are managed using a
separate service that exposes storage as an object-based blob store.
For instance, OpenStack provides Swift, an object-storage service
that can be used to store and retrieve objects over a RESTful HTTP
interface; Oracle’s Storage Tek tape libraries have been extended to
expose storage via the Swift interface [30].

Figure 1: Storage tiering for enterprise databases

The setup described above is typical of modern enterprise data
centers and both block and object storage services are shared across
several tenants.

Cold data in the archival tier. The proliferation of cold data
necessitates low-cost data storage techniques. Given that databa-
ses already have a tiered storage infrastructure in place, an obvious
low-cost solution to deal with this problem is to store cold data in
either the capacity tier or the archival tier. Table 1 and Figure 2
show the cost of building a 100-TB database using various tiered
storage strategies as reported by a recent analyst study [42]. The
one-tier storage strategy uses only a single storage device for hous-
ing all data. The two-tier strategy uses 15k-RPM SCSI disks as the
performance tier, and 7,200-RPM SATA disks as the capacity tier
with no archival tier. The three-tier strategy spreads data across the
two HDD tiers and a tape-based archival tier. Finally, the four-tier
strategy uses an SSD to hold the hottest data items in addition to
the remaining tiers.

Clearly, any strategy that uses the tape-based archival tier for
storing data provides substantial reduction in cost. Storing all data
on tape is unsurprisingly the cheapest option that provides a 20×
reduction in cost compared to the All-SATA strategy that uses the
capacity tier exclusively. Similarly, a disk–tape three-tier strategy
that uses the archival tier provides a 2× cost reduction compared
to a disk-only two-tier strategy and 1.25× reduction compared to
the All-SATA strategy. Note here that savings quickly add up as
the database size increases further, motivating the need to store as
much cold data as possible in the archival tier.

Application-hardware mismatch. Despite the cost benefits,
cold data cannot be stored in the archival due to mismatch between
application demands and hardware capability. The archival tier is
typically used to store only rarely accessed compliance and backup
data. As the expected workload is predominantly sequential writes
with rare reads, the high access latency of tape drives is tolerable.
Using the archival tier to store cold data, however, changes the ap-
plication workload, as analytical queries might be issued over cold
data to extract insightful results [18]. As a nearline storage device
with access latency at least four orders of magnitude larger than the
slowest online storage device (HDD), tapes are unable to handle
this workload.

Thus, today, databases use the performance tier for storing data
accessed by latency-sensitive real-time queries, and the capacity
tier for storing data accessed by latency-insensitive batch queries.
The archival tier is never used directly during query execution, but
only during compliance verification or online media failure.

2.2 Cold storage devices
Over the past few years, storage hardware vendors and researchers

have become cognizant of the gap between the HDD-based capac-
ity tier and the tape-based archival tier. This has led to the emer-
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SSD (P) 15k-HDD (P) 7.2k-HDD (C) Tape (A)
Cost/GB $75 $13.5 $4.5 $0.2
2-tier - 35% 65% -
3-tier - 15% 32.5% 52.5%
4-tier 2% 13% 32.5% 52.5%

Table 1: Acquisition cost in $/GB and fraction of data stored in
each device type for various tiering configurations as reported by
[42]. The table also shows the tier corresponding to each device,
with P standing for performance, C for capacity, and A for archival
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Figure 2: Cost benefits of storage tiering

gence of a new class of nearline storage devices explicitly targeted
at cold data workloads. These devices, also referred as Cold Stor-
age Devices (CSD), have three salient properties that distinguish
them from the tape-based archival tier.

First, they use archival-grade, high-density, Shingled Magnetic
Recording-based HDD as the storage media instead of tapes. Sec-
ond, they explicitly trade off performance for power consumption
by organizing hundreds of disks in a MAID configuration that keeps
only a fraction of HDD powered up at any given time [7]. Last, they
right-provision hardware resources, like in-rack cooling and power
management, to cater to the subset of disks that are spun up, reduc-
ing further operational expenses.

Although CSD differ in terms of cost, capacity, and performance
characteristics, they are identical from a behavioral stand point–
each CSD is a MAID array in which only a small subset of disks is
spun up and active at any given time. For instance, Pelican [40]
packs 1,152 SMR disks in a 52U rack for a total capacity of 5
PB. However, only 8% of disks are spun up at any given time due
to restrictions enforced by in-rack cooling (sufficient to cool only
one disk per vertical column of disks) and a power budget (enough
power to keep only one disk in each tray of disks spinning). Simi-
larly, each OpenVault Knox [36] CSD server stores 30 SMR HDDs
in a 2U chassis of which only one can be spun up to minimize the
sensitivity of disks to vibration. The net effect of these limitations
is that CSD enforce strict restrictions on how many and which disks
can be active simultaneously (referred to as a disk group).

All disks within a group can be spun up or down in parallel.
Access to data in any of the disks in the currently spun up storage
group can be done with latency and bandwidth comparable to that
of the traditional capacity tier. For instance, Pelican, OpenVault
Knox, and ArticBlue are all capable of saturating a 10-Gb Ethernet
link as they provide between 1-2 GB/s of throughput for reading
data from spun-up disks [36, 40, 41].

However, accessing data on a disk outside the currently active
group requires spinning down active disks and loading the next
group by spinning up the new set of disks. We refer to this op-
eration as a group switch. For instance, Pelican takes eight seconds
to perform the group switch. Thus, the best case access latency of

CSD is identical to capacity tier while the worst-case access latency
is two orders of magnitude higher.

Given such high access latencies, CSD, similar to tape drives
and other nearline storage devices, cannot be used as a primary
data store for performance critical workloads. Thus, they have also
been integrated in data centers using an object-based blob storage
service. For instance, both Spectra’s ArcticBlue CSD and Pelican
provide a key–value interface for storing GB-sized data blobs [40].

3. THE CASE FOR COLD STORAGE TIER
The price/performance characteristics of CSD raise an interest-

ing question: How should CSD be integrated into the database tier-
ing hierarchy? Although an obvious approach involves using CSD
as a faster archival tier, enterprise databases could achieve further
cost reduction by using CSD to build a new storage tier that sub-
sumes the roles of both the capacity and archival tier. We refer to
this new storage tier as the cold storage tier (CST). With such an
approach, the three-tier hierarchy that included performance, ca-
pacity, and archival tiers would be reduced to a two-tier hierarchy
with 15k RPM disks in the performance tier and CSD in the cold-
storage tier. Similarly, the four-tier hierarchy would be reduced to
a three-tier hierarchy with SSD and 15k RPM disks in the perfor-
mance tier and CSD in the cold storage tier.

3.1 Price implications of CST
Figure 3 shows the cost reduction achievable by doing this re-

placement. For performance and capacity tiers the same pricing
as listed in Table 1 has been used, while for CSD we use three
cost/GB values, namely $0.1/GB (ArcticBlue CSD pricing [25]),
$0.2/GB (assuming CSD costs same as tape), and $1/GB (hypo-
thetical worst-case pricing).

As can be seen, the cost reductions are substantial. At $0.1/GB,
using a single cold storage tier instead of separate capacity and
archival tiers reduces cost by a factor of 1.70×/1.44× for three/four-
tier installations. At $0.2/GB, the cold storage tier provides a cost
saving of 1.63×/1.40×. Even in the worst case ($1/GB), the cold
storage tier provides 1.24×/1.17× cost reduction. In terms of ab-
solute savings, these values translate to hundreds of thousands of
dollars for a 100TB database, and tens of millions of dollars for
larger PB-sized databases.

3.2 Performance implications of CST
Despite its potential, CSD and the CST they enable will be useful

only if databases can run their workloads directly on data stored in
CSD. Otherwise, CSD are no better than tape libraries and will be
relegated to the role of a fast archival tier. To understand the impli-
cations of using a CSD-based CST as a substitute for the capacity
tier, one needs to quantify the impact of group switch latency on
the database performance and scalability.

Perils of analytics on CSD. In the best case, read requests from
the database are always serviced from a HDD that is spun up. In
such a case, there would be no performance difference between us-
ing a CSD and the traditional capacity tier. However, in the patho-
logical case, every data access request issued by the database would
incur a group switch delay and cripple performance.

Unfortunately, the average case is more likely to be similar to
the pathological case due to two assumptions made by traditional
databases: 1) storage subsystem has exclusive control over data
allocation, 2) underlying storage media supports random accesses
with uniform access latency. In a virtualized data center that uses
CSD as a shared service, both these assumptions are invalidated
leading to suboptimal query execution.
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Figure 3: Cost savings of CSD as a replacement for the HDD-based
capacity tier

In a virtualized datacenter, a CSD usually stores data correspond-
ing to several hosted databases by virtualizing available storage be-
hind an object interface. Thus, each individual database instance
has no control over data layout on the CSD. The CSD might store
data pages corresponding to different relations (or even a single re-
lation) in different disk groups due to several reasons. For instance,
a CSD might decide to spread out data across different disk groups
for load balancing. A set of disks could fail in a group causing the
CSD to temporarily stop allocating data in that group until recovery
completes, or data could arrive in increments, which could lead to
different increments being stored in different disk groups. The lack
of control over data layout implies that the latency to access a set
of relations depends on the way they are laid out across groups.

Moreover, the CSD services requests from multiple databases
simultaneously. Thus, even if all data corresponding to a single
database is located in a single group, the execution time of a single
query is not guaranteed to be free of group switches. This is due
to the fact that the access latency of any database request depends
on the currently loaded group, which depends on the set of requests
from other databases being serviced at any given time.

Benchmarking CSD. To quantify the overhead of group switches,
we setup an experimental testbed that emulates a virtual enterprise
data center fully described in Section 5.1. Five servers in our testbed
act as compute servers. Each server hosts an independent Post-
greSQL database instance (client) running within a VM. We have
chosen a one-DBMS-per-VM configuration to isolate performance
of each client and avoid any possible resource contention across
clients. OpenStack Swift, an object store deployed as a RESTful
web service and extended with a custom plug-in, runs on a sixth
server acting as our emulated, shared CSD.

For our benchmark, each PostgreSQL instance services TPC-H
queries on a 50GB TPC-H dataset. Only the database catalog files
are stored in the VM’s VHD. The actual binary data is stored in
Swift as objects, where each object corresponds to a 1GB data seg-
ment, and fetched on demand during execution time. Each client
is allotted its own disk group, and all data from a client is stored
within its allotted group. Thus, if only one client were using the
CSD, it could retrieve objects without any group switches.

Our objective is to measure 1) the performance impact of run-
ning many PostgreSQL clients on a shared CSD, and 2) the per-
formance sensitivity to the CSD access latency. To this end, we
run two experiments. In both experiments, we use Q12 from the
TPC-H benchmark as our workload. This is a two-table join over
lineitem and orders, the two largest tables.

For our first experiment, we issue Q12 to all PostgreSQL in-
stances simultaneously (each client with its own data) and measure
the observed execution time of each instance. We repeat the exper-
iment 5 times, each time, increasing the number of clients by one.
Thus, Swift services GET requests from one PostgreSQL instance
during the first run, two instances during the second run, and so on.
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Figure 5: Latency sensitivity

For our second experiment, we fix the number of clients at 5, and
perform 5 iterations of Q12, each time varying the group switch
time in Swift from 0 to 20 seconds in 5-second increments.

Results. Figure 4 shows the average query execution time as
we increase the number of clients with a 10-second group-switch
latency when the storage target is either a CSD or a HDD-based
capacity tier. The results for the HDD-based case were obtained
by configuring the Swift middleware’s metadata to map the data
of all clients to a single group, thereby eliminating group switches
completely. As can be seen, PostgreSQL-on-CSD exhibits poor
scalability as the average execution time increases proportional to
the number of clients.

This performance drop is due to the fact that each PostgreSQL
client requests and processes data one segment at a time in a very
specific order. As each client’s data is on a different group, Swift
processes the GET requests by switching to each group one by one
and returning back the segment from that group. Thus, two con-
secutive requests from any PostgreSQL client are separated by five
group switches leading to a significant increase in overall execution
time. In fact, if we have C clients, each processing a query involv-
ing D data segments stored on a CSD with a group switch time of
S, the total execution time of the query would be S × C × D. Any
increase of one of the three parameters results in a proportional
increase in execution time. This also explains why PostgreSQL
suffers from extremely high sensitivity to the group switch latency
as shown by the 6× increase in execution time with a group switch
latency of 20 seconds (shown in Figure 5).

Furthermore, the 6× increase in execution time we report is only
an optimistic estimate of the performance impact of running que-
ries on CSD. Back-of-the-envelope calculations indicate that Post-
greSQL would suffer from a 10-100× increase in execution time
compared to the traditional case that employs HDD in the capacity
tier, when the CSD group switch latency, number of segments, or
number of clients increase. Given such performance implications,
it is unclear if the CSD can be used to store even cold data, let alone
replace the HDD-based capacity tier. Thus, the only way CSD can
be integrated into the enterprise database tiering hierarchy is as a
replacement for the archival tier. Unfortunately, such an integration
misses out cost-saving opportunities provided by CSD.

3.3 A case for CSD-driven query execution
Clearly, exploiting the cost benefits of CSD while minimizing

the associated performance trade off requires eliminating unnec-
essary group switches. For instance, consider an example layout
shown in Table 2, where three relations A, B and C, each containing
two objects (data segments), are stored across three groups denoted
as g1, g2 and g3 (e.g., A.2 denotes an object of relation A stored in
group 2). In the optimal case, all three tables can be retrieved from
the CSD with just two group switches. However, as the database
has no control over data layout or I/O scheduling, the only way of
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Group Table objects
g1 A.1, B.1, C.1

g2 A.2, B.2

g3 C.3

ID Subplans
1 A.1,B.1,C.1

2 A.1,B.2,C.1

3 A.2,B.1,C.1

4 A.2,B.2,C.1

5 A.1,B.1,C.3

6 A.1,B.2,C.3

7 A.2,B.1,C.3

8 A.2,B.2,C.3

Table 2: Data layout and Execution subplans

achieving such an optimal data access is to have the database issue
requests for all necessary data upfront so that the CSD can batch
requests and return data in an order that minimizes the number of
group switches. Thus, the order in which database receives data,
and hence the order in which query execution happens, should be
determined by the CSD in order to minimize the performance im-
pact of group switching.

Unfortunately, current databases are not designed to work with
such a CSD-driven query execution approach. Traditionally, data-
bases have used a strict optimize-then-execute model to evaluate
queries. The database query optimizer uses cost models and statis-
tics gathered to determine the optimal query plan. Once the query
plan has been generated, the execution engine then invokes various
relational operators strictly based on the generated query plan with
no runtime decision making. This results in pull-based query exe-
cution where the database explicitly requests segments (i.e., pulls)
in an order determined by the query plan. For instance, continuing
the previous example, PostgreSQL might request all objects of ta-
ble C first, followed by B, and finally A. This pull-based execution
approach is incompatible with the CSD-driven approach, as the op-
timal order chosen by the CSD for minimizing group switches is
different from the ordering specified by the query optimizer. Even
more, as pull-based execution is oblivious to data layout, it will
invariably cause many more group switches leading to poor perfor-
mance when CSD is used as the capacity tier. For example, fetching
relations C, B, A, in that order leads to 5 switches instead of 2.

4. QUERY PROCESSING ON CSD
Having described the shortcomings of the naive approach to the

DB-CSD integration, we now present Skipper, a query execution
framework that enables SQL analytics directly on data stored in
CSD. As CSD will not be able to service workloads that have strict
latency requirements or require fine-grained read/write access to
random disk blocks, CSD is an unsuitable storage medium for OLTP
installations. Thus, Skipper’s target application domain is long run-
ning batch analytics with write-once-read-many workloads.

Figure 6 shows the components that constitute the Skipper ar-
chitecture. As before (Section 3.2), each PostgreSQL instance runs
within a VM, is allotted a fixed amount of memory, stores only
catalog information in the VHD, and uses the CSD as the storage
tier. To address the pull-based execution problem, each database
instance now uses a CSD-driven, cache-aware, multi-way join al-
gorithm (MJoin) to perform efficient out-of-order query execution.
In this paper we focus on join queries, since scans could naturally
be serviced in an out-of-order fashion.

The second component, OpenStack Swift, our CSD, is shared
across all the tenants, and uses an I/O scheduler that coordinates
accesses to data stored in different storage groups. Each database
instance tags each request with a query identifier to make the CSD
workload aware. The CSD uses this information to implement a
novel rank-based, query-aware scheduling algorithm that balances
fairness and efficiency across tenants.

Figure 6: Skipper architecture

In addition to the database and CSD, Skipper introduces a third
component, referred to as the client proxy. It is a daemon process
that is collocated with each PostgreSQL instance in all VM and
coordinates communication between MJoin and Swift.

Having described a high-level overview of the Skipper architec-
ture, we now discuss each component in more detail.

4.1 CSD-driven, cache state-aware MJoin
Skipper performs a CSD-driven out-of-order execution of que-

ries by building on recent work done in Adaptive Query Processing
(AQP) [9]. AQP techniques were designed to deal with stream-
ing data sources in the Internet domain that pose three issues to
the traditional database architecture: 1) unpredictable variations in
data access latency, 2) non-repeatable access to data, and 3) lack of
statistics or stale statistics about data. In order to overcome these is-
sues, AQP techniques abandon the traditional pull-based, optimize-
then-execute model in favor of out-of-order execution [3, 16] and
runtime adaptation [2, 4, 45].

Multiway-Join [45] is one such AQP technique that enables out-
of-order execution by using an n-ary join and symmetric hashing
to probe tuples as data arrives, instead of using blocking binary
joins whose ordering is predetermined by the query optimizer. Un-
der out-of-order data arrival, the incremental nature of symmetric
hashing requires MJoin to buffer all input data, as tuples that are yet
to arrive could join with any of the already-received tuples. Thus,
in the worst case scenario of a query that involves all relations in
the dataset, the MJoin buffer cache must be large enough to hold
the entire data set. This requirement makes traditional MJoin inap-
propriate for our use case as having a buffer cache as large as the
entire data set defeats the purpose of storing data in the CSD.

Skipper solves this problem by redesigning MJoin to be cache
aware. Our cache-aware MJoin implementation splits the tradi-
tional monolithic MJoin operator into two parts, namely, the state
manager, and the join operator.

Algorithm 1 presents the pseudo-code of the MJoin state man-
ager. At the beginning of execution, state manager retrieves infor-
mation about all objects (segments) across all tables that are nec-
essary for evaluating a query. This information is typically stored
as part of the DBMS’ catalog. The state manager uses this infor-
mation to track query progress by building subplans. Subplans are
disjoint parts of query execution that can proceed independently
and produce query results. For instance, Table 2 shows the set of
subplans that would be generated for a query that joins tables A, B
and C, each of which has two segments. Each combination of each
relation segment makes a subplan. The state manager creates all
such subplans and tags them as pending execution.

After generating subplans, the state manager issues requests for
all objects needed for executing the query and waits to receive any
of the requested objects. Upon the arrival of an object, the state
manager checks to see if enough cache capacity is available to
buffer the new object. If so, the state manager builds appropri-
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Algorithm 1: MJoin: State manager algorithm

Input: Q: query, cache size: cache size
Output: R: result tuples
// Initialization

cache = alloc(cache size)
issue queue = readObjectsFromCatalog(Q)
pending spl = makeSubplans(issue queue)

while issue queue �= NULL and pending spl �= NULL do
SwiftGetObjects(issue queue)
issue queue = NULL

while swi f t ob j = ReceiveObjectFromSwift() do
if inPending(swift obj, pending spl) then

if cacheIsFull(cache, swift obj) then
dropped=cacheEvict(cache, swi f t ob j)
if inPending(dropped, pending spl) then

issue queue =addToQueue(dropped)

addObjectToCache(swi f t ob j)
runnable =readySubplans(cache, pending spl)
if runnable �= NULL then

R+=joinExecute(runnable)
movePendingToExecuted(runnable)

return R

ate hash tables based on the join conditions and projection clauses
in the query, and populates the hashtable using tuples from the new
object. If the cache is full, the state manager uses the cache eviction
algorithm described in Section 4.2 to pick a target object and frees
space by dropping its hashtable. If the evicted object takes part in
any pending subplan, a request for the object reissue is appended
to the queue of requests that will be reissued in the next cycle (i.e.,
upon completing all pending requests issued previously).

Next, the state manager checks if there are any subplans that can
proceed with execution based on the current cache state. Subplans
are moved into runnable state when all objects comprising them
are present in the database cache. Should that be the case, those
subplans are executed by triggering join execution. The n-ary join
operator in itself is stateless. The state manager instructs the join
operator to probe the set of hashtables corresponding to the objects
being joined. Once the actual join operation is completed, the sub-
plan moves into executed state.

This process repeats until all requested objects have been re-
ceived. At that point, if there are pending subplans left, the state
manager reissues requests only for those objects necessary to exe-
cute the pending subplans and continues execution until no further
subplans are left.

4.2 Cache management
When operating under limited cache capacity, MJoin might need

to evict previously fetched objects in order to accommodate new
arrivals. If such an evicted object is needed by a pending sub-
plan, it will be refetched again from the CSD. As repeated refetch-
ing can deteriorate performance, we need a cache replacement al-
gorithm that minimizes the number of reissues. It is well-known
that the offline problem of determining an optimal order for fetch-
ing/evicting disk pages for performing a two-table join, given lim-
ited main memory, with the goal of minimizing the number of disk
I/O, is NP-complete [27]. In our case, the order in which data ar-
rives is controlled by the CSD, and can change dynamically de-
pending on data layout and concurrent requests from other clients.
Thus, designing an optimal online eviction algorithm is impossi-
ble given that the order of data arrival is non-deterministic even
across two different executions of the same query. In designing our

caching algorithm, we opted for greedy heuristics that could ex-
ploit the fact that the MJoin state manager has full visibility of both
cache contents and pending subplans.

Maximal number of pending subplans. Our first algorithm
was based on the intuition that it is beneficial to prioritize objects
that participate in a large number of pending subplans over less
popular ones. We illustrate this policy with an example. Consider
the example configuration shown in Table 2. Let us assume that we
have (A.1, B.1, A.2, C.3) stored in our cache of capacity 4 and we
have already processed subplans <A.1, B.1, C.3> and <A.2, B.1,
C.3>. When the next object arrives, we need to decide if it should
be cached, and if so, pick an eviction candidate for replacement.

Assuming C.1 arrives next, if we count the total number of pend-
ing subplans per object, we get 4 for C.1, 3 for A.1 and A.2, and
2 for each B.1 and C.3. Thus the algorithm would consider B.1
and C.3 as viable eviction candidates. If the algorithm picks C.3
as the eviction candidate, C.1 would be accepted and MJoin can
make progress by executing new subplans. However, should the
algorithm pick B.1 for eviction, MJoin would have been unable to
proceed with any of the subplans as there would be no objects be-
longing to table B.

Maximal progress. Our preliminary results highlighted this prob-
lem and provided us the insight that evicting objects just based on
the total number of pending subplans is impractical especially at
low cache capacities. Thus, we designed a new progress-based
cache management algorithm that picks as eviction target the object
that participates in the least number of executable subplans given
the current cache state and the newly arriving object.

Continuing the previous example, the number of executable sub-
plans given the cache state (A.1, B.1, A.2, C.3) and the new object
C.1 is 1 for each A.1 and A.2, and 2 for B.1, as they would trigger
the execution of subplans < A.1, B.1, C.1> and <A.2, B.1, C.1>,
but 0 for C.3. Thus, this policy would pick C.3 as the eviction can-
didate since it has the lowest number of executable plans. If the
algorithm finds more than one object with the same number of exe-
cutable plans, it uses the number of pending subplans to break ties.
A beneficial side effect of our maximal progress algorithm is that

it automatically prioritizes small tables over large ones as objects
belonging to the small table participate in many more subplans.
As typical data warehousing workloads follow star or snow flake
schema, where a large central fact table is joined with many small
dimension tables, this caching policy would automatically reduce
the number of reissues by keeping small tables pinned in the cache.

4.3 Client proxy
The client proxy is a mediator between MJoin and CSD. When

MJoin maps each relation to a list of objects that need to be fetched
from Swift, it serializes the list of object names into a JSON string,
passes the list over a shared message queue to the client proxy,
which, in turn, submits HTTP GET requests to fetch these ob-
jects from Swift. In this way, the client proxy offers an interface-
independent mechanism for connecting PostgreSQL with a CSD.

Furthermore, the client proxy shares semantic information with
Swift, i.e., it generates a query identifier for each set of requests
from PostgreSQL and tags each Swift GET request with this iden-
tifier. This enables the scheduler to identify all objects being re-
quested as a part of a single query, which allows it to implement
semantically-smart scheduling (as described in Section 4.4).

Once MJoin submits requests to the client proxy, it blocks until
it is notified of data availability. As each GET request completes,
the client proxy notifies MJoin of the availability of a data object.
Although we could have modified the scan operator or the storage
backend of PostgreSQL to communicate with Swift, we chose the
MJoin-client proxy route for an additional reason. By blocking the
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execution at the MJoin operator, we make the whole out-of-order
execution mechanism data-format and scan-type independent. For
instance, while we use binary data files and default PostgreSQL
scan operators for the purpose of this paper, we have used the same
framework to query Swift-resident, raw data files directly using
the scan operator provided by File Foreign Data Wrapper in Post-
greSQL without changing any Skipper component.

4.4 Scheduling disk group switches
At any given point in time, the CSD receives a number of re-

quests for different objects from various database clients. As these
objects could potentially be spread across different storage groups,
the CSD has to make three decisions: 1) which group should be
the target of the next group switch?, 2) when should a group switch
be performed?, and 3) what ordering should be used for returning
objects within a currently loaded group? When choosing a proper
scheduling strategy, our goal is to identify a scheduling algorithm
that balances efficiency and fairness in answering these questions.

Which group to switch to? The CSD group scheduling prob-
lem can be reduced to the single-head tape scheduling problem in
traditional tertiary storage systems, where it has been shown that
an algorithm that picks the tape with the largest number of pend-
ing requests as the target to be loaded next performs within 2% of
the theoretically optimal algorithm [35]. If efficiency was our only
goal, we could use an algorithm that always chooses a disk group
housing data for the maximum number of pending requests as the
target group to switch. We refer to it as the Max-Queries algorithm.

However, we need a mechanism to provide fairness, in the ab-
sence of which, a continuous stream of requests for a few popular
storage groups can starve out requests for less-popular ones un-
der the Max-Queries algorithm. Current CSD solve this problem
by scheduling object requests in a First-Come-First-Served (FCFS)
order to provide fairness with some parameterized slack that occa-
sionally violates the strict FCFS ordering by reordering and group-
ing requests on the same disk group to improve performance [40].
Although such an approach might be sufficient when dealing with
archival/backup workloads, it fails to provide optimal performance
for our use case, since a single query requests many objects, which
a query-agnostic CSD treats like independent requests. Thus, en-
forcing FCFS at the level of objects would produce many unwar-
ranted group switches in an attempt to enforce fairness and prevent
request reordering optimizations we describe later in this section.

As mentioned earlier, the Skipper client proxy tags each GET
request with a query identifier making the Skipper scheduler work-
load aware as it knows which object requests correspond to which
queries. Thus, one option to provide fairness would be to use a
query-based FCFS algorithm rather than an object-based one. Such
an algorithm, however, would be inefficient as it fails to exploit
request merging across queries (servicing all requests in a group
before switching to the next one), and produces many more group
switches than Max-Queries (as shown later).

Rank-based, query-aware scheduling. Our new scheduling
algorithm strikes a balance between the query-centric FCFS algo-
rithm and the group-centric Max-Queries algorithm by integrating
fairness into the group switching logic. In our new scheduling al-
gorithm, each group is associated with a rank R and the scheduler
always picks the group with the highest rank as the target of a group
switch. The rank of a group g, denoted as R(g), is given as:

R(g) = Ng +K(
Ng

∑
q=1

Wq(g)) (1)

where Ng is the number of queries having data on group g, K is
a constant whose value we derive shortly, and Wq(g) is the waiting
time of a query that has data on group g, defined as the number of

group switches since the query was last serviced. Thus, any query
which is serviced by the current group will have 0 waiting time.

In order to understand the intuition behind this algorithm, let us
consider the two parts of the equation separately. The first part, Ng,
when used alone to determine the rank gives us the Max-Queries
algorithm we described earlier. The second part provides fairness
by increasing the rank of groups that have data belonging to queries
which have not been serviced recently. Each time the scheduler
switches to a new group g, a set of queries Sg become serviceable,
and the remaining queries non-serviceable. As the non-serviceable
queries have to wait for one (or more) group switches, their waiting
time increases. By directly using their waiting time to determine
the rank, the algorithm ensures that groups whose queries have long
waiting times have a higher probability of being scheduled next.

The scaling factor K determines a tipping point between effi-
ciency and fairness and we will now derive its value. Consider two
sets of queries Q1 and Q2 requesting data on groups g1 and g2 re-
spectively such that set Q2 arrives s group switches after set Q1.
Let t be time of arrival of Q2 and let R(g1) and R(g2) be the rank of
the two groups at t. If the scheduler follows a strict FCFS policy, it
would schedule Q1 before Q2 at time t irrespective of the number
of requests to each group (Ng1

, Ng2
). Thus, if R(g1) was greater

than R(g2), the scheduler’s behavior would be similar to the FCFS
policy. This naturally leads to the following implications:

=⇒ Ng1
+K ∗Wg1

> Ng2
+K ∗Wg2

whereWgi = (

Ngi

∑
q=1

Wq(gi))

=⇒ K > (Ng2
−Ng1

)/(Wg1
−Wg2

)

=⇒ K > (Ng2
−Ng1

)/sas Q2 arrives s switches after Q1

Thus, we need to pick a value of K in the
[
0,(Ng2

−Ng1
)/s

]
range, to balance fairness and efficiency. To maximize efficiency,
the scheduler should switch to group g2 at time t for all Ng2

> Ng1
.

Thus, the scheduler should ensure that the following holds:

R(g2)> R(g1)∀Ng2
,Ng1

whereNg2
> Ng1

=⇒ Ng2
+K ∗Wg2

> Ng1
+K ∗Wg1

=⇒ K < (Ng2
−Ng1

)/(Wg1
−Wg2

)

=⇒ K < (Ng2
−Ng1

)/s∀Ng2
,Ng1

whereNg2
> Ng1

Thus, if we choose K < 1 / s, we are guaranteed that the sched-
uler will switch to group g2 and service the set Q2 when Ng2

> Ng1
.

Recall that s is the number of group switches between the arrival
of sets Q1 and Q2. As s → ∞, K → 0, and the algorithm tends to
favor efficiency over fairness as the rank degenerates to Ng. For the
minimum value of s = 1, which translates to K = 1, the algorithm’s
fairness is maximized. Therefore, we set the value of K to 1.

When to switch? Given a set of active requests for objects in
a currently loaded group, the scheduler has to decide whether to
service all requests or a partial subset before switching to the next
group. We favor the approach of avoiding preemption, since our
problem is similar to the tertiary I/O scheduling problem, where
it has been shown that preemption leads to suboptimal scheduling
[35]. Thus, once we switch to a group, we satisfy all object requests
on that group before switching to the next group.

What ordering within a group? Although MJoin can handle
out-of-order data delivery, the order in which objects are returned
plays an important role in determining execution time. For in-
stance, consider a query over three tables A, B and C, where each
table has three objects, all of which are stored in the same group.
Let us assume that the database can cache only three objects. If the
scheduler first returns all objects of A, then all objects of B, and
finally all objects of C, the MJoin implementation will be forced
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to reissue requests for several objects repeatedly even with our ef-
ficient cache management algorithm, as the MJoin cannot make
progress with objects belonging to the same table. On the other
hand, if the I/O scheduler returned back objects in a semantically-
smart fashion, satisfying object requests evenly across all the rela-
tions (e.g. A.1, B.1, C.1, then A.2, B.2, C.2, etc), the number of reis-
sues would be much smaller as the MJoin implementation can exe-
cute many subplans. Thus, our scheduler implements semantically-
smart ordering within a loaded storage group.

5. EXPERIMENTAL EVALUATION
We now present a detailed experimental analysis of the Skipper

framework to prove the effectiveness of various algorithms used in
Skipper by comparing its performance with vanilla PostgreSQL.

5.1 Experimental Setup
Hardware. In all our experiments, we used five servers equipped

with two six-core Intel Xeon X5660 Processors, @2.8 GHz, with
48GB RAM, and two 300GB 15000-RPM SAS disks setup in a
RAID-0 configuration as our compute servers.

Our shared CSD service is hosted on a DELL PowerEdge R720
server running RHEL6.5, equipped with two eight-core Intel E5-
2640 processors clocked at 2GHz, 250GB of DDR3 DRAM, and a
hardware RAID-0 array of seven 250GB SATA disks with a peak
throughput of 1.2GB/s. All servers are connected by a 10GB switch.

Software. Each compute server runs Ubuntu 12.04.1 and hosts a
virtual machine that is allocated four processing cores and a 100GB
VHD. The VM runs Ubuntu 14.04.2 LTS cloud image as the guest
OS and PostgreSQL 9.2.1 as the database system. There are two
versions of PostgreSQL installed in each VM, one extended to sup-
port MJoin and the other being the default one. Henceforth, we will
refer to MJoin-enabled version of PostgreSQL as Skipper. We limit
the amount of memory allocated to the VM to 1GB over the cache
size allocated to PostgreSQL to ensure that: 1) the guest OS has
enough buffer space to prevent swapping and 2) our MJoin code
works as expected with a limited amount of memory. Vanilla Post-
greSQL is always configured to use “effective-cache-size” of 30-
GB, “shared buffers” and “‘work memory” of 16GB.

Compute Servers. Only the database catalog files are stored
in each of the VM’s VHD. The actual binary data stored in a set of
files, one set per relation, where each file in the set represents a 1GB
segment (default Postgres segment size) of the relation, is stored
in Swift as objects and fetched on demand during execution time.
Each relation has a corresponding Swift container, and each seg-
ment is stored as an object within the container. Containers/objects
are named based on the filenode identifiers used internally by Post-
greSQL to map relations and their segments to files.

In order to connect PostgreSQL with Swift, we wrote a FUSE
file system that intercepts local file accesses from PostgreSQL and
translates them into Swift HTTP-GET calls. For instance, when
PostgreSQL scans through a relation, it accesses the backing files
one segment at a time. On receiving the first read call for a segment,
the FUSE file system uses the segment’s file name (same as filenode
number) to derive the container/object names and issues a HTTP-
GET call to fetch the corresponding object from Swift.

Shared CSD. We built an emulated CSD by extending Swift us-
ing a Python middleware that provides MAID-like functionality.
We used OpenStack Swift v2.4.1 in the Single-All-In-One Swift
setup to get all Swift processes (Proxy, Account, Container, Ob-
ject servers) running in our CSD server. The middleware groups
disks into disk groups based on a configuration file and maintains
persistent metadata to map each object to its disk group. If the
middleware receives a GET request for an object on the currently
active group, it services it immediately by forwarding it to the Swift

backend. However, if it gets a request for an object in a different
group, it emulates a group switch by artificially adding delays to the
request processing path instead of actually spinning up/down disk
drives. In addition to maintaining disk-to-disk group mapping and
object-to-disk group assignment metadata, the middleware plugin
also implements the I/O scheduling algorithms (see Section 4.4).

Benchmarks. We used four benchmarks, namely, TPC-H [43]
with SF-50, Star-Schema Benchmark (SSB) [28] with SF-50, a
popular data analytics benchmark [31] over 20GB database, and a
genome-sequencing benchmark over a 13GB NREF database [48].

5.2 Experimental Results
We present the results in the following order. First, we show the

benefit of out-of-order execution by comparing Skipper to vanilla
PostgreSQL. Then, we present a sensitivity analysis of Skipper’s
algorithms to the group switch latency, layout, cache and data set
size. Last, we show a comparative evaluation of our scheduling
algorithm to show the benefit of using the rank-based scheduling.

5.2.1 Benefit of out-of-order execution
Figure 7 shows the average query execution time of Skipper

on CSD, PostgreSQL on CSD (marked ’PostgreSQL’) and Post-
greSQL on HDD configurations (marked ’Ideal’) under TPC-H Q12.
Similar to Figure 4, we scale the number of clients from 1 to 5. We
configured both PostgreSQL and Skipper implementation to use a
cache size of 30GB (half the dataset size), and the Swift sched-
uler to use a one-group-per-client data layout, where all data cor-
responding to a single client is stored together in one group, while
data from different clients lies in different groups. As can be seen,
Skipper scales much better than PostgreSQL as we increase the
number of clients. At five clients, Skipper outperforms PostgreSQL
by a factor of 3 when CSD is used as the storage backend. In addi-
tion, Skipper is only 35% slower than the ideal HDD-based config-
uration despite the 10-second CSD group switch time.

Figure 8 shows the cumulative execution time of a batch of que-
ries under a mixed workload. For this experiment, each client runs
a different workload (TPC-H Q12, JoinTask from the analytical
benchmark, Q1 from SSB, and a 4-table join that counts protein
sequences matching a specific criteria from NREF) repeating the
workload query 5 times. The results are similar to Figure 7, as Skip-
per provides from 2-3× reduction in execution time in all cases.

The scalability of Skipper in these results can be attributed en-
tirely to the ability of MJoin to perform out-of-order query execu-
tion. Under both PostgreSQL and Skipper, Swift switches to each
group one by one and services the HTTP GET requests. But in
contrast to the vanilla PostgreSQL, our MJoin-enabled PostgreSQL
in Skipper can handle out-of-order data arrival. Thus, it submits
requests for all necessary data blocks upfront to Swift enabling
Swift to service GET requests for all objects within a group be-
fore switching to the next group. As a result, the total waiting time
for any client C is (C−1)× (D/B+S), where D is the total number
of objects in the dataset and B is the rate at which Swift can push
objects out to the client, and S is the group switch latency. Vanilla
PostgreSQL, on the other hand, would have a total execution time
of C × S × D, as we explained in Section 3.2.

Figure 9 shows the average execution time breakdown per client
for the 5 clients case, each client running TPC-H Q12 (as in Fig-
ure 7). ’Switch time’ and ’Transfer time’ both constitute the wait-
ing time of each DB instance to receive its data, while ’Processing’
goes to actually processing the query. As it can be seen, 98% of the
total execution time in the case of PostgreSQL is spent on waiting,
out of which 65% is the CSD switch time. On the contrary, Skipper
optimizes the switch time, reducing it to a mere 2%, while 41% of
the total execution time of Skipper goes to useful work. In the case
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of Skipper, the biggest stall actually goes to receiving data from
Swift (shown as ’Transfer time’).

To understand the overhead of each component present in the
system we run three experiments with Q12 TPC-H: 1) all data is
stored locally and accessed directly using the native file system, 2)
all data is stored locally but accessed using our FUSE file system
(this applies to vanilla PostgreSQL as MJoin does not use the FUSE
file system), and 3) all data is stored remotely on Swift within a
single disk group (i.e., there will not be any group switches). We
use the results from the experiments to break down execution time
of PostgreSQL and Skipper into 1) query execution, 2) FUSE file
system, 3) network access as shown in Table 3.

Comparing query execution times under PostgreSQL and Skip-
per, we see that in the absence of group switches, Skipper takes 25
seconds more than PostgreSQL which translates to 6% overhead,
showing that out-of-order query execution in Skipper has marginal
overhead. FUSE file system itself adds very little overhead (1.6%)
to PostgreSQL’s execution. Last, storing data remotely in Swift
doubles the execution time under both PostgreSQL and Skipper.

Our current Swift middleware explicitly serializes GET requests
and services them one at a time to simplify implementation and en-
sure correctness of emulation (for instance, ensuring that the Swift
backend has no pending requests for the current group before emu-
lating a group switch). As a result, it does not overlap disk I/O with
network I/O and substantially increases the end-to-end transfer la-
tency. We verified this by running PostgreSQL on default Swift
without the Skipper middleware and we found that the execution
time was only 25% higher than the local run. However, as the over-
head induced by the middleware is common to both PostgreSQL
and Skipper, reducing it would provide proportional improvement
in execution time in both systems. Thus, the relative performance
of the two systems and insights we derive in the paper will not
change under an optimized plugin implementation.

There are two important conclusions we would like to draw here.
First, based on the above equations, it is clear that if D/B >> S,
Skipper will make the database clients insensitive to access latency.
As we target analytics over large data sets stored in CSD, this will
be the common case. PostgreSQL, on the other hand, will always
suffer for even minor increase in C, S or D. Second, we are neither
saturating the storage I/O throughput (1.2GB/s) nor the network
bandwidth (10Gb/s) with our current Swift middleware. Thus, by
parallelizing the servicing of requests within a group, we can re-
duce transfer time substantially. With such improvements, Skipper
would outperform PostgreSQL by a big margin and offer perfor-
mance comparable to conventional disk-based storage services.

5.2.2 Sensitivity to the group switch latency
Figure 10 shows the average execution time of Skipper and Post-

greSQL with five clients, under TPC-H Q12, as we increase the
group switch latency from 10 to 40 seconds. Comparing Figure 10

Component PostgreSQL Skipper
Query execution 407s 41.9% 433s 43%
Fuse file system 15.75s 1.6% / /
Network access 550s 56.5% 574s 57%

Table 3: Execution breakdown of PostgreSQL and MJoin

and Figure 5, one can see that Skipper is tolerant to the changes
in group switch latency. These results validate our previous claim
that Skipper makes database clients insensitive to access latency.
This, again, is due to the fact that the I/O scheduler is able to min-
imize the number of group switches by serving all requests in a
single group before switching to the next group. Thus, unlike the
PostgreSQL case, where there were a total of 57 group switches
(one per segment accessed), the MJoin case has only five group
switches. Because of its tolerance, Skipper can even work with
CSD with much higher group switch latencies.

5.2.3 Sensitivity to the layout choice
Figure 11a shows the average query execution time of both sys-

tems as we vary the layout in the CSD. We obtain these results by
fixing the number of clients to 4 and varying the layout in the Swift
scheduler. We use 4 layouts for these experiments, namely, all-on-
one (Allin1), two-clients-per-group (2perG), one-client-per-group
(1perG), and incremental (Increm.). The first three layouts gradu-
ally expand the clients out across one, two, and four groups. The
last layout partitions each client’s data into two parts and stores
each half on separate groups such that group G1 stores C1.1 and
C4.2, G2 stores C1.2 and C2.1, G3 stores C2.2 and C3.1, and G4
stores C3.2 and C4.1.

There are two important observations to be made. First, no-
tice that both Skipper and default PostgreSQL have similar execu-
tion time under the all-in-one case as there are no group switches.
However, in all other cases, Skipper provides 2× to 3× improve-
ment over vanilla PostgreSQL. Second, the execution time under
PostgreSQL increases progressively as we unroll the data across
groups from the all-in-one case to the one-client-per-group case.
This shows the impact that layout has on default PostgreSQL. Un-
der Skipper, execution time increases between the all-in-one case
and two-clients-per-group case due to data transfer delays as we
mentioned earlier. However, it remains constant as we fan out from
two to one client per group, proving the low sensitivity of Skipper
to variations in layout.

5.2.4 Sensitivity to the cache size
We now present results quantifying the impact of cache size on

our MJoin implementation. For this experiment, we fix the number
of clients to five, configure Swift to use the one-client-per-group
layout, and use TPC-H Q5 as our benchmark. We choose Q5, since
it is a complex six-table join whose input size almost covers the
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Figure 12: Fairness vs. efficiency: a) L2-Norm b)
Cumulative workload time

whole TPC-H data set and produces many more subplan combina-
tions compared to the Q12.

Figure 11b shows the average execution time of MJoin at vari-
ous cache sizes. The average query execution time under vanilla
PostgreSQL was 3,710 seconds (not shown). Thus, in the worst
case (10GB), Skipper is 2.2× slower than PostgreSQL. It matches
PostgreSQL’s performance at 15GB (20% of data set) and provides
a 1.37× to 1.59× improvement at higher cache sizes.

To test the scalability of MJoin at low cache capacities, we repeat
the same experiment with a larger data set (TPC-H SF-100). As
before, we run Q5 that reads 127 objects out of 140 in total, varying
the cache size from 14 objects (10% of data set size) to 42 objects
(30% of data set size) in 5% increments. There are 14630 subplans
in total. The results are presented in Figure 11c.

Comparing Figure 11b and Figure 11c, we can see that Skip-
per’s execution time increases substantially as we reduce the cache
size. Under SF-50, Skipper’s execution time increases 3.6× as we
shrink the cache size from 30GB(40%) to 10GB(14%). Under SF-
100, Skipper’s execution time increases 4.8× as we scale down the
cache size further from 42GB(30%) to 14GB(10%). The perfor-
mance drop is a consequence of the increased number of request
reissues as shown by the black line in Figure 11b and Figure 11c.
Under SF-50, the total number of Swift objects requested by MJoin
increases from 64 to 388 as we reduce the cache size. SF-100
pushes this further as MJoin requests 212 objects at 42GB and 1787
objects at 14GB cache capacities respectively.

These graphs show an important trade-off between the cache ca-
pacity and performance of MJoin. Given R relations each of size S
objects, the traditional hash join has a time complexity of O(S×R)
as each relation is fetched only once and used to either build or
probe a hash table at each hash join stage. This requires cache ca-
pacity (C) to be large enough to hold all (but one) relations, i.e., it
requires a cache capacity of S× (R− 1). In the best case, MJoin
is able to buffer R−1 input relations in memory entirely and avoid
request reissues completely. Thus, similar to hash join, its best case
time complexity is O(S×R) for the cache capacity of S× (R−1).
However, unlike hash join, MJoin can proceed even with limited
cache capacities at the expense of performance.

Let us consider a cache of capacity C << (R− 1) × S. Given
the small cache capacity, MJoin will proceed in several cycles. In
each cycle, MJoin will request all objects belonging to pending sub-
plans and execute the subplans as objects arrive. Let us consider
one such cycle. As our query-aware scheduler returns data corre-
sponding to relations in a round-robin fashion, the cache is evenly
divided among R relations, with C

R objects of each relation being
buffered. To simplify the analysis, let us assume that join execu-
tion happens after C objects have arrived in the cache. Thus, we
get the first batch of C objects. Given C

R objects of R tables in the

cache, (C
R )

R subplans are evaluated. Then, we get the next batch
of C objects and perform join execution. Given the relation size of
S, this process repeats S×R

C times in each cycle. Thus, a total of

(C
R )

R × ( S×R
C ) subplans will be evaluated in each cycle. Given that

the total number of subplans is SR, the number of cycles (reissues)

that will happen is then SR

(C
R )

R×( S×R
C )

= (R×S
C )(R−1). MJoin needs C

to be large enough to hold at least R objects so that at least one
subplan can make progress. Thus, in the worst case, with a cache
capacity of R, the time complexity of MJoin is O(SR). Comparing
this with the best case (O(S×R)), we can see the trade off between
the cache capacity and performance of MJoin.

Despite the fact that request reissue can be high, there are tech-
niques to decrease its overhead. In the case of TPC-H queries
we tested, the request reissue was high as each table object con-
tains tuples contributing to the end result. Thus, the same object
is refetched and rescanned multiple times. Should the distribution
of result tuples differ in a way that interesting tuples are clustered
rather than being uniformly distributed across all objects, Skipper
would substantially reduce the request reissue overhead. In such a
case, Skipper marks the objects not containing any result tuples and
omits requests for this object in the future, pruning out subplans in
which it takes part. For instance, let us consider a 4-table join with
10 objects in each table. The total number of possible subplans is
104. Nonetheless, if even a single object does not have data that
contributes to the result, Skipper can safely prune 103 subplans (as
all subplans with that object are guaranteed not to produce any re-
sult). This subplan pruning, combined with the fact that Skipper
automatically prioritizes caching of small tables over large ones,
will ensure that the performance drop due to reissues is not dra-
matic even in the case of big data sets. In the case of TPC-H que-
ries we tested such subplan pruning did however not occur. Thus,
request reissue dominated execution.

5.2.5 Balancing efficiency and fairness
Our final result shows the effectiveness of our ranking-based

scheduling algorithm in balancing fairness and efficiency. For this
experiment, we use 5 clients, each issuing TPC-H Q12 ten times.
We configure Swift to use a skewed data layout such that two groups
have data corresponding to two clients each, and the last group
stores the fifth client’s data. We compare three scheduling algo-
rithms, namely, FCFS (’fairness’), Max-Queries (’maxquery’), and
our Rank-based algorithm (’ranking’), all of which were explained
in Section 4.

In addition to reporting query execution time, we also report L2-
norm [6] stretch as a performance metric for comparing alternative
algorithms. L2-norm stretch is defined as follows:

The L2-norm of stretch for a workload consisting of queries qi :

i = 1...n with stretches si : i = 1...n is equal to
√

∑n
i=1 s2

i
In scheduling theory, stretch of a job is defined as the ratio of

the observed execution time to the ideal execution time, where the
ideal execution time is the time taken to execute the job alone on
the platform. Stretch essentially shows the deviation from the op-
timal case due to negative impact of interaction between jobs. L2-
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norm then aggregates stretch values across several clients enabling
us to use a single metric for comparing the pros and cons of differ-
ent experimental configurations (considering both the average and
maximum values of stretch). In our case, the ideal execution time
of a query is the single-client execution time, as all requests from
a single PostgreSQL instance can be serviced by the CSD with-
out any group switches. The stretch for cases with more than one
client is obtained by normalizing the observed execution time by
the single-client execution time.

Figure 12a shows both L2-norm and maximum stretch across the
three scheduling policies, while Figure 12b shows the cumulative
execution time across all clients. As expected, the ’Max-Queries’
algorithm has the lowest execution time but significantly increases
maximum stretch, as queries on the group with just one client end
up starving. The ’FCFS’ algorithm, in contrast, trades off efficiency
for fairness as evidenced by the reduction in maximum stretch but
proportionate increase in overall completion time. Our rank-based
scheduling algorithm adopts a middle ground. Initially, the algo-
rithm sticks to the two groups with two pending queries, thus, max-
imizing efficiency. However, each time Skipper switches to one of
these two groups, it also increases the rank of the group with just
a single client by one. Once every four group switches, the group
with a single client outranks the rest, resulting in the corresponding
client being serviced. Thus, the ’Rank-based scheduling’ algorithm
balances efficiency while avoiding starvation.

Summary. From all the experiments, we can clearly see that the
Skipper architecture scales better and tolerates higher group switch
latencies than the traditional architecture when CSD is used as a
primary storage. All three aspects of Skipper (out-of-order exe-
cution, efficient caching, and rank-based scheduling) substantially
contribute toward masking the CSD group switch latency.

6. RELATED WORK
Integration of DBMS and CSD considered in this paper natu-

rally draws an inspiration from a large body of work coming from
the database and the storage systems world. In the following we
discuss avenues mostly related to the architecture of Skipper.

Tertiary databases. Integration of databases and CSD mostly
resembles the work on tertiary memory databases [37, 38]. How-
ever, unlike tapes that are exclusively accessed and controlled by
a database system, CSD is shared among multiple tenants, making
a tight pull-based control between caching and scheduling impos-
sible. Similarly, while in tertiary databases the notion of tenant-
fairness is nonexistent, in the enterprise data centers fairness should
be of a primary concern.

Adaptive query processing. Adaptive query processing emerged
in the past decade as a way to deal with environmental changes, ei-
ther as a way to fix suboptimal query optimization decisions taken
a priori during compilation procedure [5, 20, 22, 26], or as a way to
deal with the changes in data arrival characteristics often appear-
ing in streaming environments [2, 4, 15, 44, 45, 47]. Neither of the
techniques is, however, fully applicable to the DBMS-CSD integra-
tion. While the former approaches address the orthogonal issue of
cardinality misestimates in query optimization, the latter trade off
adaptivity for high memory consumption. To operate under limited
cache capacity, the execution strategy, however, has to be tightly
coupled with the cache management. In this paper, we thus pro-
pose a cache-controlled MJoin algorithm that efficiently supports
out-of-order data arrival even at low cache capacities.

Scheduling theory. The problem of scheduling could be con-
sidered at several levels of granularity: starting from the low level
block-based or I/O scheduling to tape-based and finally job or task
scheduling at higher granularity levels.

Considering the first, proportional share schedulers [21, 39] al-
locate throughput (IOPS) to each application in proportion to user-
specified weights. Further efforts extend it with reservation and
limits to provide flexible bounds on resource allocation for virtu-
alized storage [13] and with techniques for balancing fairness and
throughput [12]. In contrast, [34,46] use time multiplexing instead
of fair queuing to provide strict performance isolation under in-
terference from multiple workloads. All these approaches assume
that I/O requests are directed at a set of disks that are spun up. Our
work, in contrast, focuses on an orthogonal problem of scheduling
object requests at a higher level, i.e., across both spun up and pow-
ered down disks with the goal of minimizing the total number of
spin ups while balancing fairness. Thus, our scheduling algorithm
can potentially be extended with these complementary approaches
to perform proportional sharing within a disk group.

Tape scheduling algorithms have so far focused only on reducing
the number of switches while ignoring fairness. Recent research
has shown that an optimal algorithm for scheduling a given set of
I/O requests over a set of tapes is the one that minimizes the num-
ber of switches, and that an algorithm that picks the next device as
the one with the largest number of pending requests constantly per-
forms within 2% of the optimal algorithm [35]. We adopt this algo-
rithm, i.e., the policy that chooses to service next the group with the
maximal number of queries, and extend it with a notion of fairness.
Our ranking based algorithm was inspired by the rFEED [14] task
scheduling algorithm. The problem of task scheduling has been
studied extensively in the past [33]. However, while task schedul-
ing algorithms assume that task execution times are independent,
query execution time in our case depends on which group is active
at the time of query execution, which, in turn, depends on the or-
der of query execution. Thus, task scheduling algorithms are not
directly applicable to our context.

Hot and cold data classification and migration. There is a
large body of research involving data classification in the context of
main-memory databases or multitiered databases that can be used
to identify hot and cold data, e.g. [8, 10, 24]. Enterprise databases
have long used such algorithms to improve performance by caching
hot data in low-latency storage devices. Similarly, database have
also used Hierarchical Storage Managers (HSM) to automatically
manage migration of data between online, nearline, and offline stor-
age tiers [23]. We do not consider the orthogonal problems of data
classification or automatic data migration in this paper. Rather, we
focus on query execution over “cold data at rest” in the CSD after
classification and migration has taken place.

7. OUTLOOK AND CONCLUSIONS
In this paper, we demonstrate how the usage of cold storage de-

vices enables a new tier in the enterprise storage tiering hierarchy,
named the cold storage tier. We show that the cold storage tier is
able to replace both the capacity and archival tiers in their function-
ality, thereby offering major cost savings for enterprise data cen-
ters. Furthermore, we show that data analytics can be run on such
a platform by a judicious hardware-software codesign where both
the database query execution engine and the CSD work in concert
toward achieving a common goal – masking the high access latency
of CSD group switches.

The implications and benefits of using CSD reach far beyond en-
terprise data centers, and are equally applicable to cloud providers.
For instance, Cloud Service Providers (CSP) have already started
deploying custom-built, rack-scale CSD explicitly targeted at cold
data workloads [11, 32, 36]. By doing so, CSP have already re-
ported substantial cost savings. For instance, according to a recent
report from Facebook, the Open Vault cold storage system reduced
their expenses by a third compared to conventional online storage;

1039



their Blu Ray-based cold storage system reduced power consump-
tion by 80% over Open Vault [32]. Recognizing the potential of
CSD, CSP have started offering hosted, low-cost cold storage ser-
vices based on CSD, and such cold-storage-as-a-service offerings
are quickly gaining popularity, offering cloud customers a chance
to benefit from inexpensive storage [1, 11].

We believe that the CSD benefit for cloud providers could go
beyond offering just storage-as-a-service. By following the design
and architecture of Skipper presented in this paper, CSP could of-
fer cloud-hosted data analytics services over CSD. Such a design
would benefit both customers and providers of cloud-hosted data
analytics services, as providers could increase revenue by offer-
ing cheap analytics services on data stored on CSD, and customers
could reduce total cost of ownership by running latency insensitive
analytics workloads on cold data stored on CSD.
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