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Abstract—Robotic chemical plume tracing is a growing area of
research, with envisioned real-world applications including pol-
lution tracking, search and rescue, and ecosystem identification.
However, following a chemical signal in the water is not an easy
task due to the nature of chemical transport and to limitations
in sensing and communication. In this paper, we propose an
approach for near-surface waterborne plume tracing using a
combined team of autonomous surface and underwater vehicles.
All vehicles are equipped with appropriate chemical sensors and
acoustic modems. The team moves in a triangular formation,
while using the flow direction and the samples obtained to
steer the group along the plume. Leader vehicles at the surface
implement a formation controller based on Laplacian feedback
while the underwater vehicle performs acoustic ranging to the
leaders. The solution was evaluated using a CFD simulation
of a freshwater plume and a calibrated dynamic model of the
MEDUSA autonomous marine vehicles. The group is able to
move in a stable formation, sample the salinity, and trace the
plume to its source.

I. INTRODUCTION

Following the Deepwater Horizon rig explosion [1], the
resulting oil spill jetting out of the Macondo wellhead at
62 000 barrel/day [2] extended across tens of kilometers in the
Gulf of Mexico, yielding one of the most recognizable images
of a chemical plume. The Sentry Autonomous Underwater
Vehicle (AUV), equipped with a mass spectrometer, helped
map the plume [3].

Mapping oil spills or pipeline leakage is but one poten-
tial application of marine plume tracing. There are other
environmental applications, such as tracing the dispersion
of wastewater outfall or unauthorized pollutant discharges,
or searching for hydrothermal vents, benthic structures that
support complex ecosystems and release large volumes of
heated water with detectable chemical signatures. As with
land mines, detection of Underwater Unexploded Ordinance
(UUXO) is a major concern and has traditionally been the
subject of magnetic and sonar imaging methods [4], even
though chemical tracing carries the potential to reduce false
positives.

This work was partially funded by project FCT [UID/EEA/5009/2013] and
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In this paper, we look at waterborne chemical plumes and
methods to track them, building upon our previous work with
airborne plumes. We focus on constant-depth and near-surface
operations. Although this may seem like a major limitation,
water bodies are subject to stratification, with layers forming
based on salinity, oxygenation, density, and temperature [5].
On short time scales, some plumes remain almost horizontal,
as did the main Deepwater Horizon oil plume, at approximately
1120m to 1160m depth [3]. In the case of freshwater plumes in
the ocean, such as those produced by river discharges, buoyancy
often leads to expansion primarily along the surface [6].

To trace a near-surface plume, we propose a triangular
formation of two surface vehicles and an underwater vehicle.
The Autonomous Surface Vehicles (ASVs) run an adapted
version of our airborne plume tracing solution built around
a graph-based formation, previously described in [7], [8].
Originally conceived for terrestrial robots, this approach
combines an adaptive formation-keeping component with up-
flow movement and plume centering based on the differences
between the chemical readings obtained by each robot. The
follower AUV runs a range-based formation controller [9], [10]
that is able to maintain a robot in a triangular formation using
acoustic ranges and piggybacked data. The underwater vehicle
relays chemical concentration data, but is otherwise unaware
of the plume tracing task.

We evaluate our algorithm in simulation, using the MEDUSA
vehicle model and a Fluent-generated freshwater plume in a
low-current saltwater medium. Using this combined approach,
the vehicles are able to stay in a group, center on the plume,
and scale the formation while tracing the plume to its source.

II. RELATED WORK

Some early work in underwater chemical source localization
tried to mimic the well-studied behavior of bottom-dwelling
lobsters [11], [12]. This led to the development of lobster-
inspired robots [13] and Braitenberg-like controllers that link
wheel speeds to the differential readings of the two antennae
[14]. Other authors have looked at the active fanning behavior
of crayfish [15].
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Related bio-inspired work includes [16], [17], where the
authors propose a surge-cast algorithm in which robots switch
between moving at a small offset angle to up-flow and a plume
reacquisition maneuver. The approach was tested in experiments
with the REMUS AUV [18]. Although tangential to our work,
REMUS has also been used for chemical mapping [19].

A significant body of work deals with hydrothermal vent
localization. The authors of [20], [21] propose an approach in
which vehicles perform a preplanned sampling survey and
switch to spiral movement when a chemical signature is
detected. The same team also introduced an approach based
on occupancy grid maps [22], and tested their solutions using
real data collected by an AUV.

In [23], the authors advance a partially-observable Markov
decision process (POMDP) formulation for the hydrothermal
vent localization problem and propose several planning methods
building upon the aforementioned occupancy grid mapping
algorithm, which are evaluated in simulation. A Bayesian
inference solution using a hydrothermal plume model and
artificial potential fields is proposed in [24] and also tested in
a simulated environment.

An approach for cooperative 3D plume tracing using
miniature robots is described in [25], based on previous 2D
work with temperature plumes [26]. The authors derive a
controller that allows a vehicle to independently decide its
direction of motion based on a quadratic plume model and the
sharing of localized concentration measurements.

Recent recognition for the field of waterborne chemical
source localization comes in the form of its inclusion in the
euRathlon competition [27], in both the 2014 sea edition and
the 2015 grand challenge that brought together land, water
and flying robots. Modeled on the Fukushima Daiichi nuclear
accident of 2011 [28], relevant challenges include finding
workers missing at sea and locating underwater contaminant
leaks.

III. TECHNICAL APPROACH

Our target scenario features a neutrally buoyant surface
plume, in particular a freshwater plume in a saltwater medium.
The plume is detectable by sensors at the surface, as well as
by sensors up to a limited depth, and is therefore traceable by
a joint team of surface and underwater vehicles. The goal is
to follow an already detected chemical plume to its source.

For a team entirely consisting of ASVs, the approach outlined
in [8] is applicable with minor changes. However, the addition
of an AUV lacking access to fully resolved relative positions
precludes the exclusive use of our Laplacian feedback formation
controller. We propose a set-up similar to that in [10], with
two leader surface vehicles and a trailing underwater vehicle,
which enables the use of our acoustic ranging approach for
controlling the underwater vehicle.

We assume that the thickness of the plume does not change
substantially, making it possible for the AUV to maintain
a constant depth, and that an independent depth controller
provides that functionality. While implementing a vertical
scaling mechanism is technically straightforward [29], it

requires additional data exchange and further reduces the
ranging frequency, thereby impacting performance.

Our work targets the capabilities and restrictions of the
MEDUSA robots [30]. We propose a controller for the surface
vehicles that mirrors the one used for terrestrial robots but takes
into account the different sensing and actuation modalities.
In particular, the algorithm works with absolute positions
and generates a control output in heading instead of angular
speed. The follower runs the unmodified range-based formation
controller, and all vehicles transmit their concentration readings.

The next subsections contain a description of our approach,
divided into sensing, leader control, and follower control. The
flexibility of our original framework ensures that minimal
changes are required. Accordingly, we restate the major points
of the solution but refer the reader to the previous publications
for full derivations and explanations.

A. Sensing and communication

All vehicles are outfitted with appropriate chemical sensors.
In our particular simulation scenario, we track a freshwater
plume, discriminated by its salinity S. Salinity is normally
measured using fast temperature-corrected conductivity probes.
We can therefore assume instant salinity measurements.

Tracking a freshwater plume in saltwater requires searching
for lower salinity readings, as opposed to the more common
search for higher chemical concentrations. To avoid changes
to the algorithm, the measured salinity can be converted to a
freshness value by subtracting it from an upper bound:

ci = Smax − Si (1)

where ci is the resulting concentration value for vehicle i,
Si is the salinity measured by its sensor, and Smax is a
salinity upper bound appropriate to the environment, inferred
from environmental measurements or known data. The mean
sea water salinity is 34.7 ppt and, in the absence of local
information, 50 ppt would be an adequate bound for the
majority of surface waters. The concentrations readings are
run through a 4 s sliding window max filter, with its output
being used by the algorithm.

All vehicles have access to a magnetic compass. The
underwater vehicle has no access to absolute positions, whereas
the surface vehicles are assumed to be equipped with an
accurate Global Positioning System (GPS) receiver. We treat
the GPS positions as error-free, which is essentially the case
for short-range relative positions using Real-Time Kinematic
(RTK) systems. Where RTK is not available, a sensor fusion
approach including GPS, Inertial Measurement Unit (IMU),
and Attitude and Heading Reference System (AHRS) data
should yield accurate-enough information.

We also assume at least one of the surface vehicles has some
access to the direction of the current. This information may
come from direct measurement, be estimated using either a
Doppler Velocity Log (DVL) or GPS and a dynamical model of
the vehicle, or be obtained from external sources. It may also
consist solely of model data. While real-time point-accurate
information may improve performance, it is not an absolute



requirement. In strong currents, having access to the velocity
of the current instead of just its direction helps improve the
behavior of the vehicle.

Communication between surface vehicles is performed
over short-range radios and is considered to be instant and
unconstrained in data rate. This is a workable assumption given
how little information is exchanged between the robots: only
the most recent chemical readings and positions. We do not
implement any mechanisms to cope with packet loss as the
algorithm is resilient to isolated breaks in communication.

Communication with the underwater follower takes place
over an acoustic link, subject to severe latency and through-
put limitations. Leader vehicles send their current heading
piggybacked on ranging replies when alternately queried by
the follower every 2 s. The solution departs from the pure
formation-control approach in that the ranging requests sent
by the follower now also include piggybacked data, namely its
max-filtered concentration measurements. Both leaders listen
to all requests.

B. Leader control

The two leaders implement the approach outlined in [8]
with minor adjustments. The follower is part of the formation
graph, but only so we can properly classify chemical readings;
it is otherwise disconnected, and its formation control operates
independently.

We organize our algorithm in three parallel components:
up-flow movement, formation control, and plume centering.
Each fulfills a particular role, but all three are required for a
functional solution. The components each yield a (ẋ, ẏ) desired
velocity vector; the three vectors are combined and transformed
into control signals.

Relative positions, in the form of ranges and bearings to
neighbors, are replaced with absolute positions transmitted
over the radio. This is not because of a requirement of the
algorithm (we showed it to work with only noisy relative
positions) but because GPS is more commonly available in
ASVs than relative positioning devices. This change allows us
to more accurately reflect vehicle capabilities and showcases
the potential for alternative implementations.

1) Laplacian feedback: We retain the generic approach from
[8], only adapted to handle global positions. As we are now
working with a specific triangular configuration, we propose a
graph G = (V,E) with

V = {1, 2, 3} (2)
E = {(2, 3)} (3)

and corresponding bias vectors

buw =
[
−1 0 0

]T
(4)

bcw =
[
0 −d

2
d
2

]T
(5)

This corresponds to the formation in Figure 1, with inter-
vehicle base distance d. As no edge exists connecting the
trailing vehicle, its bias is not considered for formation control;
any negative constant may be used.

1

2 3

Fig. 1. Triangular marine formation showing graph edges.

Using a Laplacian feedback approach, the resulting velocity
vector for formation control is given by

uf = −


N∑
j=0

Lj

(
xj − βx

j

)
N∑
j=0

Lj

(
yj − βy

j

)
 (6)

where Lj = Li,j is the entry of the Laplacian matrix relating
the controlled node i to neighbor j, and xj and yj are the
absolute positions of vehicle j.

The desired formation is specified in the dynamic bias βj ,
which varies according to current and salinity readings:

βj = R(θ)

[
1 0
0 scw

] [
buw
j

bcw
j

]
(7)

The matrix rotation R(θ) acts as a coordinate transformation
between the robot and flow frames, with θ the local estimate
of the current direction in the global frame. The scale in the
up-flow direction is controlled solely by the follower vehicle,
therefore no scaling factor is warranted. The cross-flow scaling
factor scw allows the formation to be scaled to adapt to the
plume width, and its evolution is governed by

ṡcw = kcw((cl + cr)− cc) (8)

where cl, cr, and cc are respectively the average readings by
vehicles on the left, right, and center of the formation, and
kcw is a constant affecting the step size.

2) Up-flow movement: We implement a rheotaxis behavior
by defining a movement urge in the direction of the estimated
current:

uw = R(θ)

[
1 + |w|kw

0

]
(9)

In scenarios with strong currents, the base up-flow urge may
not suffice to overcome the force dragging the vehicle back.
If an estimate of the current speed |w| is available, it can be
added to the base urge. If not, the vehicles are still able to
trace the plume provided the current is weaker than the urge,
although the up-flow movement speed decreases accordingly.

3) Plume centering: The centering behavior assumes the
formulation of a generalized logistic response on the difference
between side concentrations

uc = R(θ)

[
0

−umax
c +

2umax
c

1+e−(cl−cr)/kl

]
(10)

where umax
c defines the maximum absolute cross-flow adjust-

ment and kl tweaks the response.



4) Behavior aggregation: The velocity vectors for each
component are combined using the weighted sum

u = kwuw + kcuc + kfuf (11)

As the vehicle controller takes (v, ψ) inputs for navigation,
the resulting desired movement vector u = [ux uy]

T is
transformed into its magnitude and direction:

v = ‖u‖ 0 ≤ v ≤ vmax (12)
ψ = atan2(uy,ux) (13)

C. Follower control
The formation controller in [10] was designed to be inde-

pendent of the navigation mechanism used by the leaders. This
allows us to employ the controller with no changes, keeping
the follower blind to the plume tracing problem.

As the follower moves underwater and has no access to a
positioning system, the controller relies on the general-purpose
acoustic modem to transmit crafted echo requests. Due to the
low bit rate of the medium, packets are sent alternately to each
of the leaders with a minimum period of 2 s. On receiving a
request, the leaders immediately reply, and the follower can
measure the round-trip time to estimate the true distance. We
take advantage of the fact that ranging is performed using a
data modem to piggyback the heading of each leader on the
reply packets.

We skip the full derivation of the controllers and only restate
the main speed and heading controller expressions, given by

v = Ks
pε+Ks

i

∫ t

0

ε dτ (14)

ψ = ψ̂f + γ(Kh
p δ) (15)

where ε = z2+z3
2 − d and δ = z3 − z2 are the common- and

differential-mode errors, derived from the ranges to the leaders
z1 and z2 and inter-vehicle distance set-point d, ψf is a Kalman
estimate of the leader (formation) heading, γ is any function
such that sin(γ(ay))y > 0,∀a > 0, and Ks

p , Ks
i , and Kh

p are
control gains.

The one difference in the follower implementation is that it
now measures the salinity (more generally, chemical concentra-
tion) and relays it to the leaders as part of the acoustic ranging
requests. As in the original work, we assume the follower has
independent depth control and maintains a constant depth D.

To reduce the number of parameters, we adopt the same
desired inter-vehicle distance d in the leader and follower
controllers, that is, for all three inter-vehicle distances. As we
do not correct for the cross-flow scaling of the leader formation,
and in order to ensure the stability of the controller, the scale
factor scw must fulfill

scw < 2

√
1−

(
D

d

)2

(16)

Larger values drive the leaders too far apart from one another
and make it physically impossible for the follower to attain
the desired ranges. This is not a significant limitation, as the
base distance d can be jointly tuned with scw to achieve the
desired minimum and maximum formation spans.

Fig. 2. Surface (top) and side (bottom) views of the freshwater plume in
ANSYS Fluent. The plume measures approximately 75m× 25m× 2m at
S ≤ 34.98 ppt.

IV. EVALUATION

We evaluate the complete solution in a simulated environ-
ment approaching our target scenario for future real-world
trials. We run the robot simulation in MATLAB/Simulink,
using virtual agents based on the MEDUSA vehicle model
to trace a freshwater plume generated in ANSYS Fluent. The
following sections detail the set-up and results obtained.

A. Set-up

Prior to the vehicle simulation, we generate our base plume
in ANSYS Fluent. In a volume measuring 108m× 40m× 4m,
we place a 1 cm× 1 cm hose outlet at the surface, emitting
freshwater in the direction of the current, at a mass flow rate
of 1 kg s−1. The background current flows at 5 cm s−1 along
the length of the volume.

The simulation models chemical species transport, with
freshwater having salinity 0 ppt and density 998.2 kgm−3 and
saltwater having salinity 35 ppt and density 1010 kgm−3. Both
are at a default temperature of 24 ◦C.

We run a steady-state simulation, with standard gravity
conditions and the k–ε viscosity model, for a total of 500
iterations, enough for the solution to converge. The plume
obtained is pictured in Figure 2. Two horizontal profiles of
the plume are obtained—at the surface for the ASVs, and at a
depth of 0.5m for the AUV—and are imported into MATLAB.

In the absence of real readings to calibrate the model, we
choose to approximate the odor signatures seen in the wind
tunnel and add error to the salinity readings drawn from a
half-normal distribution with σ = 0.1 ppt, the same order
of magnitude of the salinity differences between the plume
and the medium. Because the freshwater plume can never
cause a salinity increase, we saturate the resulting values to the
medium salinity S = 35ppt. An example snapshot is presented
in Figure 3, showing the resulting patchy plume.

As we do not foresee having access to real-time current
information when using the real MEDUSA vehicles, we choose
to provide the robots only with the base current, 0.05m s−1

along the length of the arena. The actual current field generating
the plume is, however, non-uniform, due to the effects of the
high-speed freshwater inlet and of turbulence.

The robot simulation uses the MEDUSA Simulink model
for all three vehicles. The two surface vehicles run identical
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Fig. 3. Snapshot of the time-variant salinity levels with added half-normal
noise, at the surface (top) and at a depth of 0.5m (bottom).

copies of the leader controller whereas the underwater vehicle
runs the follower controller. We only consider movement on
the 2D plane, and ignore the depth of the AUV for all purposes
other than chemical sampling.

The vehicles start on the right side, in the plume, and in
their approximate target formation. The follower vehicle must
start behind the leaders in order to converge to the desired
following position.

The follower controller is configured with gains Ks
p = 0.2,

Ks
i = 0.005, and Kh

p = 0.1. The leader controller uses pa-
rameters kcw = 5× 10−2 and kl = 2× 10−2. The component
weights are set to kf = 0.5 and kw = kc = 1.

B. Results

We run simulations for different starting positions on the
sides of the plumes. Figure 4 shows the resulting trajectories
followed by the vehicles. The robots converge to the plume
in all cases, although the time taken to reach the center line
depends on the starting offset.

Increments to the cross-flow scaling factor are proportional
to the difference in readings, which is more pronounced when
exposed to the higher concentrations in the center of the plume.
Therefore, the formation tends to only widen to the plume span
as the robots approach its center, and formations starting closer
to the plume begin to trace its limits earlier in the experiment.

Figure 5 shows the concentrations measured by each vehicle,
after being put through the max filter. For the initial 250 s
the readings increase as the vehicles make their way into and
up the plume. The elevated concentrations on the right side
(vehicle 3) cause them to move cross-flow. At t = 270 s the
formation is centered in the plume, and the concentrations
measured by the follower quickly increase. The leaders are
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Fig. 4. Vehicle trajectories for different starting positions, superimposed on
the base plume. The leader vehicles are plotted in red and the follower vehicle
in green.

now on the edge of the plume and measure low concentrations,
leading the formation to contract as it approaches the source.

The speed and heading of the leaders is plotted in Figure 6.
Speed is mostly driven by up-flow movement and almost
constant throughout the experiment, after the initial formation
convergence. Whereas the up-flow heading is 270◦, the actual
heading reflects the behavior of the vehicles: in a first phase,
both move at elevated headings while centering on the plume;
then, their headings progress in opposite directions as the
formation scales.

The follower movement, in Figure 7, is not as clean. The
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lack of accurate positioning and reliance on low-frequency
range measurements introduces sawtooth disturbances in both
signals, and speed is further affected by the change in inter-
leader distance: while the leaders move at near-constant speed,
formation scaling requires the follower to modulate its speed
in order to move forward or back and keep its distance to the
leaders. This phenomenon is most clear from t = 300 s, when
the formation narrows for the final approach to the source. The
heading of the follower tracks that of the leaders during the
centering phase and afterwards remains close to the up-flow
direction.

V. ALTERNATIVE BEHAVIORS

While our solution is directly applicable to several problems,
additional mechanisms may be required to handle specific
scenario requirements. In the following sections, we outline
two possible extensions to our methods.
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Fig. 7. Actual speed and heading of the follower for the first experiment in
Figure 4. The up-flow direction is 270◦.

A. Scale adjustment

In the interest of avoiding additional data transmission, we
do not feed any scale information to the follower, which always
tries to achieve a preset distance to the leaders. As the leaders
increase or decrease the formation span, this results in changes
to the up-flow distance to the follower, i.e. the closer the leaders
get to one another, the farther behind the follower lags.

Although this effect has limited impact on the performance of
the solution, there are situations in which it might be desirable
to compensate for it. Doing so merely requires replacing d in
the expressions for ε and δ by

df =

√
d2x +

(
scw

d

2

)2

+D2 (17)

where dx is the desired up-flow follower offset, d is the base
cross-flow bias between the leaders, and D is the depth of the
follower. This also removes the restriction on scw imposed by
(16).



Whereas all the other terms are constant and preconfigured,
computing df requires that the cross-flow scale coefficient scw
be sent to the follower over the acoustic link. Adding another
numeric field to the ranging response packet, while trivial,
comes at the cost of further decreased ranging frequency.

B. Variable depth operation
Assuming the follower vehicle is equipped with an appro-

priate depth controller, varying the depth to improve tracing
performance or to gather a vertical profile of the plume can
be accomplished by extending the same formation scaling
approach to the vertical axis [29].

The leaders, armed with knowledge of the concentrations
at the surface and underwater, can compute a scaling factor
sv such that the follower traces the vertical shape of the
plume. The follower, however, does not have access to the
concentrations measured by the leaders and is unable to perform
this computation.

In order to effect the depth changes, sv must be transmitted
to the follower. Because varying the depth affects the measured
ranges and further constrains the cross-flow scaling factor scw,
this approach should be combined with that outlined in the
previous subsection.

To implement the integrated solution, the leader vehicles
include (scw, sv) in the acoustic replies sent to the follower.
The follower transfers the depth reference svD to the depth
controller, and computes the target range df using

df =

√
d2x +

(
scw

d

2

)2

+ (svD)2 (18)

VI. CONCLUSIONS

Our method enables a triangular formation composed of two
surface vehicles, acting as leaders, and an underwater vehicle,
acting as follower, to trace a near-surface plume to its source.

The leaders in our combined approach implement the graph-
based formation plume tracing algorithm introduced in [8]. We
make only minor changes, namely the replacement of relative
positions with absolute GPS coordinates, which approximate
the algorithm to the sensing capabilities and constraints of
ASVs while preserving its core ideas.

The follower AUV uses the range-based formation controller
originally introduced in [10] to pursue the leaders, with no
knowledge of the plume tracing task. In addition, it measures
the concentration and relays the information as part of the
ranging requests, with minimal overhead.

We demonstrated the approach working in simulation using
the full dynamical model of the MEDUSA vehicles and a
freshwater plume in a saltwater medium, generated using a
high-fidelity Computational Fluid Dynamics (CFD) application.
Despite the added complexity, the robots successfully trace the
plume to its source.

A major takeaway message of this work is the little effort
required to convert the land-based tracing algorithm to work
with marine vehicles, and to merge properly-designed graph-
based and range-based formation controllers into a hybrid
approach.

An immediate next step for this research will be the
implementation and evaluation of the algorithm using real
vehicles. In the future, we foresee the extension of this approach
to larger teams, including those with multiple underwater
vehicles, and to scenarios with complex 3-D currents.
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