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Audio inpainting with similarity graphs
Nathanael Perraudin, Nicki Holighaus, Piotr Majdak, Peter Balazs

Abstract—In this contribution, we present a method to compen-
sate for long duration data gaps in audio signals, in particular
music. To achieve this task, a similarity graph is constructed,
based on a short-time Fourier analysis of reliable signal seg-
ments, e.g. the uncorrupted remainder of the music piece, and
the temporal regions adjacent to the unreliable section of the
signal. A suitable candidate segment is then selected through an
optimization scheme and smoothly inserted into the gap.

I. INTRODUCTION

The loss or corruption of data segments of considerable
duration is a very common issue in data restoration and
transmission. In audio applications in particular, the inser-
tion of perceptually pleasing content is very important. A
good insertion would prevent audible artifacts and provide a
coherent and meaningful signal to the listener who would,
optimally, remain unaware that any problem has occurred.
This task has recently become known as audio inpainting [1],
but has previously been referred to e.g. as audio interpola-
tion [2] or waveform substitution [3]. Audio inpainting aims
at reconstructing missing parts of an audio signal. When
missing parts have a length of a few samples, sparsity based
techniques can be used [1], [4], [5]. However, these algorithms
are not able to provide satisfactory results for distortions
longer than 50ms. For such cases, techniques relying on auto-
regressive modeling [2], sinusoidal modeling [6], [7] or based
on self-content [8] have been proposed with varying degrees
of success, depending on suitable assumptions on the signal
at hand.

Here, we propose a novel method that can be considered
a contribution to the latest category. Although the algorithm
provided can be applied to any (audio) signal, it is implicitly
assumed that for any short signal segment, we can find
another segment in the given reliable data with similar spectro-
temporal behavior. It is easy to see that this condition is
satisfied for various musical genres such as pop and rock
music with a somewhat predictable structure. For example,
if a segment of a few seconds duration is missing from a pop
song, then with high probability there is a another segment
in the signal with very similar content. However, even for
less predictable signals such as certain classical or jazz music
pieces, it is often possible to find a highly suitable match.
Given a defective signal segment and a set of reliable content,
usually the uncorrupted remainder of the music piece, our
method finds such a match and automatically aligns it with
the defective segment, providing a restored version of the
signal. Figure 1 illustrates how this is equivalent as jumping
to a different part of the song during the gap. Thus a natural
replacement needs to have 2 "ear-friendly" transitions denoted
T1 and T2.

Even though music is in general redundant, there are seg-
ments that appear only once during a song. If the missing part

Figure 1. The basic idea of segment-based audio in-painting. In order to
replace the missing segment, the algorithm uses a different part of the signal.
T1 and T2 are the resulting transitions.

lays in the middle of a unique segment, it is not possible to
find a replacement matching exactly the missing part. In order
to cope with this problem, we allow ourselves to replace some
of the known content and to modify slightly the signal length.
Thus, as illustrated in Figure 2, our algorithm searches for a
replacement segment that optimally satisfies the 3 following
criteria:

1) The transitions T1 and T2 (green dashed lines in Fig-
ure 2) resulting from the pasting operation should be
as imperceptible as possible. Ideally, the listener should
not be able to notice the transition, even if the inpainted
content does not equal the missing data.

2) The lengths of the replaced reliable, known information
L1 and L2 should be as small as possible.

3) The length of the song should remain approximately the
same, i.e: the length of the replacement D2 should be
close to the length of the replaced content D1.

Some margin for compromise is, however, essential to the con-
struction of a good solution. Since the question of how strictly
the reliable content is to be preserved is highly application-
dependent, a parameter in the optimization scheme enables the
tuning of this property.

Figure 2. What is the best replacement segment to replace the missing
content? The transitions T1 and T2 should not be perceptible. The length
of the replacement D2 should be close to the length of the original segment
D1. Known, reliable information should be overwritten as little as possible,
i.e. L1 and L2 should be small.

An exhaustive search for possible replacements is in-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148023361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

tractable as the number of candidate segments grows about
quadratically in the signal length, which can easily be millions
of samples. The main idea is to construct a small set of
matches which all have a sufficiently good transitions quality.
In order to assess this quality, we construct a similarity graph
based on spectro-temporal information obtained through a
short-time Fourier analysis [9], [10] of the reliable content and
the signal regions adjacent to the gap (the defective segment).
More specifically, our time-frequency features are given by
time-weighted, connected patches of short-time Fourier coef-
ficients, respectively their amplitudes and partial phase deriva-
tives in the time direction, see Section III-B for more details.
Once the set of possible candidates is built, the optimal match
is determined through an optimization balancing the difference
of the time-frequency features and the length difference of
the defective and candidate segments. The final inpainting
procedure itself is then simply a cross-faded transition between
the original border regions around the gap and the determined
match, as illustrated by Figure 1.

A. Related Work

The audio inpainting problem has mainly been addressed
from a sparsity point of view. The hypothesis is that usual
sounds are composed only with a few time-frequency atoms.
Using classical `0 or `1 optimization techniques, algorithms
have been designed to inpaint short sound gaps [1], [4]. Audio
inpainting is known as "waveform substitution" [3] by the
community addressing packet loss recovery techniques [11].

More related to this contribution, similarity-based audio
inpainting has already been proposed in [8]. Similarly to our
own contribution, the authors design an algorithm searching
for similar parts of the signal using time-evolving features.
However, the approach developed in [8] is designed to handle
small holes (up to 40 ms) of information originating from
packets being dropped during transmission. The resulting
algorithm is fairly different as it 1) does not use a similarity
graph, 2) does not allow replacement of known content, 3)
uses a probabilistic prior along the similarity measure and 4)
has a different objective function as its goal is not to fool the
listener but to restore the lost content.

Finally, the idea that the music is highly structured with
deliberate similarities is not new and has been already ex-
plored [12], [13]. The work presented in these contributions
paved the way for founding "The Echo Nest"1, a company
specialized into audio feature design. They have already build
graphs of similarities for the infinite jukebox: http://labs.
echonest.com/Uploader/index.html

B. Contributions

In this contribution we propose a method to build a similar-
ity graph for audio signals (see Section III-C). As explained in
Section II, this graph encodes an important part of the structure
of the audio signal. Based on this structure, we propose in
Section III an algorithm to solve audio inpainting problems.
By finding the most similar segment from a body of candidate

1http://the.echonest.com/

data, the resulting method is able to inpaint large gaps inside
the audio signal, without a loss in audio quality and largely
independent of the complexity of the signal at hand. Finally,
in Section IV, we perform a preliminary evaluation of the
algorithm performance, computationally and with regards to
perceptual quality.

II. A TRANSITION GRAPH ENCODING MUSIC STRUCTURES

The problem we consider, i.e. how to restore a piece of
music when an extended, connected piece has been lost or
corrupted, often requires us to abandon the idea of exact
recovery. In the case where only a short segment (up to about
50ms) has been lost [1], or the signal can be described by
a very simple structure [6], it may be possible to infer the
missing information from the regions directly adjacent to the
distortion with sufficient quality. However, for complex music
signals and corruptions of longer duration, such inference
remains out of reach. Hence, we instead ask the question: What
characterizes a music piece, what makes it sound natural, as
opposed noise or other environmental sounds?

Of course, the answer to this question is not only highly
subjective, but also content-dependent. As much as different
genres adhere to differing rules, so do different listeners
reactions to music vary, depending on the listening experience
and habits. A listener accustomed to classical, or jazz music
will have her attention drawn by different musical cues than
one mostly familiar with pop or rock. Nevertheless, the often
(though surely not always) predictable evolution of distinct
and structured rhythmic and/or harmonic patterns plays an
important role in the experience and recognition of music.
Everyone has experienced the instant recollection of a whole
song from a pattern as short as a few notes or beats.

But even if a pattern is not repeated in the exactly same fash-
ion, the conscious variation of previous structures, rhythmic,
harmonic or otherwise, is an integral part of music, although
the grade of self-similarity inside a single piece of music can
greatly vary. These patterns and their temporal development
are what provides coherence and structure to a piece of music.

Going back to the original problem of music restoration,
it seems natural to exploit this type of redundancy in the
musical piece to be restored. The analysis of a piece of
music based on this these considerations can be abstracted
into determining the temporal evolution of spectral content
in the signal. Clearly, this is an oversimplification and many
effects related to human auditory perception and the processing
of sound data in the human brain play an important role,
but simple time-frequency analysis can provide a surprisingly
suitable first approximation.

Inspired by this observation, we construct an audio simi-
larity graph. The vertices of the graph represent small parts
of musical content, while the edges indicate the similarity
between the segments in terms of local spectral content.
The crucial step towards good performance is once more the
enforcement of temporal coherence, i.e. respecting the time-
dependent structure of the underlying music. This is achieved
by emphasizing such connections in the graph that persist over
some span of time.

http://labs.echonest.com/Uploader/index.html
http://labs.echonest.com/Uploader/index.html
http://the.echonest.com/
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Besides providing an intuitive analysis of the signal at hand,
exposing self-similarities and global structure, it can be used
for a number of different purposes, e.g. re-compose a song by
following the edges of the graph, respecting the global music
structure2. In this contribution, we use the similarity graph
to address the problem of audio inpainting. Leveraging the
information contained into the graph, we design an algorithm
able to replace some content inside the music, respecting the
coherence and structure of the underlying music piece.

III. METHOD

In this section, we describe the proposed inpainting method.
We begin with an overview of the algorithm, before discussing
the individual stages in more detail.

A. Stages of the Algorithm

The presented algorithm attempts the restoration of a defect
in a one channel audio signal, usually given the entire (possibly
corrupted) audio signal and the position of the part to be
replaced. In particular, we consider the problem of dealing
with long duration corruptions in the range from form 0.1s to
a few seconds. Simply put, our algorithm selects, according
to some numerical criterion, the optimally similar segment
from the reliable part of the signal and inserts it into the gap.
Our framework is easily adapted to multi-channels signals, by
applying the inpainting to all channels simultaneously.

The aim of the algorithm is to provide autonomously a
restored signal that sounds as natural as possible. That is,
we prefer a less accurate3 result with little artifacts over a
more accurate solution with audible artifacts. This is reflected
in the algorithm mainly grading the transitions themselves
instead of the inner part of the inpainted segment. However,
this also implies that a proper evaluation of the algorithm
performance cannot be based on a numerically motivated,
objective difference measure, but is more involved. This issue
is touched upon in Section IV. On the other hand, in the
context of real world applications, the missing original signal
segment is unknown and cannot usually be recovered, while a
measure to judge the transition quality still provides a crucial
first estimate of the reliability of the restoration.

As alluded to in the previous paragraph, the main task of our
method is the determination of a set of segments with suitable
natural transitions T1 and T2, recall Figure 2. The steps in
which that is achieved are summarized in Algorithm 1. The
rationale behind the algorithm can be described as follows:
1) Create feature vectors that represent the audio content at a
specific time. The difference of feature vectors at different time
positions quantifies the quality of a transition between these
two positions. 2) In order to simplify our analysis, construct
a graph in which sufficiently similar positions are connected
by an edge. The edge weight depends on the difference of
the corresponding feature vector, i.e. they represent good
transitions between time points. 3) Select the optimal segment,

2A similar method has been used for that exact purpose in the so-called
“infinite jukebox”, available at http://labs.echonest.com/Uploader/index.html.

3According to a numerical quality function such as SNR of the inpainted
segment versus the unknown original.

considering the transition quality T1 and T2 and the difference
between the segment lengths D1 and D2, see Figure 2. 4)
Eventually, a restored signal is synthesized by inserting the
selected similarity based content instead of the corrupted part.

Algorithm 1 Similarity-based audio inpainting algorithm
1: Local audio feature extraction (Detailed in subsection

III-B)
2: Graph creation (Detailed in subsection III-B)
3: Transition selection (Detailed in subsection III-D)
4: Signal reconstruction (Detailed in subsection III-E)

B. Local audio features

The audio feature selection is crucial for the reliability and
efficiency of our algorithm. The subsequent steps depend on
the given similarity rating, i.e. the distance in terms of the
features, to imply a good match. In this contribution, we focus
on features that can be obtained from a sampled short-time
Fourier transform (STFT) of the signal. The STFT of a signal
s ∈ CL with respect to a window function g ∈ RL is defined
as

Vgs[n,m] =

L−1∑
l=0

s[l]g[l − n]e−2πiml/L = ̂s · g[· − n][m],

where the vector Vgs[n, ·] measures the local frequency content
of s around n. Since we assume s ∈ RL, the vectors Vgs[n, ·]
are Hermitian symmetric and it is sufficient to consider m =
0, . . . , bL/2c+1. If only the values Vgs[na,mL/M ], for some
divisors a,M ∈ N of L, are taken, we say that a sampled STFT
with hop size a and M channels is computed.

Data preprocessing. Before the features are computed, the
signal might be down-sampled if the original sampling rate
ξs is higher than ξs,max = 12 kHz. Signals are down-sampled
by a factor dξs/ξs,maxe after applying an anti-aliasing filter.
Besides a convenient complexity reduction, this also restricts
the audio feature to a smaller frequency range that still
contains the most relevant information.

Of several features directly derived from the sampled
short-time Fourier transform4, a feature based on the dB-
spectrogram, combined with partial phase derivatives in the
time direction, has produced the most reliable results. Given
the STFT parameters g, a,M , we first compute the STFT of s
with respect to g, with hop size a and M channels, obtaining
a matrix C ∈ CM×L/a, where Cm,n = Vgs[na,mL/M ]. The
local features are obtained in two steps.

dB-spectrogram feature. The human auditory system per-
cieves loudness approximately as a logarithmic function of
sound pressure. Therefore, the db-spectrogram provides natu-
ral time dependent audio features. It is defined as

Sdb
m,n = 20 log10(|Cm,n|).

4The candidates were: spectrogram, dB-scaled spectrogram, MFCC [14],
partial phase derivative in time-direction and combinations thereof

http://labs.echonest.com/Uploader/index.html
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In order to avoid the large negative values that are obtained if
Cm,n is small, we modify Sdb as follows, to obtain the first
feature set.

F(1)
m,n = p−1

(
Sdb
m,n −max

k,l
(Sdb
k,l) + p

)
+

,

where (x)+ = x, if x > 0, and 0 otherwise. Here, p is a
parameter given in dB that specifies the dynamic range that
is considered, and the normalization with p−1 guarantees that
we obtain values in [0, 1]. By default, we set p = 50.

Phase derivative feature. The fact that the partial derivative
in time direction of the phase of the STFT provides a good
estimate of instantaneous frequency has been used extensively
in the literature. In particular, it is used in the popular
reassignment and synchro-squeezing methods for spectrogram
deconvolution [15], [16]. For our purposes it is interesting
that the time-direction phase partial derivative attains large
values mostly in the vicinity of sustained sinusoidal signal
components. Moreover, its magnitude is independent of the
energy in that component, but closely related to the distance
to the instantaneous frequency. Therefore, the phase partial
derivative can serve to put additional emphasis on sinusoidal
signal components. The phase of the STFT can be obtained
as

φ[m,n] = (2π)−1 log

(
Cm,n

|Cm,n|

)
.

and a discrete derivative can be obtained in each fixed channel
m by a finite difference scheme operating over n. However,
Auger and Flandrin [15] have shown that the desired phase
derivative can be obtained as −Im(Vg′s[n,m]/Vgs[n,m]),
where g′ is a suitable discrete derivative of the window
function g. This is usually more efficient and accurate than
computing a finite difference scheme, but most importantly, it
can be computed without accuracy loss in the presence of
arbitrary hop sizes a and number of channels M . To that
purpose, we define Ctd

m,n = Vg′s[na,mL/M ] and

Ptdm,n = −Im(Ctd
m,n/Cm,n).

We are mainly interested in the phase derivative of high energy
components in the spectrogram. Therefore, we multiply Ptd

with a binary mask

Mm,n =

{
1 if |Cm,n| ≥ cthr maxk,l(Ck,l),

0 else,

where cthr is a threshold parameter, set by default to cthr =
0.002. Finally, the phase derivative is smoothened by convo-
lution with a localized kernel, suppressing quick changes. The
second feature set is thus obtained by

F(2)
m,n = F̃(2)

m,n/max
k,l

(F̃
(2)
k,l ), with F̃(2)

m,n

=
(
Mm,·P

td
m,·
)
∗ vker[n].

Here, ∗ denotes circular convolution and vker is a positive,
symmetric convolution kernel, centered at n = 0. The default
convolution kernel is an 8-point Hann window.

The resulting features. The two feature types can be
weighted against one another with a parameter λ, resulting
in the local audio features

Fn = (F
(1)
1,n, . . . ,F

(1)
M−1,n, λF

(2)
1,n, . . . , λF

(2)
M−1,n)

T ,

for n = 0, . . . , L/a− 1.

λ = 3/2 has proven to be a good default value. In the next
step, we construct a similarity graph by computing pairwise
norm differences between the local audio features.

Figure 3. Time-domain signal. The waveform representation reveals only
little about the signal structure and is not suitable for a similarity analysis.

Figure 4. Time-frequency representations of the signal. The features shown
are based on the log-spectrogram (top) and a partial phase derivative (bottom).

C. Creation of the transitions graph

The transition graph is an essential tool in our analysis. It
contains the potential transitions that the algorithm considers
as sufficiently good inside the analyzed signal content. The
edge weights rate the quality of the transitions in terms of
the features considered in the previous section. The graph
contains L/a nodes which represent the possible time instants
for the transitions. Its construction requires some care and
is done in two steps. First we build a traditional nearest
neighbors graph G0 with weight W0. To build the final graph
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G with weight W , we then apply some refinements that
ensure persistence of the transition candidates in time and a
sufficiently sparse graph only containing the most relevant
connections.

Find the nearest neighbors. For all feature vectors we
search for the `2-norm k nearest neighbors. Since this opera-
tion is expensive, we use the FLANN library (Fast Library for
Approximate Nearest Neighbors) [17] to efficiently provide an
approximate solution. Following a traditional graph construc-
tion scheme, we then associate a preliminary weight to every
connection. Let us write ki the set of the k (approximate)
nearest neighbors of the the vector xi. The weights of the
initial graph are computed with a standard Gaussian kernel
and given by:

W0(i, j) =

{
e−
‖xi−xj‖

2
2

σ if j ∈ ki
0 if j /∈ ki,

where xi and xj are two feature vectors. σ is set to the average
squared nearest neighbor distance

σ =
1

|I|k
∑
i∈I

∑
j∈ki

‖xi − xj‖22,

where I is the feature index set, i.e. the set of all vertices
of the graph. If ‖xi − xj‖22 = d2ij � σ, i.e. the feature
vectors are similar, the weight W0(i, j) will be approximately
1. On the contrary, when the distance is larger, the weight
approaches 0. Figure 5 left shows the weight matrix W0. The
diagonal shape of the non-zero elements indicates that the
audio signal has similar segments persistent through several
(time-)adjacent feature vectors. This property is desirable for
a good transition because it indicates that the similarity is
consistent along time, for at least a short duration. Therefore,
the next step aims to emphasize such connections, while
discarding instant similarities without persistence over time.

Figure 5. Left: nearest neighbors weight matrix. Right: Weight matrix after
convolution and hard-thresholding.

Enhance time-persistent similarity. In order to extract
transitions that are consistent along time, we enhance these
diagonal effects by convolving the weight matrix with a
diagonal kernel shown in Figure 6. The length of this kernel
is defined by the variable lk. This operation considers lk con-
secutive feature vectors, implying that the algorithm analyses
signal segments of length alk

ff
. With the default parameters

of Table V, this equals approximately half a second. The
convolved weight matrix reads:

Wc(i, j) =

lk/2∑
u=−lk/2

cuW0(i+ u, j + u),

where cu = lk−2|u|
lk

. The kernel c is shown in Figure 6.

Figure 6. Convolution kernel used to enhance the diagonal shape of the
weight matrix. Here lk = 40.

Thin out the graph. For the purpose of signal restoration,
we are only interested in the strongest connections, i.e. those
with weights close to 1. Small weights are eliminated by a sim-
ple hard thresholding with threshold tw, to reduce the number
of connections in the graphs and thereby the computational
load for selecting the best connections see Section III-D. The
result is shown in Figure 5(r). An example for the resulting
graph, displayed in Figure 7(l), may still contain a large
number of connections, possibly pointing to the same similar
segment in the signal. In order to overcome this problem, the
number of connections is further reduced, by only selecting
the local maxima in the final weight matrix, i.e. after the
convolution step. The final weight matrix is thus

W (i, j) =


Wc(i, j) if



Wc(i, j) ≥ tw
Wc(i, j) ≥Wc(i+ 1, j + 1)

Wc(i, j) ≥Wc(i− 1, j − 1)

Wc(i, j) ≥Wc(i+ 1, j − 1)

Wc(i, j) ≥Wc(i− 1, j + 1)

0 otherwise

The resulting sparse graph is shown in Figure 7(r).

Figure 7. Left: graph with all possible transitions, i.e: Wc(i, j) ≥ tw . Right:
sparsified graph by taking the maximum connections.

Reduce computational cost. For our specific problem,
only a partial transition graph needs to be computed. In
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particular, we are only interested in outgoing connections in
a short region, i.e. in the range of few seconds, immediately
before the corrupted segment and incoming connections in
a similar region immediately after the gap. Conceptually,
we want the values of L1 and L2 in Figure 2 to be small.
Therefore, the k nearest neighbors search is not performed
on all i ∈ I , but only for a small subset of vertices in the
direct vicinity of the corrupted segment. In practice, we limit
ourselves to 5 seconds before and after the gap. Figure 8
shows an example of the resulting graph.

Figure 8. Subgraph. Blue: hole. Red node used for the subgraph. The two
black connections are the transitions T1 and T2.

D. Selection of optimal transitions

At this stage, the connections in the graph represent the best
connections between the border regions around the gap and
the reliable data, graded with respect to the described feature
vectors. In order to provide a satisfactory inpainting result,
we require, however, a pair of transitions with the following
properties:

1) Known content is overwritten as little as possible, i.e.
L1 and L2 in Figure 2 should be minimized.

2) The individual transitions should have optimal quality,
i.e. T1 and T2 in Figure 2 should have a very good rating.
The rationale here is that a transition with a good grade
will in most cases also be perceptually pleasing.

3) The final length of the reconstructed signal does not
diverge much from the original signal length, i.e. the
difference between D1 and D2 in Figure 2 is to be
minimized.

In order to trade-off between these requirements, we formulate
an optimization problem:

argmin
{T1,T2}∈S

|D1(T1, T2)−D2(T1, T2)|

+ γ1 (L1(T1) + L2(T2))

+ γ2

(
1

w(T1)
+

1

w(T2)

)

where γ1 and γ2 are the regularization parameters balancing
between the importance of the different constraints and S
the set of valid transitions. This set contains all pairs of
transitions obtained from the graph that also satisfy the
following two properties: (a) the transition T2 is starting after
the end of T1. (b) The of T1 and the beginning of T2 are on
the same side of the gap. The transitions are displayed as
gray arrows in Figure 8.

Solving the optimization problem. Since the set of tran-
sitions in S is in general rather small due 1) the graph being
very sparse and 2) the fact that we compute only a subset of
transition around the gap, the computational benefit from using
a sophisticated optimization algorithm is negligible. Hence,
we simply compute exhaustively the value of the objective
function for each of pairs T1, T2 and select the optimal pair.

E. Final reconstruction step

Up to now, the algorithm has only operated with a time
resolution of the hop size ã = adξs/ξs,maxe, where a, ξs, ξs,max
are the parameters used in the computation of local audio
features. It is quite possible that synthesizing directly using
the selected transitions will produce timing mismatches of up
to ±ã samples. In order to reduce this phenomenon, we add a
fine-tuning step before the reconstruction. As proposed in [8],
we maximize the correlation between the regions around the
proposed transition points. However, since the length of the
resulting signal is allowed to change, we do it separately for
each transition. More explicitly, let t1,1, t̃1,2 and t̃2,1, t2,2 be
the proposed transition points around the gap and the proposed
replacement segment respectively. Furthermore, for j = 1, 2,

s1,j [l] =

{
s[t1,j + l] if |l| ≤ w̃l,
0 else

and

s2,j [l] =

{
s[t2,j + l] if |l| ≤ w̃l + ã,

0 else,

where w̃l = wldξs/ξs,maxe and wl is the size in samples of
the (essential) support of the window g ∈ RL used to compute
the local audio features. Then

ε1 = argmax
n∈]−a,a[

〈s1,1[·−n], s2,1〉, ε2 = argmax
n∈]−a,a[

〈s1,2[·−n], s2,2〉

and we obtain the final transition points for the replacement
segment as

t2,1 = t̃2,1 + ε1, t1,2 = t̃1,2 − ε2.

To obtain the reconstruction, we compute 3 STFTs, recombine
the time frames appropriately and synthesize a signal. We
define

C(1)
m,n = Vg̃s[nã,mL/M̃ ],

C(2)
m,n = Vg̃s[nã+ ε1,mL/M̃ ],

C(3)
m,n = Vg̃s[nã− ε2,mL/M̃ ].

Note that s ∈ RL now refers to the original signal before
down-sampling. Hence we use the hop size ã, M̃ = w̃l and



7

a new window g̃ with (essential) support of length w̃l. The
reconstruction is by applying the inverse STFT to

C rec =
(

C
(1)
·,1 , . . . , C

(1)
·,t1,1/ã−1,

C
(2)
·,t2,1/ã, . . . , C

(2)
·,t2,2/ã−1,

C
(3)
·,t1,2/ã, . . . , C

(3)
·,L/ã−1

)
.

In fact, we only compute small segments of each C(j),
j = 1, 2, 3, and insert the reconstruction at the correct part of
the signal. Constructing the reconstruction in a time-frequency
domain representation might seem overly complicated at first,
but it conveniently introduces a cross-fading effect in the tran-
sition regions. Note also that simply measuring the correlation
might not yield the optimal fine-tuning result. To see that,
simply consider two signals with identical spectral content, but
misaligned phase. In that case, only choosing the correct phase
shift in addition to the proper time-alignment will produce
optimal results. The implementation of such a scheme is
currently in progress and more easily achieved in the time-
frequency domain than in a pure time domain implementation.

IV. ALGORITHM EVALUATION

In this section we provide a first evaluation of our method’s
computational and qualitative performance. First, we evaluate
the average runtime of the method on a modern personal
computer (2.4 GHz Intel Core i7, 16 GB RAM). In order
to show the reliability of the algorithm in a setting where
the missing segment is also contained in the reliable data,
we provide a synthetic sanity check in Section IV-B. Since
this is an artificial assumption not usually exactly satisfied,
and we do not even attempt to recover the same data, but
a perceptually pleasing synthesis, a procedure for objective
evaluation of the method’s perceptual performance is not easily
devised. In order to provide some indication of perceptual
performance in more general situations anyway, we performed
some preliminary perceptual tests, see Section IV-C, with
promising results. Moreover, a MATLAB implementation of
our algorithm, based on LTFAT [18] for feature extraction, and
on the GSPBox [19] for graph creation is available for non-
commercial use5, alongside a browser-based demonstration
available at https://lts2.epfl.ch/web-audio-inpainting/. For the
sake of completeness, Table V at the end of the manuscript
provides a list of the default parameters of the algorithm that
have been used for all the presented experiments.

A. Computational complexity

The feature computation, graph creation and the selection
of the optimal transition scale linearly with the length of
the provided reliable data, in terms of both storage and time
complexity. In all our experiments, the reliable data was given
by a full song, without the corrupted segment. If multiple
corruptions are to be removed using the same set of reliable
data, the algorithm benefits from the fact that features only
need to be computed once. Since the feature computation is

5https://lts2.epfl.ch/rrp/audio-inpainting/

the bottleneck of the method (this can be seen in Table IV-A),
this leads to significant performance boosts. The Table IV-A
shows mean computation time per minute (i.e. 44100 samples)
after 80 runs of the algorithm on a set of 16 audio signals
of various content, as well as the corresponding standard
deviation. On average the algorithm requires 3.2s computation
time per minute of single channel audio, sampled at 44.1 kHz.

Step Time (s) Standard deviation (s)
Features extraction 2.65 0.19
Graph construction 0.43 0.07
Transition selection 0.02 0.01
Signal reconstruction 0.05 0.02

Total 3.20 0.23

Table I
AVERAGE EXECUTION TIME PER MINUTE OF MUSIC OF THE ALGORITHM

FOR A DATABASE OF 16 SONGS.

B. Synthetic experiment

As a baseline check for the reliability of the algorithm,
we address the question whether the algorithm consistently
recovers the correct signal, whenever an exact, reliable copy
of the corrupted segment is present in the set of reliable
data. For this purpose, we used the same 16 signals as in
the previous experiment and created new signals by just
repeating the original content twice. Then, the signal was
artificially corrupted by substituting a random segment of
2 seconds length with silence, before applying the method
to that corruption. Per file, the experiment was repeated 5
times, leading once more to a set of 80 examples. In all
cases, the `2-norm difference between the original signal and
the reconstruction was in the range of numerical numerical
precision, i.e. the signal was perfectly restored.

C. Preliminary perceptual validation

The previous experiment is, of course, insufficient to assess
the performance of our algorithm in more realistic situations,
where the exact same waveform may not appear in the reliable
content. In order to estimate the potential of the proposed
algorithm in a real-world situation, we have performed pre-
liminary psychoacoustic experiments, rating the artifacts after
restoration.

a) Methods: The sound material consisted of 134 songs
from the genres classic, rock, pop, jazz, and others. From each
song, three 5 s excerpts were selected as stimuli, each of them
from a random position in the song. In order to create inpainted
stimuli, two seconds within a stimulus was set to zero and then,
based on the full song information, the inpainting algorithm
was used to inpaint that stimulus part. Since the inpainting
method may change the duration of the signal, it was limited
to output stimuli with a maximal duration of 25 s.

Two listeners participated in the experiment. The listener
EM was an expert on the sound material. The listener EA was
an expert on the proposed inpainting algorithm.

In each trial, the listener was presented with a stimulus
via headphones in their everyday listening conditions. After
the stimulus presentation, the listener was asked to rate the

https://lts2.epfl.ch/web-audio-inpainting/
https://lts2.epfl.ch/rrp/audio-inpainting/
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stimulus by using one of the following categories: 1) inaudible
artifacts or original stimulus; 2) audible but minor artifacts;
3) audible artifacts, not acceptable for listening; 4) strong
artifacts, fail of the algorithm. Each stimulus was presented
just once, yielding in 402 ratings per listener in total.

b) Results: The listener EM rated 38% of all stimuli as
inaudible (category 1) and 65% of all stimuli as inaudible or
minor artifacts (accumulated categories 1 and 2). The listener
EA rated 72% of all stimuli as inaudible (category 1) and
86% of all stimuli as inaudible or minor artifacts (accumulated
categories 1 and 2).

c) Discussion: Even though a complete conclusion can-
not be drawn from that preliminary experiment, the results
are very encouraging. On average, in 55% of all stimuli, the
inpainting was rated as inaudible. In 76% of all stimuli, the
inpainting result was rated as acceptable for listening. Note
that the experiment was missing a hidden reference, thus, the
reliability of the ratings as inaudible cannot be estimated. On
the other had, the two listeners were experts, thus, it can be
expected that for average listeners, the number of inaudible
artifacts and thus successful reconstructions might have been
even higher.

On average, 24% of the inpainted stimuli were rated as
not acceptable for listening. The investigation of reasons for
such ratings will require a more solid evaluation including
hidden references and anchors. Further, since the proposed
algorithm does not use any contextual or semantic information
like language, audio material containing speech is clearly more
challenging than instrumental music, thus, further in-depth
perceptual evaluation will need to take this aspect into account.

V. CONCLUSION

We have introduced a method for restoration of audio
signals in the presence of corruption/loss of data over an
extended, connected period of time. Since, for complex audio
signals, the length of the lost segment usually prohibits the
inference of the correct data purely from the adjacent reliable
data, our solution is based on the larger scale structure of
the underlying audio signal. The reliable data is analyzed,
detecting spectro-temporal similarities, resulting in a graph
representation of the signal’s temporal evolution that indicates
strong similarities. Inpainting of the lost data is then achieved
by determining two suitable transitions between the border
regions around the corrupted signal segment and a region that
is considered to be similar. In other words, the algorithm jumps
from shortly before the gap to a similar section of the audio
signal and, after some time, back to a position shortly after
the gap, effectively exchanging the corrupted piece with a
suitable substitute. Consequently, the algorithm is capable of
efficiently exploiting naturally occurring redundancies in the
reliable data. Although the internal similarity computations
are not yet very closely related to human auditory percep-
tion, and incapable of detecting and comprehending semantic
information, preliminary examination shows very promising
results. Future work includes closing the gap between the
internal similarity measures and human hearing by incor-
porating perceptually motivated similarity measures derived,

possibly, from a perceptually-motivated representation [20]
or a computational model of the auditory system [21]. Such
a modification will greatly improve the reliability of the
algorithm and its results. It seems worth noting, however, that
even after considering an auditory model, reliable retrieval
of strongly context-sensitive data such as speech and singing
voice will require additional contextual information and might
be better achieved by a generative approach [22], applied after
separating voice and music in the signal [23].
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