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munosuppression into femurs of mice were able 
to reverse diabetes, however, rejection seemed to 
be accelerated (7 to 9 days) as compared to the 
usual transplantation site, namely, under the kid-
ney capsule (10 to 14 days). Xenograft rejection 

-
ges, CD4+ and CD8+ T cells. Taking advantage 
of our previously developed islet encapsulation 
protocols18-21, we showed that the encapsulation 
of rat islet in calcium-alginate beads protected 
the islet from immune response up to one-month 
post-transplantation. We observed a similar de-

the bone marrow compared to the kidney capsu-
le. We then tested the feasibility of transplanting 
encapsulated islets in a rat model (Figure 1, un-
published data). To that aim, we transplanted en-
capsulated in calcium-alginate beads human islet 
(isolated using the Ricordi protocol with local 
adaptations22-26) and transplanted into the bone 
marrow or kidney capsule of normoglycemic 
adult Sprague-Dawley rat as previously descri-
bed17,27,28

marrow was performed via a medial incision at 
the anterior surface of the knee joint. The femur 
was reamed using 29, 22 and 18-gauge needles 
successively. Encapsulated islet were then 
injected using an 18-gauge needle. Skin closure 
was performed using non-absorbable 5.0 sutures. 
Histological examination showed no major dif-

-
row as compared to the kidney capsule 30 days 
post-transplantation (Figure 1). Of note, the en-
capsulation and transplantation process did not 
damage the islet. The “shrinked” aspect of the 
capsule is likely to be due to the dehydration and 

for histological sections. The physiological di-
screpancy between the size of rat femurs and the 
volume of capsules did not allow us to transplant 

-
ction. Scaling-up these experiments to a large 

encapsulated islet cells to be transplanted and, 
thus, pave the way toward clinical application.

CLINICAL TRIALS

-
monti et al7 evaluated the safety and feasibility of 
islet autotransplantation into the bone marrow after 
total pancreatectomy. Three of the four patients had 

PRECLINICAL STUDIES

-
tation of pancreatic islets into the bone marrow 
were Salazar-Bañuelos et al from Mexico9,10. The 
authors reported that syngeneic and allogeneic rat 
islets survived in rat bone marrow up to 21 days 
post-transplantation. Xenografts from Tilapia were 
however acutely rejected. Cantarelli et al11 further 
demonstrated that syngeneic islets could survive 
in the bone marrow for over one year, and presu-

mass islet transplantation into the bone marrow 
(125-250 IEQ) had a higher probability in reaching 
euglycemia compared to islets transplanted into 
the liver. Fasting glycemia, insulin and glucagon 
serum levels, beta-cell function, insulin resistance, 
oral and intravenous glucose tolerance tests were 
normal up to 9 months post-transplantation. Im-
portantly the transplanted islets in the bone mar-
row did not compromise the hematopoietic activi-
ty. The same group also reported that allogeneic 
islet transplanted in the bone marrow of mice were 
rejected simultaneously as islets transplanted into 
the liver12 and that syngeneic islet engraftment was 
delayed when transplanted in high number into the 
bone marrow13. Recent results by the same group 

rejection in the liver compared to the bone marrow 
in the allogeneic setting14. A potential shortcoming 
of these studies is that in murine models the liver 
might not be an ideal representation of the clinical 
situation, since the islets cause thrombus, hepatic 

15; this is due to 
the fact that the size of islets is conserved betwe-
en species, making rodent islets too big for liver 
vasculature. A Chinese group transplanted alloge-

-
tozotocin-induced) and immunosuppressed rhesus 
monkeys (ATG, cortisone, tacrolimus and siroli-
mus)16. The authors reported that such procedure 
was technically easier compared to the liver and 

The authors reported a median of 102 days of nor-
moglycemia compared to 39 and 58 days in a con-
trol group of two animals with the islet transplan-
ted into the liver. Our group had similar success in 
glucose normalization and function transplanting 
syngeneic islet into the bone marrow of diabetic 
mice17. We further sought to analyze the survival 
of xenogeneic rat and human islets in this setting. 
Such rat and human islets transplanted without im-
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DISCUSSION

Bone marrow is a highly vascularized and easily 
accessible site, offering space and mechanical pro-
tection, thus allowing the perspective of repeated 
islet infusions and transplantations17. Preclinical 
studies have shown the feasibility of the method 
and demonstrated results comparable to the stan-
dard implantation site, namely, the liver, in the 
syngeneic setting. However, the bone marrow site 
is associated with potent rejection in the allo- or 
xenogeneic settings. This issue can potentially be 
addressed by immunoisolation of the islets, for ex-
ample by micro-encapsulation. The density of the 
vascular network in the bone addresses the critical 
issue of oxygen supply in the setting of encapsu-
lated islet transplantation11. The liver is still cur-
rently the preferred site for islet transplantation al-
beit several disadvantages are noted; these include 

-
tion (IBMIR) that destroys up to 75% of the islets 
immediately after infusion29; the risk of bleeding 
following portal vein catheterization by a percuta-

a high risk of anastomotic leakage in case of the 
Whipple procedure and were scheduled for a total 
pancreatectomy, and one patient suffered from he-
morrhage after Whipple procedure which required 
totalization at day 34. The indications for surgery 
were chronic pancreatitis, ductal adenocarcinoma 
(n=2) and neuroendocrine carcinoma. Three out of 
the four patients had a functioning graft as mea-
sured by C-peptide at an average follow-up of 545 
± 369 days. Islet function remained present up to 
944 days post-transplantation. One patient died 
of bleeding on day 4 after islet autotransplanta-
tion due to the rupture of the gastroduodenal ar-
tery. Although the risk of tumor cell embolization 

carefully weighted in each patient. The said rese-
arch group is currently undertaking a prospective 

marrow to the liver as an implantation site for al-
logeneic islet grafts in patients for type 1 diabetes 
(NCT01722682).

Figure 1. Encapsulated human islets one month after 

transplantation (A) into the rat bone marrow and (B) under 

the kidney capsule (Masson trichrome). Scale bar: 500 µm. 

(C) Collagen/capsule surface ratio comparing bone marrow 

vs. kidney capsule.
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neous approach30; and the risk of increased portal 
pressure following the procedure due to the 500 
µm diameter of the capsules31. The perspective of 
transplanting encapsulated porcine xenogeneic is-
lets into patients certainly warrants the exploration 
of alternative transplantation sites32. We demon-
strated the feasibility of transplanting xenogeneic 
islets into the bone marrow of rodent. Successful 
placement of encapsulated islet into rodent femurs 
is however technically demanding. Such procedure 

-
served in the bone marrow compared to the kidney 
capsule. Further studies are needed in large animal 
models to determine the pros and cons of the bone 
marrow as a potential site for encapsulated xenoge-
neic islets. 

In the clinical setting, promising results have 
been reported; the bone marrow was an accept-
able alternative site for autotransplantation in a 
pilot study, meanwhile both the bone marrow and 
liver are currently being compared in a prospective 
randomized trial of allogeneic islet transplantation. 
The perspective of setting up a clinical trial using 
encapsulated xenoislets is thus required to consider 
the bone marrow as a potential transplantation site. 
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