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ABSTRACT: High injection rate hydraulic fracturing can have Reynolds number as high as 104. For such high
Reynolds numbers, turbulent flow is likely to occur. In this paper, we investigate the effect of turbulence on the
propagation of hight contained hydraulic fractures, commonly referred to as PKN fractures. We discuss different
scalings for the fracture width, length and pressure under limiting laminar, turbulent smooth and turbulent rough
flow regimes. We implement an explicit, central numerical scheme to solve the continuity and friction factor based
momentum conservation equations, taking into account the full variation of friction factor with Reynolds number
and relative fracture roughness. The scheme is validated against the analytical solution of the PKN model. The
results show that the local Reynolds number evolves from a maximum value at the inlet to zero at the tip, with
a transition from turbulent to laminar at some point along the fracture length, depending on the value of inlet
Reynolds number. Results showing the effect of smooth and rough turbulence on the fracture length and fracture
width depending on the Reynolds number are finaly presented.

1 Introduction

The usual approximation of laminar flow in a prop-
agating hydraulic fracture sometimes breakdown.
This is the case of fluid-driven fracture propagation
at glacier beds where Reynolds numbers above 105

are expected (Tsai and Rice (2010)). At such large
Reynolds numbers, the flow is well within the tur-
bulent rough regime. Recently, Ames and Bunger
(2015) have investigated the effect of a fully rough
turbulent flow on the propagation of height con-
tained hydraulic fracture (Nordgren (1972)) and
derived scaling relationship for that flow regime.
However, in practice for a hydraulic fracture treat-
ment in an oil and gas reservoir using a low viscos-
ity fluid injected at very large injection rate, the
Reynolds number for a height contained fracture
are expected to be in the range 103 − 104 at most
(see Table 1 and 2), right in the transition between

the laminar to the fully turbulent regime. We fo-
cus solely here on a height contained fracture as
depicted in Fig. 1 (i.e. the so-called PKN geome-
try). In parallel to the problem formulation, we also
review the available experimental data and mod-
els covering the complete flow conditions spanning
the complete spectrum of Reynolds numbers from
laminar to fully turbulent. We notably discuss the
use of an equivalent Reynolds number proposed by
Jones (1976) to use the available data and models
developed for flow in pipes to the case of elliptical
cross-section encountered in the PKN geometry.

We then present a numerical model for the prop-
agation of a height contained hydraulic fracture
(PKN fractures) accounting for the complete lami-
nar - turbulent transition . Our algorithm is based
on a non-diffusive central scheme with fixed grid
and explicit time-stepping. We fully validate our
scheme against the well-known laminar case (Nord-
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Parameter Value

ρ 1000kg/m3

µ 8× 10−4Pa s
h 10m
E ′ 32 GPa
k 1 mm

Table 1: Typical values of rock, fluid properties and
fracture height h. k denotes a fracture roughness
lengthscale.

Q0 (bbl/min) Q0 (m
3/s) R =

Qoρ

2hµ

10 0.026 650
20 0.053 1325
30 0.079 1975
40 0.106 2650

Table 2: Inlet Reynolds number (R) in a height
contained fractures for different values of injection
rate and evaluated with the parameters listed in
Table 1 for density, viscosity and fracture height.
Transition to turbulent flow starts at Rc ≈ 1380
for such geometry.

gren (1972)). We finally discuss the relevance of the
different limiting approximations (i.e. fully laminar
versus fully turbulent regime) to simulate typical
industrial hydraulic fracturing treatments in uncon-
ventional reservoirs.

2 Problem formulation

We consider a height contained bi-wing hydraulic
fracture of half-length ℓ propagating in the x -
direction, with a width of w(x, z) (see Figure 1).
The fracture is assumed to be bounded by two lay-
ers of highly stressed rocks at the top and bottom
of the reservoir, restricting its height to h vertically.
The rock layer is assumed to be linear-elastic with
a plane strain Young’s modulus E ′. The fracture is
driven by the injection of a Newtonian fluid of vis-
cosity µ and density ρ at a constant flow rate Qo.
The fracture length is assumed to be much larger
than its height and the fluid flow is assumed to be
uni-dimensional in the direction of propagation.
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Figure 1: Sketch of a height-contained hydraulic
fracture (PKN geometry e.g. Economides and
Nolte (2000)).

2.1 Elasticity

The length of the fracture is assumed to be suffi-
ciently large compared to its height such that ev-
ery vertical cross-section can be assumed to be in
a state of plane-strain. Following the approxima-
tion of uni-directional flow, the net pressure p(x),
which is equal to the excess of the fluid pressure
above the compressive in-situ stress is assumed to
be uniform in each vertical cross-section. As a re-
sult, the plain strain elasticity solution for an uni-
formly pressurized fracture provides the following
local relation between the fracture width w(x, z)
and the net pressure p(x) at a given cross-section
located at x (e.g. Sneddon and Elliot (1946)):

w(x, z) =
2hp(x)

E ′

√
1− 4z2

h2
, (1)

where E ′ = E/(1 − ν2) is the plane-strain modu-
lus. By defining w as the average fracture width

given by 1
h

´ h/2

−h/2
w(x, z)dz, Eq. (1) gives (e.g. Sar-

varamini and Garagash (2015)):

w̄(x) =
π

4

2hp(x)

E ′ =
π

4
w(x, 0).



2.2 Continuity

Neglecting fluid compressibility, the local fluid mass
conservation reduces to the following continuity
equation:

∂A

∂t
+

∂Q

∂x
= 0, (2)

where A = wh is the cross-sectional area of the
fracture in the y-z plane, Q = Av is the volumetric
flow rate of the fluid and v is the cross-sectional
average of the fluid velocity in the x-direction. The
rock is assumed be impermeable and fluid leak off
from the fracture faces is thus neglected.

2.3 Boundary conditions

The fluid is injected at x = 0 into the bi-wing frac-
ture at a flow rate Q0. The flow rate entering one
wing of the fracture is thus:

Q(x = 0) =
Q0

2
(3)

The boundary conditions at the fracture tip (x = ℓ)
are given by:

Q(x = ℓ) = 0 w̄(x = ℓ) = 0 (4)

2.4 Momentum Conservation

The cross-sectional average of the fluid momentum
conservation equation reduces to:

ρ

(
∂Q

∂t
+

∂Qv

∂x

)
= −A

∂p

∂x
− Þτw, (5)

where Þ is the perimeter of the cross-section of the
fracture and τw is the wall shear stress given by

τw = f
ρv2

2
.

Here, f is the Fanning friction factor which is a
function of the local value of the Reynolds number
as well as the relative roughness of the fracture in
the turbulent regime.

2.4.1 Friction Factor

To solve the set of equations (1)-(5), the depen-
dence of the friction factor on the Reynolds num-
ber and the relative roughness must be estimated.
The classical experiments of Nikuradse (1950) have
provided the basis for a number of empirical rela-
tions between the Reynolds number and the fric-
tion factor in smooth and rough pipes. These re-
lations cannot be directly applied to the case of
fluid flow in a fracture, especially one having an
elliptical cross-section. The concept of hydraulic
diameter provides a method to accommodate dif-
ferent channel geometries but experimental stud-
ies have demonstrated that the obtained relations
are not accurate (Sadatomi, Sato and Saruwatari,
1982; Carlson and Irvine, 1961; Jones, 1976). Jones
(1976) introduced the concept of a ”laminar equiv-
alent” hydraulic diameter in order to obtain the
friction factor for rectangular cross-sections using
the friction factor vs. Reynolds number relation for
circular cross-sections. This laminar equivalent hy-
draulic diameter is obtained such that the friction
factor can be expressed using the same expression
as for the laminar flow in circular pipes (i.e. the
analytically obtained expression fL = 16/Re).
The laminar equivalent hydraulic diameter for an

elliptical cross-section can be obtained by compar-
ing the solution of a pressure-driven flow in ellipti-
cal geometry (see e.g. Lamb (1895)) to the solution
calculated by the friction factor based wall-shear
stress in laminar conditions. By introducing α as a
geometry-dependent coefficient necessary to get the
correct equivalence between the two solutions, the
”pipe-equivalent” Reynolds number is evaluated as
αDH

vρ
µ
, where DH = 4A/Þ is the hydraulic diame-

ter. For an ellipse with a very large major axis com-
pared to the minor one, as is the case with fractures,
α = 25/32 gives the correct equivalence. The ”pipe-
equivalent” Reynolds number (Re) for the PKN el-
liptical cross-section is thus:

Re = α4
A

Þ
ρv

µ
=

32

5π

w̄αρv

µ
=

5

π

ρw̄v

µ
=

5

π
Re.

where Re =
ρw̄v

µ
is the Reynolds computed using

simply the averaged fracture width as the flow di-



mension. Using this pipe-equivalent Reynolds num-
ber, the friction factor can be evaluated with the
relations for a circular cross-section, i.e. fL =
16/Re in the laminar flow regime. In the turbu-
lent regime, we use the relations of Blasius and
Manning-Strickler for fully smooth and fully rough
flows respectively:

fB = f ′
B Re−1/4 f ′

B = 0.316/4

fM = f ′
M

(
k

w

)1/3

f ′
M = 0.143/4

where k denotes the roughness lengthscale, f ′
B and

f ′
M are the coefficients appearing in the Blasius
and Manning-Strickler relations respectively. The
transition from the laminar to the different tur-
bulent regimes is mapped using an approxima-
tion recently proposed by Yang and Dou (2010).
It is an implicit function which can be used to
calculate the friction factor, given the Reynolds
number and relative roughness of the pipe. The
complete evolution of the friction factor with the
Reynolds number and relative roughness (k/D) ob-
tained in pipe flow experiments by Nikuradse Niku-
radse (1950) is shown in Figure 2. Different approx-
imations used in this study are also shown. Note
that the critical Reynolds number at which turbu-
lence starts is about 2200 for circular pipes. The
critical value for an elliptical cross-section is thus
Rec = 2300× π/5 ≈ 1380.

3 Dimensional analysis and

scaling

Using the following scaled coordinates system

ξ = x/ℓ(t)

where ℓ(t) is the length of the fracture at a given
time, and introducing the following characteristic
scales (possibly function of time):

W∗, P∗, V∗, L∗,
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Figure 2: Nikuradse (1950) data: friction factor as
function of the Reynolds number (Re = ρvD/µ)
and relative roughness in pipes. The laminar, Bla-
sius, Manning-Strickler and Yang-Dou approxima-
tions are also shown.

it is possible to show that the inertial terms in the
balance of momentum have always a negligible ef-

fect for time larger than
√
R× W∗

L∗
(a time-scale

which is always negligible due to the fact that the
characteristic width is always much smaller than
the fracture characteristic length). Here, R denotes
the value of the Reynolds number R = ρW∗V∗

µ
=

1

2

Qoρ

hµ
at the fracture inlet. Assuming laminar fric-

tion, one recovers the scaling of the classical PKN
solution - which we indicate with a subscript L for
laminar:

WL =

(
µπ3Q2

0t

23E ′h

)1/5

LL =

(
E ′Q3

0t
4

22h4µπ3

)1/5

PL =
2WLE

′

hπ
VL = LL/t.

As discussed in Ames and Bunger (2015), assum-
ing a purely turbulent rough regime governed by
Manning-Strickler friction over the whole fracture,
we obtain the following “fully-rough” scaling, indi-
cated with a subscript R:

WR =
53/16f

′ 3/16
M k1/16π3/8Q

9/16
0 ρ3/16t3/16

2
√
2E ′3/16h3/8

LR =

√
2E ′3/16Q

7/16
0 t13/16

53/16f
′ 3/16
M h5/8k1/16π3/8ρ3/16



PR =
2WRE

′

hπ
VR = LR/t.

Similarly, assuming a purely turbulent but smooth
flow regime where friction is governed by Blasius re-
lation, we obtain the following characteristic scales
for “fully-smooth” turbulent scaling, indicated with
a subscript S:

WS =
53/20π9/20

2× 211/20
f
′1/5
B µ1/20Q11/20

o ρ3/20t1/5

E ′1/5h7/20

LS =
211/20

53/20π9/20

E ′1/5Q9/20
o t4/5

f
′1/5
B h13/20µ1/20ρ3/20

pS =
2WBE

′

hπ
VS = LS/t

In these limiting regimes (laminar, fully turbu-
lent rough and fully turbulent smooth), the propa-
gation of the hydraulic fracture can actually shown
to be self-similar. The complete dimensionless so-
lutions can be obtained semi-analytically in a sim-
ilar way as for the classical PKN solution. De-
tails are omitted here for brevity. For example,
the fracture length assuming complete turbulent
rough flow is given by ℓR(t) = 1.08LR(t), while for
the fully turbulent smooth-Blasius regime ℓS(t) =
1.09LS(t) and the classical laminar solution for
fracture length is ℓL(t) = 1.001LL(t). Similarly,
wR(x, t) = WR(t)ΩR(ξ), wS(x, t) = WS(t)ΩS(ξ)
and wL(x, t) = WL(t)ΩL(ξ) gives the fracture width
for laminar, turbulent smooth and turbulent rough
flows respectively, where Ω is the dimensionless
opening of order 1.
In reality, the value of friction varies spatially

with the local value of the Reynolds number (Re =
RΨ), which depends on the local value of the di-
mensionless flow rate Ψ = Ω×Υ (where Υ is the di-
mensionless velocity). The dimensionless flow rate
has the value of 1 at the fracture inlet and is equal
to zero at the fracture tip according to the bound-
ary conditions (3)-(4). We therefore see that in-
evitably, the flow will always be in the laminar
regime at the fracture tip, potentially shrinking to

a laminar boundary layer at the fracture tip, if the
flow is highly turbulent at the fracture inlet. In
order to investigate the complete transition of the
flow regime from laminar to turbulent, a numerical
solution thus is necessary using the complete tran-
sition of the friction factor from the laminar to the
turbulent regime (smooth or rough).
Another interesting point worth mentioning here

relates to the slightly different power-law of time
dependence obtained for the fully rough regime (as
already mentioned by Ames and Bunger (2015)).
In the case where the complete transition is ac-
counted for inside the fracture, one can intuitively
grasp that if turbulent, the flow will be first turbu-
lent rough as the fracture opening will be of the or-
der of the roughness lengthscale k at early time. As
the fracture grows and the width increases, the flow
can eventually transition to the turbulent smooth
regime. The time-scale of the transition from the
rough to the smooth turbulent regime can be esti-
mated as:

tR→S =
16E ′k5ρ3Qo

5π2f ′
Mh2µ4

,

a time-scales obtained from the fact that rough-
ness has negligible effect on friction when(

k

WR

)
R3/4 ≈ 1 and friction tends to the Blasius

limit (Goldenfeld, 2006). It is interesting to note
that using realistic values for a slickwater treat-
ment (e.g. shown in Table 1) and for an injection
rate of 0.026m3/s (10bbl/min), we obtain tR→S ≈
2×1013sec, indicating that if turbulent, the flow will
never reach the limiting regime of turbulent smooth
/ Blasius type flow in practice.

4 Numerical Scheme & vali-

dation

We solve the system of equations (1)-(5) with a
second, order non-oscillatory central scheme intro-
duced by Nessyahu and Tadmor (1990). Such an
explicit scheme operates in a predictor-corrector
fashion. To ensure numerical stability, the scheme
upholds TVD (total variation diminishing) prop-
erty by using slope and flux limiters. An impor-



tant characteristic of the scheme is that it does not
utilize any Riemann-solver, which makes it easy to
implement. The Riemann-solver free formulation
is made possible by the use of staggered grids, al-
lowing integration over the entire Riemann fan and
taking into account both the left and right-going
waves (see Nessyahu and Tadmor (1990) for de-
tails). A well-known factor limiting the use of cen-
tral scheme is that it can become highly diffusive
(see e.g. Kurganov and Tadmor (2000); Kurganov
and Lin (2007)), especially for highly non-linear
problems such as the one under consideration here.
In this study, we use an anti-diffusive correction
introduced recently by Zia and Simpson (under-
review) that allows the diffusion to be mitigated
with the cost of a smaller CFL bound on the time
step.

To demonstrate the accuracy of the scheme, the
system is solved using only the laminar expression
for the friction factor : fL = 16/Re. In this case,
the model is strictly equivalent to the classical PKN
hydraulic fracture model, for which an analytical
solution is available (Nordgren (1972)). The nu-
merical solution is obtained by discretizing the do-
main with a fixed Cartesian mesh of 150 cells. A
re-meshing is performed as soon as the fracture tip
reaches the end of the computational domain. Cor-
rect location of the fracture tip is important as the
solution is sensitive to its position and even a small
diffusion can introduce significant error. We are
characterizing fracture to be open at the point along
the length of the fracture where the opening goes
above a small value (taken here as 2×10−5m). The
fracture is assumed to be propagating with a fixed
velocity inside a cell, which is evaluated each time
the tip moves to the next cell. To mitigate numer-
ical diffusion, a large value of 0.999 is used for the
correction factor ϵ (see Zia (2015) for description of
this correction parameter) to solve the continuity
equation. Use of this high correction factor allows
to significantly decrease the numerical diffusion but
as a drawback, it can introduce spurious oscillations
in the solution. A small Courant number of 0.015
is thus imposed to calculate the time step, ensuring
the numerical stability of the scheme. The param-
eters used for this benchmark are the one listed in

Table 1 with an injection rate of Q0 = 0.03 m3/s.
Initial conditions are prescribed as the exact lami-
nar solutions (w0(x) = wL(x, t0)and ℓ0 = ℓL(t0)) at
a given initial time t0 (2 sec in this test case) .
The numerical results are shown in Figures 3-5

over close to four decades of time. Figure 3 shows
the evolution of the scaled fracture-length ℓ(t)/ℓ0 vs
scaled time (t/t0) and the scaled fracture-width at
the inlet w(0, t)/w0 vs scaled time (t/t0) on the bot-
tom and top respectively. A very good match with
the analytical solutions can be observed. Further-
more, the relative error of the fracture-length and
the fracture-width are shown in Figure 4 on the bot-
tom and top respectively. The sharp jumps in the
time evolution of error are due to re-meshing which
is performed as the fracture tip reaches the end of
the computational domain. The remeshing intro-
duces a small error due to loss of data caused by
interpolations, which does not fully recovers before
the next remeshing step resulting in accumulation
of a small error as the solution evolves. The results
show that this error accumulation is not significant:
the relative error does not exceeds 0.3 and 2 percent
for the fracture width and fracture length respec-
tively over close to four decades of time which is
more than enough for practical cases. The fracture
width shown in Figure 3 is the width at the fluid
inlet. Figure 5 shows the profile of the dimension-
less fracture width at different values of the scaled
time (τ = t/t0) along with the analytical solution.
It can be seen that the numerical solution matches
the analytical solution very well, apart from the
small diffusion at the fracture tip which does not
appear to “grow” in time.

5 Results

The inlet value of the Reynolds number R directly
provides information about the flow regime when
compared to the empirically known critical value
(≈ 1380 for a fracture with elliptical cross-section
as mentioned previously), above which the flow be-
comes turbulent. To evaluate the effect of turbu-
lence on the propagation of the fracture, we have
performed a number of numerical simulations dis-
cussed below.
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Figure 3: Fully Laminar Case (f = fL): Evolution
with scaled time of the scaled fracture length (bot-
tom) and scaled fracture width at the fracture inlet
(top).

5.1 Smooth fracture case

We first discuss the results for the case where the
effect of fracture roughness is neglected: i.e. as-
suming a transition from laminar to Blasius like
turbulent flow to compute the friction factor (see
Figure 2). We have performed a set of simulations
for different values of R to determine the relative
position (ξt) of the laminar to turbulent transition
along the fracture. The simulations were performed
with a grid of 150 cells. Figure 6 shows the relative
size of the laminar region against different values of
R. It can be seen that the relative size of the lam-
inar region 1 − ξt is of the value 1, indicating the
whole fracture is in laminar regime for the values
of R below the critical value. The size decreases
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Figure 4: Fully Laminar Case (f = fL): Evolution
with scaled time of the Relative error of the nu-
merical solution for fracture-length (bottom) and
fracture-width (top).

as the Reynolds number increases above the crit-
ical value until the size of the laminar layer falls
below the spatial resolution of the simulation, i.e.
it cannot be resolved with any more precision than
the scaled grid size 1/N = 1/150, where N is the
number of element in the grid.

The fracture length and width for the same se-
ries of simulations are shown in Figure 7, top and
bottom respectively. The results are shown rela-
tive to the semi-analytical laminar solutions (Nord-
gren, 1972). It can be seen that the relative fracture
length has the value of one for the values of R be-
low the critical value and it decreases as the value
of R increases. Figure 7 also shows the ratio of
the semi-analytical solutions (wS(0, t)/wL(0, t) and



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

ξ

Ω

analytical
τ = 8.5
τ = 20
τ = 48
τ = 114
τ = 273

Figure 5: Fully Laminar Case (f = fL): Analytical
and numerical solutions for dimensionless fracture
width. The small numerical diffusion observed at
the fracture tip does not grow in time and is intrin-
sically related to the corrected adNOC scheme used
here.

ℓS(t)/ℓL(t)). It can be seen that the slope of the nu-
merical results is initially lower for Reynolds num-
bers where the size of the laminar boundary layer
is still significant and finally converges to the ana-
lytical slope when the laminar boundary layer is so
small that it becomes insignificant and the whole
fracture can be assumed to be in turbulent smooth
regime. Similar results for the fracture width evo-
lution are also shown. The fact that our numerical
scheme converges with the fully-smooth turbulent
solution is another indication of its accuracy.

5.2 Including roughness

As discussed before, the scalings show that the
regime is almost always turbulent rough due to
very high tR→S for realistic parameters. We have
performed simulations with two different Reynolds
numbers (R) of 2.5 × 103 and 104. In the case
of 104, the Reynolds number is well into the tur-
bulent rough regime. In this case, the size of
the laminar boundary layer is very small and the
whole fracture can be assumed to be in fully
turbulent rough regime. For Reynolds number
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1-ξ t

R

= 1/N1-ξ t

c ≈1380

Figure 6: Laminar-Turbulent Smooth case: Rela-
tive length (1 − ξt) of the laminar fraction of the
flow for different values of R.

of 2500, the flow regime is always in the lami-
nar to turbulent transition. The fracture width
(w(0, τ)/wL(0, τ)) and fracture length (ℓ(τ)/ℓL(τ))
relative to the laminar solutions against the di-
mensionless time (τ = t/tR→S) for the two differ-
ent Reynolds number are shown in Figure 8, top
and bottom respectively. The laminar solutions are
evaluated with the corresponding Reynolds num-
ber for both cases. The analytical turbulent rough
solutions (wR(0, τ)/wL(0, τ) and ℓR(τ)/ℓL(τ)) for
both Reynolds numbers are also shown. It can be
observed that the fracture solutions tends to the
fully turbulent rough limit for the Reynolds num-
ber of 104, indicating insignificant size of the lami-
nar layer. For R = 2.5 × 10−3, the fracture width
is smaller than the limiting turbulent rough solu-
tion but larger than the limiting laminar solution,
indicating that the flow regime lies in the laminar
to rough transition.

6 Conclusions

We have investigated the effect of turbulent flow
on the propagation of height contained hydraulic
fractures. Using the concept of equivalent laminar
hydraulic radius (Jones, 1976), we have used the
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Figure 7: Laminar-Turbulent Smooth case: The
fracture length (top) and fracture width (bottom)
relative to the laminar solutions for different val-
ues of R. The laminar and fully turbulent smooth
solutions are also shown.

relations for the evolution of friction factor with
Reynolds number and roughness obtained for pipe
to account for the complete transition from lami-
nar to rough turbulent flow as function of the in-
let Reynolds number for height-contained hydraulic
fractures (i.e. PKN fractures). We have validated
our numerical scheme on the laminar case. The
scheme is also able to capture the fully turbulent
solutions (fully turbulent smooth or fully turbulent
rough) accurately.

For large inlet Reynolds number R (above the
critical transition to turbulent flow), the flow transi-
tion from turbulent to laminar from the inlet to the
tip of the fracture. The extent of the laminar region
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Figure 8: Laminar-Turbulent Rough case: The
evolution of the fracture width (top) and fracture
length (bottom) relative to the laminar solutions
for two different Reynolds numbers.

close to the tip shrinks to a boundary layer as the
R increases, reaching 10−2 for R ≈ 104. Our nu-
merical solution indicates that the semi-analytical
solution assuming a fully turbulent smooth regime
in the fracture is valid for R above 5 × 103. Simi-
larly, when the roughness is taken into account, the
semi-analytical solution for fully turbulent rough
flow is valid for such high Reynolds numbers.

An important point that we have not addressed
in this paper is the effect of the addition of friction
reducers (e.g. polymer additives) in the fracturing
fluid - a typical practice in high rate water frac-
turing treatments. The use of friction reducer is
known to drastically change the laminar-turbulent



transition and will, in turn, possibly significantly
changes the propagation of hydraulic fracture pre-
dicted here. We leave the effect of friction reducer
on fracture propagation to future investigations.
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