
TROPER
HCRAESER

PAIDI

FAST K-MEANS WITH ACCURATE BOUNDS

James Newling Francois Fleureta

Idiap-RR-17-2016

JUNE 2016

aIdiap

Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11 F +41 27 721 77 12 info@idiap.ch www.idiap.ch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148023187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fast K-Means with Accurate Bounds

James Newling JAMES.NEWLING@IDIAP.CH

Idiap Research Institute & EPFL, Switzerland

François Fleuret FRANCOIS.FLEURET@IDIAP.CH

Idiap Research Institute & EPFL, Switzerland

Abstract
We propose a novel accelerated exact k-means
algorithm, which outperforms the current state-
of-the-art low-dimensional algorithm in 18 of 22
experiments, running up to 3× faster. We also
propose a general improvement of existing state-
of-the-art accelerated exact k-means algorithms
through better estimates of the distance bounds
used to reduce the number of distance calcu-
lations, obtaining speedups in 36 of 44 experi-
ments, of up to 1.8×. We have conducted exper-
iments with our own implementations of existing
methods to ensure homogeneous evaluation of
performance, and we show that our implementa-
tions perform as well or better than existing avail-
able implementations. Finally, we propose sim-
plified variants of standard approaches and show
that they are faster than their fully-fledged coun-
terparts in 59 of 62 experiments.

1. Introduction
The k-means problem is to compute a set of k centroids to
minimise the sum over data-points of the squared distance
to the nearest centroid. It is an NP-hard problem for which
various effective approximation algorithms exist. The most
popular is often referred to as Lloyd’s algorithm, or simply
as the k-means algorithm. It has applications in data com-
pression, data classification, density estimation and many
other areas, and was recognised in Wu et al. (2008) as one
of the top-10 algorithms in data mining.

Lloyd’s algorithm relies on a two-step iterative process: In
the assignment step, each sample is assigned to the cluster
whose centroid is nearest. In the update step, cluster cen-
troids are updated in accordance with their assigned sam-
ples. Lloyd’s algorithm is also called the exact k-means

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

algorithm, as there is no approximation in either of the two
steps. This name can lead to confusion as the algorithm
does not solve the k-means problem exactly.

The linear dependence on the number of clusters, the num-
ber of samples and the dimension of the space, means that
Lloyd’s algorithm requires upwards of a billion floating
point operations per round on standard datasets such as
those used in our experiments (§4). This, coupled with
slow convergence and the fact that several runs are often
performed to find improved solutions, can make it slow.

Lloyd’s algorithm does not state how the assignment and
update steps should be performed, and as such provides
a scaffolding on which more elaborate algorithms can be
constructed. These more elaborate algorithms, often called
accelerated exact k-means algorithms, are the primary fo-
cus of this paper. They can be dropped-in wherever Lloyd’s
algorithm is used.

1.1. Approximate k-means

Alternatives to exact k-means have been proposed. Cer-
tain of these rely on a relaxation of the assignment step,
for example by only considering certain clusters according
to some hierarchical ordering (Nister & Stewenius, 2006),
or by using an approximate nearest neighbour search as
in Philbin et al. (2007). Others rely on a relaxation of the
update step, for example by using only a subset of data to
update centroids (Frahling & Sohler, 2006; Sculley, 2010).

When comparing approximate k-means clustering algo-
rithms such as those just mentioned, the two criteria of in-
terest are the quality of the final clustering, and the compu-
tational requirements. The two criteria are not independent,
making comparison between algorithms difficult and often
preventing their adoption. When comparing accelerated ex-
act k-means algorithms on the other hand, all algorithms
produce the same final clustering, and so comparisons can
be made based on speed alone. Once an accelerated exact
k-means algorithm has been confirmed to provide a speed-
up, it is rapidly adopted, automatically inheriting the trust
which the exact algorithm has gained through its simplicity

Fast K-Means with Accurate Bounds

and extensive use over several decades.

1.2. Accelerated Exact k-means

The first published accelerated k-means algorithms bor-
rowed techniques used to accelerate the nearest neigh-
bour search. Examples are the adaptation of the algorithm
of Orchard (1991) in Phillips (2002), and the use of kd-
trees (Bentley, 1975) in Kanungo et al. (2002). These algo-
rithms relied on storing centroids in special data structures,
enabling nearest neighbor queries to be processed without
computing distances to all k centroids.

The next big acceleration (Elkan, 2003) came about by
maintaing bounds on distances between samples and cen-
troids, frequently resulting in more than 90% of distance
calculations being avoided. It was later shown (Hamerly,
2010) that in low-dimensions, it is more effective to keep
bounds on distances to only the two nearest centroids, and
that in general bounding-based algorithms are significantly
faster than tree-based ones. Further bounding-based algo-
rithms were proposed by Drake (2013) and Ding et al.
(2015), each providing accelerations over their predeces-
sors in certain settings. In this paper, we continue in the
same vain.

1.3. Our Contribution

Our first contribution (§3.1) is a new bounding-based accel-
erated exact k-means algorithm, the Exponion algorithm.
Its closest relative is the Annular algorithm (Drake, 2013),
which is the current state-of-the-art accelerated exact k-
means algorithm in low-dimensions. We show that the Ex-
ponion algorithm is significantly faster than the Annular
algorithm on a majority of low-dimensional datasets.

Our second contribution (§3.2) is a technique for making
bounds tighter, allowing further redundant distance calcu-
lations to be eliminated. The technique, illustrated in Fig-
ure 1, can be applied to all existing bounding-based k-
means algorithms.

Finally, we show how certain of the current state-of-the-
art algorithms can be accelerated through strict simplifica-
tions (§2.2 and §2.6). Fully parallelised implementations of
all algorithms are provided under an open-source license at
https://github.com/idiap/eakmeans

2. Notation and baselines
We describe four accelerated exact k-means algorithms in
order of publication date. For two of these we propose sim-
plified versions which offer natural stepping stones in un-
derstanding the full versions, as well being faster (§4.1.2).

Our notation is based on that of Hamerly (2010), and only
where necessary is new notation introduced. We use for ex-

ample N for the number of samples and k for the number
of clusters. Indices i and j always refer to data and clus-
ter indices respectively, with a sample denoted by x(i) and
the index of the cluster to which it is assigned by a(i). A
cluster’s centroid is denoted as c(j). We introduce new no-
tation by letting n1(i) and n2(i) denote the indices of the
clusters whose centroids are the nearest and second nearest
to sample i respectively.

Note that a(i) and n1(i) are different, with the objective
in a round of k-means being to set a(i) to n1(i). a(i)
is a variable maintained by algorithms, changing within
loops whenever a better candidate for the nearest centroid is
found. On the other hand, n1(i) is introduced purely to aid
in proofs, and is external to any algorithmic details. It can
be considered to be the hidden variable which algorithms
need to reveal.

All of the algorithms which we consider are elaborations of
Lloyd’s algorithm, and thus consist of repeating the assign-
ment step and update step, given respectively as

a(i)← n1(i), i ∈ {1, . . . , N} (1)

c(j)←
∑
i:a(i)=j x(i)

‖i : a(i) = j‖ , j ∈ {1, . . . , k}. (2)

These two steps are repeated until there is no change to any
a(i), or some other stopping criterion is met. We reiterate
that all the algorithms discussed provide the same output at
each iteration of the two steps, differing only in how a(i) is
computed in (1).

2.1. Standard algorithm (sta)

The Standard algorithm, henceforth sta, is the simplest
implementation of Lloyd’s algorithm. The only variables
kept are x(i) and a(i) for i ∈ {1, . . . , N} and c(j) for
j ∈ {1, . . . , k}. The assignment step consists of, for each
i, calculating the distance from x(i) to all centroids, thus
revealing n1(i).

2.2. Simplified Elkan’s algorithm (selk)

Simplified Elkan’s algorithm, henceforth selk, uses a
strict subset of the strategies described in Elkan (2003).
In addition to x(i), a(i) and c(j), the variables kept are
p(j), the distance moved by c(j) in the last update step,
and bounds l(i, j) and u(i), maintained to satisfy,

l(i, j) ≤ ‖x(i)− c(j)‖, u(i) ≥ ‖x(i)− c(a(i))‖.

These bounds are used to eliminate unnecessary centroid-
data distance calculations using,

u(i) < l(i, j) =⇒ ‖x(i)− c(a(i))‖ < ‖x(i)− c(j)‖
=⇒ j 6= n1(i). (3)

Fast K-Means with Accurate Bounds

We refer to (3) as an inner test, as it is performed within
a loop over centroids for each sample. This as opposed
to an outer test which is performed just once per sample,
examples of which will be presented later.

To maintain the correctness of the bounds when centroids
move, bounds are updated at the beginning of each assign-
ment step with

l(i, j)← l(i, j)− p(j), u(i)← u(i) + p(a(i)). (4)

The validity of these updates is a simple consequence of the
triangle inequality (proof in B.1). We say that a bound is
tight if it is known to be equal to the distance it is bounding,
a loose bound is one which is not tight. For selk, bounds
are initialised to be tight, and tightening a bound evidently
costs one distance calculation.

When in a given round u(i) ≥ l(i, j), the test (3) fails.
The first time this happens, both u(i) and l(i, j) are loose
due to preceding bound updates of the form (4). Tightening
either bound may result in the test succeeding. Bound u(i)
should be tightened before l(i, j), as it reappears in all tests
for sample i and will thus be reused. In the case of a test
failure with tight u(i) and loose l(i, j) we tighten l(i, j).
A test failure with u(i) and l(i, j) both tight implies that
centroid j is nearer to sample i than the currently assigned
cluster centroid, and so a(i)← j and u(i)← l(i, j).

2.3. Elkan’s algorithm (elk)

The fully-fledged algorithm of Elkan (2003), henceforth
elk, adds to selk an additional strategy for eliminating
distance calculations in the assignment step. Two further
variables, cc(j, j′), the matrix of inter-centroid distances,
and s(j), the distance from centroid j to its nearest other
centroid, are kept. A simple application of the triangle in-
equality, shown in B.2, provides the following test,

cc(a(i), j)

2
> u(i) =⇒ j 6= n1(i). (5)

elk uses (5) in unison with (3) to obtain an improvement
on the test of elk, of the form,

max

(
l(i, j),

cc(a(i), j)

2

)
> u(i) =⇒ j 6= n1(i). (6)

In addition to the inner test (6), elk uses an outer test,
whose validity follows from that of (5), given by,

s(a(i))

2
> u(i) =⇒ n1(i) = a(i). (7)

If the outer test (7) is successful, one proceeds immediately
to the next sample without changing a(i).

2.4. Hamerly’s algorithm (ham)

The algorithm of Hamerly (2010), henceforth ham, repre-
sents a shift of focus from inner to outer tests, completely
foregoing the inner test of elk, and providing an improved
outer test.

The k lower bounds per sample of elk are replaced by
a single lower bound on all centroids other than the one
assigned,

l(i) ≤ min
j 6=a(i)

‖x(i)− c(j)‖.

The variables p(j) and u(i) used in elk have the same
definition for ham. The test for a sample i is

max

(
l(i),

s(a(i))

2

)
> u(i) =⇒ n1(i) = a(i), (8)

with the proof of correctness being essentially the same as
that for the inner test of elk. If test (8) fails, then u(i) is
made tight. If test (8) fails with u(i) tight, then the dis-
tances from sample i to all centroids are computed, reveal-
ing n1(i) and n2(i), allowing the updates a(i) ← n1(i),
u(i) ← ‖x(i) − c(n1(i))‖ and l(i) ← ‖x(i) − c(n2(i))‖.
As with elk, at the start of the assignment step, bounds
need to be adjusted to ensure their correctness following
the update step. This is done via,

l(i)← l(i)− arg max
j 6=a(i)

p(a(i)), u(i)← u(i) + p(a(i)).

2.5. Annular algorithm (ann)

The Annular algorithm of Drake (2013), henceforth ann,
is a strict extension of ham, adding one novel test. In addi-
tion to the variables used in ham, one new variable b(i) is
required, which roughly speaking is to n2(i) what a(i) is to
n1(i). Also, the centroid norms ‖c(j)‖ should be computed
and sorted in each round.

Upon failure of test (8) with tight bounds in ham, ‖x(i) −
c(j)‖ is computed for all j ∈ {1, . . . , k} to reveal n1(i)
and n2(i). With ann, certain of these k calculations can
be eliminated. Define the radius, and corresponding set of
cluster indices,

R(i) = max (u(i), ‖x(i)− c(b(i))‖) ,
J (i) = {j : |‖c(j)‖ − ‖x(i)‖| ≤ R(i)}. (9)

The following implication (proved in B.3) is used

j 6∈ J (i) =⇒ j 6∈ {n1(i), n2(i)}.

Thus only distances from sample i to centroids of the clus-
ters whose indices are in J (i) need to be calculated for
n1(i) and n2(i) to be revealed. Once n1(i) and n2(i) re-
vealed, a(i), u(i) and l(i) are updated as per ham, and
b(i)← n2(i).

Fast K-Means with Accurate Bounds

Note that by keeping an ordering of ‖c(j)‖ the set J (i) can
be determined in Θ(log(K)) operations with two binary
searches, one for each of the inner and outer radii of J (i).

2.6. Simplified Yinyang (syin) and Yinyang (yin)
algorithms

The basic idea with the Yinyang algorithm (Ding et al.,
2015) and the Simplified Yinyang algorithm, henceforth
yin and syin respectively, is to maintain consistent lower
bounds for groups of clusters as a compromise between the
k − 1 lower bounds of elk and the single lower bound of
ham. In Ding et al. (2015) the number of groups is fixed at
one tenth the number of centroids. The groupings are de-
termined and fixed by an initial clustering of the centroids.
The algorithm appearing in the literature most similar to
yin is Drake’s algorithm of (Drake & Hamerly, 2012), not
to be confused with ann. According to Ding et al. (2015),
Drake’s algorithm does not perform as well as yin, and we
thus choose not to consider it in this paper.

Denote by G the number of groups of clusters. Variables
required in addition to those used in sta are p(j) and u(i),
as per elk, G(f), the set of indices of clusters belonging
to the f ’th group, g(i), the group to which cluster a(i) be-
longs, q(f) = maxj∈G p(j), and bound l(i, f), maintained
to satisfy,

l(i, f) ≤ arg min
j∈G(f)\{a(i)}

‖x(i)− c(j)‖.

For both syin and yin, both an outer test and group tests
are used. To these, yin adds an inner test. The outer test is

min
f∈{1,...,G}

l(i, f) > u(i) =⇒ a(i) = n1(i). (10)

If and when test (10) fails, group tests of the form

l(i, f) > u(i) =⇒ a(i) 6∈ G(f), (11)

are performed. As with elk and ham, if test (11) fails with
u(i) loose, u(i) is made tight and the test reperformed.

The difference between syin and yin arises when (11)
fails with u(i) tight. With syin, the simple approach of
computing distances from x(i) to all centroids in G(f),
then updating l(i, f), l(i, g(i)), u(i), a(i) and g(i) as nec-
essary, is taken. With yin a final effort at eliminating dis-
tance calculations by the use of a local test is made, as de-
scribed in C.1. As will be shown (§4.1.2), it is not clear
that the local test of yin makes it any faster. Finally, we
mention how u(i) and l(i, f) are updated at the beginning
of the assignment step for the syin and yin,

l(i, f)← l(i, f)− arg max
j∈G(f)

p(a(i)),

u(i)← u(i) + p(a(i)).

3. Contributions and New Algorithms
We first present (§3.1) an algorithm which we call Ex-
ponion, and then (§3.2) an improved bounding approach.

3.1. Exponion algorithm (exp)

Like ann, exp is an extension of ham which adds a test
to filter out j 6∈ {n1(i), n2(i)} when test (8) fails. Unlike
ann, where the filter is an origin-centered annulus, exp
has as filter a ball centred on centroid a(i). This change is
motivated by the ratio of volumes of an annulus of width r
at radius w and a ball of radius r from the origin, which is
d
(
w
r

)d−1
in Rd. We expect r to be greater than w, whence

the expected improvement. Define,

R(i) = 2u(i) + s(a(i)),

J (i) = {j : ‖c(j)− c(a(i))‖ ≤ R(i)}. (12)

The underlying test used (proof in B.4) is

j 6∈ J (i) =⇒ j 6∈ {n1(i), n2(i)}.

In moving from ann to exp, the decentralisation from the
origin to the centroids incurs two costs, one which can
be explained algorithmically, the other is related to cache
memory.

Recall that ann sorts ‖c(j)‖ in each round, thus guarantee-
ing that the set of candidate centroids (9) can be obtained
in O(log(k)) operations. To guarantee that the set of can-
didate centroids (12) can be obtained with O(log(k)) oper-
ations requires that ‖c(j) − c(a(i))‖ be sorted. For this to
be true for all samples requires sorting ‖c(j) − c(j′)‖ for
all j ∈ {1, . . . , k}, increasing the overhead of sorting from
O(k log k) to O(k2 log k).

The cache related cost is that, unless samples are ordered
by a(i), the bisection search performed to obtain J (i) is
done with a different row of c(j, j′) for each sample, re-
sulting in cache memory misses.

To offset these costs, we replace the exact sorting of ccwith
a partial sorting, paying for this approximation with addi-
tional distance calculations. We maintain, for each cen-
troid, dlog2 ke concentric annuli, each succesive annulus
containing twice as many centroids as the one interior to it.
For cluster j, annulus f ∈ {1, . . . , dlog2 ke} is defined by
inner and outer radii e(j, f − 1) and e(j, f), and a list of
indices w(j, f) with |w(j, f)| = 2f , where

w(j, f) = {j′ : e(j, f − 1) < ‖c(j′)− c(j)‖ ≤ e(j, f)}.

Note that w(j, f) is not an ordered set, but there is an or-
dering between sets,

j′ ∈ w(j, f), j′′ ∈ w(j, f + 1) =⇒
‖c(j′)− c(j)‖ < ‖c(j′′)− c(j)‖.

Fast K-Means with Accurate Bounds

•

•

•

••

x(i)
ct(j)

ct+1(j)

ct+2(j)ct+3(j)

Figure 1. The classical sn-bound is the sum of the last known dis-
tance between the sample to a previous position of the centroid
(thick solid line), with all the distances between successive posi-
tions of the centroid since then (thin solid lines). The ns-bound we
propose uses the actual distance between that previous location of
the centroid and its current one (dashed line).

Given a search radius R(i), without a complete ordering of
c(j, j′) we cannot obtain J (i) inO(log(k)) operations, but
we can obtain a slightly larger set J ∗(i) defined by

f∗(i) = min{f : e(a(i), f) ≥ R(i)},
J ∗(i) =

⋃

f≤f∗(i)
w(j, f),

in log log(k) operations. It is easy to see that |J ∗(i)| ≤
2|J (i)|, and so using the partial sorting cannot cost more
than twice the number of distance calculations.

3.2. Improving bounds (sn to ns)

In all the algorithms presented so far, upper bounds (lower
bounds) are updated in each round with increments (decre-
ments) of norms of displacements. If tests are repeat-
edly successful, these increments (decrements) accumu-
late. Consider for example the upper bound update,

ut0+1(i)← ut0(i) + pt0(a(i)),

where subscripts denote rounds. The upper bound after δt
such updates without bound tightening is

ut0+δt(i) = ut0(i) +

t+δt−1∑

t′=t0

pt′(a(i)). (13)

The summation term is a (s)um of (n)orms of displacement,
thus we refer to it as an sn-bound and to an algorithm us-
ing only such an update scheme as an sn-algorithm. An
alternative upper bound at round t0 + δt is,

ut0+δt(i) = ut0(i) +

∥∥∥∥∥
t0+δt−1∑

t′=t0

ct′+1(i)− ct′(i)
∥∥∥∥∥ ,

= ut0(i) + ‖ct0+δt(i)− ct0(i)‖. (14)

Bound (14) derives from the (n)orm of a (s)um, and hence
we refer to it as an ns-bound. An ns-bound is guaranteed
to be tighter than its equivalent sn-bound by a trivial appli-
cation of the triangle inequality (proved in B.5). We have
presented an upper ns-bound, but lower ns-bound formu-
lations are similar. In fact, for cases where lower bounds
apply to several distances simultaneously, due to the addi-
tional operation of taking a group maximum, there are three
possible ways to compute a lower bound, details in §C.2.

3.3. Simplified Elkan’s algorithm-ns (selk-ns)

In transforming an sn-algorithm into an ns-algorithm, ad-
ditional variables need to be maintained. These include
a record of previous centroids C, where C(j, t) = ct(j),
and displacement of c(j) with respect to previous cen-
troids, P (j, t) = ‖c(j) − ct(j)‖. We no longer keep
rolling bounds for each sample, instead we keep a record
of when most recently bounds were made tight and the dis-
tances then calculated. For Simplified Elkan’s Algorithm-
ns, henceforth selk-ns, we define T (i, j) to be the last
time ‖x(i)− c(j)‖ was calculated, with corresponding dis-
tance l(i, j) = ‖x(i) − cT (i,j)(j)‖. We emphasise that
l(i, j) is defined differently here to in selk, with u(i) sim-
ilarly redefined as u(i) = ‖x(i)− cT (i,a(i))(a(i))‖.
The underlying test is

u(i) + P (a(i), T (i, a(i))) < l(i, j)−P (j, T (i, j))

=⇒ j 6= n1(i).

As with selk, the first bound failure for sample i results
in u(i) being updated, with subsequent failures resulting in
l(i, j) being updated to the current distance. In addition,
when u(i) (l(i, j)) is updated, T (i, a(i)) (T (i, j)) is set to
the current round.

Due to the additional variables C,P and T , the memory
requirement imposed is larger with selk-ns than with
selk-sn. Ignoring constants, in round t the memory re-
quirement assuming samples of size O(d) is,

memns = O(Nd+Nk + ktd),

where x, l and C are the principal contributors to the above
three respective terms. selk consists of only the first
two terms, and so when t > N/min(k, d), the dominant
memory consumer in selk-ns is the new variable C.
To guarantee that C does not dominate memory consump-
tion, an sn-like reset is performed in rounds {t : t ≡ 0
mod (N/min(k, d))}, consisting of the following updates,

u(i)← u(i) + P (a(i), T (i, a(i))),

l(i, j)← l(i, j)− P (j, T (i, j)),

T (i, j)← t,

and finally the clearing of C.

Fast K-Means with Accurate Bounds

3.4. Changing Bounds for Other Algorithms

All sn- to ns- coversions are much the same as that de-
scribed in Section 3.3. We have implemented versions of
elk, syin and exp using ns-bounds, which we refer to
as elk-ns, syin-ns and exp-ns respectively.

4. Experiments and Results
Our first set of experiments are conducted using a single
core. We first establish that our implementations of base-
line algorithms are as fast or faster than existing implemen-
tations. Having done this, we consider the effects of the
novel algorithmic contributions presented, simplification,
the Exponion algorithm, and ns-bounding. The final set of
experiments are conducted on multiple cores, and illustrate
how all algorithms presented parallelise gracefully.

We compare 23 k-means implementations, including our
own implementations of all algorithms described, origi-
nal implementations accompanying the papers (Hamerly,
2010; Drake, 2013; Ding et al., 2015), and implementa-
tions in two popular machine learning libraries, VLFeat
and mlpack. We use the following notation to re-
fer to implementations: {codesource-algorithm},
where codesource is one of bay (Hamerly, 2015),
mlp (Curtin et al., 2013), pow (Low et al., 2010),
vlf (Vedaldi & Fulkerson, 2008) and own (our own code),
and algorithm is one of the algorithms described.

Unless otherwise stated, times are wall times excluding
data loading. We impose a time limit of 40 minutes and
a memory limit of 4 GB on all {dataset, implementation,
k, seed} runs. If a run fails to complete in 40 minutes, the
corresponding table entry is ‘t’. Similarly, failure to exe-
cute with 4GB of memory results in a table entry ‘m’. We
confirm that for all {dataset, k, seed} triplets, all imple-
mentations which complete within the time and memory
constraint take the same number of iterations to converge
to a common local minimum, as expected.

The implementations are compared over the 22 datasets
presented in Table 1, for k ∈ {100, 1000}, with 10 distinct
centroid initialisations (seeds). For all {dataset, k, seed}
triplets, the 23 implementations are run serially on a ma-
chine with an Intel i7 processor and 8MB of cache mem-
ory. All experiments are performed using double precision
floating point numbers.

Findings in Drake (2013) suggest that the best algorithm to
use for a dataset depends primarily on dimension, where
in low-dimensions, ham and ann are fastest, in high-
dimensions elk is fastest, and in intermediate dimensions
an approach maintaining a fractional number of bounds,
Drake’s algorithm, is fastest. Our findings corroborate
these on real datasets, although the lines separating the

d N
i 2 100k
ii 2 169k
iii 2 1m
iv 3 165k
v 3 164k

d N
vi 4 200k
vii 4 200k
viii 9 68k
ix 11 41k
x 15 166k
xi 17 23k

d N
xii 28 66k
xiii 30 1m
xiv 50 60k
xv 50 130k
xvi 55 581k

d N
xvii 68 2.6m
xviii 74 146k
xix 108 1m
xx 128 14k
xxi 310 95k
xxii 784 60k

Table 1. The 22 datasets used in experiments, ranging in dimen-
sion from 2 to 784. The datasets come from: the UCI, KDD and
KEEL repositories (11,2,2), MNIST and STL-10 image databases
(2,1), random (2), European Bioinformatics Institute (1) and Joen-
suu University (1). Full names and further details in D.

three groups are blurry. In presenting our results we pre-
fer to consider a partitioning of the datasets into just two
groups about the dimension d = 20. ham and its deriva-
tives are considered for d < 20, elk and its derivatives for
d ≥ 20, and syin and yin for all d.

4.1. Single core experiments

A complete presentation of wall times and number of iter-
ations for all {dataset, implementation, k} triplets is pre-
sented over two pages in Tables 2 and 3 (§D). Here we
attempt to summarise our findings. We first compare im-
plementations of published algorithms (§4.1.1), and then
show how selk and syin often outperform their more
complex counterparts (§4.1.2). We show that exp is in gen-
eral much faster than ann (§4.1.3), and finally show how
using ns-bounds can accelerate algorithms (§4.1.4) .

4.1.1. COMPARING IMPLEMENTATIONS OF BASELINES

There are algorithmic techniques which can speedup all k-
means algorithms discussed in this paper, we mention a few
which we use. One is pre-computing the squares of norms
of all samples just once, and those of centroids once per
round. Another, first suggested in Hamerly (2010), is to up-
date the sum of samples by considering only those samples
whose assignment changed in the previous round. A third
optimisation technique is to decompose while-loops which
contain inner branchings dependant on the tightness of up-
per bounds into separate while-loops, eliminating unnec-
essary comparisons. Finally, while there are no large ma-
trix operations with bounding-based algorithms, in high-
dimensions distance calculations can be accelerated by the
use of SSE, as in VLFeat, or by fast implementations of
BLAS, such as OpenBLAS (Xianyi, 2016).

Our careful attention to optimisation is reflected in Table 7
(§A), where implementations of elk, ham, ann and yin
are compared. The values shown are ratios of mean run-
times using another implementation (column) and our own
implementation of the same algorithm, on a given dataset

Fast K-Means with Accurate Bounds

(row). Our implementations are faster in all but 4 compar-
isons.

4.1.2. BENEFITS OF SIMPLIFICATION

We compare published algorithms elk and yin with their
simplified counterparts selk and syin. The values in Ta-
ble 2 are ratios of mean runtimes using simplified and orig-
inal algorithms, values less than 1 mean that the simplified
version is faster. We observe that selk is faster than elk
in 16 of 18 experiments, and syin is faster than yin in 43
of 44 experiments, often dramatically so.

It is interesting to ask why the inventors of elk and yin
did not instead settle on algorithms selk and syin re-
spectively. A partial answer might relate to the use of
BLAS, as the speedup obtained by simplifying yin to
syin never exceeds more than 10% when BLAS is de-
activated. syin is more responsive to BLAS than yin as
it has larger matrix multiplications due to it not having a
final filter.

own-yin→ own-elk→
own-syin own-selk

100 1000 100 1000 100 1000
i 0.96 0.90 xii 0.58 0.76 xii 0.85 1.05
ii 1.03 0.86 xiii 0.66 0.61 xiii 0.97 m
iii 0.88 0.92 xiv 0.50 0.55 xiv 0.84 0.57
iv 0.94 0.87 xv 0.49 0.58 xv 0.54 0.49
v 0.93 0.88 xvi 0.49 0.66 xvi 0.92 m
vi 0.91 0.87 xvii 0.44 0.58 xvii 0.75 m
vii 0.96 0.90 xviii 0.42 0.47 xviii 0.86 0.66
viii 0.79 0.80 xix 0.36 0.42 xix 0.72 m
ix 0.77 0.80 xx 0.38 0.60 xx 1.12 0.74
x 0.72 0.73 xxi 0.32 0.36 xxi 0.89 0.73
xi 0.64 0.71 xxii 0.36 0.38 xxii 0.99 0.89

Table 2. Comparing yin and elk to simplified versions syin
and selk. Values are ratios of mean runtimes of simplified
versions to their originals, for different low-dimensional datasets
(rows) and k (columns). Values less than 1 mean that the simpli-
fied version is faster. In all but 3 of 62 cases (italicised), simplifi-
cation results in speedup, by as much as 3×.

4.1.3. FROM ANNULAR TO EXPONION

We compare the Annular algorithm (ann) with the Ex-
ponion algorithm (exp). The values in Table 3 are ra-
tios of mean runtimes (columns qt) and of mean number
of distance calculations (columns qau). Values less than
1 denote better performance with exp. We observe that
exp is markedly faster than ann on most low-dimensional
datasets, reducing by more than 30% the mean runtime in
17 of 22 experiments. The primary reason for the speedup
is the reduced number of distance calculations.

Table 4 summarises how many times each of the sn-
algorithms is fastest on the 44 {dataset, k} experiments,
ns-algorithms excluded. The 13 experiments on which exp
is fastest are all very low-dimensional (d < 5), the 24 on
which syin is fastest are intermediate (8 < d < 69) and
selk or elk are fastest in very high dimensions (d > 73).
For a detailed comparison across all algorithms, consult Ta-
bles 2 and 3 (§D).

own-ann→ own-exp
100 1000 100 1000

qt qau qt qau qt qau qt qau
i 0.48 0.52 0.72 0.61 vii 0.71 0.80 0.36 0.32
ii 0.54 0.80 0.58 0.50 viii 1.12 1.24 1.02 0.93
iii 0.53 0.58 0.48 0.44 ix 0.96 0.99 0.73 0.64
iv 0.63 0.80 0.36 0.33 x 0.67 0.65 0.55 0.41
v 0.63 0.80 0.37 0.34 xi 1.24 1.43 1.30 1.16
vi 0.62 0.73 0.42 0.38

Table 3. Ratios of mean runtimes (‘qt’) and mean number of dis-
tance calculations (‘qau’) using the Exponion (own-exp) and
Annular (own-ann) algorithms, on datasets with d < 20. Ex-
ponion is faster in all but the four italicised cases. The speedup is
primarily due to the reduced number of distance calculations.

ham ann exp syin yin selk elk
0 0 13 24 0 6 1

Table 4. Number of times each sn-algorithm is fastest, over the 44
{dataset, k} experiments, ns-algorithms not considered here.

4.1.4. FROM SN TO NS BOUNDING

For each of the 44 {dataset, k} experiments, we compare
the fastest sn-algorithm with its ns-variant. The results are
presented in Table 5. Columns ‘x’ denote the fastest sn-
algorithm. Values are ratios of means over runs of some
quantity using the ns- and sn- variants. The ratios are qt
(runtimes), qa (number of distance calculations in the as-
signment step) and qau (total number of distance calcula-
tions).

In all but 8 of 44 experiments (italicised), we observe a
speedup using ns-bounding, by up to 45%. As expected,
the number of distance calculations in the assignment step
is never greater when using ns-bounds, however the total
number of distance calculations is occasionally increased
due to initial variables being maintained.

4.2. Multicore experiments

We have implemented parallelised versions of all algo-
rithms described in this paper using the C++11 thread sup-
port library. To measure the speedup using multiple cores,
we compare the runtime using four threads to that using
one thread on a non-hyperthreading four core machine.

Fast K-Means with Accurate Bounds

own-x→ own-x-ns
100 1000

x qt qa qau x qt qa qau
i exp 0.96 0.97 0.99 exp 0.99 0.98 1.00
ii exp 0.94 0.97 0.97 exp 0.99 0.99 1.00
iii exp 0.95 0.97 0.98 exp 0.98 0.96 0.99
iv exp 0.97 0.97 0.97 exp 0.99 0.97 0.98
v exp 0.96 0.97 0.97 exp 0.98 0.96 0.98
vi exp 0.95 0.96 0.97 exp 0.97 0.96 0.98
vii syin 0.98 0.82 0.86 exp 0.98 0.96 0.99
viii syin 0.98 0.86 0.88 syin 0.87 0.44 0.65
ix syin 0.98 0.83 0.86 syin 0.83 0.32 0.66
x syin 1.03 0.91 0.92 syin 1.11 0.72 0.80
xi selk 0.92 0.80 0.84 syin 0.81 0.56 0.69
xii syin 1.00 0.86 0.88 syin 0.96 0.51 0.85
xiii syin 0.96 0.84 0.84 syin 0.87 0.58 0.61
xiv syin 0.99 0.86 0.87 syin 0.74 0.51 0.63
xv syin 1.06 0.93 0.94 syin 0.94 0.58 0.69
xvi syin 1.04 0.91 0.93 syin 0.98 0.61 0.79
xvii syin 1.00 0.87 0.89 syin m m m
xviii selk 0.89 0.81 0.82 syin 0.75 0.64 0.68
xix selk 0.88 0.84 0.85 syin 0.91 0.75 0.77
xx elk 1.02 0.96 1.02 selk 1.06 0.99 1.00
xxi selk 0.85 0.81 0.82 selk 0.72 0.72 0.73
xxii selk 0.80 0.77 0.78 selk 0.55 0.68 0.69

Table 5. The effect of using ns-bounds. Columns ‘x’ denotes
the fastest sn-algorithm for a particular {dataset, k} experiment.
Columns ‘qt’ denote the ratio of mean runtimes of ns- and sn-
variants of x. Italicised values are cases where using ns-bounding
results in a slow down (qt > 1), in the majority of cases there is
a speedup. ‘qa’ and ‘qau’ denote ratios of ns- to sn- mean num-
ber of distance calculations in the assignment step (a) and in total
(au). ‘m’ described in paragraph 3 of §4.

The results are summarised in Table 6, where near fourfold
speedups are observed.

i-xi
100 1000

own-exp-ns 0.29 0.31
own-syin-ns 0.31 0.29

xii-xxii
100 1000

own-selk-ns 0.33 0.30
own-elk-ns 0.30 0.28
own-syin-ns 0.27 0.27

Table 6. The median speedup using four cores. The median is
over i-xi on the left and xii-xxii on the right.

5. Conclusion and future work
The experimental results presented show that the ns-
bounding scheme makes exact k-means algorithms faster,
and that our Exponion algorithm is significantly faster
than existing state-of-the-art algorithms in low-dimensions.
Both can be seen as good default choices for k-means clus-

tering on large data-sets.

The main practical weakness that remains is the necessary
prior selection of which algorithm to use, depending on the
dimensionality of the problem at hand. This should be ad-
dressed through an adaptive procedure able to select auto-
matically the optimal algorithm through an efficient explo-
ration/exploitation strategy. The second and more prospec-
tive direction of work will be to introduce a sharing of in-
formation between samples, instead of processing them in-
dependently.

Acknowledgements
James Newling was funded by the Hasler Foundation under
the grant 13018 MASH2.

A. Table Comparing Implementations

b
a
y
-
h
a
m

m
l
p
-
h
a
m

b
a
y
-
a
n
n

p
o
w
-
y
i
n

p
o
w
-
y
i
n

b
a
y
-
e
l
k

m
l
p
-
e
l
k

v
l
f
-
e
l
k

10
0

i 1.23 1.04 0.78 7.52 xii 2.51 2.69 1.87 2.48
ii 1.28 0.99 0.86 4.91 xiii 3.84 1.36 1.56 t
iii 1.19 1.27 0.88 9.84 xiv 1.98 1.75 1.53 2.72
iv 1.59 1.15 1.24 6.21 xv 2.21 1.48 1.48 2.01
v 1.59 1.20 1.24 6.01 xvi 2.30 1.68 2.00 2.85
vi 1.78 1.27 1.32 6.41 xvii m 1.79 1.88 2.61
vii 1.78 1.17 1.48 5.63 xviii 1.69 1.91 1.46 2.68
viii 2.67 1.38 2.38 3.99 xix 1.49 1.64 1.74 2.44
ix 2.93 1.51 2.90 3.65 xx 1.35 2.53 2.21 2.41
x 3.59 1.75 2.67 3.28 xxi 1.24 2.35 1.57 1.81
xi 3.89 2.04 3.18 2.17 xxii 1.16 2.86 1.43 1.35

10
00

i 1.51 1.03 1.06 7.57 xii 3.37 6.21 3.20 2.44
ii 1.52 1.04 1.17 8.03 xiii t m m m
iii 1.47 1.05 1.04 8.57 xiv 2.09 1.89 1.86 2.07
iv 1.77 1.09 1.59 6.98 xv 3.14 1.43 2.76 1.80
v 1.77 1.09 1.59 7.01 xvi 3.98 m m m
vi 2.07 1.17 1.79 7.23 xvii m m m m
vii 1.99 1.17 1.73 6.57 xviii 1.82 1.78 1.40 1.92
viii 3.01 1.38 2.97 4.63 xix t m m m
ix 3.28 1.58 3.34 4.06 xx 2.06 6.17 2.60 1.72
x 3.92 1.76 3.57 5.08 xxi 1.32 2.88 1.80 1.51
xi 4.08 1.99 4.03 2.89 xxii 1.17 4.82 1.74 1.28

Table 7. Comparing implementations. For 100 (above) and 1000
(below) clusters, and in low- (left) and high- (right) dimensions.
Existing implementations (colums) of ham, ann, yin and elk
are compared to our implementations as a ratio of mean runtimes,
with the mean runtime of our implementation in the denominator.
Values greater than 1 mean our implementation runs faster. ‘t’ and
‘m’ are described in paragraph 3 of §4.

Fast K-Means with Accurate Bounds

References
Bentley, Jon Louis. Multidimensional binary search trees

used for associative searching. Commun. ACM, 18(9):
509–517, September 1975. ISSN 0001-0782. doi:
10.1145/361002.361007. URL http://doi.acm.
org/10.1145/361002.361007.

Curtin, Ryan R., Cline, James R., Slagle, Neil P., March,
William B., Ram, P., Mehta, Nishant A., and Gray,
Alexander G. MLPACK: A scalable C++ machine learn-
ing library. Journal of Machine Learning Research, 14:
801–805, 2013.

Ding, Yufei, Zhao, Yue, Shen, Xipeng, Musuvathi, Madan-
lal, and Mytkowicz, Todd. Yinyang k-means: A
drop-in replacement of the classic k-means with con-
sistent speedup. In Proceedings of the 32nd In-
ternational Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, pp. 579–587,
2015. URL http://jmlr.org/proceedings/
papers/v37/ding15.html.

Drake, Jonathan. Faster k-means clustering, 2013. Ac-
cessed online 19 August 2015.

Drake, Jonathan and Hamerly, Greg. Accelerated k-means
with adaptive distance bounds. In 5th NIPS Workshop
on Optimization for Machine Learning, 2012, pp. 42–
53, 2012. URL http://opt-ml.org/oldopt/
papers/opt2012_paper_13.pdf.

Elkan, Charles. Using the triangle inequality to acceler-
ate k-means. In Machine Learning, Proceedings of the
Twentieth International Conference (ICML 2003), Au-
gust 21-24, 2003, Washington, DC, USA, pp. 147–153,
2003. URL http://www.aaai.org/Library/
ICML/2003/icml03-022.php.

Frahling, Gereon and Sohler, Christian. A fast k-
means implementation using coresets. In Proceed-
ings of the Twenty-second Annual Symposium on Com-
putational Geometry, SCG ’06, pp. 135–143, New
York, NY, USA, 2006. ACM. doi: 10.1145/1137856.
1137879. URL http://doi.acm.org/10.1145/
1137856.1137879.

Hamerly, Greg. Making k-means even faster. In SDM, pp.
130–140, 2010. doi: http://www.siam.org/proceedings/
datamining/2010/dm10 012 hamerlyg.pdf.

Hamerly, Greg. baylorml. https://github.com/
BaylorCS/baylorml.git, 2015.

Kanungo, Tapas, Mount, D.M., Netanyahu, N.S., Piatko,
C.D., Silverman, R., and Wu, A.Y. An efficient k-means

clustering algorithm: analysis and implementation. Pat-
tern Analysis and Machine Intelligence, IEEE Transac-
tions on, 24(7):881–892, Jul 2002. ISSN 0162-8828.
doi: 10.1109/TPAMI.2002.1017616.

Low, Yucheng, Gonzalez, Joseph, Kyrola, Aapo, Bick-
son, Danny, Guestrin, Carlos, and Hellerstein, Joseph M.
Graphlab: A new parallel framework for machine learn-
ing. In Conference on Uncertainty in Artificial Intelli-
gence (UAI), July 2010.

Nister, David and Stewenius, Henrik. Scalable recognition
with a vocabulary tree. In Proceedings of the 2006 IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition - Volume 2, CVPR ’06, pp. 2161–
2168, Washington, DC, USA, 2006. IEEE Computer
Society. ISBN 0-7695-2597-0. doi: 10.1109/CVPR.
2006.264. URL http://dx.doi.org/10.1109/
CVPR.2006.264.

Orchard, M.T. A fast nearest-neighbor search algo-
rithm. In Acoustics, Speech, and Signal Processing,
1991. ICASSP-91., 1991 International Conference on,
pp. 2297–2300 vol.4, Apr 1991. doi: 10.1109/ICASSP.
1991.150755.

Philbin, J., Chum, O., Isard, M., Sivic, J., and Zisserman,
A. Object retrieval with large vocabularies and fast spa-
tial matching. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2007.

Phillips, S.J. Acceleration of k-means and related cluster-
ing algorithms. volume 2409 of Lecture Notes in Com-
puter Science. Springer, 2002.

Sculley, D. Web-scale k-means clustering. In Proceed-
ings of the 19th International Conference on World Wide
Web, WWW ’10, pp. 1177–1178, New York, NY, USA,
2010. ACM. ISBN 978-1-60558-799-8. doi: 10.1145/
1772690.1772862. URL http://doi.acm.org/
10.1145/1772690.1772862.

Vedaldi, A. and Fulkerson, B. VLFeat: An open and
portable library of computer vision algorithms. http:
//www.vlfeat.org/, 2008.

Wu, Xindong, Kumar, Vipin, Quinlan, J. Ross, Ghosh, Joy-
deep, Yang, Qiang, Motoda, Hiroshi, McLachlan, Ge-
offrey, Ng, Angus, Liu, Bing, Yu, Philip, Zhou, Zhi-
Hua, Steinbach, Michael, Hand, David, and Steinberg,
Dan. Top 10 algorithms in data mining. Knowledge
and Information Systems, 14(1):1–37, January 2008.
ISSN 0219-1377. URL http://dx.doi.org/10.
1007/s10115-007-0114-2.

Xianyi, Zhang. OpenBLAS. http://www.openblas.
net, 2016.

B Proofs

We will use subscripts to denote rounds of k-means, and B(x, r) to denote the closed ball centered
on x of radius r.

B.1 Proof of correctness of Elkan’s algorithm update

By the definition of the lower bound update,

lt0+1(i, j) = lt0(i, j)− pt0(j).

Using that lt0 is a valid bound, the definition of pt0 , and the triangle inequality,

≤ ‖x(i)− ct0(j)‖ − pt0(j),

≤ ‖x(i)− ct0(j)‖ − ‖ct0(j)− ct0+1(j)‖
≤ ‖x(i)− ct0+1(j)‖.

Thus the lower bound update is valid. Similarly for the upper bound,

ut0+1(i, j) = ut0(i) + pt0(a(i)),

≥ ‖x(i)− ct0(a(i))‖+ pt0(a(i)),

≥ ‖x(i)− ct0(a(i))‖+
‖ct0(a(i))− ct0+1(a(i))‖,

≥ ‖x(i)− ct0+1(a(i))‖.

This proves that the upper bound update is valid.

B.2 Proof of correctness of Elkan’s algorithm intercentroid test

Suppose that,
cc(a(i), j)

2
> u(i).

Then, by the triangle inequality and previous definitions,

‖c(j)− x(i)‖ ≥ ‖c(j)− c(a(i))‖−
‖c(a(i))− x(i)‖,

≥ cc(a(i), j)− u(i),

≥ 2u(i)− u(i),

≥ u(i).

Thus c(a(i)) is nearer to x(i) than c(j) is, and so j 6= n1(i).

1

B.3 Proof of correctness of Annular algorithm test

Recall the definition of R(i),

R(i) = max (u(i), ‖x(i)− c(b(i))‖) .
Following directly from this definition and the definition of u(i), we have c(a(i)), c(b(i)) ∈ B(x(i), R(i)).
Therefore by the definitions of n1(i) and n2(i), we have that c(n1(i)), c(n2(i)) ∈ B(x(i), R(i)). The
triangle inequality now provides

|‖c(j)‖ − ‖x(i)‖| > R(i) =⇒ ‖c(j)− x(i)‖ > R(i), (1)

Thus by the definition of J (i),

J (i) = {j : |‖c(j)‖ − ‖x(i)‖| ≤ R(i)},
we can say,

j 6∈ J (i) =⇒ j 6∈ {n1(i), n2(i)}.

B.4 Proof of correctness of Exponion algorithm test

Let nn(j) ∈ {1, . . . , k} \ {j} denote the index the cluster whose centroid is nearest to the centroid
of cluster j other than j, that is the centroid at distance s(j) from centroid j.

By definitions we have

c(a(i)) ∈ B(x(i), u(i)),

c(nn(a(i))) ∈ B(c(a(i)), s(a(i))).

Combining these we have

c(a(i)), c(nn(a(i))) ∈ B(x(i), u(i) + s(a(i))), (2)

Basic geometric arguments provide

B (x(i), u(i) + s(a(i))) ⊆ B(c(a(i)), 2u(i) + s(a(i))). (3)

From (2) we deduce that

c(n1(i)), c(n2(i)) ∈ B(x(i), u(i) + s(a(i))),

and hence by (3) we have

c(n1(i)), c(n2(i)) ∈ (c(a(i)), 2u(i) + s(a(i))),

completing the proof.

B.5 Proof that ns upper bound is tighter than sn upper bound

unst0+δt(i) = ut0(i) +

∥∥∥∥∥
t0+δt−1∑

t′=t0

ct′+1(i)− ct′(i)
∥∥∥∥∥ ,

≤ ut0(i) +

t0+δt−1∑

t′=t0

‖ct′+1(i)− ct′(i)‖,

≤ usnt0+δt(i).

2

C Detailed descriptions

C.1 The inner Yinyang test

We need some temporary notation to present the test which the Yinyang algorithm employs,

j1(i, f) = arg min
j∈G(f)

‖x(i)− c(j)‖,

j2(i, f) = arg min
j∈G(f)\{j1(f)}

‖x(i)− c(j)‖,

r2(i, f) = ‖x(i)− c(j2(f))‖.

The Yinyang test hinges on the fact that centroids in G(f) which lie beyond radius r2(i, f) of
x(i) do not affect the variable updates and can thus be ignored. Extending this, suppose we have
bounds r̃2(i, f) and l̃(i, j) for j ∈ G such that r̃2(i, f) > r2(f) and l̃(i, j) < ‖x(i) − c(j)‖. Then
r̃2(i, f) < l̃(i, j) means that centroid j can be ignored. It remains to define relevant bounds r̃2(i, f)
and l̃(i, j).

For r̃2(i, f), one keeps track of the second nearest centroid found thus far while looping over the
centroids in G(f). Then for l̃(i, j) we could take l(i, f), but a better choice is l̃(i, j)− q(f) + p(j),
which replaces the maximum group displacement in the last round with the exact displacement of
centroid j.

The Yinyang test to determine whether centroid j needs be considered is thus finally,

l(i,f)− q(f) + p(j) > r̃2(i, f) =⇒ (4)

centroid j lies beyond radius r2, can be ignored.

C.2 SMN, MSN, MNS

A lower bound to at time t0 + δt on the distance from x(i) to a group of centroids with group index
f can be computed in three different ways. Letting ∆t0,δt denote the update term in

lt0+δt(i, f) = min
j∈G(i)

(‖x(i)− ct0(j)‖)−∆t0,δt ,

the three possibilities are

∆SMN
t0,δt =

t0+δt−1∑

t′=t0

max
j∈G(i)

(‖ct′+1(j)− ct′(j)‖),

∆MSN
t0,δt = max

j∈G(i)

(
t0+δt−1∑

t′=t0

‖ct′+1(j)− ct′(j)‖
)
,

∆MNS
t0,δt = max

j∈G(i)
(‖ct0+δt(j)− ct0(j)‖) .

The term ∆SMN
t0,δt

corresponds to the classic approach used in all previous works. The term ∆MSN
t0,δt

corresponds to an intermendiate where improved bounds can be obtained without storing centroids.
The term ∆MNS

t0,δt
corresponds to the approach providing the tightest bounds, and is the one we use

throughout.

3

Data set d N
i birch 2 100,000
ii europe 2 169,300
iii urand2 2 1,000,000
iv ldfpads 3 164,850
v conflongdemo 3 164,860
vi skinseg 4 200,000
vii tsn 4 200,000
viii colormoments 9 68,040
ix mv 11 40,760
x wcomp 15 165,630
xi house16h 17 22,780
xii keggnet 28 65,550
xiii urand30 30 1,000,000
xiv mnist50 50 60,000
xv miniboone 50 130,060
xvi covtype 55 581,012
xvii uscensus 68 2,458,285
xviii kddcup04 74 145,750
xix stl10 108 1,000,000
xx gassensor 128 13,910
xxi kddcup98 310 95,000
xxii mnist784 784 60,000

Table 1: Fullnames of the 22 datasets used. All datasets are preprocessed such that features have
mean zero and variance 1.

D Full Results Tables

4

m
ea

n
it

er
a
ti

on
s

S
D

it
er

at
io

n
s

m
ea

n
fa

st
es

t
[s

]

S
D

fa
st

es
t

b
a
y
-
s
t
a

m
l
p
-
s
t
a

p
o
w
-
s
t
a

v
l
f
-
s
t
a

o
w
n
-
s
t
a

b
a
y
-
h
a
m

m
l
p
-
h
a
m

o
w
n
-
h
a
m

b
a
y
-
a
n
n

o
w
n
-
a
n
n

o
w
n
-
e
x
p

o
w
n
-
e
x
p
-
n
s

o
w
n
-
s
y
i
n

o
w
n
-
s
y
i
n
-
n
s

p
o
w
-
y
i
n

o
w
n
-
y
i
n

o
w
n
-
s
e
l
k

o
w
n
-
s
e
l
k
-
n
s

b
a
y
-
e
l
k

m
l
p
-
e
l
k

v
l
f
-
e
l
k

o
w
n
-
e
l
k

o
w
n
-
e
l
k
-
n
s

i 139 35.4 0.26 0.04 62.2 44.7 105 33.7 19.2 5.75 4.87 4.67 1.72 2.19 1.05 1.00 1.91 2.01 14.9 1.98 9.37 8.42 14.8 11.1 21.3 7.53 5.55
ii 335 132 1.69 0.25 38.2 28.1 60.3 21.5 10.3 6.44 5.00 5.05 1.71 1.99 1.07 1.00 3.05 3.13 14.6 2.96 6.08 5.60 10.8 8.70 15.9 6.94 6.70
iii 455 187 5.23 1.47 100 76.4 153 56.4 29.9 4.00 4.25 3.35 1.75 1.99 1.05 1.00 2.04 1.95 23.0 2.33 15.1 13.6 26.6 19.1 34.1 12.3 8.67
iv 270 96.3 2.17 0.48 29.0 17.9 37.7 15.2 6.79 3.99 2.90 2.51 2.03 1.64 1.04 1.00 1.02 1.06 6.78 1.09 3.66 3.30 7.09 6.68 11.0 4.54 3.80
v 277 73.6 2.35 0.48 27.5 18.1 35.7 14.4 6.80 4.07 3.06 2.55 2.05 1.66 1.04 1.00 1.01 1.05 6.48 1.08 3.47 3.14 6.72 6.57 10.5 4.31 3.63
vi 235 107 1.76 0.61 44.3 25.7 55.6 17.7 9.96 4.68 3.34 2.63 2.23 1.69 1.05 1.00 1.20 1.21 8.45 1.32 4.76 4.29 8.79 8.22 13.4 5.16 4.20
vii 117 25.2 1.32 0.18 28.9 15.9 34.2 11.7 5.85 4.29 2.83 2.42 2.61 1.76 1.25 1.19 1.02 1.00 5.95 1.06 3.24 2.89 5.72 4.90 8.82 3.19 2.60
viii 203 48.4 1.19 0.20 31.4 14.1 26.3 10.3 5.61 6.47 3.33 2.42 5.08 2.14 2.39 2.24 1.02 1.00 5.11 1.28 2.25 2.02 6.22 6.38 10.0 4.10 3.09
ix 127 35.4 0.49 0.07 32.6 14.7 25.5 12.0 5.02 7.80 4.02 2.66 7.99 2.75 2.63 2.51 1.02 1.00 4.83 1.32 2.12 1.89 6.12 6.12 9.77 3.43 2.37
x 130 27.2 2.16 0.46 38.7 17.2 29.2 12.0 5.11 10.7 5.21 2.97 4.90 1.83 1.23 1.21 1.00 1.03 4.56 1.39 1.89 1.67 3.29 3.28 5.46 2.00 1.67
xi 111 16.6 0.52 0.07 20.8 9.62 14.0 5.36 2.82 9.34 4.89 2.40 5.96 1.88 2.33 2.22 1.11 1.07 3.75 1.73 1.08 1.00 2.90 3.30 4.34 2.07 1.90
xii 113 33.4 0.92 0.14 53.3 23.3 30.2 10.3 4.86 12.0 4.21 2.11 5.58 1.47 1.82 1.75 1.00 1.00 4.36 1.74 1.66 1.46 5.26 3.64 4.84 1.95 1.60
xiii 2576 110 156 1.86 t t t t t 9.15 4.61 1.85 9.26 1.97 1.82 1.70 1.04 1.00 6.06 1.58 3.37 3.04 4.70 5.40 t 3.46 3.16
xiv 152 58.3 1.72 0.33 67.4 21.6 29.3 10.7 5.60 17.8 5.76 2.47 18.2 2.61 2.44 2.34 1.01 1.00 4.00 2.02 1.47 1.25 3.04 2.66 4.72 1.74 1.39
xv 376 90.1 7.18 1.13 87.5 27.2 37.9 13.7 6.97 25.4 7.84 3.40 15.3 2.44 3.27 3.09 1.00 1.06 4.53 2.05 1.54 1.38 4.20 4.22 5.72 2.84 2.76
xvi 127 35.0 8.45 0.94 120 38.9 51.4 20.3 10.8 18.1 6.34 2.67 15.2 2.51 1.92 1.85 1.00 1.04 4.72 2.05 1.85 1.60 3.38 4.01 5.73 2.01 1.58
xvii 102 38.6 43.9 6.73 t 28.3 m 14.0 6.09 19.5 6.11 2.55 17.5 2.47 2.34 2.26 1.00 1.00 m 2.29 1.37 m 3.27 3.44 4.77 1.83 m
xviii 334 118 13.5 3.46 63.9 18.7 26.0 9.58 4.85 23.8 6.90 2.89 22.3 2.90 2.86 2.81 1.14 1.12 4.63 2.75 1.13 1.00 2.51 1.91 3.51 1.31 1.16
xix 408 145 92.5 27.0 t t t t 7.18 t 5.77 2.29 t 2.38 2.16 2.10 1.05 1.10 4.35 2.92 1.14 1.00 2.59 2.74 3.85 1.58 1.60
xx 57.3 15.9 0.23 0.05 101 28.2 40.0 14.6 6.73 33.7 9.58 3.65 15.8 2.27 3.37 3.25 1.72 1.78 6.14 4.56 1.12 1.13 2.53 2.21 2.41 1.00 1.02
xxi 178 58.8 9.96 1.97 121 30.1 44.0 16.7 7.98 41.4 10.5 3.72 42.1 3.94 3.66 3.57 1.47 1.47 5.76 4.64 1.18 1.00 3.10 2.07 2.39 1.32 1.14
xxii 131 25.9 9.89 1.23 143 34.8 50.1 20.0 10.0 40.1 10.2 3.97 40.6 4.10 3.87 3.75 1.29 1.34 4.23 3.64 1.25 1.00 3.63 1.82 1.71 1.27 1.03

Table 2: Results with k = 100 by dataset (rows). Columns 6 to the end contain mean times over the 11 initialisations, relative to the fastest
algorithm, that is the algorithm with the lowest mean time, corresponding to the entry 1.00. The mean and standard deviation of the number of
iterations to convergence are given in columns 2 and 3. The mean and standard deviation of the time of the fastest algorithm are given in columns
4 and 5. ‘t’ and ‘m’ correspond to timeout (40 minutes) and memory (4 GB) failures respectively. The fastest implementation for all data sets is
always own. The fastest non-own implementation for each data set is underlined, where non-own implementations correspond to white columns.

5

m
ea

n
it

er
a
ti

on
s

S
D

it
er

a
ti

on
s

m
ea

n
fa

st
es

t
[s

]

S
D

fa
st

es
t

b
a
y
-
s
t
a

m
l
p
-
s
t
a

p
o
w
-
s
t
a

v
l
f
-
s
t
a

o
w
n
-
s
t
a

b
a
y
-
h
a
m

m
l
p
-
h
a
m

o
w
n
-
h
a
m

b
a
y
-
a
n
n

o
w
n
-
a
n
n

o
w
n
-
e
x
p

o
w
n
-
e
x
p
-
n
s

o
w
n
-
s
y
i
n

o
w
n
-
s
y
i
n
-
n
s

p
o
w
-
y
i
n

o
w
n
-
y
i
n

o
w
n
-
s
e
l
k

o
w
n
-
s
e
l
k
-
n
s

b
a
y
-
e
l
k

m
l
p
-
e
l
k

v
l
f
-
e
l
k

o
w
n
-
e
l
k

o
w
n
-
e
l
k
-
n
s

i 120 20.5 2.80 0.32 48.0 32.0 104 25.4 12.0 12.5 8.50 8.29 1.49 1.41 1.01 1.00 1.01 1.27 8.53 1.13 6.83 6.32 11.5 17.5 16.3 5.54 4.32
ii 533 66.7 12.1 1.22 82.6 56.0 t 43.7 21.6 19.0 13.0 12.5 2.05 1.76 1.01 1.00 1.62 2.10 15.2 1.90 11.6 11.1 19.9 36.2 26.6 13.0 11.9
iii 406 86.5 19.9 2.10 t t t t 56.5 15.6 11.1 10.6 2.22 2.13 1.02 1.00 3.05 2.48 28.5 3.33 m m m m m m m
iv 193 46.5 7.22 1.07 60.4 34.2 95.4 30.2 13.5 17.8 11.0 10.0 4.49 2.83 1.01 1.00 1.15 1.34 9.19 1.32 6.93 6.43 12.0 24.9 18.6 7.51 6.32
v 197 25.2 7.16 0.55 62.1 35.1 98.1 31.1 13.7 17.3 10.7 9.79 4.41 2.77 1.02 1.00 1.15 1.34 9.17 1.31 7.10 6.61 12.4 25.3 19.3 7.65 6.39
vi 287 87.0 10.6 2.04 87.0 43.8 132 33.4 15.1 21.7 12.3 10.5 4.39 2.46 1.03 1.00 1.24 1.39 10.4 1.43 8.42 7.78 14.7 30.7 23.2 9.13 7.45
vii 94.0 21.8 4.17 0.41 71.7 36.2 105 28.0 12.6 15.6 9.18 7.83 4.85 2.80 1.02 1.00 1.25 1.37 9.10 1.39 7.23 6.71 11.9 19.2 18.3 6.08 4.86
viii 87.9 17.1 3.10 0.33 50.8 20.9 50.3 16.3 6.43 25.0 11.5 8.33 15.1 5.10 5.18 4.90 1.16 1.00 6.69 1.45 3.24 3.09 7.17 16.5 11.8 5.40 4.23
ix 51.1 5.74 1.28 0.07 48.7 20.8 44.6 17.6 6.10 24.3 11.7 7.40 23.0 6.90 5.01 4.80 1.21 1.00 6.13 1.51 2.92 2.73 6.39 15.2 9.73 4.30 3.51
x 201 41.6 12.5 1.30 102 42.0 90.3 30.7 11.3 50.6 22.7 12.9 12.6 3.54 1.96 1.91 1.00 1.11 6.93 1.36 4.28 3.95 7.80 16.9 13.1 5.41 4.64
xi 46.6 8.49 1.17 0.07 37.7 15.7 29.1 9.82 3.79 29.2 14.2 7.16 17.8 4.42 5.75 5.61 1.23 1.00 4.97 1.72 1.73 1.66 5.48 9.12 6.47 3.32 2.77
xii 32.8 3.81 1.87 0.07 73.4 31.5 47.5 15.0 6.86 28.9 8.55 4.36 9.20 2.09 1.99 1.95 1.04 1.00 4.60 1.37 2.17 2.03 12.8 6.60 5.04 2.07 1.57
xiii 738 108 382 31.1 t t t t t t t t t t t t 1.14 1.00 t 1.87 m m m m m m m
xiv 58.9 7.76 5.05 0.21 88.2 26.8 43.5 14.0 5.87 55.6 16.9 8.14 57.4 8.18 7.97 7.67 1.36 1.00 5.15 2.47 1.75 1.46 5.77 5.68 6.33 3.05 1.96
xv 181 41.5 15.8 1.93 t 58.0 92.7 29.6 14.4 109 33.1 15.5 59.1 8.08 11.0 10.6 1.07 1.00 5.77 1.84 2.60 2.49 7.56 14.6 9.56 5.30 4.14
xvi 224 55.8 46.6 4.86 t t t t t t 29.0 13.9 t 9.61 2.98 2.88 1.03 1.00 6.18 1.55 m m m m m m m
xvii 145 32.9 249 11.2 t t m t t t t t t t t 7.87 1.00 m m 1.73 m m m m m m m
xviii 114 11.9 33.7 1.18 t 24.7 38.8 13.1 6.47 59.0 16.6 8.16 58.6 7.89 8.20 8.00 1.33 1.00 5.11 2.80 1.47 1.27 3.99 3.13 4.30 2.24 1.71
xix 612 160 587 76.3 t t t t t t t t t t t t 1.09 1.00 t 2.63 m m m m m m m
xx 18.0 1.00 0.71 0.03 98.1 27.1 42.4 15.6 10.2 61.6 16.7 7.37 20.8 2.65 2.13 2.17 1.29 1.24 4.47 2.17 1.00 1.06 8.31 3.50 2.32 1.35 1.38
xxi 76.1 14.4 31.7 2.73 t 39.9 t 23.1 7.92 t 26.0 10.0 t 10.1 9.98 9.63 1.75 1.38 6.41 4.85 1.39 1.00 5.51 3.44 2.90 1.92 1.37
xxii 54.8 11.0 23.0 1.90 t 64.5 t 38.1 13.8 t 42.4 15.3 t 14.8 14.6 14.2 2.10 1.52 6.49 5.53 1.82 1.00 9.85 3.56 2.61 2.04 1.22

Table 3: As per Table 2, but with k = 1000

6

